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uilders of large-scale distributed systems need mid-
dleware services that support loosely coupled, scal-
able interaction between large numbers of
communication partners. Event-based communica-

tion has become a new paradigm for building such systems,
because of both these advantages and the simple localized
application programming model that uses events as the
basic communication mechanism: an event can be seen as a
notification that something of interest has occurred within
the system. Components act as either event sources that pub-
lish new events, or event sinks that subscribe to events by
providing a specification of events of interest to them. A
publish/subscribe (pub/sub) communication layer [1] is then
responsible for disseminating events; for efficiency, it can
often also filter events by topic or content, according to
client specifications.

Many existing pub/sub systems [2–4] restrict subscriptions
to single events only, and thus lack the ability to express inter-
est in the occurrence of patterns of events. However, especially
in large-scale applications, event sinks may be overwhelmed
by the vast number of primitive low-level events, and would
benefit from a higher-level view. Such a higher-level view is
given by composite events (CEs) that are published when an
event pattern occurs. To date, it is usually left to the event
sink to implement a detector for composite events, making it
unnecessarily complex and error-prone.

In this article we address the problem by proposing a mid-
dleware extension for composite event detection that works
on top of a range of pub/sub systems. Our framework includes

a generic language for specifying CEs and CE detectors that
can detect CEs in a distributed way.

This article is an extension of earlier work [5] incorporating
new material on distribution policies and automata construc-
tion. It is organized as follows. First, we motivate the necessity
of CE detection in large-scale distributed systems. After relat-
ed work, we discuss prerequisites of the detection framework
such as the pub/sub infrastructure requirements, time model,
and event model. The CE detectors and the associated core
language are then presented, and we discuss distributed detec-
tion and detector placement policies. We present our imple-
mentation over JMS, show how detectors are constructed, and
evaluate the performance. We finish with an introduction to
higher-level specification languages and conclusions.

Motivation
Large-scale event systems need to support composite event
detection in order to quickly and efficiently notify their clients
of new relevant information in the network. This is particular-
ly important for widely distributed systems, such as sensor net-
works, where bandwidth is limited and components are
loosely coupled. In such systems, distributed CE detection can
improve efficiency and robustness.

For example, in telecommunications network management,
certain events raised by network devices may indicate that
some problem has occurred [6]. As alarm-event notifications
continue it should be possible to diagnose the specific cause.
This must be carried out as quickly as possible so that faults
can be repaired and customers reassured that management is
aware of the problem and action is being taken. In practice,
millions of events may be notified daily regarding fewer than
100 real faults. Issues of scalability, performance, and rele-
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vance to the end user of fault reporting are of current con-
cern. For each possible problem an associated pattern of
events can be specified. At present, diagnosis may be carried
out sequentially at a network management center, comparing
the events that have occurred with a number of hypotheses.

Figure 1 shows a network in which monitoring is carried
out by dedicated publishers (P) connected to routers and
workstations. Note that not all events indicate an actual fault
that requires human intervention. For example, degradation
in service at a single workstation may be transient in nature,
but five events signaling reduced bandwidth at different points
in the network may be symptomatic of a larger problem. A
network management center (S) has to detect and react to
network faults. Without CE detection, it has to subscribe to
all events generated by the publishers. Many events are thus
sent unnecessarily to the management center as they do not
indicate faults and could be filtered out earlier on.

Composite event detectors allow the detection to occur
within the network itself. Moreover, distributing the event
composition allows filtering of large numbers of fault notifica-
tions to be carried out close to their sources, thus saving com-
munication bandwidth. Since the detection happens in
parallel, efficiency is also improved.

For reliability and efficiency, each CE detector should be
distributed near its event sources. Otherwise, if a connection
to the rest of the network failed, local notification of CEs
might fail unnecessarily. Besides, sending these events off-site
for detection would be a waste of bandwidth if all relevant
events are known to be locally pro-
duced.

Just as a general-purpose pub/sub
system supports flexible messaging, so
too can a generic CE framework extend
this support. Therefore, this article pro-
poses a general-purpose middleware
system for CE detection, independent
of the specific underlying pub/sub
infrastructure. By making CE detection
interoperate closely with the underlying
communication infrastructure, we
obtain a system that is more efficient
than an ad hoc implementation of CE
detectors at the application level.

The Active Office
The Active Office is a computerized
building that is aware of its inhabitants’
behavior (Fig. 2). Workers wear Active
Bats [7] to inform the building of their

movements at least once a minute. Other sensors moni-
tor doors, office temperatures, electronic whiteboard
usage, and lighting. A content-based pub/sub system is
used so that applications can be notified of specific
events, such as “location events where Peter is seen in
room FE04.” We used the following two application sce-
narios to test our CE detection framework.

Scenario 1 — The building services manager wants to
know about temperature events under 15°C in an occu-
pied room.

Scenario 2 — Jean wants the list of participants and
electronic whiteboard contents of any meeting she has
attended to be sent to her wireless PDA, but only if she
does not log in to the workstation in her office within
five minutes of the meeting.

There are many advantages to using CE middleware for
services in an Active Office, instead of (or perhaps as well as)
offering predefined composite subscriptions on dedicated
servers. Most important are the flexibility with which recipi-
ents can compose personal subscriptions, and the ease with
which composite patterns can be reused and distributed close
to event sources. The cost of establishing this network of CE
detection broker nodes is then offset by the simplicity of con-
figuring it for new CE subscriptions.

Related Work
Historically, CE detection first arose in the context of triggers
in active databases. Early languages for specifying composite
events follow the Event-Condition-Action (ECA) model and
resemble database query algebras with an expressive yet com-
plex syntax. In general, the detection process is not distribut-
ed.

In the Ode object database [8], CEs are specified with a
regular-expression-like language and detected using finite
state automata (FSA). Equivalence between the CE language
and regular expressions is shown. Since a CE has a single
timestamp of the last event that led to its detection, a total
event order is created that makes it difficult to deal with clock
synchronization issues. Pure FSAs do not support parameter-
ized events.

