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~ Abstract—Distributed stream-based applications, such as con- these problems to reduce each problem’s complexity, it is
tinuous query systems, have networkscale and time character-  known that this separation can yield sub-optimal decisions [8].
istics that challenge traditional distributed query optimization. This tradeoff is unwarranted in the SBON setting. In Sec-

The optimization sub-problems of plan generationand service i m introd t t d th
placementshould be integrated to meet these challenges. These lon 1ll, we introduce cost spacess a way 1o reduce the

tasks have typically been treated as independent sub-problems complexity of the optimization sub-problems to a point where
because of the complexity of their integration. We suggestost integrated plan generation and service placement is possible.

spacesas one way to mitigate this complexity. We further consider Cost spaces are metric spaces that allow nodes to express their
go‘t’i"micz‘ftfoﬁpaces can be used to allow tractable multi-query giate py choosing appropriate coordinates. These spaces make

P ' the service placement problem tractable and allow plan genera-
tion to consider a specific set of nodes. We conclude with open
research problems that follow from this integration and call for

In the beginning, Codd created the relation and the table [Hew research efforts into large scale query optimization.

And query optimization was without form, and void. But
researchers moved to address this void, and said, let there Il. QUERY OPTIMIZATION IN SBONs

be a query optimizer. And then (when networking came into cassic distributed database query optimization has focused
its own), there were distributed query optimizers [2], [3]. Angd), achieving good solutions to three problems:
then followed a long period of relative rest. ) _
This stable equilibrium of distributed query optimizatiorPata placementconsiders where to place data so that it may
research has been punctuated by recent work in peer to p@efficiently queried in the future.
databases [4], continuous query systems [5], [6], and otf®fan generation creates a logical plan that contains the
stream-based overlay networks [7]. This paper describes ilientity and order of services that must be used to answer
changes that must occur for distributed query optimization gquery.
work well in a general stream-based overlay network (SBOI\% . .
: . : erator (service) placementconsiders how to place op-
An SBON describes an environment where data is streamel - )
erators efficiently on a set of physical nodes. We refer to

from one or more producers to one or more consumers : ; ) .
P operator placement in an SBONservice placemerdince this

possibly via a set of services running in-network on additiona . . o
. S rocessing code may go beyond the confines of a traditional
capable overlay nodes. This general definition is agnosﬁc

to data model (relational, semi-structured, etc.) and servicaé1tabase operator.
model (database operator, application-injected code, etc.). Th&ome aspects of distributed query optimization are simpli-
distributed optimization problem is similar in every case: thiéed in the SBON setting. Often an SBON is used to relay
end-goal is to satisfy user queries, and when given the choitegl-time data from a particular data source to a series of
to do so in agood way with respect to some optimizationconsumers, and no other source can provide this particular
metric. data. For instance, live sensor readings from a volcano [9]
The SBON environment presents two challengise first ~originate at a particular volcano; one cannot move mountains.
challenge is networkscale Unlike the old database assumpOften there is no data placement problem, and we disregard
tion where operator services run at network endpoints, overlthys issue for the remainder of this paper. A second observation
networks permit services to be placed on capable in-netwdskthat there is no transaction processing in some stream-based
nodes.The second challenge isime. This challenge has two overlay networks. This paper considers systems where data is
components. First, whereas a typical database query is firigver changed and re-published.
and short-lived, queries in an SBON can run continuously. )
Second, node and network characteristics (such as load édelan Generation
latency) are dynamic. Plan generation takes as input a user query and outputs a
These challenges have significant implications for did¢egical plan to satisfy that query. The logical plan consists of
tributed query optimization. In Section I, we describe how thene or more data endpoints, possibly connected via services,
two sub-problems oplan generationand service placement to a consumer. In relational databases, the data may be stored
are affected. While the traditional database approach separatetables, and example services a®IN and SELECT In

