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Abstract

Network coordinates, which embed network distance
measurements in a coordinate system, were introduced as
a method for determining the proximity of nodes for rout-
ing table updates in overlay networks. Their power has far
broader reach: due to their low overhead and automatic
adaptation to changes in the network, network coordinates
provide a new paradigm for managing dynamic overlay net-
works. We compare network coordinates to other proposals
for network-aware overlays and show how they permit the
lucid expression of a range of distributed systems problems
in well-understood geometric terms.

1. Introduction

Overlay networks, initially designed for simple routing
and storage, are increasingly used for network-sensitive ap-
plications such as distributed web caching, content dissem-
ination, and stream processing. Application performance
depends on the relation of the logical overlay topology to
the current physical network topology, and the two have be-
come more tightly coupled.

The first large-scale overlays, distributed hash ta-
bles (DHTs), were based on a purely logical identifier
space, designed for load balancing and routing resilience.
Such network-obliviousdesigns led to poor application-
perceived performance. Overlays now incorporate full
network-awareness, where it is a fundamental requirement
to understand the physical network topology when con-
structing the overlay. As a result, network-aware overlays
(NAO) are used to build applications that optimize for net-
work metrics such as latency, bandwidth, and packet loss.

Maintaining network-awareness while the underlying
network changes is a fundamental challenge for NAOs. Un-
fortunately, many NAOs have high measurement overhead,
claiming it as a requirement for accuracy and adaptabil-
ity [1, 45]. Also, NAOs are designed to solve a single task
such as nearest neighbor search, limiting their generality.

Network coordinates(NC) are a promising new research

direction for the decentralized construction of adaptive
NAOs. With NCs, each node calculates its position in a
virtual coordinate space using a small number of inter-node
network measurements. The virtual distance between two
coordinates is an estimate of network latency. Nodes con-
tinuously adjust coordinates to adapt to changes in the un-
derlying network.

NCs have attractive properties and are a powerful ab-
straction: they have low run-time overhead; their embed-
ding error is sufficiently low for practical applications; and
by adjusting the measurement frequency, the trade-off be-
tween overhead and accuracy becomes explicit.

We show that NCs provide a rich assortment of geo-
metric primitives for solving distributed systems problems
such as nearest cache selection, content distribution, and
resource placement. For example, a web cache can be
placed at the centroid of all the client coordinates accessing
the cache. The low dimensionality of NCs makes a wide
range of algorithms from computational geometry applica-
ble to networking problems, and their geometric interpre-
tation unifies wired and wireless networks, making similar
algorithms usable in both domains, simplifying the design
of dynamic heterogeneous systems.

The paper is structured as follows: In Section 2,
we describe the distinctions between network-oblivious,
proximity-aware, and network-aware overlays. We then dis-
cuss NCs in Section 3, comparing different approaches for
building coordinate spaces. We show the full power of NCs
in Section 4, where we analyze how they can be used to
solve several fundamental distributed system problems scal-
ably and elegantly. In Section 5, we conclude.

2. Taxonomy of Overlays

In an overlay network, nodes create a limited number of
connections to neighbors to form a topology. These con-
nections are updated as the underlying network changes.
Figure 1 shows different approaches to neighbor selection,
ranging fromnetwork-obliviousto network-aware.
Network-Oblivious Overlays. Network-obliviousoverlays
create links to neighbors based on identifiers in a logical
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Figure 1. Spectrum of research into overlays.

space. Structured DHTs, such asChord [43], andCAN [34]
are examples of network-oblivious overlays. In a structured
DHT, each node creates network connections to its imme-
diate neighbors in the logical identifier space and to a small
subset of distant nodes to reduce the number of overlay rout-
ing hops [43]. However, a short distance in the identifier
space may translate to a large distance in the underlying
physical network, making routing inefficient.

