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Abstract

Blogs and RSS feeds are becoming increasingly popular. The
blogging site LiveJournal has over 11 million user accounts,
and according to one report, over 1.6 million postings are made
to blogs every day. The “Blogosphere” is a new hotbed of
Internet-based media that represents a shift from mostly static
content to dynamic, continuously-updated discussions. The
problem is that finding and tracking blogs with interesting con-
tent is an extremely cumbersome process.

In this paper, we present Cobra (Content-Based RSS Ag-
gregator), a system that crawls, filters, and aggregates vast
numbers of RSS feeds, delivering to each user a personalized
feed based on their interests. Cobra consists of a three-tiered
network of crawlers that scan web feeds, filters that match
crawled articles to user subscriptions, and reflectors that pro-
vide recently-matching articles on each subscription as an RSS
feed, which can be browsed using a standard RSS reader. We
present the design, implementation, and evaluation of Cobra in
three settings: a dedicated cluster, the Emulab testbed, and on
PlanetLab. We present a detailed performance study of the Co-
bra system, demonstrating that the system is able to scale well
to support a large number of source feeds and users; that the
mean update detection latency is low (bounded by the crawler
rate); and that an offline service provisioning step combined
with several performance optimizations are effective at reduc-
ing memory usage and network load.

1 Introduction

Weblogs, RSS feeds, and other sources of “live” Inter-
net content have been undergoing a period of explosive
growth. The popular blogging cite LiveJournal reports
over 11 million accounts, just over 1 million of which are
active over the last month [2]. Technorati, a blog track-
ing site, reports a total of 50 million blogs worldwide;
this number is currently doubling every 6 months [38].
In July 2006, there were over 1.6 million blog postings
every day. These numbers are staggering and suggest a
significant shift in the nature of Web content from mostly
static pages to continuously updated conversations.

The problem is that finding interesting content in this
burgeoning blogosphere is extremely difficult. It is un-
clear that conventional Web search technology is well-

suited to tracking and indexing such rapidly-changing
content. Many users make use of RSS feeds, which in
conjunction with an appropriate reader, allow users to re-
ceive rapid updates to sites of interest. However, existing
RSS protocols require each client to periodically poll to
receive new updates. In addition, a conventional RSS
feed only covers an individual site, such as a blog. The
current approach used by many users is to rely on RSS
aggregators, such as SharpReader and FeedDemon, that
collect stories from multiple sites along thematic lines
(e.g., news or sports).

Our vision is to provide users with the ability to per-
form content-based filtering and aggregation across mil-
lions of Web feeds, obtaining a personalized feed con-
taining only those articles that match the user’s interests.
Rather than requiring users to keep tabs on a multitude of
interesting sites, a user would receive near-real-time up-
dates on their personalized RSS feed when matching ar-
ticles are posted. Indeed, a number of “blog search” sites
have recently sprung up, including Feedster, Blogdigger,
and Bloglines. However, due to their proprietary archi-
tecture, it is unclear how well these sites scale to handle
large numbers of feeds, vast numbers of users, and main-
tain low latency for pushing matching articles to users.
Conventional search engines, such as Google, have re-
cently added support for searching blogs as well but also
without any evaluation.

This paper describes Cobra (Content-Based RSS Ag-
gregator), a distributed, scalable system that provides
users with a personalized view of articles culled from po-
tentially millions of RSS feeds. Cobra consists of a three-
tiered network of crawlers that pull data from web feeds,
filters that match articles against user subscriptions, and
reflectors that serve matching articles on each subscrip-
tion as an RSS feed, that can be browsed using a standard
RSS reader. Each of the three tiers of the Cobra network
is distributed over multiple hosts in the Internet, allow-
ing network and computational load to be balanced, and
permitting locality optimizations when placing services.
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The core contributions in this paper are as follows.
First, Cobra makes use of a novel offline service provi-
sioning technique that determines the minimal amount of
physical resources required to host a Cobra network ca-
pable of supporting a given number of source feeds and
users. The technique determines the configuration of the
network in terms of the number of crawlers, filters, and
reflectors, and the interconnectivity between these ser-
vices. The provisioner takes into account a number of
characteristics including models of the bandwidth and
memory requirements for each service and models of the
feed content and query keyword distribution.

Our second contribution is a set of optimizations de-
signed to improve scalability and performance of Co-
bra under heavy load. First, crawlers are designed to
intelligently filter source feeds using a combination of
HTTP header information, whole-document and per-
article hashing. These optimizations result in a 99.8%
reduction in bandwidth usage. Second, the filter service
makes use of an efficient text matching algorithm [18,
29] allowing over 1 million subscriptions to match an in-
coming article in less than 20 milliseconds. Third, Cobra
makes use of a novel approach for assigning source feeds
to crawler instances to improve network locality. We per-
form network latency measurements using the King [24]
method to assign feeds to crawlers, improving the la-
tency for crawling operations and reducing overall net-
work load.

The third contribution is a full-scale experimental
evaluation of Cobra, using a cluster of machines at Har-
vard, on the Emulab network emulation testbed, and on
PlanetLab. Our results are based on measurements of
102,446 RSS feeds retrieved from syndic8.com and
up to 40 million emulated user queries. We present a
detailed performance study of the Cobra system, demon-
strating that the system is able to scale well to support
a large number of source feeds and users; that the mean
update detection latency is low (bounded by the crawler
rate); and that our offline provisioning step combined
with the various performance optimizations are effective
at reducing overall memory usage and network load.

2 Related Work

Our design of Cobra is motivated by the rapid expan-
sion of blogs and RSS feeds as a new source of real-
time content on the Internet. Cobra is a form of content-
based publish-subscribe system that is specifically de-
signed to handle vast numbers of RSS feeds and a large
user population. Here, we review previous work in pub-
sub systems, both traditional and peer-to-peer designs.
The database community has also developed systems for
querying large numbers of real-time streams, some of
which are relevant to Cobra.

Traditional Distributed Pub-Sub Systems: A num-
ber of distributed topic-based pub-sub systems have been
proposed where subscribers register interest in a set of
specific topics. Producers that generate content related
to those topics publish the content on the corresponding
topic channels [12, 22, 27, 5, 6, 7] to which the users
are subscribed and users receive asynchronous updates
via these channels. Such systems require publishers and
subscribers to agree up front about the set of topics cov-
ered by each channel, and do not permit arbitrary topics
to be defined based on a user’s specific interests.

