
Hermes: A Scalable Event-Based Middleware

Peter Robert Pietzuch

Queens’ College
University of Cambridge

A dissertation submitted for the degree of
Doctor of Philosophy

February 2004

Abstract

Large-scale distributed systems require new middleware paradigms that do not suffer from the

limitations of traditional request/reply middleware. These limitations include tight coupling

between components, a lack of information filtering capabilities, and support for one-to-one

communication semantics only. We argue that event-based middleware is a scalable and power-

ful new type of middleware for building large-scale distributed systems. However, it is important

that an event-based middleware platform includes all the standard functionality that an appli-

cation programmer expects from middleware.

In this thesis we describe the design and implementation of Hermes, a distributed, event-

based middleware platform. The power and flexibility of Hermes is illustrated throughout for

two application domains: Internet-wide news distribution and a sensor-rich, active building.

Hermes follows a type- and attribute-based publish/subscribe model that places particular

emphasis on programming language integration by supporting type-checking of event data and

event type inheritance. To handle dynamic, large-scale environments, Hermes uses peer-to-peer

techniques for autonomic management of its overlay network of event brokers and for scalable

event dissemination. Its routing algorithms, implemented on top of a distributed hash table, use

rendezvous nodes to reduce routing state in the system, and include fault-tolerance features for

repairing event dissemination trees. All this is achieved without compromising scalability and

efficiency, as is shown by a simulational evaluation of Hermes routing.

The core functionality of an event-based middleware is extended with three higher-level middle-

ware services that address different requirements in a distributed computing environment. We

introduce a novel congestion control service that avoids congestion in the overlay broker network

during normal operation and recovery after failure, and therefore enables a resource-efficient de-

ployment of the middleware. The expressiveness of subscriptions in the event-based middleware

is enhanced with a composite event service that performs the distributed detection of complex

event patterns, thus taking the burden away from clients. Finally, a security service adds ac-

cess control to Hermes according to a secure publish/subscribe model. This model supports

fine-grained access control decisions so that separate trust domains can share the same overlay

broker network.

i

ii

To my parents

iv

Declaration

This dissertation is not substantially the same as any that I have submitted or am currently

submitting for a degree, diploma or any other qualification at any other university.

No part of this dissertation has already been or is being concurrently submitted for any such

degree, diploma or any other qualification.

The work for Chapter 6 was done with Sumeer Bhola while at the IBM TJ Watson Re-

search Center [PB03b]. Material from Chapter 7 is based on a paper co-authored with Brian

Shand [PSB03]. Chapter 8 is based on work with András Belokosztolszki, David Eyers, and

Brian Shand [BEP+03].

This dissertation is the result of my own work and is not the outcome of work done in collabo-

ration, except as specified in the text.

This dissertation does not exceed 60, 000 words, including tables and footnotes, but excluding

bibliography and diagrams.

v

vi

Acknowledgements

First of all, I would like to thank Jean Bacon, my supervisor, who has provided tremendous

advice and support during the time of my PhD. Her insight helped my work go in the right

direction, and she taught me the principles of research work. I am extremely grateful for this.

I also appreciate the assistance and feedback given by Ken Moody.

I have had the pleasure of being a member of the Opera Group. In particular, I enjoyed collab-

orating with András Belokosztolszki, David Eyers, and Brian Shand on various topics. Many

ideas stem from (often hour-long) tea-breaks with the regular tea crowd that included Alan,

Alexis, András, Aras, Brian, Chaoying, Chris, Dan, David, Eiko, Lauri, Nathan, Niki, Salman,

and Walt. I would also like to thank Alan Abrahams, David Eyers, and András Belokosztolszki

for proof-reading my thesis and suggesting improvements.

I am grateful to Sumeer Bhola, who was my mentor while I was doing an internship at the

IBM TJ Watson Research Center. His guidance led to some of the work described in this thesis.

My research was funded by the Engineering and Physical Sciences Research Council (EPSRC),

the Cambridge European Trust, and QinetiQ, Malvern.

