
Congestion Control in a Reliable Scalable

Message-Oriented Middleware

Peter R. Pietzuch1? and Sumeer Bhola2

1 University of Cambridge Computer Laboratory,
Cambridge, United Kingdom

Peter.Pietzuch@cl.cam.ac.uk
2 IBM T.J. Watson Research Center,

Hawthorne, NY, USA
sbhola@us.ibm.com

Abstract. This paper presents congestion control mechanisms for re-
liable and scalable message-oriented middleware following the publish/
subscribe communication model. We identify the key requirements of
congestion control in this environment, how it differs from congestion
control for the Internet, and propose a combination of two congestion
control mechanisms, (1) driven by a publisher hosting broker (PDCC),
(2) driven by a subscriber hosting broker (SDCC). SDCC decouples the
notion of a receive window and a NACK window, and is used by sub-
scriber hosting brokers in recovery mode. PDCC implements a scalable
and low latency feedback loop between a publisher hosting broker and all
subscriber hosting brokers, which is used to adjust the rate of publishing
new messages, to allow brokers in recovery to eventually catch up, and
other brokers to keep up. We present a detailed experimental evaluation
of our implementation of these mechanisms in the Gryphon system by
injecting network failures and link congestion.

1 Introduction

Message-oriented middleware is an important building block for enterprise ap-
plications. Its asynchronous model is preferable to tight synchronization, for
application integration and information dissemination to many users. Reliability
of message delivery, despite failures in the messaging middleware, and scalability
of the middleware, are important requirements for many such applications.

This paper focuses on congestion control mechanisms for reliable and scal-
able messaging middleware. Our mechanisms are developed in the context of a
publish/subscribe messaging model, since it is a challenging model due to its
one-to-many nature and message filtering semantics. Subscribers express inter-
est in messages by providing a predicate/filter, that can be executed on each
message, and only messages that match the filter are delivered to the subscriber.
Scalable messaging middleware is deployed as an overlay network of application-
level routers, which we refer to as brokers. Typically, multiple routing paths are

? Work done while at IBM T.J. Watson Research Center.

ACM/IFIP/USENIX Int. Middleware Conference 2003. c© Springer-Verlag.

2 P. R. Pietzuch and S. Bhola

possible between a pair of brokers, and the routing protocol used in the overlay
both (1) balances the load amongst the available paths, and (2) routes around
failed paths, for high availability. However, the overlay routing protocol cannot
ensure that the system has enough capacity, say after some failure, to continue
processing messages at the rate at which they are being published. In addition,
messages lost due to failures need to be resent, which requires more capacity for
retrieving them (potentially from stable storage), processing them at intermedi-
ate brokers, and network bandwidth for sending them on each network link.

Congestion control has been an active research area for Internet protocols,
especially for point-to-point communication using TCP. There is also work that
addresses end-to-end congestion control for IP multicast, such as using layered
multicast [1], or single-rate schemes that adjust the sender’s rate to the slowest
receiver [2, 3]. However, these schemes are for best-effort delivery, and assume
that all receivers get the same set of messages. In contrast, for reliable publish/-
subscribe, (1) the congestion control mechanism needs to ensure that the overlay
network allocates enough capacity for message retransmission to satisfy receivers
who are lagging behind, (2) message filtering may occur at intermediate brokers,
due to which each receiver may get a different subset of messages from the sender,
and (3) message retransmissions, to overcome losses, can originate not only at
the sender, but from caches located on the path from the sender to the receiver.

There are also important differences in the system environment compared
with Internet protocols running on IP routers, such as:

1. Message processing is bursty due to (1) application-level scheduling, since
brokers run on commercial off-the-shelf (COTS) hardware and software, and
(2) variable processing cost of performing content filtering on a message.

2. The ratio of maximum queue size at a node, to the message processing
throughput, is typically much higher for a broker compared to an Internet
router. This is due to (1) lower routing throughput because of content filter-
ing, and (2) larger queues to handle burstiness. Hence queue overflows occur
only when significant congestion already exists. Since the congestion control
mechanism should not allow significant congestion to build up, it cannot use
message loss caused by queue overflows as a trigger for congestion control.

3. Broker software and inter-broker routing protocols are completely under the
control of the messaging vendor. Hence, we are not constrained to a conges-
tion control scheme which treats the entire overlay network as a black-box.
At the same time, the congestion control scheme should not depend inti-
mately on a particular broker architecture, since that would hinder conges-
tion control being part of a future protocol standard for publish/subscribe
routing.

1.1 System Model

We assume a model where brokers can perform 3 roles (1) publisher hosting
broker (PHB) is an edge of the network broker to which publishing clients con-
nect, (2) subscriber hosting broker (SHB) is an edge broker to which subscribing

Congestion Control in a Message-Oriented Middleware 3

clients connect, and (3) intermediate broker (IB) is a broker which is inside the
network and does not host clients. Brokers can perform multiple roles, but for
simplicity of exposition we will assume that each broker has only one.

Each PHB hosts one or more publishing endpoints, referred to as pubends.
Each pubend represents an ordered stream of messages, and maintains this
stream in persistent storage. Messages published from different publishing clients
may be assigned to the same pubend. This pubend decides on a position for the
message in the persistent stream and logs the message to persistent store. After
that, the pubend sends the message downstream towards SHBs. The IBs forward
data and control messages to the SHBs, and may also perform filtering on data
messages such that an SHB does not receive messages that do not match any of
its subscribers’ filters. One approach to performing such filtering, while preserv-
ing the guarantee of in-order exactly-once delivery to subscribers, is described in
our previous work [4]. IBs also cache stream data and can respond to NACKs.
NACKs not satisfied by an IB are forwarded towards the pubend.