The alternative to the topic-based systems are content-
based pub-sub systems [39, 37, 13, 40]. In these sys-
tems, subscribers describe content attributes of interest
using an expressive query language and the system filters
and matches content generated by the publishers to the
subscribers’ queries. Some systems support both topic-
based and content-based subscriptions [32]. For a de-
tailed survey of pub-sub middleware literature, see [31].

Cobra differentiates itself from other pub-sub systems
in two ways. First, distributed content-based pub-sub
systems such as Siena [13] leave it up to the network ad-
ministrator to choose an appropriate overlay topology of
filtering nodes. As a result, the selected topology and the
number of filter nodes may or may not perform well with
a given workload and distribution of publishers and sub-
scribers in the network. By providing a separate provi-
sioning component that outputs a custom-tailored topol-
ogy of processing services, we ensure that Cobra can
support a targeted work load. Our approach to pub-sub
system provisioning is independent from our application
domain of RSS filtering and could be used to provision
a general-purpose pub-sub system like Siena, as long as
appropriate processing and I/O models are added to the
service provisioner.

Second, Cobra integrates directly with existing pro-
tocols for delivering real-time streams on the Web —
namely, HTTP and RSS. Most other pub-sub systems
such as Siena do not interoperate well with the current
Web infrastructure, for example, requiring publishers to
change the way they generate and serve content, and re-
quiring subscribers to register interest using private sub-
scription formats. In addition, the filtering model is
targeted at structured data conforming to a well-known
schema, in contrast to Cobra’s text-based queries on (rel-
atively unstructured) RSS-based web feeds.

Peer-to-Peer Overlay Networks: A number of
content-delivery and event notification systems have
been developed using peer-to-peer overlay networks,
where the premise is that these systems are highly dy-
namic and can contain a large number of nodes exhibit-
ing high rates of churn. As we explain in Section 3, we
do not envision running Cobra in a peer-to-peer setting
where nodes are contributed by volunteers, but instead
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assume the use of well-provisioned hosting centers, as
is currently the norm for commercial Internet services.
Nonetheless, it is worth describing some of the other de-
sign differences with these systems.

Corona [34] is a pub-sub system for the Web built
on top of Pastry [35]. Users specify interest in specific
URLs and updates are sent to users using instant mes-
sage notifications. The main goal of Corona is to mit-
igate the polling overhead placed on monitored URLs,
which is accomplished by spreading polling load among
cooperating peers and amortizing the overhead of crawl-
ing across many users interested in the same URL. An
informed algorithm determines the optimal assignment
of polling tasks to peers to meet system-wide goals such
as minimizing update detection time or minimizing load
on content servers.

Corona is strictly concerned with allowing users to
monitor an individual URL and focuses on the efficiency
of the polling operation. Unlike Cobra, Corona does
not permit an individual user to monitor a large number
of web feeds simultaneously, nor specify content-based
predicates on which content should be pushed to the user.
Like Cobra, Corona can interoperate seamlessly with the
current pull-based Web architecture.

A number of application-level multicast systems [36,
43] have been built using DHTs that construct an in-
formation dissemination tree with the multicast group
members as leaf nodes. The resulting application-level
multicast service is similar to the aforementioned topic-
based pub-sub systems without content-based filtering.
The multicast tree is formed by joining the routes from
each subscriber node to a root node. In contrast, Cobra
constructs an overlay topology using a service provision-
ing technique, taking into account the required resources
to support a target number of source feeds and users.

Real-time Stream Querying: There has been much
recent work from the database community on continuous
querying of real-time data streams located at geographi-
cally dispersed data sources. These include Medusa [15],
PIER [25], IrisNet [21], Borealis [14], and Stream-
Based Overlay Networks [33]. These systems provide a
general-purpose service for distributed querying of data
streams, tend to assume a relational data model, and pro-
vide an elaborate set of operators to applications. Co-
bra, on the other hand, is specifically designed to filter
and deliver relatively unstructured RSS feeds, provides a
simple keyword-based query format to the user, and has
models of the resource consumption of its crawler, filter,
and reflector services used for provisioning.

Blog Search Engines: Recently, a number of “blog
search engines” have come online, including Feedster,
Blogdigger, Bloglines, IceRocket, and Technorati. Apart
from Google and MSN’s blog search services, most of
these sites appear to be backed by small startup compa-
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Figure 1: The Cobra content-based RSS aggregation net-
work.

nies and little is known about how they operate. In par-
ticular, their ability to scale to large numbers of feeds and
users, use network resources efficiently, and maintain
low update latencies is unknown. In Section 4 we attempt
to measure the update latency of several of these sites. As
for MSN and Google, we expect these sites leverage the
vast numbers of server resources distributed across many
data centers to rapidly index updates to blogs. Although
an academic research group cannot hope to garner these
kinds of resources, by developing Cobra we hope to shed
light on important design considerations and tradeoffs for
this interesting application.

3 Cobra System Design

The overall architecture of Cobra is shown in Figure 1.
Cobra consists of a three-tiered network of crawlers, fil-
ters, and reflectors. Crawlers are responsible for period-
ically crawling web feeds, such as blogs, news sites, and
other RSS feeds, which we collectively call source feeds.
A source feed consists of a series of articles. The number
of articles provided by a source feed at any time depends
on how it is configured; a typical blog or news feed will
only report the most recent 10 articles or so. As described
below, Cobra crawlers employ various techniques to re-
duce polling load by checking for updates in the source
feeds in a lightweight manner.

Crawlers send new articles to the filters, which match
the content of those articles against the set of user sub-
scriptions, using a case-insensitive, index-based match-
ing algorithm. Articles matching a given subscription are
pushed to the appropriate reflector, which presents to the
end user a personalized RSS feed that can be browsed us-
ing a standard RSS reader. The reflector caches the last
k matching articles for the feed (where & is typically 10),
requiring that the user poll the feed periodically to ensure
that all matching articles will be detected. This behavior
matches that of many existing RSS feeds that limit the
number of articles included in the feed. Although the re-
flector must be polled by the user (as required by current

USENIX Association

NSDI ’07: 4th USENIX Symposium on Networked Systems Design & Implementation

31



RSS standards), this polling traffic is far less than requir-
ing users to poll many thousands of source feeds. Also, it
is possible to replace or augment the reflector with push-
based notification mechanisms using email, instant mes-
saging, or SMS; we leave this to future work.