DHTs are network-oblivious by design because their
goal is a uniform data and load distribution. Because nodes
pick logical identifiers at random, data items can be repli-
cated on neighbors in the identifier space, causing replicas
to be hosted at distant sites with independent failure distri-
butions. However, many applications need short network
paths in addition to good load and data distribution.
Proximity-Aware Overlays. DHTs have some freedom
when selecting nodes for routing tables. Proximity-aware
DHTs [48] such asPastry [38] and Tapestry[47] exploit
this observation by preferring to include physically close
nodes in routing tables. For example, Pastry updates its
routing table when it discovers a new node that shares the
same identifier prefix but has lower latency than an exist-
ing entry. An extension to Chord [43] updates its finger ta-
bles in the background, replacing distant entries with closer
ones. Aproximity-awareoverlay is an overlay that does
not rely on locality for correctness but uses it to improve
network efficiency. The disadvantage of proximity-aware
overlays is that routing is still based on a logical identifier
space. Proximity-aware decisions are made only when there
is a choice between nodes. The dynamism of the network
should determine the rate of routing table updates to main-
tain proximity-awareness but the rate often cannot be con-
trolled independently from the DHT routing workload. This
more recent work on proximity-aware overlays preserves
some degree of randomized load balancing while increasing
routing efficiency. Fundamentally, however, the techniques
functionwithin the bounds of network-oblivious overlays.
Network-Aware Overlays. Current research on NAOs
departs from a logical identifier space, creating an over-
lay topology that is based purely on physical node dis-
tance [26, 44]. Anetwork-awareoverlay exploits local-
ity for its underlying routing strategy. Thelocality prin-

ciple, which states that network traffic with only local rele-
vance should stay local [11], is the fundamental element of
network-awareness. Local network traffic experiences bet-
ter quality of service characteristics, such as latency, band-
width, and reliability, due to the smaller number of routing
hops involved. Network-awareness also enables intelligent
wide-area choices, such as formation of a content distribu-
tion tree or selection of a good node on which to host a
distributed join. These applications benefit from a network-
aware approach.

There are two approaches for NAOs to adapt to net-
work dynamism: reactiveoverlays initiate network mea-
surements to determine node distances when routing a mes-
sage, andproactiveoverlays periodically perform measure-
ments in the background to maintain up-to-date routing
state. Reactive overlays always use fresh measurements, re-
sulting in a large overhead when overlay usage is high, and
adaptivity based upon load instead of network dynamism.
Proactive overlays decouple measurement overhead from
overlay usage but can suffer from stale information.

Meridian [45] is an example of a reactive NAO. Each
Meridian node keeps track of a fixed set of neighbors and
organizes them into exponentially increasing rings accord-
ing to network distance. To find the nearest neighbor to a
non-Meridian node (the target), an initiating node measures
its latency to the target. The initiating node then requests
all neighbors in the ring corresponding to the target’s la-
tency and half of the nodes in the adjacent rings to probe
the target. The initiating node selects the neighbor reporting
the shortest distance to the target, sends the message to that
neighbor, and the process repeats with the neighbor as the
initiator. No latency errors are introduced because routing is
based only on current measurements. However, each query
has a large measurement overhead and the results may be
inaccurate when a node’s ring membership changes.

Tulip [1] exemplifies a network-aware, proactive, two-
hop routing overlay. Each node selects a random color and
maintains acolor list with all nodes of its color and avicin-
ity list, containing one node of every other color. A node
routes a message by sending it to the node in the vicinity
list of the target’s color. That node routes the message di-
rectly to the target using its color list. Tulip uses gossip and
direct node-to-node measurements to ensure that a node is
close to the nodes in its vicinity list. These measurements
result in Tulip’s maintenance overhead.

In contrast to Tulip’s direct measurements,Mithos [44]
is a reactive NAO that uses NCs for routing. Each node
calculates a static NC and maintains links to its immediate
neighbors in every direction. Messages are routed greedily
towards a target. Since routing tables do not contain long-
distance links, hop count is high unless a space with high di-
mensionality (and overhead) is used. Also, the coordinates
are not updated dynamically to adapt to latency changes.
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Figure 2. A latency space on PlanetLab

3. Network Coordinates

NCs, which embed inter-node latency in a low-
dimensional geometric space [19, 28], provide an alterna-
tive approach to constructing NAOs. As network conditions
change, each node maintains its location in the coordinate
space keeping the distance in virtual space an estimate of
the latency. Nodes can route messages in the coordinate
space, mapping between coordinates and physical nodes.