CE detectors based on Petri Nets are used in the SAMOS
database [9]. Colored Petri Nets can represent concurrent

� Figure 1. A publish/subscribe system for network systems monitoring.
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behavior and manage complex data such as event parameters
during detection. However, even for simple expressions, they
quickly become complicated. SAMOS does not support distri-
bution and has a simple time model that is not suitable for
distributed systems.

The motivation for Snoop [10] was to design an expressive
CE specification language with powerful temporal support. A
CE detector is a tree that reflects the structure of the event
expression. Its nodes implement language operators and con-
form to a particular consumption policy. A consumption policy
influences the semantics of an operator by resolving which
events are consumed from the event history in case of ambi-
guity. For example, under a recent policy only the most
recently occurring event is considered; others are ignored.
Detection propagates up the tree with the leaves of the tree
being primitive event detectors. A disadvantage is that the
nodes are essentially Turing-complete, making it difficult to
formalize their semantics and reason about their behavior.
The use of consumption policies can be nonintuitive and oper-
ator-dependent.

In [11] Schwiderski presents a distributed CE architecture
based on the 2g-precedence model for monitoring distributed
systems. This model makes strong assumptions about the
clock granularity in the system and thus does not scale to
large, loosely coupled distributed systems. The language and
detection algorithm used are similar to Snoop and suffer from
the same shortcomings. It addresses the issue of events being
delayed during transport by evaluation policies: asynchronous
evaluation enables a detector to consume an event as soon as
it arrives, sometimes leading to incorrect detection, whereas
synchronous evaluation forces a detector to delay evaluation
until all earlier events have arrived and assumes a heartbeat
infrastructure. Although detection is distributed, no decision
on the efficient placement of detectors in the network is
made.

The GEM system [12] has a rule-based event monitoring
language. It follows a tree-based detection approach and
assumes a total time order. Communication latency is handled
by annotating rules with tolerable delays. Such an approach is
not feasible in an environment with unpredictable delays.

Research efforts in pervasive computing have led to CE
languages that are intuitive to use in environments such as the
Active Office. The work by Hayton [13] on CEs in the Cam-
bridge Event Architecture (CEA) [14] is similar to ours in the
sense that it defines a language that nonprogrammers can use
to specify occurrences of interest. Hayton uses push-down
FSAs to handle parameterized events. However, the language
itself can become nonintuitive as the semantics of some oper-

ators is not obvious. Even though detectors can use ces as
their input, distributed detection is not dealt with explicitly.
As in previous work, scalar timestamps are used. Distributed
pub/sub architectures such as Hermes [4], Gryphon [3, 15],
and Siena [2] only provide parameterized primitive events and
leave the task of CE detection to the application programmer.
Siena supports restricted event patterns, but does not define a
complete pattern language.

In our CE detection framework, we adopt the interval
timestamp model introduced in [16]. The partial order of
timestamps in a distributed system is made explicit by having
timestamps associated with an uncertainty interval. A Com-
mon Object Request Broker Architecture (CORBA)-based
detection architecture is presented in [16] that implements
this time model. The notion of event stability is defined in
order to handle communication delays. We extend this to
cope with delays in wide area systems.

Design and Architecture
The CE detectors in our framework recognize concurrent pat-
terns of simpler events, generating a CE whenever a match is
found. The component layers of our detection architecture
are illustrated in Fig. 3. Distributed CE detectors are com-
piled from expressions in our core CE language. Patterns can
be specified using higher-level languages, which are first trans-
lated into the core CE language before compilation and exe-
cution.

The CE framework relies on and interacts with the underly-
ing event system in order to detect complex patterns of
events. This section outlines the prerequisites for this interac-
tion: an interface to a pub/sub infrastructure, and formal mod-
els of events and time. Given these prerequisites, the full
expressive power of our CE languages can be used.

Publish/Subscribe Infrastructure Support
One of our design goals was to keep the CE detection frame-
work strictly separated from the pub/sub infrastructure used.
The interface to the event system (Fig. 4) makes only minimal
assumptions about the functionality supported, allowing our
framework to be deployed on a large variety of pub/sub sys-
tems. Our current testbed uses the Java Message Service
(JMS) [17], but other pub/sub systems could equally be used:
earlier work was based on Hermes [4], a distributed event-
based middleware architecture, and CORBA events would
also be suitable.

In addition to the time and event model described below,

� Figure 3. Components of the composite event detection framework.
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the underlying pub/sub system needs to support publication of
primitive events by event sources, subscription to these events
by event sinks, and relaying of events from sources to sinks.
Many systems also filter events en route for efficiency; our CE
framework uses this if available, but no particular publication
or subscription model is assumed. Our event model uses the
abstraction of a describable event set as an atom for CE detec-
tion. If the pub/sub system supports content-based filtering, a
describable event set will be defined by a parameterized filter-
ing expression. In a topic-based system, it will conform to a
certain event type only.

In particular, the pub/sub system does not need to be aware
of CE types. As illustrated in Fig. 4, application event sources
submit CE subscriptions to the CE detection layer. Any CEs
then detected by a CE detector are published to the pub/sub
system disguised as primitive events. It is then the responsibil-
ity of the pub/sub system to disseminate these encapsulated
CE occurrences to all interested event sources. The same
mechanism is used for the communication between distributed
event detectors.

Composite Event Detection Framework
The Java interface to the CE detection service, presented to
applications, is shown below in part. Applications may use this
for all event services, or contact the underlying pub/sub infras-
tructure directly for primitive event subscriptions.

A summary of the application programming interface (API)
is given in Fig. 5. Before an event type can be published it
must be registered with the CE detection service so that an
appropriate type/topic is created in the underlying pub/sub
system. After that, a new event instance can be created using
the createCE method. The publish method will pass the
publication down to the pub/sub system. A call to subscribe
subscribes to primitive or composite events. A CE subscrip-
tion may trigger the instantiation of new CE detectors.

