
Evaluating DHT-Based Service Placement for
Stream-Based Overlays

Peter Pietzuch, Jeffrey Shneidman, Jonathan Ledlie,
Matt Welsh, Margo Seltzer, Mema Roussopoulos

Harvard University
hourglass@eecs.harvard.edu

Abstract
Stream-based overlay networks(SBONs) are one approach to imple-
menting large-scale stream processing systems. A fundamental con-
sideration in an SBON is that ofservice placement, which determines
the physical location of in-network processing services or operators, in
such a way that network resources are used efficiently. Service place-
ment consists of two components:node discovery, which selects a can-
didate set of nodes on which services might be placed, andnode selec-
tion, which chooses the particular node to host a service. By viewing the
placement problem as the composition of these two processes we can
trade-off quality and efficiency between them. A bad discovery scheme
can yield a good placement, but at the cost of an expensive selection
mechanism.

Recent work on operator placement [3, 9] proposes to leverage rout-
ing paths in a distributed hash table (DHT) to obtain a set of candidate
nodes for service placement. We evaluate the appropriateness of using
DHT routing paths for service placement in an SBON, when aiming to
minimize network usage. For this, we consider two DHT-based algo-
rithms for node discovery, which use either theunion or intersection
of DHT routing paths in the SBON, and compare their performance to
other techniques. We show that current DHT-based schemes are actu-
ally rather poor node discovery algorithms, when minimizing network
utilization. An efficient DHT may not traverse enough hops to obtain
a sufficiently large candidate set for placement. The union of DHT
routes may result in a low-quality set of discovered nodes that requires
an expensive node selection algorithm. Finally, the intersection of DHT
routes relies on route convergence, which prevents the placement of
services with a large fan-in.

1 Introduction
A marriage between the database and networking com-
munities has produced a series of interesting systems
for continous queries, large-scale stream processing, and
application-level multicast. These systems are exam-
ples of a generic class ofstream-based overlay net-
works(SBONs). SBON applications include real-time pro-
cessing of financial data streams (Aurora [2], Borealis [1]),
Internet health monitoring (PIER [9]) and querying geo-
graphically diverse sensor networks (IrisNet [8]).

SBONs pose two important challenges. First, a suitable
choice of services, such as database operators, multicast
points, or stream processors, must be provided by the sys-
tem to satisfy user requirements. Second, these services
must be deployed efficiently in the network according to
user queries. Thus far, most existing research into SBONs
has focused on the former question, with much less em-
phasis on efficient service placement. However, network-
aware service placement becomes a crucial factor that de-
termines the scalability and impact of an SBON when de-
ployed on a shared networking infrastructure. Therefore, a
service placement algorithm should be scalable and adap-

tive, and should perform well based on several cost met-
rics, such as network utilization and application latency.

Service placement is actually composed of two mech-
anisms:node discoveryandnode selection. Discovery is
the process of identifying a set of nodes capable of hosting
a service; we call this set of nodes thecandidate set. Selec-
tion is the act of selecting a particular member of the can-
didate set to actually host the service. Traditionally, these
two mechanisms have been intertwined, but by viewing
them as separable processes, it is possible to gain greater
insight into the performance of existing systems and de-
velop new approaches to placing services.

In this paper, we investigate how well-suited current
DHTs are to the task of node discovery with respect to ef-
ficient network utilization. We evaluate two DHT-based
placement algorithms in comparison to non-DHT-based
approaches, such as a globally optimal placement algo-
rithm and a scheme based on spring relaxation [11]. Our
analysis highlights the tight relationship between discov-
ery and placement. A bad discovery mechanism can some-
times yield a good placement, but at the cost of an expen-
sive selection mechanism. For the topologies we have con-
sidered, DHT-based schemes produce candidate sets that
are marginally distinguishable from a random sampling. In
particular, the union of DHT paths from producers to con-
sumers creates a large collection of nodes and selecting the
best one does yield a good placement, but we would have
done equally well by selecting nodes at random. When
considering the intersection of routing paths, services with
a large fan-in are always placed at consumer nodes.