Finally, I would like to thank my parents for their support and encouragement throughout the

years, which made it all possible.

vii

viii

Publications

[BEP+03] András Belokosztolszki, David M. Eyers, Peter R. Pietzuch, Jean Bacon, and Ken
Moody. Role-Based Access Control for Publish/Subscribe Middleware Architectures. In
H. Arno Jacobsen, editor, Proceedings of the 2nd International Workshop on Distributed
Event-Based Systems (DEBS’03), ACM SIGMOD, San Diego, CA, USA, June 2003. ACM.

[CBP+02] Jon Crowcroft, Jean Bacon, Peter Pietzuch, George Coulouris, and Hani Naguib.
Channel Islands in a Reflective Ocean: Large-scale Event Distribution in Heterogeneous
Networks. IEEE Communications Magazine, 40(9):112–115, September 2002.

[KDHP03] Evangelos Kotsovinos, Boris Dragovic, Steven Hand, and Peter R. Pietzuch. Xeno-
Trust: Event-Based Distributed Trust Management. In Proceedings of Trust and Privacy
in Digital Business (TrustBus’03). In conjunction with the 14th International Confer-
ence on Database and Expert Systems Applications (DEXA’03), Prague, Czech Republic,
September 2003.

[PB02] Peter R. Pietzuch and Jean M. Bacon. Hermes: A Distributed Event-Based Middle-
ware Architecture. In Jean Bacon, Ludger Fiege, Rachid Guerraoui, H. Arno Jacobsen,
and Gero Mühl, editors, Proceedings of the 1st International Workshop on Distributed
Event-Based Systems (DEBS’02). In conjunction with the 22nd International Conference
on Distributed Computing Systems (ICDCS’02), pages 611–618, Vienna, Austria, July
2002. IEEE.

[PSB03] Peter R. Pietzuch, Brian Shand, and Jean Bacon. A Framework for Event Compo-
sition in Distributed Systems. In Markus Endler and Douglas Schmidt, editors, Pro-
ceedings of the 4th International Conference on Middleware (Middleware’03), volume
2672 of LNCS, pages 62–82, Rio de Janeiro, Brazil, June 2003. Best Paper Award.
ACM/IFIP/USENIX, Springer Verlag.

[PB03a] Peter R. Pietzuch and Jean Bacon. Peer-to-Peer Overlay Broker Networks in an
Event-Based Middleware. In H. Arno Jacobsen, editor, Proceedings of the 2nd Interna-
tional Workshop on Distributed Event-Based Systems (DEBS’03), ACM SIGMOD, San
Diego, CA, USA, June 2003. ACM.

[PB03b] Peter R. Pietzuch and Sumeer Bhola. Congestion Control in a Reliable Scalable
Message-Oriented Middleware. In Markus Endler and Douglas Schmidt, editors, Proceed-
ings of the 4th International Conference on Middleware (Middleware’03), volume 2672 of
LNCS, pages 202–221, Rio de Janeiro, Brazil, June 2003. ACM/IFIP/USENIX, Springer
Verlag.

[PSB04] Peter R. Pietzuch, Brian Shand, and Jean Bacon. Composite Event Detection as
a Generic Middleware Extension. IEEE Network Magazine, Special Issue on Middleware
Technologies for Future Communication Networks, 18(1):44–55, January/February 2004.

