
Hermes: A Distributed Event-Based Middleware Architecture

Peter R. Pietzuch
�
and Jean M. Bacon

Computer Laboratory
University of Cambridge

JJ Thomson Avenue, Cambridge CB3 0FD, UK�
Peter.Pietzuch, Jean.Bacon � @cl.cam.ac.uk

Abstract

In this paper, we argue that there is a need for an
event-based middleware to build large-scale distributed sys-
tems. Existing publish/subscribe systems still have limita-
tions compared to invocation-based middlewares. We in-
troduce Hermes, a novel event-based distributed middle-
ware architecture that follows a type- and attribute-based
publish/subscribe model. It centres around the notion of
an event type and supports features commonly known from
object-oriented languages like type hierarchies and super-
type subscriptions. A scalable routing algorithm using an
overlay routing network is presented that avoids global
broadcasts by creating rendezvous nodes. Fault-tolerance
mechanisms that can cope with different kinds of failures
in the middleware are integrated with the routing algorithm
resulting in a scalable and robust system.

1. Introduction

Middleware systems like CORBA or Java RMI have
proven to give a useful abstraction for building complex dis-
tributed applications. They provide a common higher-level
interface to the application programmer and hide the com-
plexity of dealing with a variety of underlying platforms and
networks. Today, most middleware systems are invocation-
based and thus follow a request/reply paradigm: A client
requests a particular service from a server by either sending
a request message or performing a remote method invoca-
tion (RMI) and then receives a reply in return. Although
such a mode of operation works well in a local area net-
work (LAN) context with a moderate number of clients and
servers, it does not scale to large networks like the Inter-
net. The request/reply paradigm only allows a one-to-one
communication model and forces a tight coupling between
the involved parties. Such behaviour is not desirable on the
�
Research supported by QinetiQ, Malvern

Internet because of the large number of potential communi-
cation partners, and the dynamic nature of all interactions
with new clients joining the system and servers failing.

A different communication approach for large-scale dis-
tributed systems seems necessary. As argued in [14], event-
based, publish/subscribe (pub/sub) systems are a viable new
option. In such a system, events are the basic communica-
tion mechanism: First, event subscribers, i.e. clients, ex-
press their interest in receiving certain events in the form of
an event subscription. Then, event publishers, i.e. servers,
publish events which will be delivered to all interested event
subscribers. As a result, this model naturally supports a de-
coupled, many-to-many communication style between pub-
lishers and subscribers. A subscriber is usually indifferent
to which particular publishers supply the events that it is in-
terested in. Similarly, a publisher does not need to know
about the set of subscribers that will receive a published
event.

Even though a number of pub/sub systems [8, 4, 23, 12]
have been developed over the past years, we feel that lit-
tle work has been done to unite the areas of middleware
systems and publish/subscribe communication and to pro-
vide, what we call, an event-based middleware. The ex-
isting systems often lack traditional middleware function-
ality like type-checking of invocations, reliability, access
control, transactions etc. They integrate poorly with object-
oriented languages like Java or C++ that are used to imple-
ment distributed systems on top of a middleware and force
the programmer to deal with low-level event transmission
issues. The application examples for current pub/sub sys-
tems are often very restricted, such as instant-messaging
and stock quote dissemination. This reflects that these sys-
tems are not intended as general middleware platforms. Our
work focuses on providing a scalable event-based middle-
ware that is powerful enough to be the building layer for
any distributed application that would traditionally be im-
plemented with an invocation-based middleware. We envi-
sion a world with large-scale e-commerce and business ap-
plications with thousands of components operating over the

Internet in a highly heterogeneous environment. The event-
based publish/subscribe paradigm is a good choice for re-
alising such applications when used in connection with a
middleware layer.

This paper presents our idea of an event-based middle-
ware by specifying requirements (Section 2) and describ-
ing the design of Hermes (Section 3), an event-based mid-
dleware being developed in our research group. We show
how overlay networks are a useful abstraction (Section 3.1)
and introduce the notion of type- and attribute-based pub-
lish/subscribe (Section 3.2) to bridge the semantic gap be-
tween events and programming language types without sac-
rificing the benefits of the pub/sub model. A type- and
attribute-based routing algorithm that is built on top of a
peer-to-peer overlay routing network is presented in Sec-
tion 4. We claim that this approach is more scalable and
fault-tolerant than existing systems as it does not rely on
any global broadcast operations. Then, a novel mechanism
for dealing with communication and node failures within
the event-based middleware is shown (Section 4.3), thus re-
sulting in a fault-tolerant system. The paper finishes with an
overview of related work (Section 5) and a conclusion with
an outline of future work (Section 6).

