
Supporting Network Coordinates on PlanetLab

Peter Pietzuch, Jonathan Ledlie, Margo Seltzer
Harvard University, Cambridge, MA

hourglass@eecs.harvard.edu

Abstract
Large-scale distributed applications need latency infor-
mation to make network-aware routing decisions. Col-
lecting these measurements, however, can impose a high
burden.Network coordinatesare a scalable and efficient
way to supply nodes with up-to-date latency estimates.
We present our experience of maintaining network coordi-
nates on PlanetLab. We present two different APIs for ac-
cessing coordinates: a per-application library, which takes
advantage of application-level traffic, and a stand-alone
service, which is shared across applications. Our results
show that statistical filtering of latency samples improves
accuracy and stability and that a small number of neigh-
bors is sufficient when updating coordinates.

1 Introduction
Collecting up-to-date latency measurements between
nodes in an overlay network is important for many classes
of applications. Proximity-aware distributed hash tables
use latency measurements to reduce the delay stretch
of lookups [15], content distribution systems construct
network-aware trees to minimize dissemination times [1],
and decentralized web caches need latency information to
map clients to cache locations. Especially in a wide-area
network, communication latencies have a significant im-
pact on the overall execution time of operations.

To exploit network locality, today’s overlay networks
are left with the burden of performing their own net-
work measurements. Developers must continually rein-
vent the wheel duplicating measurements when multiple
network-aware overlays are sharing a single distributed
testbed, such as PlanetLab [19]. Implementations that
gather all-pairs latency measurements are only scalable
for relatively small overlay deployments. For example,
the all-pairs ping service managed by Stribling [18] has
recently ceased operation because it became infeasible
to obtain up-to-date measurements for over500 Planet-
Lab nodes. In addition, measuring techniques that lead
to good latency samples without suffering from high vari-
ance caused by measurement anomalies are non-trivial.

To address these issues, alatency servicecan provide
applications with up-to-date estimates of network laten-
cies between nodes. We describe our experience of main-
taining such a service on PlanetLab based onnetwork co-
ordinates. Here, each overlay node maintains a coordinate
obtained through an embedding of latency measurements
in a metric space. The Euclidean distance between two
coordinates is an estimate of the communication latency
between the nodes. This enables nodes to infer latencies

to remote nodes without the overhead of a direct latency
measurement. The metric space interpolates non-existing
measurements, which reduces the measurement overhead
from O(n2) to linear in the number of nodes.

We discuss trade-offs between two different solutions
for a network coordinate service: a dedicated, stand-alone
service, which is shared among applications, and a per-
application library, which exploits application-specific
traffic for network coordinate updates. Our experience
deploying network coordinates on PlanetLab reveals that
coordinate stability and convergence is a challenge. We
have developed two techniques to address this: statisti-
cal filtering of latency samples and decoupling low-level
coordinate updates from the coordinates used by applica-
tions. We have found that our implementation of a la-
tency service now provides network coordinates that are
sufficiently stable and accurate to support our application
needs, while keeping the measurement overhead small.

After a survey of existing work in Section 2, we present
the APIs and trade-offs of our network coordinate service
and library in Section 3. In Section 4, we show how sta-
tistical filtering and our delayed update technique greatly
improves accuracy and stability and how a small number
of measurement neighbors can lead to accurate coordi-
nates. We conclude in Section 5.

2 Latency Service
A latency service enables overlay nodes to obtain latency
estimates to other nodes. We adopt the following design
goals for our latency service.
1. Good accuracy. Latency estimates between nodes

should have a relatively low error but the required ac-
curacy depends on the application. For example, if the
latency estimate is used to select the nearest node, a
certain error is tolerable as long as it does not affect the
result. The latency service must also achieve its accu-
racy goal when network latencies are changing due to
BGP route updates or congestion.