In Figure 3 we usedVivaldi [9] to construct a3-
dimensional latency space with NCs of115 North American
PlanetLab (PL) [33] nodes. The three clusters of nodes that
become apparent correspond to three geographic regions, as
annotated. Continuous coordinate spaces encoding network
latencies provide a number of advantages:
Overhead. They reduce measurement overhead to a linear
or near-linear number of node pairs because non-existent
measurements are approximated, making them feasable for
large-scale networks. This approximation works well, be-
cause nodes that share the same local-area network often
exhibit similar communication characteristics.
Dynamism. The coordinate space adapts to dynamic net-
work changes as overlay nodes update their coordinates it-
eratively [22]. The maintenance overhead can be chosen to
reflect the amount of dynamism in the network. Its proac-
tive nature means there is no measurement overhead when
messages are routed using the space. The space can also be
maintained in a distributed fashion [42].
Algorithms. NCs give distributed routing problems a geo-
metric meaning. As a result, many well-understood prim-
itives from computational geometry become applicable to
distributed routing and location problems. In Section 4, we
describe general algorithms that solve common problems.
Domains. NCs unify wired and wireless network domains.
Since wireless networks have a geographic communication
model, nodes can only communicate directly with nodes in
their vicinity. NCs approximate this by bringing locality
and direction to the wired network world. Algorithms de-
veloped for wireless networks [2, 35] can be used in wired

networks with NCs.
The main drawback of NCs is the embedding error that

arises when Internet latencies violate the triangle inequal-
ity [25, 49]. In practice, however, we have shown that a low
dimensional space can predict latencies with an accuracy
that is sufficient for many applications [31].

3.1. Algorithms

Several algorithms for calculating NCs using measured
latencies exist. There are two classes of algorithms:
landmark-basedschemes, in which overlay nodes use a
fixed number of landmark nodes to calculate their coordi-
nates, andsimulation-basedschemes, which are decentral-
ized and calculate coordinates by modelling nodes as enti-
ties in a physical system.
Landmark-based. In GNP [28], nodes contact multiple
landmark nodes to calculate their coordinates. The draw-
backs of this approach are that the accuracy of the coordi-
nates depends on the choice of landmark nodes and land-
mark nodes may become a bottleneck.Lighthouses[30]
addresses this by supporting multiple independent sets of
landmarks with their own coordinate systems. These lo-
cal coordinates are mapped into a global coordinate sys-
tem. PIC [8] does not use explicit landmarks, incorporat-
ing any node’s measurements using a simplex optimization
algorithm to obtain an up-to-date coordinate.
Simulation-based. Vivaldi [10] and Big Bang Simula-
tion [39] determine coordinates using spring-relaxation and
force-field simulation, respectively. In both, nodes attract
and repel each other according to network distance mea-
surements. The low-energy state of the physical system
corresponds to the coordinates with minimum error. Vi-
valdi is the most widely-used, because of its clean decen-
tralized implementation.Azureus, a BitTorrent client [6],
and SBON [32], a distributed streaming query optimizer,
use Vivaldi to create long-running NCs.

3.2. Accuracy and Overhead

Two fallacies slowed the acceptance of NCs: they have
too low accuracy and too high measurement overhead.