ix

x

Contents

1 Introduction 1

1.1 Large-Scale Distributed Systems . 1

1.2 Application Scenarios . 2

1.2.1 Internet-Wide Distributed Systems . 2

1.2.2 Large-Scale Ubiquitous Systems . 3

1.3 Why Event-Based Middleware? . 3

1.4 Research Statement . 4

1.5 Dissertation Outline . 5

2 Background 7

2.1 Middleware . 7

2.1.1 Synchronous Request/Reply Middleware 8

2.1.2 Asynchronous Message-Oriented Middleware 13

2.1.3 Other Middleware . 15

2.2 Publish/Subscribe Systems . 17

2.2.1 Topic-Based Publish/Subscribe . 18

2.2.2 Content-Based Publish/Subscribe . 19

2.3 Peer-to-Peer Systems . 29

2.3.1 Distributed Hash Tables . 30

2.3.2 Application-Level Multicast . 33

2.4 Summary . 35

3 Event-Based Middleware 37

3.1 Overview . 38

3.2 Requirements . 39

3.2.1 Scalability and Expressiveness . 39

3.2.2 Reliability . 40

xi

CONTENTS CONTENTS

3.2.3 Administrability . 40

3.2.4 Usability . 41

3.2.5 Extensibility . 42

3.2.6 Interoperability . 43

3.3 Design . 43

3.3.1 Event Model . 44

3.3.2 Component Model . 47

3.3.3 Routing Model . 50

3.3.4 Reliability Model . 54

3.3.5 Service Model . 55

3.4 Summary . 57

4 Hermes 59

4.1 Overview . 60

4.2 Architecture . 61

4.2.1 Event Brokers . 62

4.2.2 Event Clients . 65

4.3 Routing Algorithms . 67

4.3.1 Message Types . 68

4.3.2 Data Structures . 69

4.3.3 Type-Based Routing . 70

4.3.4 Type-Based Routing with Inheritance . 72

4.3.5 Type- and Attribute-Based Routing . 73

4.3.6 Combined Routing . 75

4.3.7 Fault Tolerance . 78

4.4 Implementation . 81

4.4.1 Pan . 81

4.4.2 Event Data . 83

4.4.3 Middleware Service Extensions . 87

4.5 Summary . 88

xii

CONTENTS CONTENTS

5 Evaluation 89

5.1 Overview . 90

5.2 Simulation Environment . 91

5.2.1 Internet Topology Generation . 92

5.2.2 DSSim . 92

5.2.3 CovAdv . 94

5.3 Experimental Setup . 95

5.4 Experiments . 96

5.4.1 E1: Routing Efficiency . 97

5.4.2 E2: Space Efficiency . 99

5.4.3 E3: Space Distribution . 102

5.4.4 E4: Message Complexity . 102

5.5 Summary . 104

6 Congestion Control 105

6.1 The Congestion Control Problem . 106

6.2 Requirements . 108

6.3 Congestion Control Algorithms . 109

6.3.1 PHB-Driven Congestion Control . 110

6.3.2 SHB-Driven Congestion Control . 115

6.4 Implementation . 116

6.5 Experiments . 117

6.5.1 E1: Link Failure . 118

6.5.2 E2: Bandwidth Limits . 119

6.5.3 E3: Link Failures and Bandwidth Limits 121

6.5.4 E4: Recovery Times . 123

6.6 Related Work . 124

6.7 Summary . 125

7 Composite Event Detection 127

7.1 Composite Events . 128

7.2 Application Scenarios . 129

7.3 Design and Architecture . 131

7.4 Composite Event Detection Automata . 132

xiii

CONTENTS CONTENTS

7.5 Composite Event Language . 134

7.5.1 Examples . 136

7.5.2 Higher-Level Composite Event Languages 137

7.6 Distributed Detection . 138

7.6.1 Mobile Composite Event Detectors . 139

7.6.2 Distribution Policies . 140

7.6.3 Detection Policies . 142

7.7 Implementation and Evaluation . 143

7.8 Related Work . 145

7.9 Summary . 147

8 Security 149

8.1 Application Scenarios . 150

8.1.1 The Active City . 150

8.1.2 News Story Dissemination . 151

8.2 Requirements for Security . 151

8.3 Role-Based Access Control . 152

8.4 The Secure Publish/Subscribe Model . 152

8.4.1 Boundary Access Control . 153

8.4.2 Event Broker Trust . 155

8.4.3 Event Attribute Encryption . 155

8.5 Implementation . 158

8.5.1 Cryptographic Techniques . 158

8.5.2 Hermes Integration . 159

8.6 Evaluation . 160

8.7 Related Work . 160

8.8 Summary . 161

9 Conclusions 163

9.1 Summary . 164

9.2 Further Work . 165

Bibliography 167

xiv

List of Figures

1.1 A news story dissemination system . 2

1.2 The Active Office ubiquitous environment . 3

1.3 A publish/subscribe system . 4

2.1 Components of a synchronous request/reply middleware 9

2.2 Components of an asynchronous messaging middleware 13

2.3 Components in a publish/subscribe system . 18

2.4 The publish-register-notify paradigm in the CEA . 20

2.5 An ODL definition of an event types in ODL-COBEA . 21

2.6 Content-based routing by event brokers in Siena . 23

2.7 A Gryphon network with virtual event brokers . 24

2.8 Hierarchical event routing in JEDI . 26

2.9 Routing a message in a Pastry network . 31