2. Requirements

In general, the goal of an event-based middleware is to
support the implementation of large-scale distributed appli-
cations. This means that its requirements closely reflect the
desired functionality of a modern middleware system. The
event-based communication style provides different tech-
niques to realise these requirements that must be taken into
account at any design stage. In this section, we list some
important middleware features, motivate them and explain
how they can be achieved in a system in which events are the
principal communication paradigm. Although requirements
like scalability and expressiveness are addressed by existing
pub/sub systems [7], traditional middleware features like in-
teroperability, reliability and usability are largely ignored.

Scalability: A scalable middleware must be able to sup-
port a large number of clients and servers; this is a crucial
requirement for Internet-scale distributed applications. A
system is only truly scalable if all its components are, so
that several aspects can be identified to ensure the scalabil-
ity of an event-based middleware: First, the implementa-
tion of the middleware (e.g. matching events with subscrip-
tions) has to be distributed itself because any centralised
component or service can become a bottleneck. Second,
no global state is to be kept by all middleware compo-
nents, which means that any decision made by a compo-
nent (e.g. for event routing) has to rely on a local view of
the world only. Finally, resources like network bandwidth
and memory must be consumed efficiently. For example,

events should only be sent over the network if a subscriber
is interested in them.

Interoperability: The whole idea of a middleware is
to facilitate interoperability between heterogeneous com-
ponents over a network. As a result, an event-based mid-
dleware should be language- and platform-independent and
not rely on any particular support by the underlying net-
work like e.g. IP multicast. It should be able to operate in a
dynamic environment where components of the distributed
system are implemented on a variety of fixed and mobile de-
vices that join and leave the system at run-time. The event
model should not be tied down to any particular language.

Reliability: Different clients of the event-based middle-
ware will have different requirements regarding reliability
and quality of service (QoS) guarantees given by the mid-
dleware. A range of operation modes from “best-effort” to
“guaranteed and timely” event delivery must be supported.
Fault-tolerance mechanisms have to be part of the middle-
ware design so that isolated network or component failures
do not affect the entire system. Techniques such as persis-
tent events and replication help to achieve a more robust
middleware implementation.

Expressiveness: Distributed applications benefit from
an expressive model for specifying events and subscrip-
tions. Subscriptions based on event data (content-based fil-
tering) provide a fine-grained mechanism for subscribers to
express their information need. Similarly, composite event
expressions that detect patterns of events give an intuitive
and powerful higher-level abstraction to subscribers.

Usability: It is important that the abstraction given by
the middleware integrates cleanly with the application pro-
gramming language so that it is easy to use. This linguistic
support involves an intuitive mapping between events and
programming language objects, support for static and dy-
namic type checking of subscriptions and publications, and
the hiding of middleware implementation issues like inter-
nal event formats. Tools for constructing complex compos-
ite event expressions and querying event type repositories
further aid the development process.

3. Design of an Event-Based Middleware

This section presents Hermes, a distributed event-based
middleware architecture, and explains its design and the
features that make it different from existing pub/sub sys-
tems. Figure 1 illustrates a distributed system implemented
on top of Hermes. It consists of two components, event
clients and event brokers. Event clients can be event pub-
lishers or event subscribers and use the services provided
by the middleware to communicate using events. The event
brokers represent the actual middleware and provide a dis-
tributed implementation of the functionality required by the
event clients.

Figure 1. An Application built with Hermes

Since the entire functionality of the middleware is pro-
vided by the brokers, event clients are light-weight compo-
nents, which can easily be implemented in any application
programming language. They connect to an event broker
before they use the middleware service. The main task of
the event brokers is to accept subscriptions from event sub-
scribers and then deliver events from publishers to all in-
terested subscribers. Brokers are interconnected with each
other in an arbitrary topology and use message-passing to
communicate with their neighbours. Published events are
translated into messages which are then routed through the
network of brokers depending on their content and the exist-
ing subscriptions [9]. Because of scalability, subscriptions
are pushed towards the publishers in the network so that fil-
tering happens as close to the event publisher as possible
(source-side filtering).