The relative error, the baseline metric for accuracy, is the
ratio of the absolute prediction error to the actual network
latency. Coordinates using Vivaldi exhibit median relative
errors between5–10% using3–5 dimensions on wide area
networks [10]. However, the error’s effect on application-
specific operations is a more significant measure. For ex-
ample, can NCs be used to reliably find a node’s nearest
neighbor? To answer this question, we gathered all-pairs
ping measurements between226 PL nodes and assigned
the nodes coordinates with Vivaldi. We useNearest Neigh-
bor Loss(NNL) to capture the application-observed latency
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Figure 3. Nearest Neighbor Accuracy of NCs.
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Figure 4. Frequency of PL latency change.

penalty for using a node that is not the true nearest neigh-
bor. We define this loss as the difference between the la-
tency to the node thought to be the nearest neighbor and
the latency to the true one. In Figure 3, we show NNL for
nodes if they use the node with the nearest coordinate as a
proxy for the true nearest neighbor. We also show the base-
line penalty if they had assumed a random node was their
nearest neighbor. Not only are NCs far more capable of
predicting “closeness” than choosing randomly, but also the
absolute penalty is low:35% of the time the NCs have no
loss – they accurately find the nearest neighbor – and96%
of the time NCs predict within a25ms penalty. Because
the absolute error is small, in the vast majority of cases, the
nearest coordinate is a sufficient substitute for the true near-
est neighbor. In fact, NCs supply an answer that is “good
enough” for a wide range of problems.

The overhead required to maintain an accurate network
coordinates depends on the rate of node churn and intern-
ode latency, in particular. Adapting to churn is a fairly well-
understood problem [36, 23], but adapting to internode la-
tency change in the context of NCs is not. If the observed la-
tency between nodes does not change over time, a static all-
pairs matrix with one-off measurements could eliminate the
need for repeated measurements. If link latencies change
very frequently, maintaining accurate NCs would require
overheads that dominate using a reactive query technique.
In Figure 4, we show the frequency with which intern-
ode latencies change, where a change is defined as±10%
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from the current latency (after eliminating outliers accord-
ing to [31]). The data portrays that some links are very con-
stant, but approx.30% change significantly in observed la-
tency with5.4% changing more than once per hour: con-
tinuous adaptation is required, even in this wired, well-
provisioned network. In practice, we found that a main-
tenance rate of only one measurement per minute per node
is sufficient to keep coordinates reasonably accurate on PL.

There is a trade-off between reactive, accurate, but ex-
pensive queries, and slightly less accurate but cheap queries
that can be performed with NCs. When queries are infre-
quent or when network latencies are highly dynamic, build-
ing and maintaining coordinates is at best inefficient and at
worst inaccurate. To discern the trade-off point in overhead
between NCs (Vivaldi) and a reactive, active measurement
mechanism (Meridian), we estimate a node’s overhead over
a range of query frequencies. We use the same parameters
as in the evaluation of Meridian (2048 nodes,16 nodes per
ring) [45] and assume that NCs use CAN to find the nearest
neighbor. A CAN lookup takes(d/4)n1/d hops. In Fig-
ure 5, we show the ratio of the number of messages a node
needs to route using NCs and using Meridian with varying
query rates. These estimates include the maintenance over-
head for3d NCs.

The results show that when a system rarely performs
network-aware tasks, maintaining NCs is not worthwhile.
However, when the system-wide query frequency is greater
than once per minute (i.e., each node is doing a lookup
once every34 hours on average), it is cheaper to maintain
NCs than to perform reactive network measurements for
each query. Assuming that the network is moderately, not
exceedingly, dynamic, applications that perform network-
aware tasks at this frequency or higher and that can accept
reasonable, but not perfect, accuracy should use NCs in-
stead of a heavyweight, reactive mechanism.