2. Low measurement overhead. The latency service
should minimize latency probing to conserve network
resources. Latency measurements should use applica-
tion data packets between nodes when possible. Note
that there is a tension between the achievable accuracy
and the measurement overhead.

3. Quick latency prediction. Many applications require
quick decisions based on latencies between nodes. The
latency service itself should not introduce a long delay
when queried for latency estimates.

4. Scalability. The design of the latency service must be

scalable in terms of the number of nodes in the network
for which latency measurement are required.

5. Simple application integration. It should be easy to
run the latency service and for an application node to
obtain latency estimates. The latency service should
have an intuitive API and any node should be able to
use the latency service.

2.1 Previous Work
Several research groups have recognized the need for a
latency service on the Internet. Unfortunately, many cur-
rent proposals for latency services make a poor trade-off
between accuracy and overhead, are not widely deployed,
require changes to the network, or have scalability issues.
In this section, we provide a survey of latency services
and determine their compliance with our design goals.

The simplest latency service gathers all pairs latency
information and makes this data available to all nodes via
a centralized location, as exemplified by theall pairs ping
service[18] on PlanetLab. Such an approach causes a
large amount of measurement traffic because every node
measures latencies to every other node.

IDMaps [5] is a latency service that attempts to mini-
mize measurement traffic. It uses a network oftracersthat
proactively measure distances between themselves and to
representative nodes from each address prefix. This in-
formation is used to create a virtual distance map of the
Internet. Since only tracers measure latency, the overhead
is kept low but the prediction error is determined by the
distribution of tracer locations. Achieving a good distri-
bution is hard because the physical network topology is
not known in practice.

The Internet Iso-bar [2] system attempts to remove
the requirement of topology knowledge by dividing net-
work nodes into clusters depending on latencies. A node
from each cluster is then selected to monitor intra- and
inter-cluster latencies and to respond to latency queries.
However, the accuracy of the system depends on how
amenable the network is to clustering. The cluster size
determines the measurement overhead.

Ratnasamyet al. propose a latency service that at-
tempts to reduce the number of network measurements
even further [14]. Nodes measure their network distance
only to a small number oflandmark nodesand use the
results to partition themselves intobins. Nodes that fall
within the same bin are deemed to be close. Although this
scheme vastly reduces the measurement overhead com-
pared to other systems, it also exhibits a high error due to
the coarse-grained assignment to a fixed number of bins.

Nakaoet al. observe that much of the network informa-
tion that applications are interested in is already collected
by lower network layers. They propose to exploit this
through arouting underlay[11], which provides a stan-
dardized interface for applications to inspect the state and
structure of the network. Although an underlay would
provide efficient access to network information already
gathered by routers, it requires changes to routers.

2.2 Network Coordinates
A latency service can be constructed using anetwork em-
bedding[8, 12] that embeds measured latencies between

V IVALDI (~xj , wj , lij)
1 ws = wi

wi+wj

2 ε = |‖ ~xi− ~xj‖−lij |
lij

3 α = ce × ws

4 wi = (α× ε) + ((1− α)× wi)
5 δ = cc × ws

6 ~xi = ~xi + δ × (‖~xi − ~xj‖ − lij)× u(~xi − ~xj)
Figure 1:Vivaldi update algorithm.

nodes in a low-dimensional geometric space. Each node
maintains anetwork coordinate (NC), with the goal that
the Euclidean distance between two NCs is an estimate of
physical network latency. Two classes of algorithms were
proposed to compute NCs:landmark-basedschemes,
such asGNP [12], Lighthouses[13], andPIC [3], which
use a fixed number of landmark nodes for NC calculation,
andsimulation-basedapproaches, such asVivaldi [4] and
BBS[16], which model NCs as entities in a physical sys-
tem. Since one of our design goals for the latency service
is scalability, we adopt a fully-decentralized, simulation-
based approach for our NC service.