The Cobra architecture uses a simple congestion con-
trol scheme that applies backpressure when a service is
unable to keep up with the incoming rate of data from
upstream services. Each service maintains a IMB data
buffer for each upstream service. If an upstream ser-
vice sends data faster than it can be processed, the data
buffer will fill and any further send attempts will block
until the downstream service can catch up, draining the
buffer and allowing incoming data again. This ensures
that the crawlers do not send new articles faster than the
filters can process them, and likewise that the filters do
not pass on articles faster than the reflectors can process
them. The provisioner (detailed in section 3.5) takes this
throttling behavior into account when verifying that each
crawler will be able to finish crawling its entire list of
feeds every 15 minutes (or whatever the crawl-rate is
specified to be).

3.1 Crawler service

The crawler service takes in a list of source feeds (given
as URLs) and periodically crawls the list to detect new
articles. A naive crawler would periodically download
the contents of each source feed and push all articles con-
tained therein to the filters. However, this approach can
consume a considerable amount of bandwidth, both for
downloading the source data and sending updates to the
filters. In a conventional usage of RSS, many users peri-
odically polling a popular feed can have serious network
impact [34]. Although Cobra amortizes the cost of crawl-
ing each feed across all users, the sheer number of feeds
demands that we are careful about the amount of network
bandwidth we consume.

The Cobra crawler includes a number of optimiza-
tions designed to reduce bandwidth usage.  First,
crawlers attempt to use the HTTP Last-Modified
and ETag headers to check whether a feed has been up-
dated since the last polling interval. Second, the crawler
makes use of HTTP delta encoding for those feeds that
support it.

When it is necessary to download the content for a
feed (because its HTTP headers indicate it has changed,
or if the server does not provide modification informa-
tion), the crawler filters out articles that have been previ-
ously pushed to filters, reducing bandwidth requirements
further and preventing users from seeing duplicate re-
sults. We make use of two techniques. First, a whole-
document hash using Java’s hashCode function is com-
puted; if it matches the previous hash for this feed, the
entire document is dropped. Second, each feed that has

changed is broken up into its individual articles (or en-
tries), which are henceforth processed individually. A
hash is computed on each of the individual articles, and
those matching a previously-hashed article are filtered
out. As we show in Section 4, these techniques greatly
reduce the amount of traffic between source feeds and
crawlers and between crawlers and filters.

3.2 Filter service

The filter service receives updated articles from crawlers
and matches those articles against a set of subscriptions.
Each subscription is a tuple consisting of a subscription
ID, reflector ID, and list of keywords. The subscription
ID uniquely identifies the subscription and the reflector
ID is the address of the corresponding reflector for that
user. Subscription IDs are allocated by the reflectors
when users inject subscriptions into the system. Each
subscription has a list of keywords that may be related
by either conjunctions (e.g. “law AND internet”), dis-
junctions (e.g. “copyright OR patent”), or a combination
of both (e.g. “(law AND internet) OR (privacy AND in-
ternet)”’). When an article is matched against a given sub-
scription, each word of the subscription is marked either
true or false based on whether it appears anywhere in the
article; if the resulting boolean expression evaluates to
true then the article is considered to have matched the
subscription.

Given a high volume of traffic from crawlers and a
large number of users, it is essential that the filter be able
to match articles against subscriptions efficiently. Co-
bra uses the matching algorithm proposed by Fabret ef
al. [18, 29]. This algorithm operates in two phases. In
the first phase, the filter service uses an index to deter-
mine the set of all words (across all subscriptions) that
are matched by any article. This has the advantage that
words that are mentioned in multiple subscriptions are
only evaluated once. In the second phase, the filter de-
termines the set of subscriptions in which all words have
a match. This is accomplished by ordering subscriptions
according to overlap and by ordering words within sub-
scriptions according to selectivity, to test the most selec-
tive words first. If a word was not found in the first phase,
all subscriptions that include that word can be discarded
without further consideration. As a result, only a frac-
tion of the subscriptions are considered if there is much
overlap between them.

Due to its sub-linear complexity, the matching algo-
rithm is extremely efficient: matching a single article
against 1 million user subscriptions has a 90th percentile
latency of just 10 ms (using data from real Web feeds and
synthesized subscriptions, as discussed in Section 4). In
contrast, a naive algorithm (using a linear search across
the subscription word lists) requires more than 10 sec
across the same 1 million subscriptions, a difference of
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four orders of magnitude.

3.3 Reflector service

The final component of the Cobra design is the reflector
service, which receives matching articles from filters and
reflects them as a personalized RSS feed for each user.
In designing the reflector, several questions arose. First,
should the filter service send the complete article body,
a summary of the article, or only a link to the article?
Clearly, this has implications for bandwidth usage. Sec-
ond, how should filters inform each reflector of the set
of matching subscriptions for each article? As the num-
ber of matching subscriptions increases, sending a list of
subscription IDs could consume far more bandwidth than
the article contents themselves.

In our initial design, for each matching article, the fil-
ter would send the reflector a summary consisting of the
title, URL, and first 1 KB of the article body, along with
a list of matching subscription IDs. This simplifies the
reflector’s design as it must simply link the received arti-
cle summary to the personalized RSS feed of each of the
matching subscription IDs. Article summaries are shared
across subscriptions, meaning if one article matches mul-
tiple subscriptions, only one copy is kept in memory on
the reflector.

However, with many active subscriptions, the user list
could grow to be very large: with 100,000 matching sub-
scriptions on an article and 32-bit subscription IDs, this
translates into 400KB of overhead per article being sent
to the reflectors. One alternative is to use a bloom filter
to represent the set of matching users; we estimate that
a 12KB filter could capture a list of 100,000 user IDs
with a false positive rate of 0.08%. However, this would
require the reflector to test each user ID against the fil-
ter on reception, involving a large amount of additional
computation.

In our final design, the filter sends the complete article
body to the reflector without a user list, and the reflector
re-runs the matching algorithm against the list of active
subscriptions it stores for the users it is serving. Since the
matching algorithm is so efficient (taking 10ms for 1 mil-
lion subscriptions), this appears to be the right trade-off
between bandwidth consumption and CPU overhead. In-
stead of sending the complete article, we could instead
send only the union of matching words across all match-
ing subscriptions, which in the worst case reduces to
sending the full text.

For each subscription, Cobra caches the last £ match-
ing articles, providing a personalized feed which the user
can access using a standard RSS reader. The value of k&
must be chosen to bound memory usage while provid-
ing enough content that a user is satisfied with the “hits”
using infrequent polling; typical RSS readers poll every
15-60 minutes [28]. In our current design, we set k = 10,

a value that is typical for many popular RSS feeds (see
Figure 5). Another approach might be to dynamically set
the value of k£ based on the user’s individual polling rate
or the expected popularity of a given subscription. We
leave these extensions to future work.