We conclude that current DHTs are not well-suited to
this particular challenge of optimizing network utilization.
We suggest that one should turn toward alternate solutions,
such as the relaxation-based approach analyzed here, or a
new generation of DHTs that are designed to address the
needs of SBONs.

The outline of paper is as follows. Section 2 summa-
rizes SBONs and describes the service placement problem.
Section 3 introduces several node discovery and selection
schemes that are then evaluated in Section 4. In Section 5
we review related work and Section 6 concludes.

2 Stream-based Overlay Networks
An SBON is an overlay network that streams data from one
or more producers to one or more consumers, possibly via
one or more operator services that perform in-network pro-

1

cessing. In an SBON,circuits interconnect multipleser-
vices. A circuit is a tree that specifies the identities and
relationships between services in a data stream and corre-
sponds to a query. Services that are part of a circuit are
connected withcircuit links.

We model a circuit as a logical query statement that is
then realizedon physical nodes. Some logical elements
are constrained when the query is first stated. For exam-
ple, the destination and data sources are specific physical
nodes. We call these elementsconsumerandproducerser-
vices, respectively, and consider thempinnedbecause their
logical-to-physical mapping is fixed. Other services,e.g.,
a join operator, might be placed at any appropriate node in
the network. We call these unassigned logical servicesun-
pinned. Logically, a join operator resides between two or
more producers and one or more consumers, but its physi-
cal mapping is unassigned,i.e., it is initially unplaced.

2.1 Placement Problem
Determining a placement for unpinned services is the fun-
damental placement problem in an SBON. Some place-
ments are better than others: each placement has acostand
the quality of a placement is revealed by acost function.
Therefore, a solution to the placement problem calculates
a valid placement for all unplaced services that minimizes
the total incurred cost in the SBON.

Cost functions in an SBON can be categorized into two
classes. Minimizingapplication-specificcosts, such as cir-
cuit delay and jitter, addresses the application’s desire for
quality of service in the SBON.Globalcost functions, such
as network utilization and resource contention, attempt to
capture the impact of a placement decision on other partic-
ipants of the SBON.

In this paper, we concentrate on the global cost of utiliz-
ing the network when streaming data through the SBON,
which is important in cooperative network environment,
such as PlanetLab. One way to capture overall network uti-
lization is thebandwidth-latency(BW-Lat) product, which
is the sum of thedata ratesconsumed by circuit links mul-
tiplied by their communicationlatenciescalculated over all
circuit links. The BW-Lat product captures network uti-
lization as the amount of in-transit data in the network at a
particular point in time.

The rationale behind this cost function is that the less
data is put into the network by a placed circuit, the more
network capacity is available to other circuits or applica-
tions. The BW-Lat cost function makes the assumption
that high latency network links are more costly to use than
low latency ones. Often high latency indicates network
congestion or long geographical distance that means higher
network operating costs. In both cases, the utilization of
such links should be reduced. By factoring in the used
bandwidth of a circuit link into the BW-Lat metric, the cost
is proportional to the amount of network traffic used by a
circuit. In other words, overall network utilization can be
reduced more when good placement decisions are chosen
for circuits with a high data rate.

3 Placement Algorithms
Many service placement algorithms can be viewed as con-
sisting of two steps:node discoveryand node selection.
Node discoveryidentifies a subset of all nodes in the SBON

as a possible candidate set for service placement, andnode
selectionchooses a suitable node for the actual placement.
An optimal node selection would consider all nodes in the
SBON, but requiring global knowledge is clearly not feasi-
ble for a scalable system. Even in a moderately-sized net-
work, such as PlanetLab, up-to-date node characteristics
for 500 nodes cannot be gathered in a resource efficient
manner. Therefore, most placement algorithms use the re-
sults of a node discovery scheme as the input for node se-
lection to cope with the complexity of the placement prob-
lem. Other placement algorithms, such as the Relaxation
placement scheme described below, reverse the ordering of
the two steps or coalesce them into one.