TheVivaldi algorithm calculates NCs as the solution to
a spring relaxation problem. The measured latencies be-
tween nodes are modeled as the extensions of springs be-
tween massless bodies. A network embedding with a min-
imum error is found as the low-energy state of the spring
system. Each node successively refines its NC through
periodic updates with other nodes in itsneighbor set.

Figure 1 shows how a new observation, consisting of
the remote node’s NC~xj , its confidencewj , and a latency
measurementlij between the two nodes,i andj, is used
to update the local NC. Theconfidencewi quantifies how
accurate a NC is believed to be. First, thesample confi-
dencews (Line 1) and therelative errorε (Line 2) are cal-
culated. The relative errorε expresses the accuracy of the
NC in comparison to the true network latency. Second,
nodei updates its confidencewi with an exponentially-
weighted moving average (Line 4). The weightα is set ac-
cording to the sample confidencews (Line 3). Also based
on the sample confidence,δ dampens the change applied
to the NC (Line 5). As a final step, the NC is updated in
Line 6 (u is the unit vector). Constantsce=cc=0.25 affect
the maximum impact an observation can have on confi-
dence and NC, respectively [6]. We define thestability of
a NC as its total change over time inms/s.

3 Architecture
A latency service based on NCs exploits several properties
of NCs that help satisfy the design goals from Section 2.
• NCs achieve good accuracy on Internet topologies. Al-

though an embedding error arises because Internet la-
tencies violates the triangle inequality, these violations
are not severe enough to prevent a metric embedding in
practice. Previous work [4] has found a median relative
error of11%, which we confirmed on PlanetLab.

• Non-existent measurements between nodes are inter-
polated by the network embedding, thus reducing the
measurement overhead. The trade-off between mea-
surement overhead and accuracy is made explicit by
NCs. The accuracy and convergence of NCs can be im-
proved by increasing the measurement frequency and

extending the neighbor set.
• NCs provide almost instantaneous latency predication

because they do not actively initiate new latency mea-
surements to respond to latency queries. Active mea-
surement approaches, such as Meridian [20], may intro-
duce a non-trivial delay while a fresh latency estimate
is being obtained.

• The decentralized algorithm for computing NCs makes
the implementation scalable to a large number of nodes.
We have successfully deployed a NC service on over
300 PlanetLab nodes.
To achieve simple application integration, we propose

two different architectures: a stand-aloneNC serviceand
a per-applicationNC library. Both approaches have the
advantage that they provide a correct implementation of
NC to applications. As will be explained in Section 4, the
application programmer does not have to deal with the
complexity of latency measurement.

Network Coordinate Service. If the network infras-
tructure is cooperative and under control of a single au-
thority, such as PlanetLab, an efficient solution is to de-
ploy a NC serviceon all the nodes. Each application
then accesses the locally running NC service. This has
the advantage that the cost of inter-node measurements is
amortized across all applications that share the service.
A drawback of this approach is that parameters, such as
the measurement frequency, which determines the conver-
gence of the NCs, must be set globally for all applications.

double estimateLat (double[] remoteNC)
double[] getNC ()
double getConfidence ()
double getRelError ()
double forceUpdate (IPAddr remoteNode)

Above we show the API of the latency service that is
part of our SBON deployment [17] on PlanetLab. The
functionestimateLat returns the latency estimate be-
tween a local and remote node given the remote node’s
NC. The local NC and confidence are returned by the
getNC andgetConfidence calls, respectively. A call
to getRelError returns the current median relative er-
ror over the lastn latency measurement that were used for
coordinate updates. If the application needs an up-to-date
latency to a remote node, a call toforceUpdate causes
the NC service to perform a measurement to the remote
node returning the observed latency. This API assumes
that nodes in a distributed application are identified as an
IP address and NC pair,(IPAddr,NC) . As a result, any
node can obtain a latency estimate to another node about
which it has learned.