The congestion control protocols presented here deal with congestion start-
ing from the pubend upto and including the SHBs that receive messages from
the pubend. The goal is to ensure that eventually all SHBs are being able to
receive and deliver in-order recent messages from a pubend’s stream. Hence, the
protocols adjust the message rate to the slowest link or broker inside the system,
but not to the slowest subscribing application. This design choice allows the sys-
tem to protect itself against very slow or malicious subscribers by disconnecting
them. The number of brokers is typically 3–4 orders of magnitude lower than
the number of clients. We assume that the brokers are trusted.

We perform adaptation at both PHBs and SHBs to control congestion, such
that broker queues do not overflow. Adaptation at an SHB is done by

– decoupling the notion of a NACK window and a receive window, where the
receive window is used to bound the memory consumption at an SHB and
the NACK window is used for congestion control.

– using a NACK throughput metric (similar to the send throughput metric in
TCP Vegas [5]) to adjust the NACK window. Adjustment is additive increase
and additive decrease. The NACK throughput adjusts to NACK responses
received from the pubend or intermediate caches at IBs.

Adaptation at a PHBs is done using explicit feedback from the SHBs. Lack
of feedback is not used as a trigger for congestion control since it can give false
positives if some SHBs are down or partitioned from the rest of the network.

– The messages in a pubend stream are assigned timestamps based on real-
time, and the message rate at SHBs is computed in terms of these times-
tamps. This normalizes the rate at different SHBs regardless of which subset
of messages they receive, and the current pubend rate.3

3 The brokers do not need to have synchronized clocks, but the difference in clock
rates should be small.

4 P. R. Pietzuch and S. Bhola

pe1 pe2 pe3 pe4

PB

SB1 SB2

IB

Fig. 1. A simple broker topology

– The protocol distinguishes between SHBs that are in recovery and those not
in recovery, and scalably monitors the slowest SHB rate for both recovery
and non-recovery using high-priority congestion-alert messages that get con-
solidated at intermediate brokers. The target rate for SHBs in recovery mode
is such that they will eventually catch up to the current time.

– The PHB shapes the rate of new messages sent by a pubend when congestion
occurs, using an additive increase and hybrid (multiplicative and additive)
decrease that accounts for burstiness in the overlay network.

These protocols have been implemented in the context of the Gryphon sys-
tem [6, 7, 4], which supports highly-scalable content-based publish/subscribe.
The Gryphon system has been deployed for information dissemination in a wide-
area environment, such as score updates for tennis Grand Slam events, and the
Sydney Olympics, for tens of thousands of concurrently connected subscribers.

The paper is organized as follows: Section 2 illustrates the congestion problem
using some examples of congestion collapse. Section 3 describes our congestion
control protocols, and Sect. 4 discusses their implementation in the Gryphon
broker. Section 5 describes experimental results that show the effectiveness of
our protocols. Section 6 describes related work and we conclude in Sect. 7.

2 The Congestion Control Problem

In this section, we illustrate the congestion control (cc) problem in publish/-
subscribe overlay networks by showing two instances of congestion collapse in
Gryphon without any congestion control mechanism. This helps to characterize
the points of congestion, and motivates the design presented in the next section.

Figure 1 shows a simple overlay network with 1 publisher hosting broker,
pb, that hosts 4 pubends, connected to 2 SHBs, sb1 and sb2, through an inter-
mediate broker ib. In this example there is only 1 path from pb to sb1, but in
general there could be multiple paths. For instance, the Gryphon system orga-
nizes the overlay network into trees of cells [4], where each cell can have multiple
equivalent brokers which balance the load and provide lightweight failover. The
load balancing is accomplished by routing messages from different pubends on
different paths through the same cell. We allow for the path from a pubend to
a particular SHB to change, but assume that paths change infrequently.

Congestion Control in a Message-Oriented Middleware 5

0

100

200

300

400

500

600

700

41400 41450 41500 41550 41600 41650

m
sg

/s

s

PB
SB1
SB2

Fig. 2. Collapse with ib-sb1 link restricted to 60 KB/s

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000

41400 41450 41500 41550 41600 41650

K
B

s

IB:output_queues

Fig. 3. Queue utilization at broker ib during collapse

In Gryphon, links between brokers are implemented using TCP connections,
which means that there is a congestion control protocol running on each link.
This is not sufficient to prevent congestion collapse in the system as a whole. We
illustrate this for a simple overlay using two examples. In both examples, the
pb is handling an aggregate publish rate of 500 msg/s, split over the 4 pubends,
where each message has a message header and carries a 100 byte application
payload. The trivial filter of ’true’ is used on all inter-broker links, i.e., all data
messages need to be eventually received at both sb1 and sb2. Each subscriber
receives 2 msg/s and there are 250 subscribers each at sb1, sb2, which is an
aggregate subscriber rate of 500 msg/s at each SHB. This is a modest rate, and
the CPU at the SHBs is 95% idle in the steady-state.

In Fig. 2, after running the system without any congestion, we throttle the
bandwidth on the ib-sb1 link to 60 KB/s4. The X-axis is elapsed time in sec-
onds, and the Y-axis shows the aggregate smoothed rate for the pubends (pb)
and the subscribing applications at sb1 and sb2 respectively. With no conges-
tion control the pubends continue accepting published messages, and sending
them, at the same rate. This causes queues to build up at ib (cf. Fig. 3) and
eventually overflow which causes message loss. Lost messages need to be recov-

4 KB/s stands for (binary) Kilo Bytes per second.

6 P. R. Pietzuch and S. Bhola

0

100

200

300

400

500

600

47500 47550 47600 47650 47700 47750 47800 47850 47900 47950 48000

m
sg

/s

s

PB
SB1
SB2

Fig. 4. Collapse with pb-ib link restricted to 250 KB/s

ered (using NACKs) before delivering later messages, but many of the messages
retransmitted due to NACKs also get lost. The result is that the aggregate rate
for subscribers connected to sb1 drops to zero.

In Fig. 4, the bandwidth on the pb-ib link is restricted to 250 KB/s. In the
absence of failure, this does not cause congestion. We then fail the link ib-sb2 for
120 s. When the link comes back, the NACKs initiated by sb2 cause congestion
on the pb-ib link and the rate for subscribers at both sb1 and sb2 drops much
below the rate at which pubends are sending new messages, and never recovers.