In any distributed pub/sub system, an event dissemina-
tion tree must be dynamically constructed so that events can
be routed from publishers to all interested subscribers. An
open research question is how this tree is built and where
state is kept in the network. Usually, some form of adver-
tisement mechanism helps the routing process: Before an
event publisher is allowed to publish an event, it has to ad-
vertise its presence to the system by sending an advertise-
ment message. Then, in connection with existing subscrip-
tions, a dissemination tree is created and future published
events can follow the paths set up by the tree. Hermes pro-
poses a novel approach to create a tree by employing an
overlay routing network that manages rendezvous nodes for
advertisements and subscriptions in the network.

3.1. Overlay Routing Networks

An overlay routing network is a logical application-level
network that is built on top of a general network layer like
IP unicast. The nodes that are part of the overlay network
can route messages between each other through the overlay
network. There is an overhead associated with using a log-
ical network for routing, as the logical topology does not
necessarily mirror the physical topology. However, more

sophisticated routing algorithms can be used and deployed
since routing is implemented at the application level. A
number of scalable overlay routing infrastructures were de-
veloped [21, 26], that provide higher-level services than IP-
level routing, such as multicast, fault-tolerance, location-
independence, and anonymity.

Since a network of event brokers behaves like an overlay
network for content-based event dissemination, it is natu-
ral to use the abstraction of an overlay network layer for
building an event-based middleware. Such a network can
then dynamically adapt its topology during the lifetime of
the system. In Hermes, the event brokers form the nodes
of an overlay routing network that is similar to Pastry [21].
Each node has a unique random numerical identifier associ-
ated with it. The main abstraction provided by the overlay
routing layer is a
route (message, destination id)

function that allows a broker to send a message to an-
other broker with a particular id which is then routed via
the overlay network. If a node with this identifier does not
exist, the message is delivered to the node with the numeri-
cally closest id.

Using an overlay network has several advantages: First,
the fault-tolerance mechanisms provided by the overlay net-
work are used to manage the logical network of brokers.
Link and node failures are dealt with transparently by the
overlay network. Second, the connection and disconnection
of brokers to/from the network is handled by the overlay
layer. Finally, the overlay routing operation allows brokers
to find rendezvous points for building event dissemination
trees, as explained in the next paragraph.

As mentioned before, advertisements are generated by
event publishers to create an event dissemination tree. Sub-
scriptions need to be joined with advertisements in the net-
work so that routing paths for future notifications are set up.
Different methods have been proposed to do this [8, 4, 12],
but they rely on either broadcasting advertisements or sub-
scriptions through the entire network of brokers. These
global broadcasts are not scalable and will lead to incon-
sistent system state when network partitions occur. In con-
trast, Hermes uses rendezvous nodes in the network, which
are special event brokers that are known to both publishers
and subscribers. They function as meeting points for adver-
tisements and subscriptions, similar to cores in Core-Based
Multicast Trees [3]. For each event type, a rendezvous node
exists in the network. To find a particular rendezvous point,
a hash value of the event type name is calculated, and the re-
sult is the node id of the rendezvous node. The route func-
tion is then used to send an advertisement or subscription to
the rendezvous node. No global knowledge is required. To
prevent rendezvous nodes from being single points of fail-
ure, they are replicated throughout the network of brokers
(Section 4.3).

3.2. Type- and Attribute-Based Publish/Subscribe

Traditionally, there has been an impedance mismatch
between programming language objects and events. Most
content-based pub/sub systems view events as untyped col-
lections of attribute/value pairs, but modern programming
languages only support statically or dynamically typed ob-
jects. As a result, an event-based middleware should sup-
port proper event typing so that events can be treated as first-
class programming language objects [16]. The Cambridge
Event Architecture (CEA) [1, 19] was developed with this
idea in mind, and Hermes follows its approach by associat-
ing every event and subscription with an event type that is
type-checked at runtime. The event type contains a number
of data fields (i.e. attributes). We call the underlying model
type- and attribute-based publish/subscribe.

Publish/subscribe systems can be divided into topic-
based and content-based systems. Topic-based systems al-
low the subscriber to specify a topic of interest, but have
the shortcoming that no filtering at a finer granularity can be
made. On the other hand, content-based subscriptions allow
filtering depending on event data, but in a large-scale sys-
tem, grouping events into related types (i.e. topics) would
help to manage a large number of different events. There-
fore, a type- and attribute-based system does a combina-
tion of both: first, the event subscriber specifies the event
type (i.e. topic) it is interested in, and then supplies a filter
expression that operates on the attributes provided by this
event type. Since the middleware knows the event type and
its definition, it can type-check events and subscriptions at
runtime, and inform the user about any mismatches. This
helps to build a more robust distributed system, especially
in an environment where event types are evolving.