I. INTRODUCTION



these systems, table summary information is used to estimate fC\
costs for performing different service orderings. A plan gen-
erator selects the least cost plan, which often has the effect ?
of minimizing application response time. Many distributed :
optimizers use dynamic programming with pruning or some
other enumeration algorithm to perform plan selection [8].
The SBON model challenges traditional plan generation
in three ways. First, because of long-running stream-based
queries, a bad decision in plan generation means that bad
plans will cause long-term damage to system capacity and ™ ™N\_ -
performance. Second, the variable node and network dynamics
mean that over the course of a long-running query, an initial :
plan may become invalid (or suboptimal) and require regen- (P)
. . . S o N\ 44
eratiort. Third, long-running queries increase the likelihood
of encountering concurrent plans that can re-use parts of each _, <
others’ plan trees. This is a double-edged sword: the long- <€ QueryPlan 1 Query Plan 2
lived nature of queries introduces an optimization opportunity; Service Physical Node
however, concurrent plans increase the complexity of the S 7 -
optimizer as it must process the union of several plans. THIG. ; oC4TESLIERER, W 567, cPnitatilie Secompenton &
challenge has not been explored in older distributed quefier service placement.
optimizers, which “examine one query at a time in isolation
and form a plan as if it were the only work running ingeneration, there has been little work on dynamic query opti-
the system.” [11] The long-lived nature of SBON querieghization in databases that takes these changes into account.
combined with ways of limiting the complexity of this problem Lo
(as in Section 1lI-D), make this challenge more compelling.c' Why Integrate Query Optimization’
Many distributed databases perform plan generation and

B. Service Placement service placement as tavo-step optimizatiori8, page 443].
. ) ) The idea is to perform plan generation without considering
Service placement takes as input a logical plan and outpyisde or network state. Then, immediately before the plan is

a mapping of each logical service to a physical node in th&ecuted, perform the service placement decision taking into
network. Traditional optimizers vary in how they assign @ccount current network characteristics.

cost to candidate placement decisions and select the leaskigure 1 shows an example of an inefficiency that can

cost plan. Kossman gives a good overview of how differeple caused by separate plan generation and service placement
models are used in the placement decision [8]. Again, dynandieps, even when optimizing a single query. In this example,
programming with pruning is often used for placement.  the distance between physical nodes corresponds to commu-
Current service placement algorithms are dramatically afication latency. A four-way join operator is decomposed into
fected by the SBON assumptions. The scale challenge is theee two-way joins (ServiceS;. ;) and then placed in the
most obvious change. Distributed databases have previousBON. The plan generation phase picks Query Rldor the
treated the network as an opaque transport. With the advgatomposition, which turns out to be a poorer choice due to
of the overlay (e.g., PlanetLab [12]), optimizers are now abtfe distribution of Producer® 4. Assuming the selectivities
to insert application logic into the networking infrastructureof the two plans were roughly the same, Query Plamould
Whereas previous optimizers had a placement choice rangiile resulted in a more efficient query placement, in that
in the tens of nodes, the next generation overlay-aware opfe total data latency is lower. However, this only becomes
mizers have hundreds or thousands of physical node choicgsparent after examining the network.
This is the nail in the coffin for traditional service placement Some work in dynamic database query optimization has
techniques unless there is substantial guidance on whereat@mpted to blend the two optimization sub-problems. One
focus the search. idea for common queries is to pre-calculate and store plans
The next two SBON challenges are similar to those observadd sub-plans in the database [13]. At compile time, each plan
in plan generation. First, the changing system dynamics ovelgenerated with a different set of network assumptions. Then,
the course of a long-running query mean that the initigfhen an expected query is issued, the optimizer examines cur-
placement may become invalid (or suboptimal) and requirent network state and tries to find the pre-computed plan that
regeneration. Second, long-running queries increase the likest matches current conditions. This approach is limited in
lihood of being able to merge identical services (servingat the optimizer must guess which future node and network
different queries) into one physical service instance. As in plafates are relevant and worth pre-calculation. Furthermore, it
is only applicable to “common” anticipated queries where a
1There has been previous work on regenerating plans due to changpl@n generation pre-calculation can be performed.
node _con_ditions [10], bl_Jt our im_pre_ssion is th_at this has been vie_zwed as a”lntegration of the two optimization sub-problems would
optimization research niche. This niche view is probably correct in a shoﬁ-e ideal. Yet. earlier in this section. we observed how dy-
lived query, since there is little time to recoup the cost of re-optimization. | - . ’ - ) N
a long-running query, recouping costs is less of an issue. namic programming in plan generation can be overwhelmed
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by concurrent queries, and how service placement may be (overloaded)

inundated both by concurrent queries and with new choices ng I
brought about by increased network scale. We must address S | -
these problems in order to proceed with an integration effort. r