These examples demonstrate how congestion on a network link can cause col-
lapse. Congestion at an IB or SHB, due to not having enough CPU capacity, can
also appear to be network congestion to an upstream broker since its outgoing
queues will build up. However, CPU congestion at a PHB due to the overhead of
processing NACKs may not readily appear as queue buildup, since NACKs are
small and each NACK message can request retransmission of a large number of
data messages. We want to control all three kinds of congestion (1) on a network
link, (2) at an IB or SHB, (3) at the PHB, while ensuring that all SHBs that are
trying to recover messages they missed due to failure are eventually successful.

3 Congestion Control Protocols

In this section, we present our congestion control mechanism in detail. The solu-
tion consists of two parts: (1) The PHB-driven cc protocol (PDCC) ensures that
pubends do not cause congestion due to a too high publication rate. A feedback
loop between pubends and SHBs with downstream and upstream messages is
created to monitor congestion in the broker network. (2) The SHB-driven cc
protocol (SDCC) handles the rate at which SHBs try to recover after a failure.
This protocol only involves the SHBs by monitoring their recovery rate. These
two congestion control mechanisms can be used independently from each other.
Both protocols need to distinguish between recovering and non-recovering SHBs
in order to ensure that SHBs will eventually manage to recover successfully.5

5 Informally, an SHB is recovering when it is re-requesting previous messages sent by
the pubend. A non-recovering SHB is only receiving new messages.

Congestion Control in a Message-Oriented Middleware 7

3.1 PHB-Driven Congestion Control

The PDCC mechanism regulates the rate at which new messages are published by
a pubend. The publication rate is adjusted depending on the observed through-
put at the SHBs. It is the responsibility of the SHBs to calculate their own
congestion metric based on throughput and notify the pubend whenever they
think that they are suffering from congestion. The PDCC protocol uses two kinds
of control messages between brokers to exchange congestion information:

Downstream Congestion Query Messages (DCQ). DCQ messages trig-
ger the congestion control mechanism. They are generated by a pubend and
sent down the message dissemination tree to all SHBs. DCQ messages carry
a (1) pubend identifier (pubendID), (2) a monotonically increasing sequence
number (sequenceNo), and (3) the current position in the pubend’s message
stream (m pubend), e.g. the latest assigned message timestamp.

Upstream Congestion Alert Messages (UCA). UCA messages tell the
pubend about congestion. They flow upwards the message dissemination tree
from SHBs to the pubend and are generated by SHBs in response to DCQ mes-
sages. They are aggregated at IBs so that the pubend eventually receives a single
UCA message. Apart from a pubend identifier and a sequence number, they con-
tain the (3) minimum throughput rates observed at recovering (minRecSHBRate)
and (4) non-recovering (minNonRecSHBRate) SHBs. The sequence number asso-
ciates a UCA message with the DCQ message that triggered it.

For the PDCC scheme to be efficient, it is important that (1) DCQ and UCA
messages have very low loss rates and (2) their queuing delays are much lower
than the maximum delays that can occur in the system, even when the system
in congested. Since DCQ and UCA messages are small in size and are sent at a
larger time-scale compared to data messages, they consume little resources in the
system. In our implementation, described in Sect. 4, DCQ and UCA messages
are treated as high-priority messages in the event broker. Note that for fairness
with other applications sharing the network, we rely on the fairness properties
of TCP for inter-broker connections. We will describe the behavior of the three
types of brokers (PHB, IB, and SHB) when processing these messages in turn.6

Publisher Hosting Brokers (PHB). The PHB triggers the PDCC mecha-
nism by periodically sending out DCQ messages. The sequence number in the
DCQ message is used to match it to the corresponding response coming from the
SHBs in form of a UCA message. The interval (e.g. 1 s) at which DCQ messages
are dispatched determines the interval at which the pubend will receive UCA
responses when there is congestion. The higher the rate of responses, the quicker
the protocol will adapt to congestion.

When the PHB has not received any UCA messages for a certain period
of time (tnouca), it assumes that the system is currently not congested. It then
increases the publication rate when the rate is throttled (i.e. the publishers could
publish at a higher rate). For the increase of the publication rate, we use a hybrid

6 To simplify the discussion, we will assume that each PHB only hosts a single pubend.

8 P. R. Pietzuch and S. Bhola

scheme with additive and multiplicative increase. The new rate rnew is calculated
from the old rate rold according to

rnew = max
[
rold + rmin, rold + fincr ∗ (rold − rdecr)

]
. (1)

In (1), rdecr is the publication rate at the time of the last decrease in rate, fincr

is a multiplicative increment, and rmin is the minimum increase in rate. Initially,
we used a purely additive scheme that resulted in a very slow increment, but
experiments showed that a more optimistic approach gave a higher message
throughput. The multiplicative use of fincr allows the increase to be faster than
a fixed additive increase. However, when the publication rate is already close
to the optimal value, it is necessary to limit the increase. This done by keeping
track of the publication rate at which the increase started (rdecr) and using it to
restrict the multiplicative increase. As shown in the experiments in Sect. 5, this
scheme leads to the publication rate probing whether the congestion condition
has disappeared and, if not, oscillating around the optimal operating point.