3.1 Node Discovery
The goal ofnode discoveryis to generate a list of phys-
ical nodes on which an unpinned service can be placed.
This list is known as thecandidate set. The quality of the
candidate set, in terms of the placement cost, is an im-
portant consideration: if no nodes with a low placement
cost are part of the candidate set, a good placement cannot
be found even with an optimal node selection algorithm.
The size of the candidate and the distribution of placement
costs for the included nodes determines the amount of flex-
ibility that the node selection algorithm has when the best
choice from the set cannot support the placement due to
resource limitations. In this section, we describe several
possible candidate sets.
All. Setting the candidate set to be the entire overlay net-
work gives the node selection algorithm the most flexibil-
ity to make a good placement. However, it is infeasible
to maintain global knowledge about all nodes in a large-
scale distributed system and process a large set of candi-
date nodes efficiently.
Consumer. This algorithm returns the node hosting the
consumer service as the placement location, which mod-
els a centralized data warehouse system. While it trivially
solves the placement problem, it makes no attempt to opti-
mize the placement decision.
Producer. Since data producers are pinned services in the
circuit, one can select these nodes as the candidate set. Us-
ing known producer nodes solves the discovery problem,
but can result in a small, badly-chosen candidate set.
Random. A candidate set ofk random nodes can be dis-
covered through some mechanism. However, the average
quality of this set may be worse than that of any other
scheme that favors nodes with lower placement costs.
DHT Routing Path. A natural way to build a candidate
set is to route a message between pinned services through
an overlay network, such as a DHT. In a DHT setting, a
message will traversedlogb(N)e hops in the worst case,
whereN is the number of nodes in the DHT andb is the
numeric base used for hash keys during routing. There are
two obvious ways to generate a candidate set when a circuit
contains a consumer and multiple producers:

1.DHT Union takes the total set of overlay nodes in the
paths from producers to the consumer as the candidate set.
The service is then placed at one of these nodes.

2. DHT Intersection takes the intersection of overlay
nodes in the routing path from producers to the consumer.
The service is then placed at one of these ordered nodes,
such as the node closest to the producers.

2

The goal of this paper is to explore the performance of
these two DHT routing schemes in comparison with the
other schemes and to determine their applicability for ser-
vice placement in an SBON.

3.2 Node Selection
For each unplaced service in a circuit, thenode selection
algorithm must place the service on some node in the can-
didate set. In this paper, we consider three general selec-
tion algorithms. Other selection schemes are possible, but
will produce placements no better than optimal selection.
Of course, no selection algorithm is necessary when the
candidate set contains only a single node.
Random selects a node out of the candidate set with uni-
form probability. This is a trivial scheme to implement,
and may do well with a well-chosen candidate set. How-
ever, it does not attempt to optimize the placement deci-
sion.
Optimal chooses the best node from the candidate set with
respect to some metric, such as network utilization or ap-
plication latency. In this paper, we consider the BW-Lat
product from Section 2.1. If the candidate set is well-
chosen or large, optimal may find a globally-optimal place-
ment. However, an efficient implementation of optimal se-
lection is hard. An exhaustive search over all possibilities
may result in a large amount of network probing and com-
putational overhead for non-trivial circuits.
Relaxation [11] places services using a spring-relaxation
model in an artificial coordinate space [7], in which dis-
tance corresponds to latency between physical nodes in
the SBON. The placement coordinate is then mapped back
to physical network space to perform the actual service
placement. Prior work has shown that relaxation place-
ment performs well compared to other algorithms and sup-
ports scalable and dynamic cross-circuit optimization de-
cision [11]. However, relaxation requires additional over-
head in calculating the latency space in a distributed fash-
ion and maintaining a mapping back to physical space.