Each event type is managed by an event broker that func-
tions as the rendezvous node for this type. Event types are
organised into event type hierarchies similar to class hierar-
chies in an object-oriented language. This means that event
types can be derived from each other using inheritance to
create more specialised types. A subscription that operates
on a parent type will also match all events that are of a de-
scendent type (supertype subscription). However, no global
type hierarchy is enforced so that several independent hier-
archies with distinct root types can exist. A single global
hierarchy could not be enforced on an Internet-scale.

3.3. Architecture

The architecture of Hermes follows a layered approach
as shown in Figure 2. The middleware is assumed to be
deployed on an IP unicast network like the Internet. On
top of that, an overlay routing network between the event
brokers is established. This routing network enables the
type-based pub/sub layer to set up rendezvous nodes that

Figure 2. The Layered Architecture of Hermes

manage particular event types. The functionality provided
by this layer is that of a topic-based pub/sub system. Filter-
ing depending on the event data is then implemented by the
type- and attribute-based pub/sub layer. It distributes filter
expressions through the network of event brokers to achieve
source-side filtering on event attributes.

The event-based middleware layer provides the API that
programmers use to implement applications. It allows the
programmer to advertise, subscribe to, or publish events,
to add or remove event types from the system, and it per-
forms type-checking of events and subscriptions. The mid-
dleware layer consists of several modules that implement
further middleware functionality such as fault-tolerance, re-
liable event delivery, event type discovery, security, transac-
tions, mobility support etc.

4. Event Routing Algorithms

The choice of algorithm for event dissemination strongly
determines the overall scalability of an event-based middle-
ware. Hermes uses a scheme that is more scalable than ex-
isting approaches because it does not require global broad-
casts. We first present the algorithm implemented by the
type-based pub/sub layer which disseminates events solely
based on their type, and then outline the extensions by
the type- and attribute-based pub/sub layer that supports
content-based filtering. Both pub/sub layers exchange four
kinds of messages using the overlay network layer:

Type Messages add new event types to the system and
set up rendezvous nodes for them. A type message con-
tains the definition of an event type which is stored at a
rendezvous node. Published events can be type-checked
against this definition.

Advertisement Messages denote an event publisher’s
capability of publishing a certain event type. They set up
event dissemination paths in the broker network and are
routed towards rendezvous nodes.

Subscription Messages express a subscriber’s interest in
certain events. In connection with advertisements, they cre-

ate paths for events through the network of brokers and are
routed towards rendezvous nodes. They may follow the re-
verse path of advertisements for filtering, as described later.

Publication Messages carry published events in mes-
sage form. They are sent by event publishers and follow the
paths created by advertisement and subscription messages.

4.1. Type-Based Routing

The type-based routing algorithm works as follows: Be-
fore an event can be published, the corresponding ren-
dezvous node must be set up by routing a type message
to the event broker, whose numerical id is the hash of the
event type name. Figure 3 shows an overlay network with
two subscribers ������	
�� , two publishers
�����	
�� and six event
brokers, ��������� ��� and � . A rendezvous node � has been set
up by a type message �
 coming from publisher

 . Now,

 � and

 can send advertisement messages, � � and �
 ,
to the rendezvous node � . The two subscribers subscribe
to this event type (i.e. topic) by routing two subscription
messages, � � and �
 , to the rendezvous node. Each broker
along the path of an advertisement or subscription message
keeps state about the messages it has forwarded. It stores
the identifiers of the brokers that send or were sent the mes-
sage. This gives a distributed history of all the message
flows through the network.

Finally, publisher
 � sends a publication message � �
containing an event. The message follows the advertisement
path up to the rendezvous node � . Whenever it reaches a
broker that contains state about a subscription of the same
type, the publication message follows the reverse path [13]
of this subscription and, thus, reaches all subscribers. Pub-
lications are not necessarily routed through the rendezvous
node, which could otherwise become a bottleneck. Ren-
dezvous nodes are a way to ensure that advertisement and
subscription messages will meet in the network so that an

Figure 3. The Type-Based Routing Algorithm

event dissemination tree for publications is set up. Note that
other brokers which are not part of the tree are unaffected
by any of the messages.