When the PHB receives a UCA message, a decision is made whether to
decrease the current publication rate. The rate is kept constant if the sequence
number of the received UCA message is smaller than the sequence number of the
DCQ message that was sent after the last decrease. This means that the system
did not have enough time to adapt to the last decrease in rate and more time
should pass before another congestion control decision can be made. Moreover,
the rate is not reduced if the throughput value in the UCA message is larger
than the value in the previous message. In this case, the congestion situation is
improving, and further reduction in rate is deemed to be unnecessary. Otherwise,
the publisher rate is decreased according to

rnew = max
[
fdecr1 ∗ rold, (rdecr + fdecr2 ∗ (rold − rdecr)

]
iff rdecr 6= rold (2)

rnew = fdecr1 ∗ rold otherwise (3)

where fdecr1 and fdecr2 are two multiplicative decrement factors. The first
term in (2) multiplicatively reduces the rate by a factor fdecr1, whereas the
second term reduces the rate relative to the previous decrement rdecr. As in (1),
the second term prevents an aggressive reduction in rate when congestion is
encountered for the first time after an increase. Since the PDCC mechanism
constantly tries to increase the publication rate in order to achieve a higher rate,
it will eventually cause SHBs to send UCA messages. This should not result in a
strong reduction of the rate. Taking the maximum of the two decrement values
tries to keep the publication rate close to the optimal operating point that is
supported by the system. However, if the congestion level does not improve after
a reduction, the publication rate is reduced again. This time a multiplicative
decrease is performed (3) since the condition rdecr = rold now holds.

Intermediate Brokers (IB). The aggregation logic of UCA messages at IBs
must ensure that (1) multiple UCA messages from different SHBs are consoli-
dated such that the minimum rate at any SHB is passed upstream in a UCA

Congestion Control in a Message-Oriented Middleware 9

1 processDCQ(dcqMsg):

2 sendDownstream(dcqMsg)

3

4 initialization:

5 minNonRecSHBRate ← ∞, minRecSHBRate ← ∞, seqNo ← 0

6

7 processUCA (ucaMsg):

8 minNonRecSHBRate ← MIN(minNonRecSHBRate, ucaMsg.minNonRecSHBRate)

9 minRecSHBRate ← MIN(minRecSHBRate, ucaMsg.minRecSHBRate)

10 IF ucaMsg.seqNo > seqNo THEN

11 sendUpstream(ucaMsg.seqNo, minNonRecSHBRate, minRecSHBRate)

12 minNonRecSHBRate ← ∞, minRecSHBRate ← ∞, seqNo ← ucaMsg.seqNo

Fig. 5. Processing logic for DCQ and UCA messages at IBs

message. This enables the pubend to adjust its publication rate to provide for the
worst congested SHB in the system. Moreover, (2) when UCA messages occur
for the first time, they should be immediately sent upstream so that the pubend
responds to new congestion as quickly as possible.

The algorithm for processing DCQ/UCA messages is shown in Fig. 5: IBs re-
lay DCQ messages down to their children (line 2) and aggregate UCA responses.
An IB keeps track of the minimum observed throughput values for non-recovering
and recovering SHBs, and the maximum sequence number of the UCA messages
that it has received (line 5). When a new UCA message arrives, the through-
put minima are potentially updated (lines 8–9). A new UCA message is only
sent upstream if the sequence number of the received message is larger than
the maximum sequence number stored at the IB (line 10). This ensures that
UCA messages with the same sequence number coming from different SHBs are
aggregated before being sent upstream. However, the first UCA message with
a new sequence number immediately triggers a new UCA message so that the
pubend is quickly informed about newly detected congestion. Future UCA mes-
sages from other SHBs having the same sequence number will be aggregated, and
will contribute towards the throughput minima in the next UCA message. After
a UCA message is sent, both minimum throughput values are reset (line 12).

Subscriber Hosting Brokers (SHB). A SHB uses the ratio of pubend and
SHB message rate as a metric for detecting congestion.

t =
rpubend

rSHB
(4)

To allow for burstiness in the throughput due to application-level scheduling
and network anomalies, we smooth t using a standard first-order low pass filter
with an (empirical) value of α = 0.1 and obtain t̄.

t̄ = (1− α) t̄+ α t (5)

10 P. R. Pietzuch and S. Bhola

In addition, we need to distinguish between recovering and non-recovering
SHBs. We describe how a SHB detects that it is recovering in Sect. 4.

Non-Recovering Brokers. A non-recovering SHB should receive messages at the
same rate at which they are sent by the pubends. If the smoothed throughput
ratio t̄ drops below unity by a threshold, the SHB assumes that it has started
falling behind because of congestion.

t̄ < 1−∆tnonrec (6)

In rare cases, an SHB could be slowly falling behind because t̄ stays below
1 (but above 1 − ∆tnonrec) for a long time. Unless there is already significant
congestion in the system, this will not cause overflow if queue sizes are large.
Nevertheless, an SHB needs a mechanism to detect even very slow queue build-
up. Therefore, an SHB periodically compares its current position in its message
stream mSHB to the pubend’s message stream position (mpubend), as given in
the last DCQ message. If the difference is larger than ∆ts, the SHB will send a
UCA message, even though its throughput ratio t̄ is above the threshold:

mSHB < mpubend +∆ts (7)

Recovering Brokers. A recovering SHB must receive messages at a higher rate
than the publication rate, otherwise it will never manage to successfully catch-
up and recover all previous messages. Often, there is an additional requirement
to maintain a minimum recovery rate 1 +∆trec that ensures a timely recovery.
Thus, a recovering SHB will send a UCA message if

t̄ < 1 +∆trec (8)

holds. The value of ∆trec influences how much of the congested resource will
be used for recovery messages instead of new data messages.

3.2 SHB-Driven Congestion Control

The SDCC mechanism manages the rate at which an SHB requests missed data
by sending NACKs upstream. An SHB maintains a NACK window to decide
which parts of the message stream should be requested. Then, the NACK window
is opened and closed additively depending on the level of congestion in the broker
network. The change in recovery rate throughput is used for detecting congestion.

An SHB starts with a small NACK window size nwnd0. During recovery, the
NACK window is adjusted depending on the change in recovery rate rSHB,

rSHB =
nwnd

RTT
, (9)

where nwnd is the NACK window size and RTT is an estimate of the round
trip time needed to satisfy a NACK.