Time Model — Each event in our framework has an associated
timestamp, denoting when it occurred. In a large-scale system,
it may often be impossible to decide which of two events
occurred first. Therefore, we assume that there is a partial
order relation on a timestamp, <, showing which events
definitively occurred before others. This is extended to a total
order, p, using a tie-breaker convention (Appendix A), allow-
ing events to be treated as a well ordered sequence of symbols
for detection.

This may be illustrated using a two-part interval timestamp
for events rather than a single conventional timestamp. These
interval timestamps are used implicitly throughout the rest of
this work. They can represent the clock uncertainty of a dis-
tributed time service such as NTP, and also the time interval
associated with a CE. The intervals can factor in the estimat-

ed receiver-specific delay on receiving UTC, including radio
transmission lag or network delays.

Figure 6 illustrates three interval timestamps t1, t2, and t3.
Here, t1 < t2, t1 < t3, but t2 </ t3 and t3 </ t2. On the other hand,
using the total order, t1 p t2 p t3; these operators are formally
defined in Appendix A.

Event Model — Events provide notification of observations in
a distributed system. Primitive events represent observations
from outside the event system, while composite events repre-
sent patterns of events. The constituents of a CE may be
primitive events, or simpler CEs. Despite this distinction, all
events are treated homogeneously; we assume only that events
have timestamps, and can be consistently ordered for each
subscriber (e.g., by interval timestamp, source IP address, and
local event generation count).

In an Active Office [7], primitive events might be “The
door opens” and “Peter is seen in the room.” Similarly, “The
door opens, then Peter is seen in the room” could be a CE.
Thus, event sequences of interleaved primitive and composite
events can be used to formalize the detection of CEs
(Appendix A). Furthermore, our event ordering still supports
distributed detection, since each CE detector’s subscription is
used to sequence only the events needed for its CE pattern.

Composite Event Detection
The CE detectors in our framework are simple automata, with
a regular structure. Unlike conventional FSAs, these automata
provide support for a rich time model and parameterization, as
well as the ability to detect concurrent event patterns. A novel
language is used to express these patterns; this core CE lan-
guage can then be compiled into automata for matching.

Distribution support is important for communication effi-
ciency; we discuss how each pattern may be factorized into
subexpressions. These subexpressions can then be matched
independently on distributed nodes; these mobile detectors
were introduced in an earlier article [18]. Patterns may also be
more intuitively defined using higher-level specification lan-
guages, described later. However, this is only a matter of con-
venience, not expressiveness; any patterns described in a
higher-level language are first translated into the core CE lan-
guage before being compiled into automata. Figure 3 illus-
trates the relationship between these different aspects of the
CE framework.

For example, in scenario 1, the building services manager
subscribes to temperature events under 15°C in an occupied
room. (For simplicity, we consider the movement, door, and
temperature events of only a single room, although multiple
rooms could be represented in a single CE expression using
parameterization. We also prefilter the PersonEvents, limit-
ing repeat notifications to 1/min.) We consider a room to be
occupied if it has exhibited movement or door events within
the last 5min. In our core CE language, we might represent
the primitive events (as exposed by JMS) using:

� Figure 5. The Java interface to the CE detection service.

public interface DistCEDServiceInf {
public void registerCEType(CEType type,

CEPublisherInf publisher);
public void unregisterCEType(CEType type,

CEPublisherInf publisher);
public CEInf createCE(CEType ceType);
public CEType createCEType(String typeName);
public void publish(CEInf ce,

CEPublisherInf publisher);
public void subscribe(CEType type,

CESubscriberInf subscriber, CEQoSInf qos,
CESubscriberCallbackInf callback);

public void unsubscribe(CEType type,
CESubscriberInf subscriber);

}

� Figure 6. Illustration of interval timestamps for events.
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• [PersonEvent(location=’Office FE02’)]
• [DoorEvent(location=’Office FE02’)]
• [TempEvent(location=’Office FE02’ AND temp<15)]

Scenario 1 could be written (using [Pers(f1), [Door(f1)],
[Temp(f2)] for the expressions above, for brevity) as:
([Pers,(f1)]  [Door(f1)], [Temp(f2)])t=5min. This would be
compiled into the following automaton, for use as a detector:

We based our core language and automata on regular
expressions and FSAs for a number of reasons. First, their
expressive power is well understood, but they require only
limited predictable resource usage, and are thus a safer tool
for distributed detection than a more general language. Still,
they are powerful, and frequently used for pattern detection
and matching. Furthermore, regular expressions may also eas-
ily be factorized into subexpressions for distributed detection
of independent expressions. Finally, we felt it would be more
sensible to extend the commonly accepted regular expression
operators with necessary additions rather than arbitrarily
define new operators, with the concomitant risks of redundan-
cy or incompleteness. Our core CE language and automata
therefore only minimally extend regular expressions and
FSAs, to allow temporal relationships, input filtering, and par-
allel detection to be expressed.

Composite Event Detectors
The automata that detect CEs contain a finite number of
states and state transitions, but each state also maintains the
timing information of the previous symbol detected. In a given
state, the automaton decides when to make the transition to
another state by considering new input symbols only from a
per state describable subset of the global input sequence I.

Structure of Automata — Our automata have two types of state:
ordinary and generative. A generative state causes a new event
to be created, either a composite of the events matched so far
(with a specified type), or an instantaneous time event in the
future (with a freshly allocated local identity). The timestamp
of the composite event will start at the earliest start time of
the constituent events, and end at the latest end time. A time
event may be used later in the automaton to progress or fail
after a given timeout. Each state has an input domain of
describable events, the family of events it can match. When in
a given state, the automaton processes only those new events
that lie within the state’s domain. The diagram below shows
four states: an initial (ordinary) state, an ordinary state, a gen-
erative state for a composite event of type A;B, and a genera-
tive state for a time event. The input domains are Σ0 … Σ3.

Each state can have any number of outward transitions.
There are two types of transition, strong and weak, which can
match events that strongly or weakly follow the previously

detected event. These correspond to the partial and total
event orderings < and p, respectively. Each transition has a
describable family of events attached, any of which will cause
it to be taken.