In the worst case, this model of user feeds leads to a
memory usage of k x subscriptions x 1K B (assuming
articles are capped at 1KB of size). However, in practice
the memory usage is generally much lower since articles
can be shared across multiple subscriptions. In the event
that memory does become scarce, a reflector will begin
dropping the content of new articles that are received,
saving to users’ feeds only the articles’ titles and URLSs.
This greatly slows the rate of memory consumption, but
if memory continues to dwindle then reflectors will begin
dropping all incoming articles (while logging a warning
that this is happening). This process ensures a graceful
degradation in service quality when required.

A user subscribes to Cobra by visiting a web site that
allows the user to establish an account and submit sub-
scription requests in the form of keywords. The web
server coordinates with the reflectors and filters to instan-
tiate a subscription, by performing two actions: (1) asso-
ciating the user with a specific reflector node; and (2) in-
jecting the subscription details into the reflector node and
the filter node(s) that feed data into that reflector. The re-
sponse to the user’s subscription request is a URL for a
private RSS feed hosted by the chosen reflector node. In
our current prototype, reflector nodes are assigned ran-
domly to users by the Web server, but a locality-aware
mechanism such as Meridian [42] or OASIS [20] could
easily be used instead.

3.4 Hosting model

Although “peer to peer,” self-organizing systems based
on shared resources contributed by volunteers are cur-
rently en vogue, we are not sure that this model is the
best for provisioning and running a service like Cobra.
Rather, we choose to exploit conventional approaches
to distributed systems deployment, making use of well-
provisioned hosting centers, which is the norm for com-
mercial Internet services. Each of the three tiers of Cobra
can be distributed over multiple hosts in the Internet, al-
lowing computational and network load to be balanced
across servers and hosting centers. Distribution also al-
lows the placement of Cobra services to take advantage
of improved locality when crawling blogs or pushing up-
dates to users.

The use of a hosting center model allows us to make
certain assumptions to simplify Cobra’s design. First, we
assume that physical resources in a hosting center can be
dedicated to running Cobra services, or at least that host-
ing centers can provide adequate virtualization [4, 10]
and resource containment [9] to provide this illusion.
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Second, we assume that Cobra services can be repli-
cated within a hosting center for increased reliability.
Third, we assume that hosting centers are generally well-
maintained and that catastrophic outages of an entire
hosting center will be rare. Cobra can tolerate outages
of entire hosting centers, albeit with reduced harvest and
yield [19]. Finally, we assume that allocating resources
to Cobra services and monitoring their performance at
runtime can be performed centrally. These assumptions
strongly influence our approach to service provisioning
as we are less concerned with tolerating unexpected vari-
ations in CPU and network load and intermittent link and
node failures, as is commonly seen on open experimental
testbeds such as PlanetLab [30].

3.5 Service provisioning

As the number of source feeds and users grows, there is
a significant challenge in how to provision the service in
terms of computational horsepower and network band-
width. Server and network resources cost money; addi-
tionally, a system may have limitations on the amount of
physical resources available. Our goal is to determine the
minimal amount of physical resources required to host a
Cobra network capable of supporting a given number of
source feeds and users. For this purpose, we make use of
an offline service provisioning technique that determines
the configuration of the Cobra network in terms of the
number of crawlers, filters, and reflectors, as well as the
interconnectivity between these services. Due to space
constraints, we only provide an informal description of
the service provisioning algorithm.

The provisioner takes as inputs the target number of
source feeds and users, a model of the memory, CPU and
bandwidth requirements for each service, as well as other
parameters such as distribution of feed sizes and the per-
user polling rate. The provisioner also takes as input a
set of node constraints, consisting of limits on inbound
and outbound bandwidth, maximum memory available to
the JVM, and CPU processing power. Note that this last
value is difficult to measure directly and thus we model it
simply as a dimensionless parameter relative to the pro-
cessing performance observed on Emulab’s pc3000 ma-
chines !. For example, a CPU constraint of 0.75 implies
that the provisioner should assume that nodes will pro-
cess messages only 75% as fast as the pc3000s. The pro-
visioner’s output is a graph representing the topology of
the Cobra network graph, including the number of feeds
assigned to each crawler and the number of subscriptions
assigned to each reflector and each filter.

The provisioner models each Cobra service as run-
ning on a separate physical host with independent mem-
ory, CPU and bandwidth constraints. This results in a
conservative estimate of resource requirements as it does

13.0 GHz 64-bit Xeon processors

not permit multiple services within a hosting center to
share resources (e.g., bandwidth). A more sophisticated
algorithm could take such resource sharing into account.

The provisioner attempts to configure the network to
meet the target number of source feeds and users while
minimizing the number of services. The algorithm oper-
ates as follows. It starts with a simple 3-node topology
with one crawler, one filter, and one reflector. In each it-
eration, the algorithm identifies any constraint violations
in the current configuration, and greedily resolves them
by decomposing services as described below. When no
more violations exist, the algorithm terminates and re-
ports success, or if a violation is found that cannot be
resolved, the algorithm terminates and reports failure.

An out-decomposition resolves violations by replac-
ing a single service with n replicas such that all incom-
ing links from the original service are replicated across
the replicas, whereas the outgoing links from the orig-
inal services are load balanced across the replicas. An
in-decomposition does the opposite: a single service is
replaced by n replicas such that all outgoing links from
the original service are replicated across the replicas,
whereas the incoming links from the original services are
load balanced across the replicas.

In resolving a violation on a service, the choice of
decomposition type (in- or out-) depends both on the
type of violation (in-bandwidth, out-bandwidth, CPU, or
memory) and the type of service (crawler, filter or reflec-
tor). Figure 3 shows which decomposition is used in each
situation.

When faced with multiple violations, the algorithm
uses a few simple heuristics to choose the order in which
to resolve them. Some violations have the potential to
be resolved indirectly in the course of resolving other vi-
olations. For example, if a crawler service has both in-
bandwidth and out-bandwidth violations, resolving the
in-bandwidth violation is likely to also resolve the out-
bandwidth violation (by reducing the number of feeds
crawled, we also implicitly reduce the number of feed
updates that are found and output by the crawler). Thus
it is preferable in this case to resolve the in-bandwidth
violation first as it may solve both violations with one
decomposition. In general, when choosing which of mul-
tiple violations to resolve first, the algorithm will choose
the violations with the least potential to be resolved in-
directly, thus saving the violations with higher potential
until as late as possible (in the hopes that they will “hap-
pen to be resolved” in the mean time).