Congestion Control in a Message-Oriented Middleware 11

Table 1. Configuration parameters for the PDCC and SDCC protocols

Param. Description Value

sizeNACK minimum size of NACK 100 tickms
tsilence interval for sending explicit silence messages 1000 ms
tnouca interval without UCA messages before rate increase for PDCC 2000 ms
rmin minimum rate increase for PDCC scheme 2 msgs
fincr multiplicative increment for PDCC scheme 0.05
fdecr1 multiplicative decrement for PDCC scheme 0.5
fdecr2 multiplicative decrement w.r.t. previous increment for PDCC 0.25
α smoothing factor for low pass filter 0.1
∆tnonrec threshold value for UCA messages for non-recovering SHBs 50 tickms
∆trec threshold value for UCA messages for recovering SHBs 1000 tickms
∆ts threshold value for lag in message stream for SHBs 4000 tickms
nwnd0 initial size of NACK window 100 tickms
αNACK recovery rate increase before NACK window is increased 0.1
βNACK recovery rate decrease before NACK window is decreased 0.3

The NACK window is managed in a similar fashion to TCP Vegas [5]: When
rSHB increases by at least a factor αNACK, the NACK window is opened by one
additional NACK per RTT. When rSHB decreases by at least a factor βNACK,
the NACK window is reduced by one NACK:

nwndnew = nwndold ± sizeNACK (10)

4 Implementation in the Gryphon Broker

We have implemented the PDCC and SDCC mechanisms as an extension on
top of the guaranteed delivery service provided by the Gryphon Broker [4]. The
implementation comes with a number of configuration parameters (cf. Table 1)
that influence the congestion control protocols. They were either explained in
Sect. 3 or are referred to below. We begin by giving an introduction to Gryphon’s
guaranteed delivery service and then discuss the SHB and PHB implementation.

Guaranteed Delivery Service. Under exactly-once delivery semantics, the
message stream is subdivided into discrete intervals called ticks. Each tick po-
tentially holds a data message and is in one of four states: (1) (d)ata, when it
contains a published message, (2) (s)ilence, when no message was published or
was filtered upstream, (3) (f)inal, when it is no longer needed, and (4) (q) un-
known, when its state is unknown. Ticks are fine-grained such that no two data
messages can be assigned to the same tick. This is achieved by using a millisecond
granularity clock that is enhanced with a counter to assign unique timestamps to
messages. Therefore, a tick can be converted into a real-time timestamp assigned
by the pubend.

12 P. R. Pietzuch and S. Bhola

|F|F|F|F Q|F|Q|D|S|Q S|D|Q Q|Q|

doubt horizon

receive window

NACK window

... ...

Fig. 6. Example of an EdgeOutputStream at an SHB

When no messages are published, ticks in the stream are assigned the silence
state. A data message is prefixed with all silence ticks since the last message so
that brokers can update their message streams. A pubend will send an explicit
silence message containing silence ticks when no data messages were published
for a certain interval. This is done every tsilence ms (cf. Table 1). Explicit silence
messages ensure that SHBs know that no messages were published.

The message stream at an SHB is initialized with all ticks in the unknown
state. The SHB then attempts to resolve all unknown ticks to either data or silence
states by sending NACK messages upstream. Once a tick has been successfully
processed by the SHB, the receipt is acknowledged and its state changes to
final. Each SHB maintains a doubt horizon, which is the position in the stream
until which there are no unknown ticks. All ticks before the doubt horizon either
already were or can be delivered to the client applications.

SHB Implementation. In our PDCC implementation, SHBs use the rate of
progress of the doubt horizon in the message stream (dhrate) to detect congestion.
Since the message stream contains seconds worth of ticks, the rate is measured
as “tick seconds” per second:

t = dhrate =
ticks

time
(11)

An SHB maintains a consolidated message stream that is used to service all
subscribers, and is represented using an EdgeOutputStream object. This stream
maintains two windows, a receive window and a NACK window. The lower bound
of both windows is the doubt horizon, and so they advance together with the
doubt horizon. The receive window is a range of ticks such that only ticks that fall
within this window are processed, and messages containing information about
ticks outside the window are ignored. Thus, the receive window bounds the
memory usage of the EdgeOutputStream. In the SDCC mechanism, the NACK
window is a subset of the receive window that determines which unknown ticks
in the EdgeOutputStream can be NACKed. The NACK window size (nwnd)
is altered depending on the rate of progress of the window through the stream
(cf. Sect. 3.2). Figure 6 shows an example of an EdgeOutputStreamwith a receive
window and a NACK window. The doubt horizon points to the first unknown tick.
The three unknown ticks that are within the NACK window will trigger NACK
messages. Any messages referring to ticks outside the receive window will be
ignored and, consequently, NACKed once the receive window has advanced.

Congestion Control in a Message-Oriented Middleware 13

0

100

200

300

400

500

600

700

800

48800 48850 48900 48950 49000 49050 49100 49150 49200 49250 49300

m
sg

/s

s

PB
SB1
SB2

Fig. 7. E1: Congestion control after a ib-sb1 link failure

As mentioned previously, an SHB must be able to determine whether it is
currently recovering or not. A solution where the SHB considers whether it is
sending NACK messages would be too sensitive because a single lost message
would force the PDCC mechanism to go into recovery mode. Instead, we imple-
mented a scheme in which an SHB claims to be recovering only if it has been
ignoring messages with ticks outside its receive window. This means that its
doubt horizon has been lagging behind by a significant amount and the SHB is
recovering all previous ticks in its receive window.

PHB Implementation The PDCC protocol requires pubends to be able to
shape the rate of messages coming from publishers. We implemented a simple
scheme that is compatible with the Java Message Service (JMS) API [8] used
between clients and a Gryphon broker. The pubend keeps track of the number
of messages published by a publisher in a time interval and stops sending ACK
messages once the target rate has been reached. Holding back acknowledgments
to publishers prevents them from publishing new messages. In the future, we
plan to implement window flow control between clients and brokers.