4 Evaluation
In this section we present our evaluation of DHT-based ser-
vice placement compared to other, non-DHT-based place-
ment schemes. The goal is to determine the performance
of the DHTUnion and DHTIntersection algorithms when
applied to different topologies and DHT parameters. Our
evaluation focuses on the efficiency of network utilization,
as captured by the BW-Lat product. Throughout this sec-
tion, we refer to a placement algorithm by its discovery
and selection schemes,e.g., All/Random. The Optimal se-
lection scheme uses the BW-Lat product as its metric.

4.1 Experimental Set-up
To evaluate the placement efficiency for a large num-
ber of circuits, we implemented a discrete-event simula-
tor that operates either on the PlanetLab [16] topology
with 186 nodes generated from all-pairs-ping measure-
ments [15], or an artificial600-node transit-stub topol-
ogy created by the GATech topology generator [17]. Af-
ter placing1000 circuits each consisting of4 pinned pro-
ducers,1 unpinned service, and1 pinned consumer, the
simulator calculates the placement cost per circuit for each
of the placement algorithms. The four producers in the

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 500 1000 1500 2000

BW-Lat product (in kb)

All / Opt
All / Relaxation

Producer / Random
Consumer / -
All / Random

C
u

m
u

la
ti
ve

 D
is

tr
ib

u
ti
o

n
 F

u
n

c
ti
o

n

Figure 1: Non-DHT: CDF of the BW-Lat product on the
PlanetLab topology.

Node Topology
Discovery Selection PlanetLab Transit-Stub

b=2 b=64 b=2 b=64

All Optimal 1.00 1.00
All Relax. 1.24 1.09
RandomSet(6) Optimal 1.26 1.36
Producer Random 1.60 1.43
Consumer — 1.70 1.63
All Random 1.96 1.84
DHTUnion Optimal 1.13 1.13 1.14 1.18
DHTUnion-NoProd Optimal 1.17 1.31 1.16 1.31
DHTUnion Random 1.60 1.63 1.56 1.52
DHTIntersec. — 1.68 1.67 1.63 1.63
DHTIntersec.-Split — 1.61 1.55 1.59 1.54
DHTIntersec.-Data — 2.82 1.96 3.31 2.25

Table 1:80th percentile of the BW-Lat product as a ratio
of the80th percentile ofAll/Opt after placing1000 circuits
for two topologies with DHT bases2 and64.

circuits produce streams with a data rate of2 kb/s each,
which are then aggregated into a single1 kb/s stream by
the unpinned service.

Two separate DHT implementations were used for the
DHT-based placement schemes. We leverage a recent
DHT implementation by crawling theOpenHash[10] rout-
ing tables running on PlanetLab, which uses theBam-
boo [12] routing algorithm. OpenHash has a DHT key
base of2 and a leaf set size of8. We performed latency
measurement withScriptroute[14] to fill in the missing
Bamboo nodes in the all-pair pings data. We also imple-
mented our own Pastry-like DHT, calledPan, which al-
lowed us to vary the key base. A comparison of Pan and
Bamboo routing with key base2 shows that the average
routing hop count of Pan is within2 % of Bamboo’s value.
Both DHTs used are proximity-aware because otherwise
the DHT routing paths would be essentially random. The
Pan implementation follows Pastry’s approach to achieve
proximity awareness by prefering DHT nodes for its rout-
ing tables that are close in terms of latency.

4.2 Network Utilization
The experiment in Figure 1 depicts the efficiency of net-
work utilization in terms of the amount of data in the

3

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 200 400 600 800 1000 1200 1400

BW-Lat product (in kb)

All / Opt
All / Relaxation

DHTUnion / Opt
DHTUnion / Random

RandomSet 6 / Opt
All / Random

Figure 2: DHTUnion : CDF of the BW-Lat product with
Bamboo (base=2) on the PlanetLab topology.

network for five different, non-DHT placement schemes.
Each curve shows the BW-Lat distribution as a CDF after
placing1000 circuits. As expected,All/Opt performs best
andAll/Randomworst. All/Relaxationis close to optimal,
and outperforms the random selection of a producer (Pro-
ducer/Random) and consumer placement (Consumer/—).
We will use these placement schemes as baselines for com-
parison to DHT-based placement. All our experimental re-
sults for DHT-based service placement are summarized in
Table 1. The data is listed as the ratio of the80th percentile
of the BW-Lat product compared to the80th percentile of
All/Opt after placing1000 circuits using various placement
schemes. In the next two sections, we discuss the results
for two DHT-based node discovery schemes,DHTUnion
and DHTIntersection, using several topologies and DHT
parameters.