Although this greedy approach might lead to local
minima and may in fact fail to find a topology that satis-
fies the input constraints when such a configuration does
exist, in practice the algorithm produces network topolo-
gies with a modest number of nodes to handle large
loads. We chose this greedy iterative approach because it
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(a) Configuration for 4x CPU and 25 Mbps bandwidth

= ° =
(b) Configuration for 1x CPU and 100 Mbps bandwidth

Figure 2: Operation of the Cobra network provisioner. These figures show how provisioner results can vary for different
constraint combinations; in both of these cases the network is provisioned for 800,000 feeds, 8 million subscriptions, and 1024 MB
of memory, but the CPU and bandwidth constraints differ. (a) Shows the resulting configuration when the CPU constraint is 4x the
default value (see text) and the bandwidth constraint is 25 Mbps. (b) Shows the resulting configuration when the CPU constraint is
the default value (1x) and the bandwidth constraint is 100 Mbps. Compared to (a), this configuration requires half the number of
crawlers, 50% more reflectors and three times as many filters (on account of the much greater processing needs).

Service Violation | Decomposition | Reason
In-BW In Reduces the number of feeds crawled.
Crawler | Out-BW | In Reduces the rate that updates are found and output to filters.
CPU None Not modeled
Memory | None Not modeled
In-BW In Reduces the number of crawlers that send updates to each filter.
Out-BW | In Reduces the rate that articles are received, and thus also the rate that
Filter articles are output to reflectors.
CPU Out Reduces the number of subscriptions that articles must match against.
Memory | Out Reduces the number of subscriptions that must be stored on the filter.
In-BW None Not resolvable because reflectors must receive updates from all feeds
(otherwise users will not receive all articles that match their subscription).
Out-BW | Out Reduces the subscriptions held by each reflector, which reduces the
Reflector expected frequency of web queries by users.
CPU Out Reduces the number of subscriptions that each incoming articles must be
matched against and the number of article-queues that must be updated.
Memory | Out Reduces the number of subscriptions and article lists that must be stored.

Figure 3: Provisioner choice of decomposition for each service/violation combination.

was conceptually simple and easy to implement. Figure 2
shows two provisioner topologies produced for different
input constraints.

3.6 Service instantiation and monitoring

The output of the provisioner is a virtual graph (see Fig-
ure 2) representing the number and connectivity of the
services in the Cobra network. Of course, these ser-
vices must be instantiated on physical hosts. A wide
range of instantiation policies could be used, depending
on the physical resources available. For example, a small
startup might use a single hosting center for all of the ser-
vices, while a larger company might distribute services
across multiple hosting centers to achieve locality gains.
Both approaches permit incremental scalability by grow-
ing the number of machines dedicated to the service.
The Cobra design is largely independent of the mech-
anism used for service instantiation. In our experi-
ments described in Section 4, we use different strategies
based on the nature of the testbed environment. In our
dedicated cluster and Emulab experiments, services are
mapped one-to-one with physical hosts in a round-robin
fashion. In our PlanetLab experiments, services are dis-
tributed randomly to achieve good coverage in terms of

locality gains for crawling and reflecting (described be-
low). An alternate mechanism could make use of previ-
ous work on network-aware service placement to mini-
mize bandwidth usage [8, 33].

After deployment, it is essential that the performance
of the Cobra network be monitored to validate that it is
meeting targets in terms of user-perceived latency as well
as bandwidth and memory constraints. Also, as the user
population and number of source feeds grow it will be es-
sential to re-provision Cobra over time. We envision this
process occurring over fairly coarse-grained time peri-
ods, such as once a month or quarter. Each Cobra node
is instrumented to collect statistics on memory usage,
CPU load, and inbound and outbound bandwidth con-
sumption. These statistics can be collected periodically
to ascertain whether re-provisioning is necessary.

3.7 Source feed mapping

Once crawler services have been instantiated, the final
step in running the Cobra network is to assign source
feeds to crawlers. In choosing this assignment, we are
concerned not only with spreading load across multiple
crawlers, but also reducing the total network load that
the crawlers will induce on the network. A good way of
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reducing this load is to optimize the locality of crawlers
and their corresponding source feeds. Apart from being
good network citizens, improving locality also reduces
the latency for crawling operations, thereby reducing the
update detection latency as perceived by users. Because
the crawlers use fairly aggressive timeouts (5 sec) to
avoid stalling on slow feeds, reducing crawler-feed la-
tency also increases the overall yield of a crawling cycle.

In Cobra, we assign source feeds to crawlers in a
latency-aware fashion. One approach is to have each
crawler measure the latency to all of the source feeds,
and use this information to perform a coordinated allo-
cation of the source feed list across the crawlers. Alter-
nately, we could make use of network coordinate sys-
tems, such as Vivaldi [17], which greatly reduces ping
load by mapping each node into a low-dimensional coor-
dinate space, allowing an estimate of the latency between
any two hosts to be measured as the Euclidean distance
in the coordinate space. However, such schemes require
end hosts to run the network coordinate software, which
is not possible in the case of oblivious source feeds.

Instead, we perform an offline measurement of the la-
tency between each of the source feeds and crawler nodes
using King [24]. King estimates the latency between any
two Internet hosts by performing an external measure-
ment of the latency between their corresponding DNS
servers; King has been reported to have a 75th percentile
error of 20% of the true latency value. It is worth noting
that many source feeds are hosted by the same IP address,
so we achieve a significant reduction in the measurement
overhead by limiting probes to those nodes with unique
IP addresses. In our sample of 102,446 RSS feeds, there
are only 591 unique IP addresses.

Given the latency matrix between feeds and crawlers,
we perform assignment using a simple first-fit bin-
packing algorithm. The algorithm iterates through each
crawler C; and calculates ¢* = arg min {(F}, C;), where
I(-) is the latency between F; and C;. F;. is then as-
signed to C;. Given F feeds and C' crawlers, we as-
sign F'/C feeds to each crawler (assuming F' > C). We
have considered assigning varying number of feeds to
crawlers, for example, based on the posting activity of
each feed, but have not yet implemented this technique.

Figure 4 shows an example of the source feed map-
ping from one of our experiments. To reduce clutter
in the map we show only 3 crawlers (one in the US,
one in Switzerland, and one in Japan) and the 5 nearest
crawlers, according to estimated latency, for each. The
mapping process is clearly effective at achieving good
locality and naturally minimizes traffic over transoceanic
links.