IIl. A COSTSPACE APPROACH TOINTEGRATED
QUERY OPTIMIZATION

In this section, we propose a novel approach for an inte-
grated query optimizer, which considers the interdependency
of query plan generation and service placement. Our approach
is based on the idea of @st spacewhich captures service
placement costs in an efficient way (Section IlI-B). The cost
of service placement can then be used to guide query pkig 2. Example o600 nodes in &-dimensional cost spacEommunication

generation, avoiding consideration of an intractable numbg! is measured along the x- and y-axes and CPU load along the z-axis. The
' U load dimension uses a squared weighting function to discourage the use

of possible query plans (Section IlI-C). Finally, pruningy overioaded nodes, such as node

within the cost space reduces the complexity of multi-query

optimization with a large number of concurrently runningvith 600 nodes. The distance in the x-y plane between two

queries (Section 1lI-D). nodes gives an estimate of the communication latency of the
In the following, we will refer to the instantiation of a querytwo nodes. The height on the z-axis is proportional to the

in an SBON as eacircuit. A circuit can containunpinned squared CPU load on a node.

services, which are services that can be placed,@nded  The semantics (dimensions, units, and weighting functions)

services, which have a pre-defined network location. of a particular cost-space must be known by all nodes in

A. Cost Spaces the SBON. The SBON.ca_n support multiple indepgndent
: cost spaces, each to suit different classes of applications. In
A cost spaceis a multi-dimensional metric space thathe remainder of this section, we will show how the circuit

expresses cost information for service placement decisiogptimizer can use this cost space for query plan generation

A point in this space corresponds to a physical node, wheffid service placement.

each coordinate component represents an aspect of the cost

of using this node. Costs are eithgralarsor vectors CPU B. Service Placement

load, memory consumption, and disk capacity are examples of

scalar costs because they are properties of a single node, nAd cost space can be used to efficiently implement service

; . ! L2 rP acement in an SBON. Each node in the SBON calculates its
can be represented in one dimension. Communication latengc . .
oWn coordinate in the cost space.

communication jitter, and available bandwidth are represente he computation is done iterativelv to adapt to chanaes
as vector costs because they capture the relationship betwee 6 s stepm The aoal of circuit o ¥imizationp s to findga
this node and other nodes in the network. Vector costs usu y - e g ircuit op

ptacement of services that minimizes the overall cost of the

require multiple dimensions for accuracy. N . . . .
(,1\ sample pcost space (using only ve)::tor costs) would l%rcun in the SBON. This physical placement of services is
noroceeded by two decision phases:

a purelatency spacg14], [15], where the distance betwee
coordinates is an estimate of communication latency. Ev¥firtual Placement. A service placement algorithm is used to
though communication latency on the Internet violates tl®mpute the coordinates of the ideal placement locations for
triangulation inequality, it can be shown that such a metrimpinned services in the cost space. Such virtual placement
space can be constructed with only a slight error [16] whildecisions are computationally inexpensive as they do not
using a small number of dimensions. Vector costs be calculaiedtantiate services.
in a distributed and iterative nature by constantly refining the An algorithm for scalable, decentralized virtual placement
coordinates and correcting for network dynamism [17]. A nod# services in a cost spaceRelaxation placemeni?]. Relax-
calculates its scalar component using a weighting functi@tion placement uses a spring relaxation technique to minimize
supplied by the deployer of the cost space. The function tise costs and approximate optimal placement locations in a
constructed to always be non-negative, where zero represdatency cost space with respect to global network utilization.
an ideal value. As a simple example that could be used ltomodels circuits as springs, such that the spring constant
capture a node’s load, the weighting function could be trexjuals the data rate transfered over the link and the spring
squared function as in Figure 2; a node uses the square ofeittension derives from the latency. Services are modeled as
current value as its coordinate in the appropriate dimensiomassless bodies between springs: Pinned services have a fixed
Cost spaces can be used to express trade-offs betwkmration, whereas unpinned services can move freely. As a
different basic costs. For example, an application may wamsult, the function minimized by Relaxation placement is
to create circuits that minimize latency, subject to a CPU loamktwork utilization, expressed as the amount of data in transit
constraint. This example is shown in Figure 2. This graph caip- the network. The iterative nature of Relaxation placement
tures communication latency (x- and y-axes) and CPU load @lows it to adapt to changing network and circuit conditions.
axis). The points in the space are physical nodes in an SBANe details of Relaxation placement are described in previous
that is run on top of a simulated transit-stub network topologyork [7] and are outside the scope of this paper. Other virtual
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e \firtual Placement

Circuit after Physical Mapping mization in an SBON. Plan generation and service placement
can be integrated in the following manner: When a query is
introduced into the system by an application, any node in the
network performs dull circuit optimization As in traditional
database optimization, a set of candidate plans is created. But
in the integrated approach, each plan is virtually placed and
physically mapped using the desired cost space. This yields
exactly one candidate circuit per plan, with the cost of the
circuit representing the current node and network state. The
cheapest of these candidate circuits is selected as the circuit
and physically placed.
Fig. 3. Example of service placement in a cost spaéeual placement Over time, as _net\_/vo_rk dynamlcs Cha.ng.e' (_aach nOd.e that
ofa single unpinned service is performed in the vector dimensions, and !HQStS part of a circuit is capable ef-optimization This is
coordinate marked with the star is chosen. Physical mapping attempts to fiadlocal procedure, where a node can re-run placement and
T e e et s s APRING for any service hat it hosts. The result may be (o
when the entire cost space coordinate is considered Migrate the service to a cooperating node so that the best
nodes to host a service are consistently used. As part of re-

placement algorithms could be based on a centroid calculatigstimization, a node can perform limited plan re-writing as
or a gradient descent [18] within the cost space. long as it is running all affected services. This could involve

The virtual placement algorithm operates only over th@e reordering of services, the decomposition of existing
vector cost dimensions, since the ideal scalar componesgvices into sub-services to reduce load, or the recomposition
will all be zero. This is illustrated in Figure 3, which ShOWS)f services to reduce network communication.
placement using the same type of cost space as in Figure 23yt it is also possible that a stronger form of re-optimization
Virtual placement is performed in the x-y plane since nodg required. For instance, the selectivity estimates used to favor
load does not affect the placement decision. Scalar dimensi@pg plan over another may change as a circuit matures. In this
are used in the next phase that performs the physical mappi§genario, a node can trigger the full circuit optimization while
Physical Mapping. Any algorithm that uses a cost space to oghe original circuit is still running. If warranted, a new parallel
tain a good service p|acement location is faced W|[happ|ng circuit is deployed, cancelling the original less ideal circuit.
problem The basic problem solved in physical mapping is to Service placement using a cost space provides a technique
find a physical node that is close to the coordinate calculatédreduce the complexity of service placement. By reducing
in the virtual placement. This is a pragmatic interpretation #fis complexity, a query optimizer can consider treenbined
the idealistic virtual placement; a placement coordinate frof®st of a query plan and the best service placement for this
the cost space must be mapped back to a physical node befd#, selecting the plan and placement that have the smallest
the actual placement of the service can be carried out.  total cost.

One way to implement a mapping from cost space co

(Node CPU Load)?