4.2.1 DHTUnion
The DHTUnion scheme for node selection uses the DHT
routing paths from the producers to the consumer in a cir-
cuit to obtain a set of candidate nodes for service place-
ment. The size and the quality of the set with respect to the
placement cost function, will depend on the network topol-
ogy and the specifics of the particular DHT, such as its net-
work awareness, key base and leaf set size. Most DHTs
are optimized for efficient key retrieval, which means that
the number of routing hops is kept low by choosing a large
key base. However, this reduces the size of the candidate
set for node selection when using a DHT, potentially miss-
ing good placement nodes from the set. In terms of quality,
the choice of the routing path by the DHT will determine
the suitability of the candidate set for service placement.

PlanetLab Topology. In Figure 2, we plot the distri-
bution of the BW-Lat product for three variations of the
DHTUnion scheme on the PlanetLab topology using the
Bamboo DHT. For such a small topology, many nodes are
included in the candidate set because the Bamboo deploy-
ment on PlanetLab has a large average routing path length
of 3.18 hops due to its binary key base. Therefore, the fig-
ure shows thatDHTUnion/Optplacement performs well
compared toAll/Opt: the candidate set covers a significant
fraction of all nodes and therefore is likely to include at
least one good placement node. However, this good place-

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 500 1000 1500 2000 2500 3000 3500

BW-Lat product (in kb)

All / Opt
All / Relaxation

DHTUnion / Opt
DHTUnionNoProd / Opt
DHTUnion / Random
RandomSet(6) / Opt

Random

Figure 3:DHT-Union : CDF of the BW-Lat product with
Pan (base=64) on600-node transit-stub topology.

ment node must be found through an expensive exhaustive
search.

The DHT contributes little to placement efficiency,
which is supported by the fact thatRandomSet(6)/Opt
(1.26) performs similarly toDHTUnion/Opt(1.13). Ran-
domSet uses a node size of six because this is close to
the average number of nodes in the DHTUnion candidate
set. A random choice of six nodes out of186 is likely
to include a good placement candidate. This is especially
the case for the PlanetLab network, which mainly inter-
links well-provisioned educational institutions [4]. In gen-
eral, performing optimal node selection on large candidate
sets is not desirable because of the probing and computa-
tional overheads when placing complex circuits with mul-
tiple unpinned services. TheDHTUnion/Randomalgo-
rithm (1.60) has a similar cost asProducer/Random(1.60)
andConsumer/—(1.70) because of the probability that ei-
ther the producer or consumer nodes are chosen randomly.

We study the effect of a more efficient DHT deploy-
ment on PlanetLab by simulating a DHT with a larger key
base of64. For this DHT, the average routing path length
drops to1.6 hops. Table 1 shows that the performance
of DHTUnion/Opt is still good (1.13) when compared to
All/Opt. Although the DHT routing paths are shorter due
to the larger key base, the candidate set now becomes dom-
inated by the5 nodes hosting either pinned producers or
consumers. We verify this claim with the DHTUnion-
NoProd scheme: when the producer nodes are removed
from the candidate set inDHTUnion-NoProd/Optplace-
ment, the placement cost increases to1.31. This means
that the in-network DHT routing path is not long enough
to contribute a good placement node.

Transit-Stub Topology. The problem of a small, low-
quality candidate set, as returned by DHTUnion, is even
more pronounced in larger topologies. In Figure 3,
we consider an efficient DHT deployment with a key
base of64 deployed on a600-node transit-stub topol-
ogy. The average DHT path length here is1.89 hops.
In this topology,DHTUnion/Opt (1.18) performs worse
than All/Relaxation (1.09). Removing the producer
nodes (DHTUnion-NoProd/Opt) reduces the efficiency to
1.31, resulting in only a small gain when compared to
RandomSet(6)/Opt (1.36).