New events in the input domain of a state but not in any
transitions will cause the match to fail. These new events
must strongly follow the previous event if all outgoing transi-
tions are strong, or weakly follow otherwise. If there are two
or more matching transitions, they will be followed nondeter-
ministically. When a state with no outgoing transitions is
reached, an event is generated if it is generative; then the
machine (or the current nondeterministic branch) immediate-
ly terminates. The diagram below illustrates both strong and
weak state transitions. If a, b, c are the events that matched
A, B and C, a < b and b p c. Furthermore, b ∈ B is the first
event in the input stream IS1 for which a < b; similar con-
straints apply to c.

Limitations of Automata — The extended automata address
many of the disadvantages of standard FSAs. First, tempo-
ral support is provided by explicit event timestamps and
special timer events. Concurrent events are also supported;
the following automaton generates a new event when com-
posite events C1, C2 ∈ D occur in parallel within 1 min of
each other. C1 might represent “Peter is seen in the building
but not in his office” and C2 “Peter’s phone rings.” The
resulting event could be used to divert the call to wherever
Peter was last seen.

Conventional FSAs have other limitations too. Most
important, they cannot handle event interrelationships such
as event parameterization. For example, to detect how long
each door in a building is left open, a mechanism is needed
to express free parameters that apply the same expression to
all rooms: detect opening (x) followed by closing (x). Our
framework can resolve this issue by filtering the CE attributes
of all opening and closing event pairs as soon as they are
detected, reporting only matching pairs. This is still efficient,
since the unnecessary composites are discarded as soon as
they are detected, and every possible pairing would have
been considered.

Finally, when nondeterministic FSAs are made determinis-
tic, the number of states can grow exponentially. Although
our automata potentially exhibit this behavior, it does not
happen in practice: since distribution takes place at the level
of CE expressions, not automata, resolution to deterministic
automata is not required; instead, a list of active states is held.
Furthermore, in typical composite expressions this list is usu-
ally short, since distributed detection makes parallel detection
of independent subexpressions the norm.

Formal Definition of Automata — Each automaton consists of a
set of states S, state domains aS: S → D, and strong and weak
transition domains aTS, aTW : S × S → D. There is also a start
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state S0 ∈ S. Finally, G ⊆ S × (T ∪+ D) defines the gen-
erative states (an extension of accepting states) and
their actions.

The current state of an automaton is C ⊆ S × T ×
P(E) where T is the set of possible timestamps. In
other words, the current state consists of a number of
triples, each representing a state, a timestamp, and a
list of detected events. From the perspective of the
automaton, the list of events is opaque, except that
extra detected events may be added to it when a tran-
sition is made.

Core Composite Event Language
A CE language allows expression of CE patterns. In this
section we introduce our core CE language, which can easi-
ly be compiled into automata but is still human readable,
and outline its grammar. This language also defines the
level at which subexpressions are chosen for distributed
detection. Appendix B contains the transformation from
expressions into automata, and gives precise operator
semantics. The operators of the core CE language extend
those found in regular languages, namely concatenation,
alternation, and iteration, with operators for timing control,
parallelization, and weak/strong event sequencing. In con-
trast to other CE languages, we avoid redundant operators
to simplify analysis.

Atoms — [A,B,C, … ⊆ Σ0]. Atoms detect individual events in
the input stream. Here, only events in A ∪ B ∪ C ∪ … will be
successfully matched. Other events in Σ0 will cause failed
detection, and events outside Σ0 will be ignored. We abbrevi-
ate negation using [¬E ⊆ Σ] for [Σ \ E ⊆ Σ], and also write [E]
instead of [E ⊆ E]. (Negation ensures any other events in Σ
will stop detection, such as timeouts or stopper events.)

Concatenation — C1C2. Detects expression C1 weakly followed
by C2.

Sequence — C1; C2. This detects expression C1 strongly fol-
lowed by C2. Thus, C1 and C2 must not overlap in a sequence,
but may in a concatenation.

Iteration — C1
*. Detects any number of occurrences of expres-

sion C1. If C1 detects a symbol that causes it to fail, C1
* will fail

too. (So [A][A ⊆ {A, B}]*[C] would match input AAC but not
AABC.)

Alternation — C1C2. This expression will match if either C1 or
C2 is matched.

Timing — (C1, C2)T1=timespec. The timing operator detects event
combinations within, or not within, a given interval. The sec-
ond expression C2 can then use T1 in its event specification.

Parallelization — C1C2. Parallelization detects two CEs in par-
allel, and succeeds only if both are detected. Unlike alterna-
tion, any order is allowed, and the events may overlap in time.

The following examples illustrate the use of the core CE
language to describe CEs. Let B be the events corresponding
to “Brian enters the room,” let P be “Peter enters the room,”
and let A be “anyone enters the room.”
1. Brian enters the room followed by Peter: [B];[P]
2. Brian enters the room before Peter: [B ⊆ {B,P}]
3. Brian enters and Peter follows within an hour: ([B], [P ⊆

{P,T1}])T1=1h
4. Someone else enters the room when Brian is away: [B] [¬B

⊆ A] [B]

Distributed Detection
In a large-scale distributed application, events are published
at geographically dispersed sites. A centralized composite
event detector would have to subscribe to all primitive events
that are part of a CE expression in order to detect occur-
rences of composite events. This could become a bottleneck
and a single point of failure.

Instead, our framework provides a mechanism for distribut-
ing CE detectors. Detectors can be installed at various loca-
tions in the network and cooperate with each other. This
cooperation is achieved by decomposing CE expressions stat-
ed in the core language into subexpressions that are then
detected by detectors running at different nodes. Figure 7
shows an example of a network of cooperating CE detectors.
The detectors are located close to event sources that publish
events at a high rate, thus requiring high-bandwidth links.
After CE detection, bandwidth consumption is reduced since
CEs occur less frequently. Composite events are then sent to
remote event sinks over a low-bandwidth wide area network.
No CE detector is overwhelmed by the rate of primitive
events, as it subscribes to at most two event sources.