Network Coordinate Library. In some cases, an ap-
plication should include a module for latency estimation
without relying on an externally running service. This is
true for peer-to-peer applications that are deployed on a
varying set of heterogeneous nodes. To address this, we
also propose aNC library that any application can link
against to support NCs. In order to avoid duplicating func-
tionality, the library handles only the computation of coor-
dinates but leaves the actual network communication for
network probing to the application. This enables the ap-
plication to exploit application traffic as much as possible
for measurements.

void updateNC (IPAddr remoteNode,
double[] remoteNC,
double remoteConf,
double latency)

void forceUpdate (IPAddr remoteNode)

In addition to the functions provided by the stand-alone
service, the NC library API has a functionupdateNC
that is used by the application to feed in new network
measurements from application-level traffic. Only if the
application-level traffic is not frequent enough or does not
cover a large enough set of nodes to compute an accu-
rate NC does the library request additional latency mea-
surements from the application. As will be explained in
Section 4.2, the NC library monitors its relative error to
decide if the NC is converging sufficiently. If this is not
the case, it uses theforceUpdate callback to the appli-
cation to request more diverse measurements by initiating
a latency measurement to a new remote node.

4 Implementation Issues
Regardless of whether NCs are accessed through a service
or a library, they must be designed to handle practical net-
working problems, such as measurement variation, data
loss, and node failures. The focus of our work to date has
been on measurement variation: creating an accurate and
stable coordinate system using real world latency sam-
ples. In this section, we explain our solutions to handle
non-ideal latency samples, which have a significant neg-
ative impact when left unfiltered. We also describe how
measurement overhead can be controlled by tuning neigh-
bor sets. As an overview, we found that:
• Latency samples for a particular link have a high vari-

ance. These raw samples can cause wild, tempo-
rary perturbations, which cascade across the coordinate
space. We found that a statistical filter suppressed these
anomalies and greatly improved accuracy and stability.

• Nodes’ relative latencies change over time. We refine
a filter to remove bad measurements while preserving
changes in the underlying network. This sustains accu-
racy over time.

• Applications prefer stable coordinates. A distinction
betweensystem-level NCs, which are raw Vivaldi coor-
dinates, andapplication-level NCs, which summarize
a recent window of coordinate updates, help suppress
unnecessary application activity. A new coordinate is
only externally visible to an application after a signifi-
cant change has occurred.

4.1 Measuring Latency
During our initial deployment of NCs on PlanetLab, we
observed latency samples of as much as three orders-of-
magnitude greater than the normal latency for a given
link. When used for NC calculation, these samples in-
duce a large coordinate change in a high confidence node,
which, in turn, causes large shifts in the NC of its neigh-
bors. Such changes keep propagating through the coor-
dinate space, causing high instability, low convergence,
and decreased accuracy, because coordinate shifts are not
reflecting future measurements. Occasionally, but not al-
ways, we could attribute large values in our application-
level measurements to high CPU load on one of the nodes.

100
101
102
103
104
105
106
107
108

0-99
100-199

200-299

300-399

400-499

500-599

600-699

700-799

800-899

900-999

1000-1999

2000-2999

≥3000

Fr
eq

ue
nc

y
(lo

g
sc

al
e)

Raw Latency (milliseconds)
Figure 2: Raw latency samples on PlanetLab.

0.0

0.2

0.4

0.6

0.8

1.0

 0 100 200 300 400 500

C
um

ul
at

iv
e

D
is

tri
bu

tio
n

Fu
nc

tio
n

Latency (milliseconds)

 0

 100

 200

 300

 400

 500

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time (hours)

Figure 3: Kernel-level ping measurements.
To illustrate the extent of the anomalies, we show a

distribution of application-level UDP latency samples be-
tween269 nodes collected over three days on PlanetLab
in Figure 2. Over0.4% of the samples are greater than
one second, larger than even a slow intercontinental link,
and frequent enough to periodically distort the coordinate
space. Not only is a significant fraction of samples large,
but also individual links have extended tails: samples of
a link tend to produce a consistent latency within a tight
range, but then a tail of the samples can extend into the
tens of seconds. Both the range and tail depend on the
link. We found that feeding these raw samples directly
into Vivaldi leads to poor accuracy and stability.