Similar to the Siena’s coverage relation [8], an event bro-
ker only passes on a message if an equivalent or more gen-
eral message has not already been sent on. For example, the
broker � � will only forward the first advertisement message
� � and ignore the second one (�
) because it does not con-
vey any new information.

4.2. Type- and Attribute-Based Routing

The type- and attribute-based pub/sub layer extends the
type-based layer by distributing filter expressions through
the network of brokers. Subscribers can now issue sub-
scriptions that filter events depending on the event data (i.e.
the attributes). Figure 4 illustrates how filter expressions
are distributed through the network and create state in event
brokers. A local event matching algorithm [18] can be ap-
plied to efficiently match events against filter expressions
held at a single broker.

As in the type-based case, a rendezvous node � is first
created by a type message. After that, the two publishers,

 � and

 , announce their presence by sending advertise-
ment messages. When subscriber � � decides to subscribe, it
routes a subscription message � � to the rendezvous node � .
Whenever the subscription reaches a node that holds state
about an advertisement for the same event type, the sub-
scription message follows the reverse path of this advertise-
ment. Every broker that forwards a subscription message
stores the filter expression in addition to the state kept for
type-based pub/sub. Event publications (e.g. � �) then fol-
low the reverse path taken by subscriptions. Since filtering
state exists in the brokers along this path, events are filtered
as close to the source as possible. Again, subscriptions only
need to be forwarded by a broker if the new filter expression
is more general than any of the previous subscriptions along
the same path. Therefore, the broker � � does not forward
subscription �
 assuming it is already covered by � � . A bro-
ker might decide to merge filters [20] in order to reduce the
state kept in the system.

Moreover, the type- and attribute-based pub/sub layer
manages hierarchies of event types. When a new event type
is added to the system, a parent event type can be specified.
The rendezvous node for the parent type is informed and
keeps a reference to all its descendent event types. For su-
pertype subscriptions, a rendezvous node sends every sub-
scription message to the rendezvous nodes of all its descen-
dent types. Figure 5 gives a simple example of a supertype
subscription with a hierarchy of three event types. The sub-
scription for the event type ��� will result in notifications of
any of the types ����� �!�#" � �!�#"
%$.

Figure 4. The Type- and Attribute-Based Rout-
ing Algorithm with Filtering

Figure 5. Supertype Subscription

4.3. Fault-Tolerance

Throughout the entire design, fault-tolerance plays an
important role in a large-scale middleware system as link or
node failures are frequent in wide-area networks with many
nodes. Hermes takes advantage of the fault-tolerance and
repair mechanisms provided by the overlay routing layer.
This enables it to survive multiple link and broker failures
and to adapt its routing state so that it can still deliver events
to subscribers. The entire state in the event brokers is soft
state that has to be refreshed periodically. A heartbeat pro-
tocol ensures that the neighbours of an event broker are
reachable and alive. In general, a Hermes middleware has
to handle four different kinds of failure, for which different
techniques are available.

Link Failure: A link failure is a short- or long-term in-
ability of a node to contact one of its logical neighbours.
This could be caused by a failure at the IP routing level.
The overlay routing algorithm will then adapt the logical
topology of the broker network and circumvent the failed
link [22, 26]. This should only affect the event dissemina-
tion tree to a limited degree.

Event Broker Failure: A regular heartbeat message is
used to detect failed event brokers in the absence of other
communication. A failed broker can cause a gap in the event

dissemination tree. To heal the tree, the event broker that
detected the failure re-routes the subscriptions and adver-
tisements that previously went via the failed broker to the
rendezvous node. After the overlay network has adapted, a
new path via a different broker is set up while the old path
will expire after some time because of soft state.

Event Client Failure: The failure of an event publisher
or event subscriber is handled entirely by the soft state ap-
proach in Hermes. After an event client has failed, it will
stop refreshing its advertisements or subscriptions. Any
routing state in the network will expire after some time.

Rendezvous Node Failure: To prevent rendezvous
nodes from being single points of failure, they are repli-
cated. If an event client does not receive an acknowledge-
ment from a rendezvous node after sending a subscrip-
tion or advertisement message, it will try contacting an-
other replica. The node id of a replica rendezvous node
is obtained by concatenating a salt value to the event type
name before calculating the hash function [26]. For load-
balancing or latency reasons, an event client can use any of
the replicated rendezvous nodes as its primary contact point.
This is transparently handled by the fault-tolerance module
in the middleware layer.