The main difficulty when distributing detectors is to decide
on their optimal placement within the system. This is compli-
cated by the fact that the reasons for distributing detectors are
potentially conflicting. For example, to minimize bandwidth
usage, existing detectors should be reused for subexpressions
as much as possible — even between applications, if appropri-
ate. However, if minimum latency is required, detectors
should be replicated at various regions in the network, which
leads to higher bandwidth consumption. As a result, an opti-
mal solution must be a trade-off that takes the static and
dynamic characteristics of the system and the requirements of
the application into account.

In our framework, mobile CE detectors detect CEs in a dis-
tributed fashion. A distribution policy ensures that detectors
are installed at sensible locations, and specifies a policy for
their movement and behavior during their lifetime. Network
delays that can lead to incorrect detection are addressed by a
detection policy.

Mobile Composite Event Detectors
We introduce the concept of a mobile CE detector to add dis-
tributed detection to our framework. A mobile CE detector is
an agent-like entity encapsulating an automaton that detects
an expression from our core language. Its actions are gov-
erned by distribution and detection policies, discussed below.
It subscribes to event sources to receive event input streams
and publishes the CEs detected by the automaton. The detec-
tor is capable of moving from one location to another in the
network. This assumes the existence of a logical overlay net-
work of nodes that supports the migration of components.
Consequently, our work is built on top of a network of event
brokers (e.g., corresponding to Hermes brokers or JMS

� Figure 7. Illustration of distributed composite event detection.
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nodes), where each event broker can host one or more mobile
detectors.

When a client submits a new CE subscription, a new mobile
CE detector is created at an existing broker that is then
responsible for the detection of this expression. The lifetime
of a mobile CE detector is summarized in Fig. 8. At construc-
tion time, it sets up the detection of the new CE expression.
Once CEs for the new expression are being detected, it enters
a control phase, during which it optimizes the detection pro-
cess by adapting to dynamic changes in the environment, and
making sure it maintains compliance with its policy. Finally, it
enters the destruction phase when it is no longer needed
because, for example, other detectors have taken over or all
event clients have unsubscribed.

During its lifetime, a mobile CE detector can carry out sev-
eral actions:
• It can create new automata for the detection of new CE

expressions or any of its subexpressions.
• For distributed detection, it can decompose the CE expres-

sion along its abstract syntax tree and delegate detection of
subexpressions to other (already existing) detectors.

• It can migrate to another node in the network that is, for
example, closer to the event sources to which it has sub-
scribed.

• Finally, the detector can destroy itself once it is no longer
required.
Mobile CE detectors can communicate with each other

using the pub/sub infrastructure. This is usually implemented
as a special event type or topic to which all detectors sub-
scribe. A system administrator can influence the strategy of all
mobile CE detectors by using this topic to change policy deci-
sions of detectors.

Consider the Active Office application scenario introduced
earlier. Let B be the event type corresponding to “Brian
enters the room,” P be “Peter enters the room,” and M be “a
meeting takes place in the room.” A user is interested in
occurrences of “Brian enters the room followed by Peter.”
The corresponding mobile CE detector C1 for the expression
[B]; [P] is shown below.

When another user subscribes to occurrences of the CE
“Brian enters the room followed by Peter or a meeting takes
place,” this new expression ([B]; [P])M can be rewritten as
C1M. Therefore, the new detector C2 can reuse the existing
detector C1 by subscribing to [B]; [P]. The communication
between the two detectors happens exclusively through the
underlying pub/sub system.

Distribution Policies
The behavior of a mobile CE detector with respect to its
actions is governed by a distribution policy, a set of heuristics
to be followed by the detector. We identify three independent
dimensions that help to limit the space for defining distribu-
tion policies.

Decomposi t ion — The degree of decomposition of the
composite event expression must be stated in the policy
(with optional hints from the application). In order to
reuse existing detectors in the system, an expression may
have to be decomposed into subexpressions. Decomposi-
tion may increase the reliability of detection if multiple
detectors are detecting overlapping expressions. For load
balancing reasons, a complex expression may be decom-
posed into manageable subexpressions. The degree of
decomposit ion ranges from no decomposit ion to ful l
decomposition, where every possible subexpression is fac-
tored out. Some policies allow decomposition only when
there already exist  detectors that can be reused for a
subexpression.

Reuse — This dimension specifies to what extent already exist-
ing detectors are reused for a new composite event expression
or any of its subexpressions. Not reusing existing detectors can
result in more reliability, whereas maximum reuse will save
bandwidth and computational effort. In situations in which
detection latency is important, only local detectors that are in
close proximity should be reused.

Locality — The location of new mobile CE detectors must be
determined. For certain scenarios bandwidth usage can be
reduced by moving detectors as close to primitive event
sources as possible. Primitive events that constitute a CE may
be of interest only to the CE detector and should thus not be
widely disseminated throughout the entire system unnecessari-
ly. This is called publisher locality. The opposite approach is to
put new CE detectors close to application components that
subscribe to them to improve reliability and detection latency.
This leads to a policy with subscriber locality.

In practice, only certain combinations of these three dimen-
sions will result in useful distribution policies. Table 1 summa-
rizes five example policies, each of which attempts to optimize
a different metric in the composite event framework.

Minimum Latency Policy — The detection latency is mini-
mized by placing new detectors as close to subscribers as
possible. Composite event expressions should not be decom-
posed into subexpressions as this would increase the detec-
tion latency. Similarly, an existing detector should only be
reused if it is close to the subscriber and detects exactly the
required CEs.

Minimum Bandwidth Policy — Bandwidth consumption is mini-
mized by placing the detectors close to the primitive event
publishers, leveraging the filtering aspect of CE detectors. In
addition, existing detectors should be used as much as possi-
ble so that no new traffic is generated. The reuse of subex-
pressions may lead to decomposition.