We also tried using kernel-level ping measurements and
found that they suffered from a similar baseline and ex-
tended tail. Figure 3 shows the results of a three hour
set of ping measurements using theping program be-
tween two PlanetLab nodes (berkeley to uvic.ca).
The data shows that82% of the samples fall within1ms
of the median, but that the largest5% are2–7 times the
median. Even though the measurements are being time-
stamped by the kernel, there are many large measurements
that would jolt a stable coordinate system. In addition,
as the subgraph shows, the deviations from the baseline
measurement are not clustered all at one time, but occur
throughout the trace; they do not signal shifts, but aberra-
tions. Because kernel-level measurements would need to
be filtered also and do not have the benefit of application-
level traffic, we decided to find a way to incorporate sam-
ples with a high variance into the NC computation.

Although we estimate that approx.90% of links fall
into the type shown in Figure 3, a small percentage do
exhibit multi-modal behavior. If multi-modal behavior
was on a short time scale, it would be unclear what value
would be appropriate to feed into the NC update algo-
rithm; it might perhaps require a more complicated link
description (e.g., a PDF). However, we have not seen
this behavior in practice. Instead, we have found cases
of long-term, periodic bi-modal link latencies, as shown
in Figure 4 (ntu.edu.tw to 6planetlab.edu.cn).

0.0

0.2

0.4

0.6

0.8

1.0

 0 100 200 300 400 500 600 700 800

C
um

ul
at

iv
e

D
is

tri
bu

tio
n

Fu
nc

tio
n

Latency (milliseconds)

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 10 20 30 40 50 60 70
Time (hours)

Figure 4: Long-term, periodic, bimodal latency samples.

That this behavior is long-term is important for two rea-
sons: (1) it appears reasonable to summarize each link
with a single current baseline latency and (2) NCs need
continuous maintenance because this baseline latency
changes over time.

Statistical Filtering. We explored three obvious but
ineffective approaches before arriving at our final solution
for latency signal extraction. First, we tried usingsim-
ple thresholds: if an observation is larger than a constant,
it is ignored. This did not work because one link’s nor-
mal latency was well into the range of the tail of another
link. Second, we applied anexponentially-weighted mov-
ing average (EWMA)to each link’s sample history. We
found that this performed worse than no filter at all be-
cause it weighted outliers too strongly, even with unusu-
ally low weights. Finally, we tried a more Vivaldi-specific
solution: lowering confidencein response to high load.
However, because sample variance can only partially be
attributed to load, this solution was also not effective.

Instead, we found that a non-linearmoving per-
centile (MP)filter greatly improved accuracy and stabil-
ity. The MP filter takes two parameters: a window size
of samples and the percentile of these samples to output.
It removes noise and, based on the window size, responds
to changes in the underlying signal. Before presenting our
experimental results, we introduce a technique layered on
top of the filtered raw coordinate.

Application-Level NCs. Our latency service makes
a distinction betweensystem-leveland application-level
NCs. The former are raw Vivaldi coordinates, which are
updated with each observation. The latter are the appli-
cation’s idea of the local NC, updated only when a statis-
tically significant change in the system-level NC has oc-
curred. While some applications may want to access the
raw value, many others prefer updates when the system-
level NC exhibits sustained change compared to its past.