4

 1400

 1600

 1800

 2000

 2200

 2400

 2600

 2800

 3000

 0 10 20 30 40 50 60

B
W

-L
a

t
p

ro
d

u
c
t

(i
n

 m
s
)

RandomSet size (in nodes)

All/Opt

All/Relaxation

RandomSet k / Opt

Figure 4: RandomSet/Opt: BW-Lat product with
Pan (base=64) on600-node transit-stub topology.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 500 1000 1500 2000

BW-Lat product (in kb)

All / Opt
All / Relaxation

DHTIntersection / -
DHTIntersectionSplit / -
DHTIntersectionData / -

Consumer / -
All / Random

Figure 5:DHT-Intersection: CDF of the BW-Lat product
with Bamboo (base=2) on the PlanetLab topology.

An obvious way to enlarge the candidate set is to con-
sider the round-trip DHT routing path. However, increas-
ing the size of candidate set without picking good nodes
does not lead to efficient service placement in a large topol-
ogy. The experiment in Figure 4 with the same600-node
transit-stub topology investigates the minimum size of a
randomly chosen candidate set (RandomSet(k)) that is nec-
essary to perform a good node selection with an exhaus-
tive search (Opt). Even when the candidate set includes
10 % of all nodes, it does not achieve the performance of
All/Relaxationplacement. Note that RandomSet performs
worse on the transit-stub topology than before because this
network is not as homogeneous as PlanetLab.

4.2.2 DHTIntersection

The DHTIntersection discovery scheme considers the
nodes in the intersection of all DHT routing paths between
the producers and the consumer as the candidate set. It re-
lies on the route convergence property of DHT routing [5],
which states that routing paths to the same destination are
likely to converge. A service is then placed on the farthest
node along the path that is shared by all other routing paths.
In this case, node discovery is equivalent to selection, so
the selection scheme is represented by —.

In Figure 5, we evaluate three types of DHTIntersec-
tion. The overlapping curves ofDHTIntersection/—and

Consumer/—reveal that DHTIntersection performs only
marginally better than consumer selection. In most cases
the intersection of the four routing paths from the produc-
ers to the consumer contains only the node hosting the
consumer. This means that DHTIntersection is not a good
scheme for unpinned services with a large fan-in. Since the
candidate set returned by DHTIntersection contains a sin-
gle node in most cases, varying the node selection scheme
is unnecessary.

The DHTIntersection-Split scheme recognizes this lack
of convergence of multiple routes by assuming that an
unpinned service can besplit into sub-services. These
sub-services can then be placed independently. A sub-
service is created at the intersection between any two rout-
ing paths from producers to consumer. This is similar to
the setup of multicast trees in DHT-based systems, such as
Scribe [5], where a multicast node is created at the node
joining the path from a new subscriber to the root of the
multicast tree. The graph shows that splitting services im-
proves the fraction of cases, in which services are placed
in-network. However, it does not reach the performance of
All/Relaxation, which optimizes for the BW-Lat product.
Moreover, it is not applicable if services cannot be decom-
posed into sub-services.

Application-level multicast schemes based on DHTs of-
ten send data along DHT routing hops. This has the ad-
vantage that the data flows benefit from the resilience and
load-balancing properties of the DHT but it also incurs the
penalty of more network traffic in the system. To evaluate
this effect, the final placement scheme is DHTIntersection-
Data, as shown in Figure 5, which in addition to using
the DHT for service placement, also routes the data itself
through the DHT. The last row in Table 1 suggests that
the penalty is directly related to the key base, which de-
termines the number of hops in the routing path. For the
Bamboo DHT on PlanetLab, the penalty of routing data
through the DHT compared toAll/Opt placement is almost
a factor of3. We suggest that many applications would
benefit from including their own resilience mechanisms at
the application-level without paying the price for using the
DHT for data routing.

