
A Framework for Object-Based Event Composition
in Distributed Systems

Peter R. Pietzuch and Brian Shand
Computer Laboratory

University of Cambridge
JJ Thomson Avenue

Cambridge CB3 0FD, United Kingdom
{Peter.Pietzuch, Brian.Shand}@cl.cam.ac.uk

1 Introduction

Large-scale distributed systems benefit from new scal-
able communication mechanisms. In event-based pub-
lish/subscribe communication, components are either
event sources that publish new events or event sinks that
subscribe to events. Events can be seen as notifications
that something of interest has happened in the system.

Composite events represent complex patterns of ac-
tivity from distributed sources. Using mobile detection
objects, we aim to distribute the detection of composite
events too, increasing scalability; together with a novel
composite event language, this improves the efficiency
of detection and the reuse of computations in publish-
subscribe systems, and also provides a natural object-
based representation for composite events.

Consider a distributed computer system such as a
stock exchange information service, in which users can
be notified of changes in particular stock prices, and other
price events. If a user wanted to be notified only when
their shares were rising but the market index was falling,
they could subscribe for these two events separately, in a
traditional publish-subscribe system [3].

However, most of this information would be irrelevant,
and a waste of the user’s bandwidth. Furthermore, two
users with the same notification needs would still have to
perform the same correlations independently.

Instead, we propose a detection framework which al-
lows commonly used composite event detections to be
placed as near to the event sources as possible, and reused
among subscribers. This is illustrated in Figure 1; here
Composite Event Detector CED3 determines when the
market is falling. Another detector, CED2 depends on
this and also the behaviour of the user S4’s stock, notify-
ing S4 when necessary. The figure also shows the reuse
of common expressions such as CED3.

The paper is organised as follows: Section 2 intro-
duces events and composite events and shows how com-
posite events can be cleanly represented as objects. We
present our composite event language that is based on the
idea of regular expressions. Section 3 describes the en-
tire detection framework and shows how it is integrated
with a publish/subscribe system. The paper finishes with
related work (Section 4) and our conclusions.

S
3

CED
1

CED
2

CED
3

S
4

S
2

S
1

S
1
's Stock

NASDAQ FTSE

S
4
's Stock

Figure 1. Distributed Composite Event De-
tection Example

2 Composite Event Objects

Composite Events represent patterns of simpler
events. For example in an Active House scenario [1],
primitive events might be ‘The door opens’ and ‘Peter is
seen in the room’. Similarly, ‘The door opens, then Peter
is seen in the room’ would be an example of a composite
event.

Event objects denote observations in distributed sys-
tems, such as publish-subscribe systems. Eugster et al [4]
have put forward the advantages of treating events as first-
class objects. In this paper, we extend these ideas to com-
posite events too.

Composite events may incorporate simpler composite
events, as well as primitive events. For example, ‘The
door opens, then Brian or Peter is seen in the room’ com-
bines the primitive event ‘The door opens’ with the com-
posite event ‘Brian is seen in the room or Peter is seen
in the room’. We therefore propose to treat both prim-
itive and composite events homogeneously, with similar
object interfaces, providing a framework for efficient dis-
tribution and reuse of composite events and the entities
which detect them.

Composite event objects can then be constructed in a
tree-like structure, with container classes for each of the
operators of the composite event grammar (described be-
low): concatenation, duplication, alternation, paralleliza-

1

interface EventObject {
EventObject[] getChildren()
EventObject[] getEventsMatched()
CEExpression getExpression()
...

}

Table 1. Interface of Event Objects

tion, timing. The common interface of all events objects,
primitive and composite, is shown in Table 1 — which
uses the standard composite design pattern.

To illustrate this, consider the following expression:
‘The front or back door opens, then Brian is seen in the
room, immediately followed by Peter.’

For convenience, we define the following abbre-
viations: Event A = ‘The front door opens’,
Event B = ‘The back door opens’, Event C =
‘Brian is seen in the room’, Event D = ‘Peter is
seen in the room’. The expression then becomes:
‘(A or B) then (C followed by D)’. Figure 2 illustrates
how these primitive event objects can be combined into a
composite event object.