3.3. Discussion

Latency is the primary network metric that has been em-
bedded in coordinate spaces. There are at least two ap-
proaches to including other network characteristics, such as



Dist. Sys. Problem Geometric Algorithm

Message routing Geographic routing [3, 14, 17],
Small world routing [18]

Content distribution Minimum spanning tree [16],
Cluster analysis [7]

Resource location Nearest neighbor query [37],
Geographic routing [3, 14, 17]

Resource placement Centroid calculation, Facility
location [40], Steiner trees [15],
Spring relaxation [32]

Resource replication Furthest neighbor query [13],
Reverse nearest neighbor query [20],
Geographic quorums [12]

Network analysis Cluster analysis [7],
Principal component analysis [21]

Unknown problem Travelling salesman problem [4]
Minimum length matching [13]

Table 1. Mapping to geometric solutions.

bandwidth and jitter. We can make them additional dimen-
sions in existing latency space. We demonstrated that per-
node characteristics, such as load, can be included to form
a cost spacethat allows hot-spot detection [41]. Second,
Oppenheimeret al. and Leeet al. have investigated the in-
verse correlation between latency and bandwidth [24, 29].
The correlation Oppenheimer found implies that network-
aware decisions made in the latency space may result in
good bandwidth characteristics.

Load balancing was an initial motivation for the
network-oblivious design of storage-focused DHTs. NCs
enable several new techniques for load balancing and repli-
cation. First, node load can be expressed as a dimension in
the coordinate space. An over-loaded node will eventually
“move away” in the coordinate space, reducing its partici-
pation in routing and queries. Second, diffusion techniques
avoid congested regions in the coordinate space. Finally,
we can do better than random replication by placing repli-
cas with furthest neighbor queries.

4. Using Network Coordinates

NCs solve many distributed systems problems using
primitives from computational geometry. This provides a
framework in which to handle these problems in a clean
and uniform way by considering their geometric meaning.
Table 1 shows a number of distributed systems problems
and their mapping to geometric techniques. Note that there
are geometric solutions that do not correspond immediately
to networking problems. These may become meaningful in
the future, enabling applications not possible today.

Since low-dimensional NCs obtain good results in terms

of physical network metrics, this makes many geometric al-
gorithms appealing because their running time is often a
function of the dimensionality of the coordinate space. In
addition, many NP-hard geometric optimization problems
have approximate solutions sufficient for most practical ap-
plications [5] and NCs enable distributed applications to
take advantage of these algorithms. We now describe the
problems and the proposed algorithms in more detail. We
useN to refer to the number of overlay nodes andD to the
network diameter.
Message Routing.The routing problem is to send a mes-
sage from a source node to a single recipient node via hops
in the overlay network. An efficient route minimizes the
hop countanddelay stretch, which is the ratio of the expe-
rienced delay to the direct physical communication delay.

Intuitively, an algorithm that uses NCs can take advan-
tage of the “sense of direction” of the space to achieve
efficient routing with a small number of neighbor links.
Most algorithms, including the ones mentioned below, cre-
ate routing tables that connect nodes to their neighbors and
then use greedy routing with each hop to reduce the metric
distance to the recipient. Care must be taken that a greedy
routing approach does not fail due to local minima.

The simplest approach constructs aθ-graph spanner[17,
44] linking nodes to their closest neighbors in every angleθ,
but this results in a linear number of hops. An improvement
is to addlong-distance linksthat reduce the hop count to
O(log D) [14]. This results in a technique similar to small-
world routing [18], which reduces hop count by creating
a network with a small diameter. Thecompact routingal-
gorithm in a coordinate space improves routing efficiency
further [3]. This algorithm has a logarithmic hop count, a
(1 + ε) delay stretch, and requires only a constant number
of neighbors.
Content Distribution. In content distribution, a source
node disseminates messages to a set of recipient nodes. The
standard approach builds a multicast tree optimizing hop
count and delay stretch.

In a geometric space, an approximate minimum span-
ning tree [16] algorithm selects overlay nodes for content
dissemination inO(N) running time. An alternative ap-
proach identifies clusters of nodes in the coordinate space
and builds a hierarchical dissemination tree using infor-
mation that respects the structure of the coordinate space.
This approach resembles previous work on the construction
of hierarchies on top of logical rings in network-oblivious
overlays [46]. There are also several algorithms for cluster-
ing in geometric spaces [7] that are applicable.
Resource Location. In the resource location problem, an
overlay node wants to find the nearest overlay node to a
given target location in the network. This problem arises
in many applications such as web cache selection, database
replication, and multi-player game server selection.