A challenge is to keep consistency between replicated
rendezvous nodes and to ensure that event dissemination
trees will cover all replicas. The problem is similar to mul-
ticast with multiple cores as described in [25]. A subscriber
should be able to contact any of the replicated rendezvous
nodes and still be able to receive events coming from event
publishers attached to a different replica. Four different
techniques can be identified to achieve this, and we are cur-
rently working on simulating their respective benefits.

Clients subscribe to all RNs: When a client issues a
subscription, it has to separately send this subscription to
all replicated rendezvous nodes. For a global subscription,
all rendezvous nodes must be contacted. An event publisher
may then advertise to any rendezvous node. This makes
subscriptions more expensive in terms of message counts.

Clients advertise to all RNs: An event publisher ad-
vertises its event types to all replicas, and subscribers may
subscribe to any replica. This creates an overhead for every
event publisher in the system.

RNs exchange subscriptions: Event clients only sub-
scribe to a single replica, but this replica then subscribes to
all other ones. In case of network partitions between repli-
cas, the subscriber will potentially not receive all events, but
it will be able to subscribe as long as at least one replica is
reachable. Replicas need to support a reconciliation proto-
col when they re-join after a network partition.

RNs exchange advertisements: In this scheme, the
replicas exchange advertisements. This is more scalable
than the previous scheme when the number of subscriptions
exceeds the number of advertisements in the system.

4.4. Implementation

We have developed a Java-based implementation of Her-
mes, consisting of classes for event brokers, event sources,
and event sinks. The communication between the com-
ponents takes place by passing XML-defined messages.
We have decided to adopt the XML Schema specifica-
tion [24] for defining message formats and event types.
XML Schema is an expressive language with a rich type
system and user-defined data types. The event type model
provided can then be mapped into any other programming
language like Java or C++. We support a mapping be-
tween XML Schema and Java that hides the complexity
of XML messages from the event client. Events appear to
be Java objects and are transparently translated into XML
messages using Java’s structural reflection. The current
implementation supports the type- and attribute-based pub-
lish/subscribe approach with filtering.

5. Related Work

In this section, we compare our work to a number of
ongoing efforts in the area of publish/subscribe and event
dissemination systems. Hermes can be seen as a result of
the lessons learnt from the Cambridge Event Architec-
ture (CEA) [2, 19]. The CEA provides event sources, event
sinks, and event mediators to decouple sources from sinks.
Direct source-sink notification is provided over a standard
middleware like CORBA. We have experimented with ex-
pressing strongly-typed events in a language-independent
way by defining them in the Object Definition Language
(ODL) [10, 1]. A persistent event service that stores ODL-
defined events in an object-oriented database and a compos-
ite event detector have been implemented. However, event
mediators cannot be linked in an arbitrary topology, essen-
tially limiting the scalability of the architecture.

Siena [8, 6] is a distributed content-based pub/sub sys-
tem consisting of a network of event brokers. It focuses on
the trade-off between scalability and expressiveness. Her-
mes uses the same distributed filtering algorithm to prop-
agate events on the reverse paths of previous subscrip-
tions. However, Siena relies on a global broadcast operation
to disseminate advertisements through the entire network,
which limits its scalability. It does not support the notion of
an event type, and does not provide any other middleware
services. The network of brokers is not able to cope with
failures because of the static logical topology.

A Java-based implementation of an event service is
JEDI [12, 11]. It consists of active objects, which behave
like event sources and sinks, and event dispatchers, which
are similar to event brokers. Although its routing algorithm
is comparable to our approach, as event dissemination trees
are created dynamically after electing a group leader, the

group leader must perform a global broadcast to all other
event dispatchers to announce its presence. Every event dis-
patcher must have knowledge of all group leaders, which is
not scalable. JEDI supports disconnect and re-connect op-
erations that allow mobile event clients to migrate from one
event dispatcher to another. Event types, fault-tolerance and
further middleware services are not supported, and the sys-
tem is tied to a single programming language.

In [5], an architecture for a global event-based notifi-
cation service called Herald is proposed. It is a general
framework that only provides a topic-based pub/sub service
on the Internet using publishers, subscribers and rendezvous
points. Any middleware functionality such as content-based
filtering, event types, naming, composite events, etc. is sup-
posed to be provided by application-level services. Fault-
tolerance based on replicating rendezvous points is sug-
gested, but no algorithm for keeping consistent state be-
tween replicas is described.