Figure 4: An example of locality-aware source feed map-
ping. Three crawlers are shown as circles and the 5 near-
est source feeds, according to estimated latency, are
shown as triangles. Colors indicate the mapping from
feeds to crawlers, which is also evident from the geo-
graphic layout.

3.8 Implementation

Our prototype of Cobra is implemented in Java, and
makes use of our substrate for stream-based overlay net-
works (SBONs) [33] for setting up and managing data
flows between services. Note, however, that the place-
ment of Cobra services onto physical hosts is determined
statically, at instantiation time, rather than dynamically
as described in our previous work [33]. A central con-
troller node handles provisioning and instantiation of the
Cobra network. The provisioner outputs a logical graph
which is then instantiated on physical hosts using a (cur-
rently random) allocation of services to hosts. The in-
stantiation mechanism depends on the specific deploy-
ment environment.

Our implementation of Cobra consists of 29178 lines
of Java code in total. The crawler service is 2445 lines,
the filter service is 1258 lines, and the reflector is
622 lines. The controller code is 377 lines, while the
remaining 24476 consists of our underlying SBON sub-
strate for managing the overlay network.

4 Evaluation

We have several goals in our evaluation of Cobra. First,
we show that Cobra can scale well to handle a large num-
ber of source feeds and user subscriptions. Scalability
is limited by service resource requirements (CPU and
memory usage) as well as network bandwidth require-
ments. However, a modestly-sized Cobra network (Fig-
ure 2) can handle 8M users and 800,000 source feeds.
Second, we show that Cobra offers low latencies for dis-
covering matching articles and pushing those updates to
users. The limiting factor for update latency is the rate at
which source feeds can be crawled, as well as the user’s
own polling interval. We also present data comparing
these update latencies with three existing blog search en-
gines: Google Blog Search, Feedster, and Blogdigger.
We present results from experiments on three plat-
forms: a local cluster, the Utah Emulab testbed [41],
and PlanetLab. The local cluster allows us to mea-
sure service-level performance in a controlled setting, al-
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median | 90th percentile
Size of feed (bytes) 7606 22890
Size of feed (articles) | 10 17
Size of article (bytes) | 768 2426
Size of article (words) | 61 637

Figure 5: Properties of Web feeds used in our study.

though scalability is limited. Our Emulab results allow
us to scale out to larger configurations. The PlanetLab
experiments are intended to highlight the value of source
feed clustering and the impact of improved locality.

We use a combination of real and synthesized web
feeds to measure Cobra’s performance. The real feeds
consist of a list of 102,446 RSS feeds from syndic8.com,
an RSS directory site. The properties of these feeds were
studied in detail by Liu et al. in [28]. To scale up to
larger numbers, we implemented an artificial feed gen-
erator. Each generated feed consists of 10 articles with
words chosen randomly from a distribution of English
words based on popularity rank from the Brown cor-
pus [3]. Generated feed content changes dynamically
with update intervals similar to those of real feeds, based
on data from [28]. The feed generator is integrated into
the crawler service and is enabled by a runtime flag.

Simulated user subscriptions are similarly generated
with a keyword list consisting of the same distribution as
that used to generate feeds. We exclude the top 29 most
popular words, which are considered excessively general
and would match essentially any article. (We assume that
these words would normally be ignored by the subscrip-
tion web portal when a user initially submits a subscrip-
tion request.) The number of words in each query is cho-
sen from a distribution based on a Yahoo study [11] of
the number of words used in web searches; the median
subscription length is 3 words with a maximum of 8.
All simulated user subscriptions contain only conjunc-
tions between words (no disjunctions). In Cobra, we ex-
pect that users will typically submit subscription requests
with many keywords to ensure that the subscription is as
specific as possible and does not return a large number
of irrelevant articles. Given the large number of simu-
lated users, we do not actively poll Cobra reflectors, but
rather estimate the additional network load that this pro-
cess would generate.

4.1 Properties of Web feeds

Liu et al. [28] present a detailed evaluation of the prop-
erties of RSS feeds, using the same list of 102,446 RSS
feeds used in our study. Figure 5 summarizes the size
of the feeds and individual articles observed in a typi-
cal crawl of this set of feeds between October 1-5, 2006.
The median feed size is under 8 KB and the median num-
ber of articles per feed is 10.

Figure 6 shows a scatterplot of the size of each feed
compared to its crawl time from a PlanetLab node run-
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Figure 6: Relationship between feed size and crawl time.
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Figure 7: Memory usage of the reflector service over time.
The x-axis of this figure is the total number of articles received
by the reflector. For context, we estimate that a set of 1 million
feeds can be expected to produce an average of ~48.5 updated
articles every second, or ~2910 each minute.

ning at Princeton. The figure shows a wide variation in
the size and crawl time of each feed, with no clear re-
lationship between the two. The large spike around size
8000 bytes represents a batch of 36,321 RSS feeds hosted
by topix.net. It turns out these are not static feeds but
dynamically-generated aggregation feeds across a wide
range of topics, which explains the large variation in the
crawl time.

4.2 Microbenchmarks

Our first set of experiments measure the performance of
the individual Cobra services.

Memory usage

Figure 7 shows the memory usage of a single Reflec-
tor service as articles are received over time. In each
case, the usage follows a logarithmic trend. However, the
curves’ obvious offsets make it clear that the number of
subscriptions stored on each reflector strongly influences
its memory usage. For example, with a half-million sub-
scriptions, the memory usage reaches ~310 MB after re-
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ceiving 60,000 articles, whereas with 1 million subscrip-
tions the memory usage reaches nearly 500 MB. This is
not surprising; not only must reflectors store each actual
subscription (for matching), but also each user’s list of
articles.

However, after the initial burst of article storage, the
rate of memory consumption slows dramatically due to
the cap (of & = 10) on each user’s list of stored arti-
cles. This cap prevents users with particularly general
subscriptions (that frequently match articles) from con-
tinually using up memory. Note that in this experiment
no articles (or article contents) were dropped by the re-
flectors’ scarce memory handling logic (as described in
section 3.3). The only time that articles were dropped
was when a user’s list of stored articles exceeded the size
cap.

This experiment assumes that articles are never ex-
pired from memory (except when a user’s feed grows
beyond length k). It is easy to envision an alternative
design in which a user’s article list is cleared whenever
it is polled (by the user’s RSS reader) from a reflector.
Depending on the frequency of user polling, this may de-
crease overall memory usage on reflectors but an analysis
of the precise benefits is left to future work.