95. Multi- Optimizati
dinates to physical nodes is to use a decentralized catalo ult-Query Optimization

such as a distributed hash table (DHT) [19], that returns nod.e%"—o perform multi-query optimization, the state space that an
that are closest to a given coordinate. This requires each néi€grated query optimizer has to consider is much larger. If
to stores its coordinates in the DHT after transforming it§€re are many concurrent queries in the SBON, a new query
multi-dimensional coordinate to a one-dimensional hash kégn potentially affect any of the existing queries iigysing
with a Hilbert curve [20], [21]. Due to the properties of DHTO! transformingexisting services. One way to deal with this
routing [22], a look-up of a coordinate in the DHT then returnghlarged search space of an integrated optimization approach is
the node with the closest existing coordinate in the systeml© Use the cost space to prune the search. Standard distributed
The mapping from cost space coordinates to physical nod4€ry optimization techniques can then rewrite the query plans
introduces amapping error if there are no physical nodesOf individual queries and perform multi-query optimization.
close to a desired coordinate. For example, in Figure 3, théis idea is based on the observation that query plans that
virtual placement chooses the star as the best coordinate IR°Ive operators hosted on physical nodes that are far away
the single unpinned service. Ideally, a physical node with zelfb the cost space are less likely to be useful and thus can be
load would be present at the star's coordinate. However, tiggored by the optimizer. For example, if a circuit only has
physical mapping finds the closest node to®, introducing Pinned services in the US, it is unlikely that reusing existing
some error. The magnitude of the mapping error depends ${VICeSs in Japaq W|I_I minimize overall cost for the circuit.
the dimensionality of the cost space and the distribution of When & new circuit is added to the SBON, the cost space
physical nodes within that cost space. However, experimef@ be used for pruning multi-query optimization decisions in
have shown that for realistic topologies and latency cost spagiféerent ways. A simple idea is to consider a snrajionin

this error remains small [7]. the cost space. The optimizer will then process circuits that fall
] ) . within this region. For instance, for each unpinned service in a
C. Plan Generation with Service Placement circuit, one implementation could use the Hilbert DHT to look

As explained in Section II-C, integrating plan generationp the closest nodes that may already be running the same
and service placement improves the efficiency of query opfervice. This effectively searches around the hyper-sphere



higher-dimensional cost spaces will require the design of novel
decentralized implementations of cost spaces and scalable
query optimization algorithms that operate within these spaces.

(1]
(2]
(3]
(4]
(5]

(6]

<€— Existing Query Plans
<€---- New Query Plan <€— Final Query Plan

Example of multi-query optimization in a cost spathe example
shows a multi-query optimizer only considering services within a radiaf
a new service in &-dimensional latency cost space.

[7

—

Fig. 4.

8]
surrounding each unpinned service. Other implementations
should be possible; this seems like an interesting area for
future research. 10]

Figure 4 is an example of an integrated optimizer th‘Jat
performs multi-query optimization for all circuits that fall(11]
within a radiusr of a new serviceS in a 2-dimensional 17

o TR ]
cost space. In this figure, a new circuit with Consunier (13
is added to the SBON in a-dimensional cost space. First,
the query optimizer chooses a query plan for the new circli!
and calculates the desired placement coordinate for the new
Service S in the cost space. Next, it considers multi-querfts]
plans involving all circuits that fall within a circle with
radius 7, namely the circuit with Consumef’s. Note that [1¢)
the circuits with Consumerg¢’; and C, are outside of this
region of the cost space and are therefore ignored, reducih
the complexity of the multi-query optimization decisions. A
cheaper query plan and service placement is found by reusitg)
serviceSs, which leads to the final query plan that is created
in the SBON. [19]

IV. RESEARCHCHALLENGES 20

Stream-based overlay networks require the integration [8f]
guery plan generation and service placement in order to avgig]
inefficient circuit instantiation. We believe that the abstrac-
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form targeted pruning in such a way that placement decisions
with a high cost are discarded automatically. Multi-query plan
optimization can then focus on regions in the cost space that
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However, there are open research challenges that must
be addressed. While we have experimented with latency
cost spaces and relaxation-based placement in simulation in
previous work [7], there is a need to investigate how the
dynamic behavior of the network and the data streams will
affect circuit optimization in practice. In addition, different,