Our composite event specification language is an ex-
tension of regular expressions, allowing temporal rela-
tionships and parallel behaviours to be specified, while
retaining the basic syntax and structure of ordinary reg-
ular expressions. In this way, we build on proven ex-
pressive power and completeness, instead of arbitrarily
choosing our own notation. Furthermore, if the maxi-
mum event rate is known in advance, then our language
has identical expressive power to ordinary regular expres-
sions, but with the advantages that our expressions are
simpler to read and easier to distribute. Thus our com-
posite event detectors could be implemented using finite
state automata, if necessary, using predictable computa-
tional resources.

The following examples of composite events illustrate
our language; the complete grammar is shown in Ap-
pendix A. (Terms marked † have the usual regular ex-
pression interpretation.)

Describable Events are the primitive event sets that can
be matched. This space is assumed to be closed un-
der finite intersection and union and complement,
and includes the empty and universal sets of events.
This would contain the events A. . .D above, and
also event sets such as ‘Anyone being seen in the

Concatenation

Alternation Concatenation

A B C D

Figure 2. The Structure of a Composite
Event Object

room’, and the universal set U .

Atoms match some describable events but not others.
These atoms specify the events to match, and also
the space of events to be considered as potential
matches. If an event in the latter set is encountered,
the match will fail. For example, [C in CD] mon-
itors all events matching C or D, but accepts only
those matching C. In this case, CD is known as the
alphabet of the expression. Note that x ≡ [x in x].
This extends the ordinary regular expression syntax,
in which the alphabet is always the set of all print-
able characters.

Concatenation† represents one regular expression im-
mediately followed by another. E.g. A[C in CD]
matches AC in AC or ABC, but not AD or ADC.

Duplication† allows a regular expression to be matched
repeatedly, e.g. (AC)∗ matches any number of oc-
currences of A and C, so in ABCACCAC the
event pattern ACACAC would be matched.

Alternation† matches either of two expressions, e.g.
AB|CD matches AB or CD or CAD, but not AD.

Parallelization matches two interleaved expressions,
e.g. <AB, CD> matches ABCD or ACDB, but
not ABDC.

Timing matches a composite event only if it occurs
within a given time window, e.g. (A, B)!1s matches
AB only if B’s timestamp is within a second of A’s
timestamp.

Alphabet Sharing is a convenient notation for limiting
the patterns that a composite expression matches.
For example, C&D forces the subexpressions to
share the same alphabet, CD. Thus C&D ≡
[C in CD][D in CD], matching CD but not
CCD.

Returning to the expression of Figure 2, this can be
represented as (A|B)(C&D). Here, the shared alpha-
bet of C and D ensures that Brian may not leave the
room and return before Peter’s entry, for the pattern to
be matched.

This expression may easily be divided into the con-
stituent composite events (A|B) and (C&D), which can
be matched independently before being combined. Par-
ticularly if the A’s and B’s were generated in a different
place from the C’s and D’s, then this might be the most
efficient approach to matching, minimising the commu-
nication bandwidth required. Furthermore, other expres-
sions which relied on (A|B) for example could reuse the
computation with no extra computational cost.

The following section illustrates in detail how this dis-
tribution may be achieved.

3 Mobile Detection Objects

Our framework for object-based event composition is
based on Hermes, an event-based middleware architec-
ture [8]. Hermes consists of event clients, which can be

2

MDO
(A|B)(C&D)

MDO
A|B

MDO
C&D

CE
C&D

RN
subscribe

subscribe

notify

notify notify

CE
A|B

RN
subscribe

subscribe

Composite Event
Object (CEO)

Mobile Detection
Object (MDO)

Composite Event
Rendezvous Node
(CERN)

A B C D

A|B C&D

(A|B)(C&D)

notify

Figure 3. The Composite Event Detection
Framework for the Expression (A|B)(C&D)

interface MobileDetectionObject {
subscribe(MDO mdo, CEventType cet)
unsubscribe(MDO mdo, CEventType cet)
notify(CompositeEventObject ceo)
migrate(Node newNode)
...