The geometric interpretation of this problem is anearest
neighbor searchin a coordinate space. The database com-
munity developed centralized algorithms for finding near-
est neighbors in multi-dimensional spaces to answer spatial
queries [37]. The routing algorithms from Section 4 lend
themselves to distributed implementation solutions to this
problem. Each routing hop attempts to bring the message
closer to the target location. Therefore, a message that is
sent to a target node will often be routed via the nearest
neighbor to the target in the overlay because of the greedi-
ness of the routing strategy.
Resource Placement.The resource placement problem is
finding a node that can host a resource, while minimizing
the network distance to clients.

There are several geometric algorithms for resource
placement. A simple geometric solution places the resource
at thecentroidof the clients in the coordinate space. This
minimizes the network distance for all surrounding clients.
For more general geometric layouts, this problem corre-
sponds to finding the Steiner tree [15]. Approximation algo-
rithms, for example based onspring relaxation[32], which
minimizes the potential energy of a network of springs in
the coordinate space, provide a solution to the resource
placement problem.

An algorithm to solve thefacility location problem[27]
attempts to find optimal locations for facilities, such as
warehouses, given a set of clients, such as stores, and
their locations. There are approximation algorithms [40]
that minimize the incurred costs in terms of distance from
stores to warehouses. A variation of this is thek-median
problem[40] where a fixed number ofk facilities must be
placed. These algorithms can be used to compute optimal
placement locations for resources in the coordinate space.
The computed placement locations for resources are then
mapped back (using a nearest neighbor search) to existing
overlay nodes that are closest to these locations.
Resource Replication.The goal of resource replication is
to add a new replica to an existing set of replicas in the
overlay. This can be regarded as a specialized version of
resource placement problem. A good replica placement en-
sures that failures of replicas are independently distributed,
while placing replicas close to clients.

Algorithms forfurthest neighbor search[13] ensure that
replicas are distant, and hence more likely to experience in-
dependent faults in the network. Areverse nearest neigh-
bor query [20] returns all nodes that would benefit from
the placement of a replica at a given location by finding
the nodes whose nearest neighbor the new replica would be
come. This allows a system to decide on the most beneficial
location for new replicas. A distributed system with repli-
cas can implement shared memory usingGeoQuorums[12],
borrowing a technique from wireless routing. GeoQuorums
use locks on geographic regions to form a quorum that en-

sures consistency.
Network Analysis. Network analysis is a broad area. Here
an overlay network can discovery the topology or monitor
the state of the underlying physical network. Such a system
can exploit the latency information captured by the NCs to
infer network properties.

Many statistical methods exist to analyze and infer prop-
erties of a geometric space.Cluster analysis[7] can be used
to discover congestion hot spots in the network by looking
at overlay nodes that are close to each other and receive
much of the traffic. In recent workprincipal component
analysishas been used to discover structure of measured
network flows [21]. Similar techniques could be used with
NCs after mapping measured flow information into the co-
ordinate space.
Other Algorithms. We have so far listed only those geo-
metric algorithms that have an obvious potential application
in overlay networks. However, there exist many other geo-
metric algorithms that may not currently have an apparent
network interpretation, but may prove applicable in the fu-
ture. For example, there are many fast approximation algo-
rithms for thetraveling salesman problem[4] or minimum
length matching[13]. Using the coordinate paradigm al-
lows a large class of algorithmic primitives to be immedi-
ately available for future distributed systems problems.

5. Conclusion

NCs offer such powerful potential for overlay networks
that we are confident they will become a fundamental
paradigm for dynamic overlay management. By providing
an underlying geometric framework, NCs allow application
of a rich, unified set of algorithmic tools and techniques to a
variety of network problems. While developing coordinates
with near-perfect accuracy is a long-term challenge, current
approaches are already sufficiently accurate for most appli-
cations and allow trade-offs between accuracy and measure-
ment overhead for dynamic network-aware overlays.
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