P [B];[P], M

[B];[P]

{[B];[P], M}

B;P
B

{B} {P}

S0

c1|M

S0

C2C1

� Figure 8. Lifetime of a mobile composite event detector.
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Minimum Impact Policy — This policy minimizes
the impact new detectors have on the entire sys-
tem. This involves minimizing bandwidth, as
before, but also means that computational load
should be spread out evenly among detectors.
Therefore, new detectors do not have locality,
but existing detectors should be maximally
reused.

Minimum Load Policy — The fourth policy mini-
mizes the load on composite event detectors by
decomposing an expression into the smallest possible subex-
pressions and distributing them evenly among detectors in the
system. It attempts to reuse already existing detectors.

Maximum Reliability — The last policy makes CE detection
more resistant to node failure by instantiating redundant
detectors for extra reliability. Old detectors are reused only
when at least two already exist, new detectors are created oth-
erwise. (This “at least 2” partial reuse policy lies between no
reuse and full reuse in Fig. 9.) To limit extra points of failure,
detectors are decomposed for reuse only, and no locality
restrictions are imposed on new detectors.

Note that a distribution policy is associated with a particu-
lar CE expression, so that every mobile CE detector can have
its own policy. This enables event subscribers to specify a
desired distribution policy at subscription time depending on
application requirements.

The effectiveness of distribution policies can be enhanced
when mobile CE detectors are able to obtain network- and
system-specific parameters such as the current load of a bro-
ker node or the communication latency to a particular pub-
lisher. A mobile CE detector may use this information to
optimize detection in compliance with its distribution policy.

Detection Policies
In a distributed system, events from different event sources
travel along separate network routes to a mobile CE detector.
Even if we assume that the network itself does not reorder
events, out-of-order arrival of events at the detector can occur
because of the different associated network delays. Whenever
a new event arrives, it has to be inserted at the correct posi-
tion in the totally ordered event input stream before the
stream is fed into the automaton.

The problem is to decide when the next event in the event
input stream can be safely consumed by the automaton without
risking that an event with an older timestamp is still being
delayed by the network. Premature consumption could lead to
incorrect detection or nondetection of a CE. Thus, each CE sub-
scription is annotated with a detection policy that specifies when
a detector can consume an event from an event input stream.

Best Effort Detection — A best effort detection policy states that
events are consumed from event input streams without delay.
Whenever an event is available, it causes a state transition (or
failure) in the automaton. Although this policy may lead to
incorrect detection, it can be applied by applications that are
sensitive to detection delay and willing to ignore false positives.

Guaranteed Detection — Under a guaranteed detection policy,
an event is consumed from an event input stream only once it
has become stable1 [16]. The consumption of only stable

events ensures that no spurious CEs are detected. A detector
knows that an event is stable after another event with a later
timestamp from the same event source has been inserted in
the event input stream. An event source that does not publish
events at a high enough frequency can publish dummy heart-
beat events that are used to “flush the network.”

In an asynchronous distributed system, a guaranteed detec-
tion policy potentially introduces an unbounded delay at the
detector. For instance, an event source might fail or decide
not to cooperate by not sending heartbeat events. To avoid
this problem, we are currently investigating a probabilistic sta-
bility metric. As opposed to a simple binary stability measure,
a detector attempts to model the probability that a particular
event in an event input stream is stable, and the event is only
consumed if its stability metric is above a certain threshold.

Implementation using JMS
This section describes the implementation and performance
results of our CE framework over JMS using JORAM [19], an
open-source implementation of the JMS API. Our prototype
implementation is available on the Web [20]. Application pro-
grams can publish and subscribe to composite events using the
DistCEDServiceInf interface, presented in Fig. 5, provided
by the event brokers in the system. In the pub/sub messaging
model supported by JMS, a publisher registers a topic with a
particular JMS provider, such as a JORAM or J2EE server.

� Figure 9. Design space for distribution policies.
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� Table 1. Example of three distribution policies.

Minimum latency None With locality only Subscribers

Minimum bandwidth For reuse only Maximum Publishers

Minimum impact For reuse only Maximum None

Minimum load Maximum Maximum None

Maximum reliability For reuse only At least 2 None

Policy name Decomposition Reuse Locality

1 An event is stable if there is no other event with an earlier timestamp in
the system that should be part of this event input stream and thus con-
sumed instead.
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Whenever a message is published on the topic, topic sub-
scribers are notified by the JMS provider via a callback mech-
anism. Content-based filtering on the fields in the message
header is supported.

Although a JMS provider can be a distributed service, most
current implementations are centralized, although they may
provide redundancy through replication and clustering.
Clients may need to connect to several providers, such as local
and remote message servers. Therefore, the binding of our
CE framework to JMS does not assume that all events (primi-
tive or composite) have a single JMS provider. Instead, our
implementation uses a JNDI directory to look up the JMS
server for a particular topic. For CEs, we use this to ensure
that we establish only a single CE detector for a given CE
type, since all such detectors will produce the same events.
Since the directory may itself be distributed, this does not
imply unnecessary centralization.

To support automatic distribution of CE detection, all
event brokers subscribe to a common administration topic
(DistCEDAdminTopic) that is hosted by an admin JMS server.
When a new CE expression needs to be detected, the event
brokers collectively decide how and where to instantiate the
mobile CE detector (with the expression’s automata). The
locations of newly created detectors are registered with the
JNDI directory. In the following experiments, the distribution
policy is a simple choice function derived from the hash of the
CE type name, although the more complex policies outlined
earlier would also be possible.

Evaluation and Results
To test the CE framework implementation on JMS, we sim-
ulated Active Office scenario 2 described earlier. The
movement of people was treated as a Markov process, with
a probability matrix describing the likely movements in
each time interval. We used the office layout shown in Fig.
2 with nine rooms and 15 occupants. Eight of the occupants
were classed as residents, predisposed to use the offices,
while the remainder were visitors, preferring the meeting
rooms. The event sinks in the scenario were PDAs connect-

ed by an (expensive) wireless link with
limited bandwidth.  The goals  of  the
experiment were to minimize the usage of
that l ink and achieve low notification
delay for CES.