}

Table 2. Interface of a Mobile Detection
Object

event publishers or subscribers, and event brokers, which
route events from publishers to subscribers. Event bro-
kers are interconnected and form a logical overlay net-
work for event dissemination. Hermes uses peer-to-peer
routing techniques to deliver events. Each event broker
maintains a set of application-defined objects that can in-
fluence all routing decisions at that broker. We use this
mechanism to install Mobile Detection Objects (MDO)
at brokers that detect occurrences of composite events.

A Mobile Detection Object contains a finite state au-
tomaton, as explained in the previous section, and detects
patterns in the incoming event stream of a broker. Since
one of our requirements was to detect complex composite
events in a distributed fashion, MDOs can cooperate and
delegate the detection of subexpressions to other MDOs
or take advantage of already existing detectors. A Com-
posite Event Expression (CEE) in our language can be
decomposed into subexpressions that can be managed by
different MDOs. The MDOs in the system are organised
in a tree that reflects the syntactic structure of the corre-
sponding CEE. These MDOs are agent-like [5] because
they move freely through the network of event brokers
trying to optimise the event detection process.

An example detection system with MDOs is shown
in Figure 3 for the Composite Event Expression
(A|B)(C&D). The whole expression is decomposed
into subexpressions so that the MDO(A|B)(C&D) takes
advantage of the two detectors, MDOA|B and MDOC&D.
Once an MDO detects a composite event, it creates a
Composite Event Object that is sent to all interested

MDOs and other subscribers.
A remaining problem is how subscribers or other

MDOs locate existing, potentially migrating MDOs in
the network. This is solved by introducing a proxy ob-
ject for each composite event type that keeps track of all
the MDOs for this type. These Composite Event Ren-
dezvous Nodes (CERN) are located at well-known points
in the network. A canonical representation of the com-
posite event type is converted into a hash value that is
used to find the corresponding CERN [8]. When a CERN
receives a subscription for a composite event type, it
subscribes to all existing MDOs on behalf of the orig-
inal subscriber. In Figure 3, MDO(A|B)(C&D) sends
its subscription to CERNA|B which forwards the sub-
scription to the current location of MDOA|B . MDOA|B

will send any future Composite Event Objects directly
to MDO(A|B)(C&D). If a new subscriber joins the sys-
tem, and is interested in the composite event expression
A&B, then it can take advantage of the existing detector
MDOA&B and subscribe to it via the CERNA&B .

Table 2 summarises the main interface methods ex-
ported by a Mobile Detection Object. The subscribe
method is usually invoked by a CERN on behalf of an-
other object. It contains the composite event type and
the identity of the subscriber. The notify method in-
forms the MDO about the occurrence of a new event in
the form of a Composite Event Object. The event could
originate from an event publisher or another MDO. A call
to migrate forces the MDO to leave the current event
broker and move to a different one in the network.

In a large distributed system, event publishers and sub-
scribers will dynamically enter and leave the system. As
a result, the MDO tree for a composite event subscrip-
tion will have to adapt to the state of the system, taking
the set of current composite event subscriptions and the
location of event publishers into account. In our frame-
work, new MDOs can be created at arbitrary points in the
network and existing MDOs can be destroyed when no
longer needed. In addition, existing MDOs can migrate
to different brokers in order to optimise the detection pro-
cess. A number of parameters such as the load of the
event broker, the distance to other MDOs or event pub-
lishers, and the structure of the event expression need to
be considered before making a decision about migration.
We are currently identifying heuristics that can govern the
agent-like behaviour of MDOs in the system.

4 Related Work

Event composition first arose in the centralised con-
text of active databases [2]. Thus, most composite event
languages resemble database query algebras and are of-
ten not intuitive for specifying complex composite events.
More recently, a number of projects addressed composite
event detection in distributed systems: In [9], an archi-
tecture for monitoring distributed systems using events
is presented. An event algebra for specifying composite
events, similar to the ones found in active databases, is
introduced and an implementation using tree-based de-
tectors is provided. However, no automated method for

3

distributing the detectors in the network is given, limiting
the usefulness of this approach in a large-scale context.