5 Experimental Results

In this section, we discuss our experiments that evaluate the PDCC and SDCC
mechanisms under congestion in two different topologies. The experimental setup
was a network of dedicated broker machines running AIX connected via Ethernet
links. Various broker metrics were used to create the plots shown here. Physical
link failure was simulated by flushing a broker’s output queues and closing its
TCP connection. Network congestion was created as bandwidth limits on links.
In all experiments, the PHB had 4 pubends and the broker queue sizes were
large to maximize throughput (input queues: ∼ 24 MB; output queues: 5 MB).

E1: CC after Link Failure (Simple Topology). The first experiment is
a re-run of the failure experiment from Sect. 2. However, now the PDCC and
SDCC schemes ensure that the system recovers successfully. Figure. 7 shows

14 P. R. Pietzuch and S. Bhola

that the publication rate of pb is reduced by the PDCC mechanism after the
ib-sb2 link comes back up (t = 49045) because most of its bandwidth is used by
the broker sb2 for recovery. After sb2 has finished recovering (t = 49205), pb
can increase its publication rate. The spike in sb2’s rate close to the end of the
recovery phase occurs because the IB caches recent ticks in its message stream
and is therefore able to satisfy some of the final NACKs more quickly.

The plot in Fig. 87 shows the behavior of the NACK window during recovery,
as controlled by the SDCC mechanism. Initially, the NACK window has a small
value (200 tickms) and is progressively increased until an optimal operation point
(∼ 900 tickms) is found. The NACK window further increases towards the end
of the recovery process because of cached ticks at the IB.

E2: CC with B/W Limits (Simple Topology). We investigated how well
the PDCC mechanism can adapt to an alternating bandwidth limit. At first, the
ib-sb1 link is restricted to 60 KB/s for 120 s (t = 63500..63620). After that, the
limit is increased to 150 KB/s for 120 s (t = 63620..63740), and then reduced to
60 KB/s again. As can be seen from the publication rate in Fig. 9, the PDCC
scheme attempts to determine the optimal rate that can be supported by the link
bottlenecks. It quickly adapts to new bottlenecks and keeps the queue utilization
low (Fig. 10). Even when the available bandwidth is severely restricted (t =
63500, 63740), the output queues at the IB do not increase above 1 MB. The
publication rate oscillates around the optimal point since the PHB is constantly
probing the system to see whether the congestion situation has improved. The
rdecr mechanism ensures that it stays close to the optimal value.

Figure 11 shows the doubt horizon rate from UCA messages received at the
pubend. When there is no congestion during the first 120 s, no UCA messages are
received except for transient messages at start-up. These messages occur when
the doubt horizons at the SHBs start advancing causing the doubt horizon rate
to stay below the threshold for a short time. At t = 63540, the doubt horizon
rate decreases to half its previous value because of the link bottleneck. Once the
publication rate at the pubend has been reduced sufficiently, the doubt horizon
rate starts increasing again. When the link bottleneck is constant, UCA messages
with doubt horizon rates slightly below the “real-time” rate of 1 ticksec/s are
received periodically and prevent the publication rate from increasing further.

E3: CC with B/W Limits and Link Failures (Complex Topology). To
evaluate how multiple sources of congestion in different parts of the network are
handled, we set up a complex broker topology. This topology consists of 1 PHB,
3 IBs, and 5 SHBs (Fig. 12). It is asymmetric with different paths lengths from
the SHBs to PHB. IBs have to perform a non-trivial amount of aggregation of
UCA messages that are sent upstream by SHBs in different parts of the network.
The following experiments had 100 subscribers per SHB so that under normal
conditions the message rate at an SHB was 2/5 of the PHB’s rate.

The first experiment consists of link bottlenecks and link failures (leading
to subsequent recovery phases). Throughout the entire run, the ib1-sb1 link

7 This plot is a re-run of E1 with a b/w limit on the pb-ib link of 500 KB/s.

Congestion Control in a Message-Oriented Middleware 15

0

200

400

600

800

1000

1200

1400

60620 60630 60640 60650 60660 60670 60680 60690 60700 60710 60720

tic
km

s

s

SB2:nwnd

Fig. 8. E1: NACK window behavior after the ib-sb1 link failure.

0

100

200

300

400

500

600

700

63400 63450 63500 63550 63600 63650 63700 63750 63800 63850 63900

m
sg

/s

s

PB
SB1
SB2

Fig. 9. E2: Congestion control with dynamic bandwidth restrictions

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000

63400 63450 63500 63550 63600 63650 63700 63750 63800 63850 63900

K
B

s

IB:output_queues

Fig. 10. E2: Output queue utilization at broker IB

0

0.2

0.4

0.6

0.8

1

1.2

63400 63450 63500 63550 63600 63650 63700 63750 63800 63850 63900

tic
ks

ec
/s

s

PB:UCA_nonrec

Fig. 11. E2: UCA messages received at pubend

16 P. R. Pietzuch and S. Bhola

SB2 SB3SB1

SB4 SB5

IB1

PB

IB2

IB3

Fig. 12. A complex broker topology

0

100

200

300

400

500

600

700

56400 56500 56600 56700 56800 56900 57000

m
sg

/s

s

PB
SB1
SB2
SB3
SB4
SB5

Fig. 13. E3: Congestion control with bandwidth restrictions and link failures

is restricted to 250 KB/s, which does not cause congestion in the absence of
failures. The pb-ib1 link is limited to 150 KB/s at t = 56590, and, after 120 s,
the ib3-sb5 link is failed (t = 56710..56830). The message rates observed at the
SHBs and PHB are shown in Fig 13. At the beginning, the pb broker publishes
messages at a rate of around 500 msgs/s. The subscribers connected to each
SHB observe an aggregate message rate of 200 msg/s. When the first bandwidth
limit comes into effect, all SHBs receive messages at a reduced rate because pb
adjusts its publication rate. After the failure of the ib3-sb5 link, pb drops its
rate even further to enable sb5 to recover all lost messages. Even though the link
bottleneck and failure occur in different parts of the network at the same time,

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

56400 56500 56600 56700 56800 56900 57000

tic
ks

ec
/s

s

SB5:doubt_horizon_rate
SB5:is_rec

Fig. 14. E3: Doubt horizon rate with bandwidth restrictions and link failures

Congestion Control in a Message-Oriented Middleware 17

0

0.5

1

1.5

2

56400 56500 56600 56700 56800 56900 57000

tic
ks

ec
/s

s

PB:UCA_nonrec
PB:UCA_rec

Fig. 15. E3: UCA messages received at pubend

0

50

100

150

200

-0.5 0 0.5 1 1.5 2 2.5

s

ticksec/s

SB5:recovery_time

Fig. 16. E4: Variation of recovery time with ∆trec threshold

the PDCC scheme drives the publication rate by the worst congestion point in
the system and successfully prevents queues from building up.