4.3 Summary
Our experiments suggest that DHTs are less efficient than
non-DHT alternatives, such as Relaxation placement, for
service placement in SBONs. DHTs are designed for effi-
cient key lookup, but this yields small candidate set sizes
for service placement. Using a small key base increases
the number of routing hops thus helping node discovery
but also reduces the efficiency of key lookup for other ap-
plications sharing the DHT. A large key base, such as in
one-hop routing, may not return enough useful nodes for
service placement.

Another drawback is the low quality of the obtained
candidate set from the DHT, which makes it necessary to
perform a costly exhaustive search through all placement
possibilities. Fundamentally, DHTs are not designed to
optimize stream-based processing in the overlay network.
A topology-aware DHT uses only latency to optimize its
overlay routing paths. Since DHTs are connection-less by
nature and thus unaware of the data streams in the SBON,
they cannot easily optimize their routing tables for efficient
service placement. Algorithms, such as Relaxation place-

5

Node
Discovery Selection SBON Examples

All Random PIER[9]
All Relaxation Hourglass[13]
All Other (Human Decision) GATES[6]
Consumer — Typ. Warehouse
Con. & Prod. Varies (Random, Heuristic) Typ. CQ System
DHTUnion Greedy Heuristic on Opt Borealis, SAND[1, 3]
DHTIntersec. — Scribe[5], Bayeux[18]

Table 2: SBONs classified by their placement techniques.

ment [11], designed specifically to minimize the amount
of traffic in the SBON do not suffer from the same restric-
tions.

The intersection of DHT routing paths avoids the issue
of a large, low-quality candidate set but has the problem
that routing paths between pinned services may not con-
verge. This is especially the case for services with a large
number of incoming circuit links. Splitting services into
sub-services addresses this problem but is not applicable
in general. Routing data along DHT hops, as done by cer-
tain application-level multicast schemes, carries a large ef-
ficiency penalty.

5 Related Work
We suspect that the optimization of service placement de-
cision in SBONs will be a growing research area, as can be
seen from the wide-range of related work.

New continuous query (CQ) work breathes life into
questions that arose in distributed database optimization.
Most related to our work isSAND[3] in the context of the
stream-processing systemBorealis[1]. In our terminology,
they use DHTUnion to pick the candidate set, and a greedy
heuristic on optimal for node selection. Their scheme can
do no better than aDHTUnion/Optplacement.

The location of operators and corresponding relational
tables inPIER [9], a distributed database system built on
top of a DHT, is determined through random hash selec-
tion from all overlay nodes and explicitly recognizes the
possible inefficiency in such a service placement scheme,
and is essentialy anAll/Randomplacement.

Overlay routing and application level multicast systems
consider where to place multicast services to best optimize
an expanding array of metrics. For example,Scribe [5]
uses a DHT to produce a multicast tree to connect pub-
lishers to subscribers. In our terminology, Scribe uses
DHTIntersection-Split as its discovery mechanism and a
“farthest common ancestor” heuristic as its selection mech-
anism.

Grid users are recognizing the need to use in-network
services to help process massive data streams. For in-
stance,GATES[6] provides a way of introducing process-
ing services but requires these services be pre-placed by a
system administrator.

6 Conclusions
In this paper, we have shown that current DHTs do not
produce a particularly good candidate set of nodes for ser-
vice placement. DHT Union does not provide significant
discovery value beyond that of selecting a random set of
nodes from the overlay. If services cannot be split, DHT

Intersection tends to reduce to Consumer placement, re-
sulting in highly restricted and poor placement. If services
can be split, we found that DHT Intersection still does not
perform as well as a dedicated mechanism like Relaxation.