Two topic-based event dissemination systems built on
top of an overlay routing network are Bayeux [27] and
Scribe [22]. Both use rendezvous nodes that are created
by routing a message to the topic identifier. No content-
based filtering of topic content is supported, but rendezvous
nodes can be replicated for fault-tolerance. Another limita-
tion lies in the fact that all the event publications must be
sent via the rendezvous node which can become a bottle-
neck. Hermes extends these systems and provides a type-
and attribute-based pub/sub service.

The term type-based publish/subscribe was first intro-
duced in [17, 15]. That work attempts to give an event
type model that cleanly integrates with the type model of an
object-oriented programming language. Events are treated
as first-class (Java) objects, and subscribers specify the class
of objects they are willing to receive. No attribute-based fil-
tering is supported, as this would break encapsulation prin-
ciples. Instead, arbitrary methods can be called on the event
object to provide a filtering condition. Although such an
approach unites publish/subscribe with object-orientation,
an efficient implementation would be difficult since filter
expressions can be arbitrarily complex and thus hard to op-
timise or distribute. We feel that a large-scale distributed
system benefits from expressing subscriptions based on at-
tribute values, as this allows information interest to be ex-
pressed at a finer granularity.

6. Conclusion

Large-scale distributed systems have different require-
ments from systems developed in a single local-area net-
work. The complexity of designing and building these sys-
tems must be reduced by using an appropriate middleware.
It turns out that loosely-coupled event-based communica-
tion has strong advantages compared to a tightly-coupled

invocation-based paradigm. In this paper, we have pre-
sented the design of Hermes, a distributed event-based mid-
dleware. We feel that Hermes addresses many of the is-
sues by focusing on clean programming language integra-
tion without sacrificing scalability or efficiency. Type- and
attribute-based publish/subscribe gives an intuitive model
for using an event-based middleware by first specifying the
type and then filtering within the event attributes. The pro-
posed fault-tolerance mechanisms can be transparent to dis-
tributed application programmers, but make the system ro-
bust on a global scale on which link or node failures are un-
avoidable. The abstraction of an overlay routing layer helps
to hide some of the routing complexity and enables Hermes
to scale to a large number of event clients and brokers.

To obtain performance and scalability figures, we are
currently working on a full implementation of Hermes
within a simulator. In addition, we are investigating ways of
dynamically changing the overlay network topology in re-
sponse to the distribution of subscriptions, advertisements,
and events. Future work will include the provision of more
middleware services like composite event detection, persis-
tent events, access control, transactions, and support for mo-
bile event clients with partial connectivity.

References

[1] J. Bacon, A. Hombrecher, C. Ma, K. Moody, and W. Yao.
Event Storage and Federation using ODMG. In Proc. of
the 9th Int. Workshop on Persistent Object Systems (POS9),
pages 265–281, Lillehammer, Norway, Sept. 2000.

[2] J. Bacon, K. Moody, J. Bates, R. Hayton, C. Ma, A. McNeil,
O. Seidel, and M. Spiteri. Generic Support for Distributed
Applications. IEEE Computer, pages 68–77, Mar. 2000.

[3] T. Ballardie, P. Francis, and J. Crowcroft. Core Based Trees
(CBT). In ACM SIGCOMM ’93, Ithaca, N.Y., USA, 1993.

[4] G. Banavar, T. Chandra, B. Mukherjee, J. Nagarajarao, R. E.
Strom, and D. C. Sturman. An Efficient Multicast Protocol
for Content-Based Publish-Subscribe Systems. In ICDCS,
pages 262–272, 1999.

[5] L. F. Cabrera, M. B. Jones, and M. Theimer. Herald:
Achieving a Global Event Notification Service. In Proc. of
the 8th Workshop on Hot Topics in OS (HotOS-VIII), 2001.

[6] A. Carzaniga, J. Deng, and A. L. Wolf. Fast Forwarding
for Content-Based Networking. Technical report, Dept. of
Computer Science, Univ. of Colorado, Nov. 2001.

[7] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. Challenges
for Distributed Event Services: Scalability vs. Expressive-
ness. In Engineering Distributed Objects ’99, Los Angeles,
CA, USA, May 1999.

[8] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. Design and
Evaluation of a Wide-Area Event Notification Service. ACM
Trans. on Computer Systems, 19(3):332–383, Aug. 2001.