The doubt horizon rate, as observed at sb5, is shown in Fig. 14. Since the
doubt horizon rate is independent from the publication rate, it stays close to
1 ticksec/s until the ib3-sb5 link is failed at t = 56710. The value of ∆trec in this
experiment is 0.5 ticksec/s. After the link failure, the SHB switches to recovery
mode (is rec in Fig. 14) and the doubt horizon rate is kept above ∆trec. Close to
the end, the rate peaks to about 5 ticksec/s when sb5 reaches the point in the
message stream at which the pubend reduced its rate. Now, more ticks in the
stream are silence ticks without data, which enables the SHB to recover faster.

Figure 15 shows the consolidated UCA messages received at pb from re-
covering and non-recovering SHBs. After a startup effect, messages from the
non-recovering SHBs (UCA nonrec) arrive at regular intervals due to the link
bottleneck pb-ib1. When SB5 starts recovering (t = 56830), it sends UCA mes-
sages (UCA rec) in recovery mode whenever its rate drops below ∆trec.

E4: CC with Different Recovery Times (Simple Topology). The next
experiments show how the duration of recovery is influenced by the threshold
value∆trec. The higher this value, the earlier the SHB will send UCA messages so
that more of the congested resource is used for recovery messages. Figure 16 plots
how recovery time varies with the ∆trec values ranging from −0.2 .. 2.0ticksec/s

18 P. R. Pietzuch and S. Bhola

at 0.2 ticksec/s steps. A value ∆trec ≤ 0 is not used in practice, as it can result
in an infinite recovery time. The pb-ib1 link was throttled to 500 KB/s.

The plot shows a clear correlation between ∆trec and the recovery duration.
However, it is not linear for two reasons: (1) With ∆trec above 1.8 ticksec, the
bandwidth-restricted link pb-ib is saturated with resent data messages. (2) When
∆trec is less than or equal to 1 ticksec/s, there is an interaction between the
4 pubends: Even though the low threshold value does not require the pubends
to reduce their publication rate by much, some pubends tend to consume a
larger fraction of the bottleneck bandwidth, reducing the available bandwidth
for the remaining pubends. These pubends observe a very low doubt horizon rate
and thus reduce their publication rate more than necessary. The reason for this
unfairness between pubends is that we employ first-come first-serve scheduling of
messages in brokers and the PDCC protocol cannot synchronize rate reduction
at different pubends inside a distributed system. We intend to investigate if the
unfairness properties of the TCP Vegas equation are causing this [9].

6 Related Work

TCP. TCP comes with a point-to-point, end-to-end cc algorithm with a con-
gestion window that uses additive increase, multiplicative decrease (AIMD) [10].
Slow start helps to open the congestion window more quickly. Packet loss is the
only indicator for congestion in the system and fast retransmit enables the re-
ceiver to signal packet loss by ACK repetition. Modern TCP implementations
such as TCP Vegas [5] attempt to detect congestion before packet loss occurs by
using a throughput-based congestion metric. Since TCP Vegas is widely used,
we decided to base our NACK throughput metric on this.

Reliable Multicast. Multicast protocols are comparable to pub/sub due
to their one-to-many semantics, but typically have no filtering at intermediate
nodes, and do not ensure that all leaves in the tree will eventually catch up
to the sender. Congestion control is usually implemented at the transport level
relying on router support. It must often adhere to existing standards to ensure
fairness and compatibility with TCP [11, 12]. Since there are many receivers,
scalable feedback processing is important, e.g. by feedback suppression [13]. Our
approach does not discard information by consolidating feedback in a scalable
way. Multicast cc schemes can be divided into (1) sender-based, in which all re-
ceivers support the same rate, and (2) receiver-based schemes, in which receivers
have different rates by requesting transcoded versions of the data [14]. Since we
can make few assumptions about our data, a receiver-based approach is hard.

The pgmcc [2] protocol forms a feedback loop between the sender and the
“worst” congested receiver. The sender chooses this receiver depending on re-
ceiver reports in NACKs. The cc protocol for SRM [15] is similar except that
here the feedback agent can give positive and negative feedback, and a receiver
locally decides whether to send a congestion notification upstream to compete
for becoming the new agent. An approach that does not rely on network support
except minimal congestion feedback in NACKs is LE-SBCC [3]. A cascaded fil-

Congestion Control in a Message-Oriented Middleware 19

ter model transforms the NACKs from the multicast tree to appear like unicast
NACKs before feeding them into an AIMD module. However, no consolidation of
NACKs can be performed. All these schemes use a loss-based congestion metric
that is not a good indicator for congestion in an application-level network.

Multicast ABR ATM. The ATM Forum Traffic Management Spec. [16] in-
cludes an available bit rate (ABR) category for traffic through an ATM network.
At connection set-up, Forward and Backward Resource Management (FRM/-
BRM) cells are exchanged between the sender and the receiver and modified at
intermediate ATM switches depending on their resource availability. All involved
parties agree on an acceptable cell rate depending on congestion in the system.