We found two successful heuristics for setting
application-level NCs, both based on a change detection
algorithm that uses sliding windows [7]:RELATIVE and
ENERGY. Both compare a current window of coordinates
to a window starting at the most recent application-level
coordinate update.RELATIVE compares the two windows
based on the amount of change relative to the nearest
known neighbor. ENERGY compares them based on a
statistical test that measures the Euclidean distance be-
tween two multidimensional distributions. Both update
the application-level coordinate to the centroid of a re-
cent window of coordinates and both heuristics allow the
raw coordinate to “float” in a given region. As long as
the coordinate does not leave the region and other major

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

C
D

F

95th Percentile Relative Error

Energy+MP Filter
Raw MP Filter

Energy+No Filter
Raw No Filter

Figure 5: Accuracy on PlanetLab.

0.0

0.2

0.4

0.6

0.8

1.0

0.00 0.05 0.10 0.15 0.20 0.25 0.30

C
D

F

(Weighted) Relative Rank Loss

WRRL, MP Filter
WRRL, No Filter
RRL, MP Filter
RRL, No Filter

0.0

0.2

0.4

0.6

0.8

1.0

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55

C
D

F

Relative Application Latency Penalty

MP Filter
No Filter

Figure 6: Application-oriented Accuracy Metrics.

changes in the network do not occur, application updates
will be suppressed. Application-level NCs increase stabil-
ity without decreasing accuracy.

Accuracy Results. Experimentally, we determined
that a low percentile (e.g., 25th) and a window size of
4–8 samples or larger gives good results with the latency
samples seen on PlanetLab. Links are moderately consis-
tent: most follow the pattern seen in Figure 3, but about
10% that in Figure 4. Windows that are too large suppress
network changes that should be reflected in the NCs: short
windows are more effective than long ones, keeping the
required state low. Figure 5 shows results from using the
MP filter and theENERGY heuristic with270 PlanetLab
nodes. It shows that with the MP filter only14% of the
nodes experience a95th percentile relative error greater
than one, while62% of those without the filter do. The
enhancements combine to reduce the median of the95th

percentile relative error by54%.
In this experiment we measure accuracy as the coordi-

nate’s ability to predict the next sample along that link.
For each observation, we compute the relative error, that
is, the difference between the predicted and actual latency,
divided by the actual latency. Each node then has a collec-
tion of relative errors from its samples; the figure shows
the 95th percentile out of this distribution, collected for
the second half of a4 hour run.

0.0

0.2

0.4

0.6

0.8

1.0

 0 100 200 300 400 500 600 700 800

C
D

F

Instability

Energy+MP Filter
Raw MP Filter

Energy+No Filter
Raw No Filter

Figure 7: Instability on PlanetLab.

Defining accuracy as relative error produces a low-
level metric that may not sufficiently capture application
impact. Recently, Luaet al. proposedrelative rank
loss (rrl) to calculate how well coordinates capture the
relative ordering of (all) pairs of neighbors [10]. Thus,
for each nodex, if (dxi > dxj ∧ lxi < lxj) or (dxi <
dxj ∧ lxi > lxj), then the distancesd between coordinates
have to led to an incorrect prediction of the relative laten-
cies l, presumably inducing an application-level penalty
due to the wrong preference of a farther node. Whilerrl
quantifies theprobabilityof incorrect rankings, we wanted
a metric that captures themagnitudeof each rank mis-
ordering as well. For some applications, choosing the ab-
solute nearest neighbor is important; however, often the
extent of the error should be penalized: an error of1ms
is less severe than one of100ms. Weighted rrl (wrrl)
captures this by taking the sum of the latency penaltieslij
of pairs ranked incorrectly, normalized over all possible
latency penalties. However,wrrl does not express the per-
centage in lost latency that an application will notice when
using NCs. To approximate this quantity, we sum the rela-
tive latency penaltylij/lxi for all pairs that are incorrectly
ranked; we call this third metric therelative application
latency penalty(ralp).

We illustrate how the MP filter affects these three met-
rics in Figure 6. The top graph portrays that while the
probability of incorrect rankings (rrl) can range up to al-
most30% for the worst case node, the latency penalty due
to incorrectly ranked neighbors (wrrl) is 11% of the max-
imum in the worst case. The medianralp metric is15%
when using raw latency inputs, improving to8% with the
filter. We computed the “true” latency between nodes as
the median for that link. In summary, our results indicate
that the MP filter improves NC accuracy on PlanetLab for
application-oriented operations, such as node ranking.