In contrast, the memory usage of the crawler and filter
services does not change as articles are processed. For
crawlers, the memory usage while running is essentially
constant since crawlers are unaffected by the number of
subscriptions. For filters, the memory usage was found
to vary linearly with the number of subscriptions (~0.16
MB per 1000 subscriptions held) and thus changes only
when subscriptions are added or removed.

Crawler performance

Figure 8 shows the bandwidth reduction resulting from
optimizations in the crawler to avoid crawling feeds that
have not been updated. As the figure shows, using last-
modified checks for reading data from feeds reduces the
inbound bandwidth by 57%. The combination of tech-
niques for avoiding pushing updates to the filters results
in a 99.8% reduction in the bandwidth generated by the
crawlers, a total of 2.2 KB/sec for 102,446 feeds. We
note that none of the feeds in our study supported the
use of HTTP delta encoding, so while this technique is
implemented in Cobra it does not yield any additional
bandwidth savings.

The use of locality-aware clustering should reduce the
time to crawl a set of source feeds, as well as reduce
overall network load. From our initial set of 102,446
feeds, we filtered out those that appeared to be down
as well as feeds from two aggregator sites, fopix.net and
izynews.de, that together constituted 50,953 feeds. These
two sites host a large number of dynamically-generated
feeds that exhibit a wide variation in crawl times, making

No filtering
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1194.7

Last-modified check

1200

Document hash
Article hash
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Bandwidth (KB/sec)
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Incoming bandwidth Outgoing bandwidth

Figure 8: Bandwidth reduction due to intelligent crawling.
This graph shows the amount of data generated by the crawler
using different techniques: (a) crawl all feeds; (b) filter based
on last-modified header; (c) filter based on whole-document
hash; and (d) filter based on per-article hashes.

it difficult to differentiate network effects.

Figure 9 shows the time to crawl the remaining
34,092 RSS feeds distributed across 481 unique IP ad-
dresses. 11 crawlers were run on PlanetLab distributed
across North America, Europe, and Asia. With locality
aware mapping, the median crawl time per feed drops
from 197 ms to 160 ms, a reduction of 18%.

Filter performance

Figure 10 shows the median time for the filter’s match-
ing algorithm to compare a single article against an in-
creasing number of user subscriptions. The matching al-
gorithm is very fast, requiring less than 20 ms to match
an article of 2000 words against 1 million user subscrip-
tions. Keep in mind that according to Figure 5 that the
median article size is just 61 words, so in practice the
matching time is much faster: we see a 90th percentile of
just 2 ms per article against 1 million subscriptions. Of
course, as the number of incoming articles increases, the
overall matching time may become a performance bottle-
neck, although this process is readily distributed across
multiple filters.

4.3 Scalability measurements

To demonstrate the scalability of Cobra with a large num-
ber of feeds and user subscriptions, we ran additional ex-
periments using the Utah Emulab testbed. Here, we are
interested in two key metrics: (1) The bandwidth con-
sumption of each tier of the Cobra network, and (2) The
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Figure 9: Effect of locality-aware clustering. This is a CDF
of the time to crawl 34092 RSS feeds across 481 separate IP ad-
dresses from 11 PlanetLab hosts, with and without the locality
aware clustering.
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Figure 10: Article match time versus number of subscrip-
tions and number of words per article. The median time to
match an article is a function of the number of subscriptions
and the number of words per article.

latency for an updated article from a source feed to prop-
agate through the three tiers of the network. In total, we
evaluated four different topologies, summarized in Fig-
ure 11.

Each topology was generated by the provisioner with
a bandwidth constraint of 100 Mbps 2, a memory con-
straint of 1024 MB, and a CPU constraint of the default
value (1x). In addition, we explicitly over-provisioned
by 10% as a guard against bursty traffic or unanticipated
bottlenecks when scaling up, but it appears that this was
an largely unnecessary precaution. Each topology was
run for four crawling intervals of 15 minutes each and
the logs were checked at the end of every experiment to
confirm that none of the reflectors dropped any articles
(or article contents) to save memory (a mechanism in-
voked when available memory runs low, as discussed in

2We feel that the 100 Mbps bandwidth figure is not unreason-
able; bandwidth measurements from PlanetLab indicate that the me-
dian inter-node bandwidth across the Internet is at least this large [26].

Subs | Feeds Crawlers | Filters | Reflectors
10M | 1M 1 28 28

20M | 500,000 | 1 25 25

40M | 250,000 | 1 28 28

M 100,000 | 1 1 1

Figure 11: Topologies used in scalability measurements.
The last topology (100K feeds, IM subscriptions) is meant to
emulate a topology using the live set of 102,446 feeds.
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Figure 12: Bandwidth consumption of each tier. The band-
width of each tier is a function both of the number of feeds that
are crawled and of the fan-out from each crawler to the filters.

section 3.3).

Figure 12 shows the total bandwidth consumption
of each tier of the Cobra network for each of the four
topologies evaluated. As the figure shows, total band-
width consumption remains fairly low despite the large
number of users and feeds, owing mainly to the effec-
tive use of intelligent crawling. Note that due to the rel-
atively large number of subscriptions in each topology,
the selectivity of the filter tier is nearly 1; every article
will match some user subscription, so there is no no-
ticeable reduction in bandwidth from the filter tier (the
very slight increase in bandwidth is due to the addition
of header fields to each article). One potential area for
future work is finding ways to reduce the selectivity of
the filter tier. If the filters’ selectivity can be reduced,
that will reduce not only the filters’ bandwidth consump-
tion, but also the number of reflectors needed to process
and store the (fewer) articles sent from the filters. One
way to lower filter selectivity may be to assign subscrip-
tions to filters based on similarity (rather than the current
random assignment); if all of the subscriptions on a fil-
ter tend towards a single, related set of topics, then more
articles may fail to match any those subscriptions.

We are also interested in the intra-network latency for
an updated article passing through the three tiers of the
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Figure 13: CDF of intra-network latency for various

topologies. This experiment shows that the intra-network la-
tency is largely a factor of the processing load on filter and
reflectors.

Cobra network. To gather this data, we instrumented the
crawler, filter, and reflector to send a packet to a central
logging host every time a given article was (1) gener-
ated by the crawler, (2) received at a filter, (2) matched
by the filter, and (3) delivered to the reflector. Although
network latency between the logging host and the Cobra
nodes can affect these results, we believe these latencies
to be small compared to the Cobra overhead.