Multicast ABR requires flow control for one-to-many communication: A FRM
cell is sent by the source and all receivers in the multicast tree respond with BRM
cells that are consolidated at ATM switches [17]. Different ways of consolidating
feedback cells have been proposed [18]. These algorithms have a trade-off between
timely responsive and the creation of “consolidation noise” when new BRM cells
do not include feedback from all downstream branches. Our consolidation logic
at the IBs tries to balance this trade-off by aggregating UCA messages with the
same sequence number and short-cutting new UCA messages. The scalable flow
control protocol in [19] follows a “soft” synchronization approach where BRM
cells triggered by different FRM cells can be consolidated at a branch point.

Overlay Networks. Congestion control for application-level overlay net-
works is sparse, mainly because application-level routing is a new research fo-
cus. A hybrid system for application-level reliable multicast in heterogeneous
networks that addresses congestion control is RMX [20]. Here, a receiver-based
scheme with the transcoding of application data is suggested. In general, global
flow control in an overlay network can be viewed as a dynamic optimization
problem [21] where a cost-benefit approach helps to find an optimal solution.

7 Conclusion

The problem of congestion control in messaging systems has received little atten-
tion so far. In this paper, we have presented a scalable congestion control scheme
for a reliable message-oriented middleware. We have separated our scheme into
a PHB-driven protocol that restricts the rate of new data messages, and a SHB-
driven protocol that limits the rate of NACKs. Both protocols were implemented
as part of the Gryphon Broker, an industrial-strength message-oriented middle-
ware. The proposed solution addresses the special requirements of application-
level overlay routing of messages, and filtering of messages at intermediate bro-
kers in the network, and introduces little overhead into the system. A number
of experiments with simple and complex topologies were used to show that the
system quickly adapts to congestion and ensures that queue utilization is low.

Future work will investigate how to dynamically adapt the interval between
DCQ messages and how to take advantage of the doubt horizon rate in UCA
messages. Using the doubt horizon rate will help the system realize the severity
of the congestion and allow it to adjust its rate faster to adapt to it.

20 P. R. Pietzuch and S. Bhola

References

1. McCanne, S., Jacobson, V., Vetterli, M.: Receiver-driven Layered Multicast. In:
Proc. of ACM SIGCOMM. Volume 26,4. (1996) 117–130

2. Rizzo, L.: pgmcc: A TCP-Friendly Single-Rate Multicast Congestion Control
Scheme. In: Proc. of ACM SIGCOMM, Stockholm, Sweden (2000)

3. Thapliyal, P., Li, S., Kalyanaraman, S.: LE-SBCC: Loss-Event Oriented Source-
based Multicast Congestion Control. Technical report, RPI-ECSE (2001)

4. Bhola, S., Strom, R., Bagchi, S., Zhao, Y., Auerbach, J.: Exactly-once Delivery in a
Content-based Publish-Subscribe System. In: Proc. of the Int. Conf. on Dependable
Systems and Networks (DSN’2002). (2002) 7–16

5. Brakmo, L.S., O’Malley, S.W., Peterson, L.L.: TCP Vegas: New Techniques for
Congestion Detection and Avoidance. In: Proc. of ACM SIGCOMM. (1994)

6. Banavar, G., Chandra, T., Mukherjee, B., Nagarajarao, J., Strom, R.E., Sturman,
D.C.: An Efficient Multicast Protocol for Content-based Publish-Subscribe Sys-
tems. In: Proc. of the 19th IEEE Int. Conf. on Distributed Computing Systems,
1999. (1999) 262–272

7. Aguilera, M.K., Strom, R.E., Sturman, D.C., Astley, M., Chandra, T.D.: Matching
Events in a Content-based Subscription System. In: Proc. of the Principles of
Distributed Computing, 1999. (1999) 53–61

8. Sun: JavaTM Message Service. In: http://java.sun.com/products/jms/. (2001)
9. Hasegawa, G., Murata, M., Miyahara, H.: Fairness and Stability of Congestion

Control Mechanisms of TCP. In: Proc. of INFOCOM’99. (1999)
10. Jacobson, V., Karels, M.J.: Congestion Avoidance and Control. In: Proc. of ACM

SIGCOMM. (1988) 314–332
11. Floyd, S., Fall, K.: Promoting the Use of End-to-end Congestion Control in the

Internet. IEEE/ACM Trans. on Networking 7 (1999) 458–472
12. Golestani, S.J., Sabnani, K.K.: Fundamental Observations on Multicast Congestion

Control in the Internet. In: INFOCOM (2). (1999) 990–1000
13. DeLucia, D., Obraczka, K.: Multicast Feedback Suppression Using Representatives.

In: INFOCOM (2). (1997) 463–470
14. Yang, Y.R., Lam, S.S.: Internet Multicast Congestion Control: A Survey. In: Proc.

of ICT, Acapulco, Mexico (2000)
15. Shi, S., Waldvogel, M.: A Rate-based End-to-end Multicast Congestion Control

Protocol. In: Proc. of 5th IEEE Symposium on Comp. and Comm. (ISCC). (2000)
16. Sathaye, S.: ATM Forum Traffic Management Specification 4.0. ATM Forum

af-tm-0056.000 (1996)
17. Roberts, L.: Rate-based Algorithm for Point to Multipoint ABR Service. ATM

Forum Contribution 94-0772R1 (1994)
18. Fahmy, S., Jain, R., Goyal, R., et al.: Feedback Consolidation Algorithms for ABR

Point-to-Multipoint Connections in ATM Networks. In: Proc. of IEEE INFOCOM.
Volume 3. (1998) 1004–1013

19. Zhang, X., Shin, K.G., Saha, D., Kandlur, D.D.: Scalable Flow Control for Multi-
cast ABR Services in ATM Networks. IEEE/ACM Trans. on Netw. 10 (2002)

20. Chawathe, Y., McCanne, S., Brewer, E.A.: RMX: Reliable Multicast for Hetero-
geneous Networks. In: INFOCOM, Tel Aviv, Israel, IEEE (2000) 795–804

21. Amir, Y., Awerbuch, B., Danilov, C., et al.: Global Flow Control for Wide Area
Overlay Networks: A Cost-Benefit Approach. In: OpenArch’02. (2002) 155–166