2.10 Addition of a subscribing node in Scribe . 33

3.1 An example of an event type hierarchy . 45

3.2 Illustration of the component model . 48

3.3 Event dissemination trees in a publish/subscribe system 50

3.4 Mapping an overlay network onto a physical network . 53

4.1 Layered networks in Hermes . 60

4.2 Overview of the Hermes architecture . 61

4.3 Type-based routing in Hermes . 71

4.4 Supertype subscriptions with subscription inheritance in Hermes 73

4.5 Type- and attribute-based routing in Hermes . 74

4.6 Pseudo code for combined event routing in Hermes . 77

4.7 Fault-tolerance using type- and attribute-based routing in Hermes 79

4.8 Rendezvous node replication with redundant advertisements in Hermes 80

4.9 An event type schema defined in XML Schema . 84

4.10 An XML definition of a type message . 85

xv

LIST OF FIGURES LIST OF FIGURES

4.11 An XML definition of an advertisement message . 85

4.12 An XML definition of a subscription message . 86

4.13 An XML definition of a publication message . 86

4.14 The mapping between an XML event type and a Java class 87

5.1 The DSSim simulation environment . 91

5.2 A transit-stub topology with five autonomous systems . 93

5.3 The architecture of DSSim . 94

5.4 Logical visualisation in DSSim . 94

5.5 E1: Latency per event versus number of event subscribers 98

5.6 E1: Hop count per event versus number of event subscribers 99

5.7 E2: Routing tables entries versus number of event subscribers 100

5.8 E2: Routing tables entries versus number of event publishers 100

5.9 E2: Routing table entries versus number of event brokers 101

5.10 E3: Distribution of routing tables entries at event brokers 102

5.11 E4: Number of messages versus number of event subscribers 103

5.12 E4: Number of messages versus number of event publishers 104

6.1 An overlay broker network topology with four event brokers 106

6.2 Congestion collapse with the IB–SHB1 link restricted . 107

6.3 Queue utilisation at event broker IB during congestion collapse 107

6.4 Congestion collapse with the PHB–IB link restricted during recovery 108

6.5 Flow of DCQ and UCA messages . 111

6.6 Processing of DCQ and UCA messages at IBs . 113

6.7 Consolidation of UCA messages at IBs . 113

6.8 An event stream at an SHB . 116

6.9 The data path for messages in a Gryphon event broker . 117

6.10 E1: Congestion control after an IB–SHB1 link failure . 119

6.11 E1: NACK window behaviour after the IB–SHB1 link failure 119

6.12 E2: Congestion control with dynamic bandwidth restrictions 120

6.13 E2: Output queue utilisation at broker IB . 120

6.14 E2: UCA messages received at pubend . 120

6.15 A complex overlay broker network topology with sixteen event brokers 121

6.16 E3: Congestion control with link failures and bandwidth restrictions 122

6.17 E3: Doubt horizon rate with link failures and bandwidth restrictions 122

6.18 E3: UCA messages received at the pubend . 122

6.19 E4: Variation of recovery time with the ∆trec threshold 123

xvi

LIST OF FIGURES LIST OF FIGURES

7.1 The Active Office with different sensors . 129

7.2 A system for monitoring faults in a network . 130

7.3 The components of the composite event detection service 131

7.4 The architecture for the composite event detection service 132

7.5 The states in a composite event detection automaton . 133

7.6 The transitions in a composite event detection automaton 133

7.7 A composite event detection automaton . 134

7.8 Illustration of distributed composite event detection . 138

7.9 Two cooperating composite event detectors for distributed detection 138

7.10 The life-cycle of a mobile composite event detector . 139

7.11 The design space for distribution policies . 140

7.12 The network architecture of the Active Office experiment 144

7.13 The amount of data sent in the Active Office experiment 144

7.14 The delay distribution in the Active Office experiment . 145

8.1 An event type hierarchy for the Active City . 150

8.2 The role-based access control model . 152

8.3 Illustration of the secure publish/subscribe model . 152

8.4 An event type hierarchy with attribute encryption . 156

8.5 Subscription coverage with attribute encryption . 158

8.6 Cryptographic keys and key-masters for key-classes . 159

xvii