The GEM architecture [7] has a complex, but expres-
sive, rule-based monitoring language for a distributed
system. No notion of a composite event type exists which
makes it difficult to integrate this system with a mod-
ern object-oriented programming language. It introduces
techniques to deal with network delays, but does not auto-
matically distribute composite event detectors in the net-
work.

The work of Liebig et al [6] develops a time model for
composite event detection in a distributed system using
partially ordered interval timestamps. The model is able
to correctly deal with delayed events during the detection
process. However, static event channels between event
producers and event consumers are required without the
flexibility of agent-like detectors.

5 Conclusions

This paper has shown a novel, object-based architec-
ture for distributed detection of composite events. By
building on existing publish-subscribe middleware and
regular expression pattern languages, we aim to develop
a powerful yet practical framework, to serve as a devel-
opment environment with tight integration into existing
object-oriented languages such as Java; this will present
a programming paradigm well suited to large-scale dis-
tributed systems.

We also intend to extend our work, to allow users
greater control over event ordering requirements, and
over accuracy against network delays. Finally, we plan
to determine effective heuristics for decomposing Com-
posite Event Expressions, and for migrating Mobile De-
tection Objects. Our future prototypes we will use cost
models to intelligently estimate the utility of each migra-
tion, as the network topology and usage change, allowing
efficient detection of composite events.

References

[1] B. Brumitt, B. Meyers, J. Krumm, A. Kern, and S. A.
Shafer. EasyLiving: Technologies for Intelligent Environ-
ments. In HUC, pages 12–29, 2000.

[2] S. Chakravarthy and D. Mishra. Snoop — An Expressive
Event Specification Language For Active Databases. Tech-
nical Report UF-CIS-TR-93-007, Department of Computer
and Information Sciences, University of Florida, 1993.

[3] P. T. Eugster, P. Felber, R. Guerraoui, and A.-M. Kermar-
rec. The Many Faces of Publish/Subscribe. Technical re-
port, EPFL, Lausanne, Switzerland, 2001.

[4] P. T. Eugster, R. Guerraoui, and C. H. Damm. On Objects
and Events. In Proc. for OOPSLA 2001, Tampa Bay, USA,
Oct. 2001.

[5] N. R. Jennings, K. Sycara, and M. Wooldridge. A
Roadmap of Agent Research and Development. Journal of
Autonomous Agents and Multi-Agent Systems, 1(1):7–38,
1998.

[6] C. Liebig, M. Cilia, and A. Buchmann. Event Composi-
tion in Time-Dependent Distributed Systems. In Proc. of
the Fourth IECIS International Conference on Cooperative
Information Systems, 1998.

[7] M. Mansouri-Samani and M. Sloman. GEM — A Gen-
eralised Event Monitoring Language for Distributed Sys-
tems. In Proc. of ICODP/ICDP ’97, 1997.

[8] P. R. Pietzuch and J. M. Bacon. Hermes: A Distributed
Event-Based Middleware Architecture. To Appear in the
Proceedings of the 1st International Workshop on Dis-
tributed Event-Based Systems (DEBS’02), July 2002.

[9] S. Schwiderski. Monitoring the Behaviour of Distributed
Systems. PhD thesis, Computer Laboratory, University of
Cambridge, 1996.

A Composite Event Grammar

Production Rules

expr : expr VBAR branch
| branch

branch : branch term
| empty

term : term AMPERSAND factor
| factor

factor : factor DUPL
| LPAREN factor COMMA factor RPAREN

TIMESPEC
| atom

atom : LPAREN expr RPAREN
| LT exprlist GT
| describable

exprlist : exprlist COMMA expr
| expr

describable : SYMBOL
| LSQUARE symbols RSQUARE
| LSQUARE symbols IN \

symbols RSQUARE

symbols : symbols SYMBOL
| empty

Selected Tokens

DUPL = ’[*+?]’
TIMESPEC = ’![0-9]+(.[0-9]+)?[hms]’
IN = ’in’

4