The CE subscription C presented to our
CE framework as the subscription submit-
ted by the event sinks was as follows:

C ≡ ([C1(f1)], [T1] ⊆ {T1, Login(f2)})T1=5min (1)

C1 ≡ [Boardon] [[Pers(f3)] [Pers(f3)]* [Boardoff]
⊆ {Pers(f3), Boardoff}]

(2)

where f1–3 are JMS filter expressions, omitted for brevity. Fig-
ure 10 shows how the detection of C was distributed over two
event brokers by the CE framework. The detector CED2 was
responsible for the subexpression C1. All primitive events to
which it subscribed and the resulting CEs were located on the
server JMS2. CED1 then detected the complete expression C
and output its CEs to a different server JMS1.

The automata used to detect expressions C and C1 are
shown in Fig. 11; these were obtained by applying the trans-
formations of Appendix B to the expressions, and optimizing
the results by removing empty or redundant transitions. For
example, if the detector for C1 in Fig. 11 received a [Boardon]
event, it would accept the event and advance to state S1, and
also instantiate a new detector in state S0. If [Boardoff] were
received next, the detector in state S1 would process this but
fail to match it, since [Boardoff] is in the input alphabet of
S1 but lies on no outgoing transitions, so the failed partial
match would be discarded. On the other hand, the detector in
state S0 would ignore [Boardoff] events since these lie out-
side its input alphabet.

Conversely, the sequence of events [Boardon]
[Pers(name=’Peter’, location=’Meeting Room 1’)]
[Boardoff] would be matched by C1, generating a new event
which the pub/sub system would forward to C.

We compared our CE framework (CE) against a JMS-
only solution (PE), in which the wireless PDAs subscribed
to all the primitive events and performed the CE detection
themselves in an ad hoc manner. Figure 12 shows the total
data transferred over the wireless and wired networks with
a changing number of subscribers. As expected, there is a
small overhead when using our CE framework for a single
subscriber. However, as the number of subscribers increas-
es, less data needs to be sent over the wireless network
because CE detectors can be reused. For six subscribers,

� Figure 10. Implementation of scenario 2 using the CE framework.
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our CE framework generates 53 percent of the total traffic
generated by the primitive ad hoc solution, and only 8 per-
cent of the wireless traffic. Note that the traffic over the
wired network stays roughly constant as it is mainly caused
by primitive event sources sending messages to the JMS
servers.

The additional notification delay introduced by our CE
framework is small. The plot in Fig. 13 shows the distribution
of delay it takes for a subscriber to be notified of an occur-
rence of C after the CE logically happened in the system (i.e.,
its last primitive event was published). The notification delay
stays below 220 ms and is fairly constant during the course of
the experiment.

Further Work: Higher-Level Specification
Languages
When designing a language for the specification of com-
posite events for ubiquitous applications, two conflicting
requirements arise. Primarily, the language should facili-
tate the implementation of efficient detectors and be
decomposable for distributed detection (i.e., the language
should be optimized to be machine-processable). On the
other hand, the syntax and semantics of the CE language
should be clean and intuitive so that it is human-process-
able. Therefore, we introduce the idea of higher-level speci-
fication languages for humans to express composite events
in a natural and domain-dependent way. These languages
are then compiled down into our automata. Whereas our
core CE language is optimized for machine detection, the
higher-level languages focus on CE specification by end
users or programmers. The following are three examples of
such languages.

The Pretty Language — The “pretty” language has a verbose
syntax similar to many current rule-based specification lan-
guages. It does not have a minimal set of operators. CE speci-
fications in the pretty language, such as “Event A”
followed by “Event B” within “1h” resemble English
language statements, making it easier for nonprogrammers to
express CEs.

Programming Language Binding — A binding of CEs to a pro-
gramming language such as C++ or Java attempts to hide CE
specification by integrating it into the programming language,
making its usage easier for programmers. This can be achieved
with a sequence of method calls on event objects that build a
CE expression: eventA.after(eventB.repeated(3)) At
runtime, these method calls are translated into a core CE lan-
guage expression.

Graphical Composition — In the Active Office, users may
interact with the system at runtime by specifying its behavior
with rules based on ces such as “Turn off the office light after
7 p.m.” A graphical composition tool could be used based on
a simple model familiar to users. For instance, CE streams
could be visualized as water flows in pipes, allowing different
types of piping to be composed to build CEs.

Conclusions
In a world with many mobile entities and complex Internet-
based applications, events will become the dominant commu-
nication paradigm. CE detection in these large-scale systems
provides a means of managing the complexity of a vast num-
ber of events. We consider our work a first step in facing this
challenge, providing novel scalable middleware services such
as generic CE detection.

In this article we have presented a general CE detection
framework as an extension of an existing pub/sub middleware.
The framework assumes a realistic interval-based time model,
and its event model makes few assumptions about the pub/sub
communication infrastructure employed. Our CE detectors
are an easily implementable extension of conventional FSAs.
They can handle timestamps, concurrent events, and come
with a core CE language that is expressive and decomposable.
Higher-level specification languages can provide more
domain-specific ways to specify composite events. The abstrac-
tion of mobile CE detectors allows distributed CE detection,
making the framework more scalable and robust. We intro-
duce the concept of distribution and detection policies that
control the distributed behavior of detectors. Finally, the
implementation of our CE framework over JMS demonstrates
that it can improve performance in a real pub/sub application,
compared to client-side JMS subscriptions.
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Definition of Interval Timestamps

This appendix formalizes our notion of an interval timestamp;
the next presents our model of the event subscriptions avail-
able to the CE service, in terms of describable events and
event input sequences.

Conventional timestamps are often inappropriate for dis-
tributed event systems. In a distributed system, node clocks
may have unknown jitter within a known synchronization dis-
tance. As a result, if two nodes detect events A and B, respec-
tively, it may be impossible to decide which occurred first. An
interval timestamp, consisting of a start time and an end time,
can make this ambiguity explicit, yet remains consistent with
the physical time order of the events [16].