[9] A. Carzaniga and A. L. Wolf. Content-based Networking:
A New Communication Infrastructure. In NSF Workshop on
an Infrastructure for Mobile and Wireless Systems, Scotts-
dale, USA, Oct. 2001.

[10] R. G. G. Cattell et al. The Object Database Standard:
ODMG 2.0. Morgan Kaufmann, 1997.

[11] G. Cugola and E. D. Nitto. Using a Publish/Subscribe Mid-
dleware to Support Mobile Computing. In Middleware for
Mobile Computing Workshop, Heidelberg, Germany, 2001.

[12] G. Cugola, E. D. Nitto, and A. Fuggetta. The JEDI Event-
Based Infrastructure and its Applications to the Develop-
ment of the OPSS WFMS. IEEE Trans. on Software En-
gineering, 27(9):827–850, Sept. 1998.

[13] Y. K. Dalal and R. M. Metcalfe. Reverse Path Forwarding of
Broadcast Packets. Comm. of the ACM, 21(12):1040–1047,
Dec. 1978.

[14] P. T. Eugster, P. Felber, R. Guerraoui, and A.-M. Kermar-
rec. The Many Faces of Publish/Subscribe. Technical report,
EPFL, Lausanne, Switzerland, 2001.

[15] P. T. Eugster and R. Guerraoui. Content-Based Pub-
lish/Subscribe with Strucutural Reflection. In Proc. of the
6th USENIX Conf. on Object-Oriented Technologies and
Systems (COOTS01), Jan. 2001.

[16] P. T. Eugster, R. Guerraoui, and C. H. Damm. On Objects
and Events. In Proc. for OOPSLA 2001, Tampa Bay, USA,
Oct. 2001.

[17] P. T. Eugster, R. Guerraoui, and J. Sventek. Type-Based Pub-
lish/Subscribe. Technical report, EPFL, Lausanne, Switzer-
land, June 2000.

[18] F. Fabret, A. Jacobsen, F. Llirbat, et al. Filtering Algorithms
and Implementation for Very Fast Publish/Subscribe Sys-
tems. In ACM SIGMOD 2001, pages 115–126, May 2001.

[19] C. Ma and J. Bacon. COBEA: A CORBA-Based Event Ar-
chitecture. In Proc. of the 4th USENIX Conf. on O-O Tech.
and Systems, pages 117–131, Santa Fe, USA, Apr. 1998.

[20] G. Mühl and L. Fiege. Supporting Covering and Merg-
ing in Content-Based Publish/Subscribe Systems: Beyond
Name/Value Pairs. IEEE Distributed Systems Online
(DSOnline), 2(7), 2001.

[21] A. Rowstron and P. Druschel. Pastry: Scalable, Decentral-
ized Object Location and Routing for Large-Scale Peer-to-
Peer Systems. In Proc. of Middleware 2001, Nov. 2001.

[22] A. Rowstron, A.-M. Kermarrec, M. Castro, and P. Druschel.
Scribe: The Design of a Large-Scale Event Notification In-
frastrucutre. In Proc. of the 3rd Int. Workshop on Networked
Group Communication (NGC2001), Nov. 2001.

[23] B. Segall and D. Arnold. Elvin has left the Building: A
Publish/Subscribe Notification Service with Quenching. In
Proc. of AUUG Technical Conference ’97, Brisbane, Aus-
tralia, Sept. 1997.

[24] The World Wide Web Consortium. XML Schema Part 1 +
2: Structures and Datatypes. W3C Rec., W3C, May 2001.

[25] D. Zappala and A. Fabbri. An Evaluation of Shared Multi-
cast Trees with Multiple Active Cores. In P. Lorenz, editor,
LNCS 2093, pages 620+, July 2001.

[26] B. Y. Zhao, J. Kubiatowicz, and A. D. Joseph. Tapestry:
An Infrastructure for Fault-Tolerant Wide-Area Location
and Routing. Technical report, Computer Science Division,
Univ. of California, Berkeley, USA, Apr. 2001.

[27] S. Q. Zhuang, B. Y. Zhao, A. Joseph, et al. Bayeux: An
Architecture for Scalable and Fault-tolerant Wide-area Data
Dissemination. In Proc. of the 11th Int. Workshop on Net-
work and OS Support for Digital Audio and Video (NOSS-
DAV01), June 2001.