Stability Results. Unstable coordinates are problem-
atic. Consider the situation where a node’s coordinate is
moving in a circle compared to using the centroid of that
circle. If one is using the coordinate for a one-time de-
cision (e.g.,finding the nearest node to initialize a Pastry
routing table or finding a nearby web cache), unstable co-
ordinates make a good decision less likely because it de-
pends on the particular time the coordinates are compared.
When coordinates are used for periodic decisions (e.g.,
a proximity-based routing table update or re-positioning
processing operators in a stream-based overlay), changing
them may involve application-level work; unstable coor-
dinates will induce updates based simply on their instabil-
ity, not any fundamental change in relative node positions.

0.0

0.2

0.4

0.6

0.8

1.0

 0 0.2 0.4 0.6 0.8 1

C
D

F

 Relative Error

Num. of Neighbors
1
4

16
128

Figure 8: Accuracy with varying numbers of neighbors.

We measure stability as the amount of change in coor-
dinates per unit time inms/sec. This captures the amount
of oscillation around a particular coordinate. Both the
MP filter and application-level coordinates serve to sup-
press insignificant change. As shown in Figure 7,EN-
ERGY dampens the filter’s updates:91% of the time it
falls below even the minimum instability of the raw fil-
ter. Combined, the median instability is reduced by96%.
More detail on the MP filter and on the application-update
heuristics can be found in our technical report [9].

4.2 Limiting Measurement Overhead
One of the advantages of the NC library is that it takes
advantage of application-level traffic to keep NCs up-to-
date. This implies that a lack of samples must induce addi-
tional measurements to more nodes, but only when accu-
racy can be significantly improved. If nodes have a small
neighbor set (e.g.,two), their accuracy to their neighbors
and confidencewi is high, but their accuracy to the rest
of the system (overall accuracy) is low. As the number
of neighbors increases, confidence and accuracy to neigh-
bors decrease slightly, but overall accuracy improves.

In Figure 8, we show how overall accuracy varies with
the number of neighbors. Accuracy increases asymptoti-
cally as the number of neighbors approaches the number
of nodes. As shown, only16 neighbors is a sufficiently
good substitute for a fully connected graph. This means
that regular application-level traffic to a small number of
nodes is sufficient to support NCs on PlanetLab.

The NC library must decide when adding neighbors
would significantly increase accuracy. However, a node
cannot know its accuracy only by examining the relative
error to its neighbors. Instead, it must estimate the overall
relative error to all nodes. We propose that a node peri-
odically samples a random node to test the current accu-
racy of its NC. If the tested accuracy is below a threshold,
which is based on the expected accuracy of NCs on the
Internet, it is likely that an increase of the neighbor set
will reduce the relative error. The test node is then added
permanently to the neighbor set. Similarly, if removing
a node temporarily does not decrease accuracy (again by
sampling a new node), the decrease is made permanent.

5 Conclusions
Up-to-date latency information as provided by a latency
service is crucial for many distributed applications. Net-
work coordinates are an efficient and scalable mechanism
for obtaining latency estimates. However, any practical
implementation must handle the variance of latency sam-
ples and minimize measurement overhead, while ensuring

stable and accurate coordinates. In this paper, we have
described the APIs of a network coordinate service and
a library. We have also shown how statistical filtering
addresses sample variance, how the distinction between
system- and application-level coordinates improves coor-
dinate stability, and how the use of application-level traffic
for coordinate updates can reduce overhead. We believe
that a network coordinate service can add network aware-
ness to a wide range of applications and become one of a
set of standard services for planetary-scale applications.