These results suggest a number of areas for further re-
search. First, it remains an open question of whether it is
possible to construct a DHT that is sufficiently network-
aware such that it could be used to easily construct a good
candidate set for node placement. How might we construct
such a DHT? What does it mean for a DHT to be dynam-
ically aware of network conditions? Second, should we
declare that DHTs are not the correct abstraction on top
of which to construct service placement algorithms? What
alternative structures are possible? Third, is it necessary to
globally optimize streaming applications? Do we believe
that there will be sufficiently large amounts of streaming
traffic to warrant building a system that does cross-circuit
optimization instead of just local optimization? Answer-
ing these questions is crucial for successful deployment of
stream-based applications.

References
[1] D. Abadi, Y. Ahmad, H. Balakrishnan, et al. The Design of the

Borealis Stream Processing Engine. Technical Report CS-04-08,
Brown University, July 2004.

[2] D. Abadi, D. Carney, U. Cetintemel, et al. Aurora: A New Model
and Architecture for Data Stream Management.VLDB, Aug.
2003.

[3] Y. Ahmad and U. Çetintemel. Network-Aware Query Processing
for Stream-based Applications. InVLDB, Aug. 2004.

[4] S. Banerjee, T. G. Griffin, and M. Pias. The Interdomain Connec-
tivity of PlanetLab Nodes. InPassive and Active Measurement
Workshop, Antibes Juan-les-Pins, France, Apr. 2004.

[5] M. Castro, P. Druschel, A.-M. Kermarrec, and A. Rowstron.
Scribe: A Large-scale and Decentralized Application-level Multi-
cast Infrastructure.JSAC, 20(8), Oct. 2002.

[6] L. Chen, K. Reddy, and G. Agrawal. GATES: A Grid-Based Mid-
dleware for Processing Distributed Data Streams. InHPDC-13,
Honolulu, Hawaii, June 2004.

[7] F. Dabek, R. Cox, F. Kaashoek, and R. Morris. Vivaldi: A De-
centralized Network Coordinate System. InProc. of the ACM
SIGCOMM’04 Conference, Portland, OR, Aug. 2004.

[8] P. B. Gibbons, B. Karp, Y. Ke, S. Nath, and S. Seshan. IrisNet:
An Architecture for a World-Wide Sensor Web.IEEE Pervasive
Computing, 2(4), Oct. 2003.

[9] R. Huebsch, J. M. Hellerstein, N. Lanham, et al. Querying the
Internet with PIER. InVLDB), Berlin, Germany, Sept. 2003.

[10] B. Karp, S. Ratnasamy, S. Rhea, and S. Shenker. Spurring Adop-
tion of DHTs with OpenHash, a Public DHT Service. InProc. of
IPTPS’04, San Diego, CA, Feb. 2004.

[11] P. Pietzuch, J. Shneidman, M. Welsh, M. Seltzer, and M. Rous-
sopoulos. Path Optimization in Stream-Based Overlay Networks.
Technical Report TR-26-04, Harvard University, October 2004.

[12] S. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz. Handling
Churn in a DHT. InUSENIX ’04, Boston, MA, June 2004.

[13] J. Shneidman, P. Pietzuch, J. Ledlie, M. Roussopoulos, M. Seltzer,
and M. Welsh. Hourglass: An Infrastructure for Connecting Sen-
sor Networks and Applications. Technical Report TR-21-04, Har-
vard University, Sept. 2004.

[14] N. Spring, D. Wetherall, and T. Anderson. Scriptroute: A Public
Internet Measurement Facility. InUSITS’02, Mar. 2003.

[15] J. Stribling. All-Pairs-Pings for PlanetLab. http://www.pdos.lcs.-
mit.edu/˜strib/plapp/, Sept. 2004.

[16] The Planetlab Consortium. http://www.planet-lab.org, 2004.
[17] E. W. Zegura, K. L. Calvert, and S. Bhattacharjee. How to Model

an Internetwork. InProc of IEEE Infocom’96, volume 2, pages
594–602, San Francisco, CA, Mar. 1996.

[18] S. Q. Zhuang, B. Y. Zhao, A. D. Joseph, R. H. Katz, and J. Kubi-
atowicz. Bayeux: An Architecture for Scalable and Fault-tolerant
Wide-Area Data Dissemination. InNOSSDAV, June 2002.

6