Let t =[tl;th] be an interval timestamp with start and end
times tl and th (tl ≤ th). We define the order relations < and p
and union operator ∪ as

t1 < t2 =
∆ t1

h < t2
l (3)

t1 p t2 =
∆ q(t1

h < t2
h) ∨ (t1

h = t2
h ∧ t1

l < t2
l ) (4)

t1 ∪ t2 =
∆ [min(t1

l, t2
l ); max(t1

h, t2
h)] (5)

Formalizing Describable Events and Input
Sequences
Users of event systems subscribe for notification of relevant
events. Our CE detectors use the same subscription mecha-
nism to describe which events they need to receive. In a sense,
therefore, subscriptions (and the associated filter expressions)
represent the atomic input streams available to CE detectors.

Let E = {e1, e2, …} be the space of possible events in the
system. Each event e has timestamp T(e) and a unique identi-
fier u(e) ordered by <. We write e1

t1 to show T(e1) = t1.
Events are then ordered consistently with their timestamps:

∀e1, e2 ∈ E,
e1 < e2 =

∆ T(e1) < T(e2) (6)

e1 p e2 =
∆ (T(e1) p T(e2)) ∨

(T(e1) = T(e2) ∧ u(e2) < u(e2)) (7)

The space of events may be further categorized. The special
empty event ε ∈ E is always detected. Time events ET ⊆ E are
made to occur at a given future instant or after a certain
interval when timers expire. With instantaneous timestamps (tl
= th), they help detect composite events with time restrictions.
If not supported by the pub/sub infrastructure, CE detectors
can generate them as needed.

Event systems often allow us to differentiate types of event,
by subscribing to subspaces of the event space E (e.g., “events
where a door opens,” or “events where FE04’s door opens”).
These sets of events are denoted by upper case letters: E, A,
B. (In pub/sub systems, these are often called event types.)
Individual event instances, on the other hand, take lower case
letters: e1, e2, a, b.

Subscriptions also need certain properties to be useful for
CE detection. For example, if subscriptions A and B are valid,
it should be possible to detect events matching both or either
of subscriptions A ∩ B or A ∪ B. (If this is not supported by
the underlying event framework, it can be simulated by detec-
tors if the event input streams are well ordered together
under the total order p.)

There should be a maximal subscription ED of all events
that can be matched. There is also a subscription to detect any
predefined matchable event alone (and the special empty
event ε is always matched); see Eq. 8. Finally, CE detectors
should also be able to detect events matching one subscription
but not another.

Each subscription can be associated with the set of events
that would match it. The theoretical collection of all these
subscription sets is the family of describable event sets D ⊆
P(E). This is a special collection of subsets of E: those that
can be detected within the CE framework. D is closed under
finite union, finite intersection, and element complementing
relative to ED: 

(8)

The automata that detect CEs need to be able to treat
incoming events as a well ordered stream in order to match
sequential patterns of events. By totally ordering events with p
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this can be achieved, resulting in the global event input
sequence I = (e1, e2, e3, …), where en p en+1 ∀n ∈ N.

However, not all events are relevant to all patterns or at all
stages of a particular pattern. Describable event sets provide
partial views of the input events, selecting subsequences of I.

Thus, CE detectors can restrict their view of the input
sequence to only the relevant symbols. For example, if E ∈ D
IE = (eE1, eE2, eE3, …) denotes the subsequence consisting of
elements of E.
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This appendix details how expressions in our core CE lan-
guage are transformed into CE detection automata, as out-
lined earlier. The grammatical components of our core
language are listed below, with corresponding automata.

Atoms: [A, B, … ⊆ S0]. Atoms detect individual events in
the input stream. The resulting automaton considers an input
stream of all events that are elements of S0. Any input event
in A ∪ B ∪ … will be successfully detected; an event in S0 but
not in A ∪ B ∪ … is a failure that stops expression matching
(Fig. 14a).

Negation: [¬E ⊆ Σ] =∆ [Σ\E ⊆ Σ].
Trivial Input: [E] =∆ [E ⊆ E].
Concatenation: C1C2. Detects expression C1 weakly followed

by C2. In the diagram, the shaded boxes are automata match-
ing C1 and C2. An empty transition is then added for each gen-
erative state of C1 or C2, and those states become ordinary
(Fig. 14b). If C1’s or C2’s detection were distributed, each sub-
machine could be replaced by a single transition.

Removing empty transitions2 gives

Sequence: C1; C2. This detects C1 strongly followed by C2.
Thus, C1 and C2 must not overlap in a sequence, but they may
in a concatenation (Fig. 14c).

Iteration: C1*. Detects any number of occurrences of
expression C1. If C1 detects a symbol that causes it to fail, the
composite machine C1* stops detecting iterations, even when
C1 is distributed to another node (Fig. 14d).

Alternation: C1C2. This expression will match if either C1 or
C2 is matched by the input stream. This may result in nonde-
terminism for the number of input symbols that are matched
by both C1 and C2 (Fig. 14e).

Timing: (C1, C2)T1=timespec. The timing operator can be
used to detect event combinations within, or not within, a
given interval. In the above expression, event T1 will be gen-
erated at a certain time after C1 is detected, either a relative
time, such as a minute later, or an absolute time. The second
expression C2 may then use T1 as an event specification in
detecting CEs. Furthermore, C2 is extended so that all states
include T1 in their input domain. For distribution or reuse,
the modified C2 detector is treated as distinct from the origi-
nal, and it should be on the same node as the (C1,C2) T1
detector (Fig. 14f).

Parallelization: C1C2. This can be used to detect compos-
ite expressions C1 and C2 in parallel. The diagram assumes
that separate detectors for C1 and C2 already exist. They must
be separate to maintain the two independent timestamps
needed for proper order restrictions on the two input
sequences (Fig. 14g).
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� Figure 14. Composite event detectors.
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2 Outgoing transitions from the second submachine’s start state inherit the
strength or weakness of the empty transition, but keep their original labelings.