References
[1] M. Castro, P. Druschel, A.-M. Kermarrec, and A. Row-

stron. Scribe: A Large-scale and Decentralized App-level
Multicast Infrastructure.JSAC, 20(8), Oct. 2002.

[2] Y. Chen, K. H. Lim, R. H. Katz, and C. Overton. On the
Stability of Network Distance Estimation.SIGMETRICS
Perform. Eval. Rev., 30(2), 2002.

[3] M. Costa, M. Castro, A. Rowstron, and P. Key. PIC: Practi-
cal Internet Coordinates for Distance Estimation. InProc.
of ICDCS’04, Tokyo, Japan, Mar. 2004.

[4] F. Dabek, R. Cox, F. Kaashoek, and R. Morris. Vivaldi:
A Decentralized Network Coordinate System. InProc. of
ACM SIGCOMM’04, Portland, OR, Aug. 2004.

[5] P. Francis, S. Jamin, V. Paxson, et al. An Architecture for a
Global Internet Host Distance Estimation Service. InProc.
of INFOCOM’99, New York, NY, Mar. 1999.

[6] T. Gil, F. Kaashoek, J. Li, et al. p2psim.www.pdos.
lcs.mit.edu/p2psim .

[7] D. Kifer, S. Ben-David, and J. Gehrke. Detecting Change
in Data Streams. InProc. of the 30th Int. Conf. on Very
Large Data Bases, Toronto, Canada, August 2004.

[8] J. Kleinberg, A. Slivkins, and T. Wexler. Triangulation
and Embedding Using Small Sets of Beacons. InProc. of
FOCS’04, Rome, Italy, Oct. 2004.

[9] J. Ledlie and M. Seltzer. Stable and Accurate Network
Coordinates. TR 17-05, Harvard University, July 2005.

[10] E. K. Lua, T. Griffin, M. Pias, H. Zheng, and J. Crowcroft.
On the Accuracy of Embeddings for Internet Coordinate
Systems. InProc. of IMC’05, Berkeley, CA, Oct. 2005.

[11] A. Nakao, L. Peterson, and A. Bavier. A Routing Underlay
for Overlay Networks. InProc. of the ACM SIGCOMM’03
Conference, Karlsruhe, Germany, Aug. 2003.

[12] T. S. E. Ng and H. Zhang. Predicting Internet Network
Distance with Coordinates-Based Approaches. InProc. of
INFOCOM’02, New York, NY, June 2002.

[13] M. Pias, J. Crowcroft, S. Wilbur, S. Bhatti, and T. Harris.
Lighthouses for Scalable Distributed Location. InProc. of
IPTPS’03, Berkeley, CA, Feb. 2003.

[14] S. Ratnasamy, P. Francis, M. Handley, B. Karp, and
S. Shenker. Topology-Aware Overlay Construction and
Server Selection. InProc. of INFOCOM’02, June 2002.

[15] A. Rowstron and P. Druschel. Pastry: Scalable, Decentral-
ized Object Location and Routing for Large-Scale Peer-to-
Peer Systems. InProc. of Middleware’01, Nov. 2001.

[16] Y. Shavitt and T. Tankel. Big-Bang Simulation for Embed-
ding Network Distances in Euclidean Space. InProc. of
INFOCOM’03, San Francisco, CA, Mar. 2003.

[17] Stream-Based Overlay Network. www.eecs.
harvard.edu/˜prp/research/sbon , Feb. 2005.

[18] J. Stribling. All-Pairs-Pings for PlanetLab.www.pdos.
lcs.mit.edu/˜strib/pl_app , Sept. 2004.

[19] The PlanetLab Consortium. PlanetLab. www.
planet-lab.org , 2002.

[20] B. Wong, A. Slivkins, and E. G. Sirer. Meridian: A
Lightweight Network Location Service without Virtual
Coordinates. InProc. of SIGCOMM’05, Aug. 2005.

This material is based upon work supported by the National Sci-
ence Foundation under Grant No. 0330244.