Figure 13 shows a CDF of the latency for each of
the four topologies. As the figure shows, the fastest up-
date times were observed on the 1M feeds / 10M subs
topology, with a median latency of 5.06 sec, whereas
the slowest update times were exhibited by the 250K
feeds / 40M subs topology, with a median latency of
34.22 sec. However, the relationship is not simply that
intra-network latency increases with the number of users;
the median latency of the 100K feeds / IM subs topology
was 30.81 sec - nearly as slow as the 250K feeds / 40M
subs topology. Instead, latency appears more closely
related to the number of subscriptions stored per node
(rather than in total), as shown in Figure 14.

As mentioned at the end of section 3.2, nodes are able
to throttle the rate at which they are passed data from
other nodes. This is the primary source of intra-network
latency; article updates detected by crawlers are delayed
in reaching reflectors because of processing congestion
on filters and/or reflectors. Since the time for a filter
(or reflector) to process an article is related to the num-
ber of subscriptions that must be checked (see figure 10),
topologies with larger numbers of subscriptions per node
exhibit longer processing times, leading to rate-throttling
of upstream services and thus larger intra-network laten-
cies. Figure 14 shows a clear relationship between the
number of subscriptions per node and the intra-network
latencies. However, even in the worst of these cases, the
latencies are still fairly low overall. As the system is
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Figure 14: Intra-network latency as a function of subscrip-
tions per Filter. This figure shows the relationship between
intra-network latency and the number of subscriptions stored
on each Filter (note that in each of these topologies, the num-
ber of filters equals the number of reflectors, and thus the x-axis
is equivalent to “Subscriptions per Reflector (K)”).

scaled to handle more subscriptions and more users, Co-
bra will naturally load-balance across multiple hosts in
each tier, keeping latencies low.

Note that the user’s perceived update latency is
bounded by the sum of the intra-network latency once
an article is crawled by Cobra, and the crawling interval,
that is, the rate at which source feeds are crawled. In our
current system, we set the crawling interval to 15 min-
utes, which dominates the intra-network latencies shown
in Figure 13. The intra-network latency is in effect the
minimum latency that Cobra can support, if updates to
feeds could be detected instantaneously.

4.4 Comparison to other search engines

Given the number of other blog search engines on the In-
ternet, we were curious to determine how well Cobra’s
update latency compared to these sites. We created blogs
on two popular blogging sites, LiveJournal and Blog-
ger.com, and posted articles containing a sentence of sev-
eral randomly-chosen words to each of these blogs.® We
then searched for our blog postings on three sites: Feed-
ster, Blogdigger, and Google Blog Search, polling each
site at 5 sec intervals.

We created our blogs at least 24 hours prior to post-
ing, to give the search engines enough time to index
them. Neither Feedster or Blogdigger detected any of
our postings to these blogs, even after a period of over
four months (from the initial paper submission to the fi-
nal camera-ready). We surmise that our blog was not
indexed by these engines, or that our artificial postings
were screened out by spam filters used by these sites.

Google Blog Search performed incredibly well, with
a detection latency as low as 83 seconds. In two out

3 An example posting was “certified venezuela gribble spork.” Un-
surprisingly, no extant blog entries matched a query for these terms.
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of five cases, however, the latency was 87 minutes and
6.6 hours, respectively, suggesting that the performance
may not be predictable. The low update latencies are
likely the result of Google using a ping service, which
receives updates from the blog site whenever a blog is
updated [1]. The variability in update times could be due
to crawler throttling: Google’s blog indexing engine at-
tempts to throttle its crawl rate to avoid overloading [16].
As part of future work, Cobra could be extended to pro-
vide support for a ping service and to tune the crawl rate
on a per-site basis.

We also uncovered what appears to be a bug in
Google’s blog indexer: setting our unique search term
as the title of the blog posting with no article body would
cause Google’s site to return a bogus results page (with
no link to the matching blog), although it appears to have
indexed the search term. Our latency figures ignore this
bug, giving Google the benefit of the doubt although the
correct result was not returned.

In contrast, Cobra’s average update latency is a func-
tion of the crawler period, which we set at 15 minutes.
With a larger number of crawler daemons operating in
parallel, we believe that we could bring this interval
down to match Google’s performance. To our knowl-
edge, there are no published details on how Google’s
blog search is implemented, such as whether it simply
leverages Google’s static web page indexer.

5 Conclusions and Future Work

We have presented Cobra, a system that offers real-time
content-based search and aggregation on Web feeds. Co-
bra is designed to be incrementally scalable, as well as to
make careful use of network resources through a combi-
nation of offline provisioning, intelligent crawling and
content filtering, and network-aware clustering of ser-
vices. Our prototype of Cobra scales well with modest
resource requirements and exhibits low latencies for de-
tecting and pushing updates to users.

Mining and searching the dynamically varying blo-
gosphere offers many exciting directions for future re-
search. We plan to host Cobra as a long-running service
on a local cluster and perform a measurement study gen-
erated from real subscription activity. We expect our ex-
perience to inform our choice of parameters, such as how
often to re-provision the system and how to set the num-
ber of articles cached for users (perhaps adaptively, de-
pending on individual user activity). We also plan to in-
vestigate whether more sophisticated filtering techniques
are desirable. Our current matching algorithm does not
rank results by relevance, but rather only by date. Like-
wise, the algorithm is unconcerned with positional char-
acteristics of matched keywords; as long as all keywords
match an article, it is delivered to the user.

Unlike Web search engines, it is unclear what consti-
tutes a good ranking function for search results on RSS
feeds. For example, the link-based context such as that
used by PageRank [23] may need to be modified to be
relevant to Web feeds such as blog postings, which have
few inbound links but often link to other (static) Web
pages. Incorporating this contextual information is ex-
tremely challenging given the rapidly-changing nature of
Web feeds.

Another open question is how to rapidly discover new
Web feeds and include them into the crawling cycle. Ac-
cording to one report [38], over 176,000 blogs were cre-
ated every day in July 2006. Finding new blogs on pop-
ular sites such as Blogger and LiveJournal may be eas-
ier than more generally across the Internet. While the
crawler could collect lists of RSS and Atom URLs seen
on crawled pages, incorporating these into the crawl-
ing process may require frequent rebalancing of crawler
load. Finally, exploiting the wide distribution of update
rates across Web feeds offers new opportunities for op-
timization. If the crawler services could learn which
feeds are likely to be updated frequently, the crawling
rate could be tuned on a per-feed basis.
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