xviii

List of Tables

2.1 Some object services in CORBA . 10

2.2 The interface of a distributed asynchronous collection . 28

4.1 The Hermes event broker API . 63

4.2 The Hermes event publisher API . 66

4.3 The Hermes event subscriber API . 67

4.4 The Hermes event subscriber callback API . 67

4.5 Routing tables at event broker B1 using type-based routing 71

4.6 Routing tables at event broker B1 using type- and attribute-based routing 74

4.7 The Pan API . 82

4.8 The Pan callback API . 83

4.9 The XML-to-event binding API . 87

5.1 Simulation parameters for the experiments . 95

6.1 The states of a tick in a Gryphon event stream . 116

6.2 Configuration parameters for Gryphon and the PDCC and SDCC algorithms 118

7.1 Summary of five distribution policies . 141

xix

xx

1
Introduction

Event-based middleware is a scalable and powerful new middleware paradigm for building large-

scale distributed systems. This thesis proposes a fully-fledged event-based middleware, as op-

posed to a simple publish/subscribe system for message communication, that provides advanced

features, such as type- and attribute-based event routing, programming language integration,

and common higher-level middleware services, and all without compromising efficiency. Overlay

routing techniques, as found in many peer-to-peer systems, play an important role when build-

ing a scalable event-based middleware for Internet-scale applications. Higher-level middleware

services, such as the detection of composite event patterns, the avoidance of congestion in the

overlay network, and the encryption of event messages, enhance the expressiveness and usability

of the event-based middleware to a distributed applications programmer. Thus, an event-based

middleware can be considered the next generation of middleware, for it will be a fundamental

building block for future complex distributed applications that span the Internet.

1.1 Large-Scale Distributed Systems

With the advent of the Internet, it became possible to build large-scale distributed applications

because of the existence of a global, packet-based communication infrastructure. This increase

in application scale by several orders of magnitude results in systems with millions of nodes that

need to communicate and cooperate in order to achieve a common goal. We envision a world

with large-scale e-commerce and business applications with many components operating over the

Internet in a highly heterogeneous environment. The complexity of designing and building such

1

1.2. APPLICATION SCENARIOS CHAPTER 1. INTRODUCTION

News Corporation

Local News Agency

Figure 1.1: A news story dissemination system

applications can be high, which makes the use of a powerful middleware abstraction important.

However, traditional middleware concepts that were mostly developed in the context of local

area networks (LANs), do not perform well in an environment with wide area networks (WANs).

As a result, new types of middleware are needed for today’s large-scale distributed systems.

1.2 Application Scenarios

In order to understand the requirements of a middleware for large-scale distributed systems, it

is necessary to consider application scenarios, in which the use of traditional middleware would

be prohibitively expensive in terms of efficiency or usability. In the following, we shall present

two example applications for motivating our design of an event-based middleware throughout

the rest of the dissertation. In general, large scale in an application may manifest itself by

either a geographic distribution of nodes, when a global application is spread out over several

continents, or by the concentration of nodes with high density on a relatively small area, such

as in a ubiquitous computing environment within a single building.

1.2.1 Internet-Wide Distributed Systems

Internet-wide distributed systems often involve the exchange of information among a large num-

ber of nodes. A system for news story dissemination is depicted in Figure 1.1, where news

reports that are generated by local news agencies are distributed world-wide among many news

corporations. News corporations prefer to only receive information that they are interested in

and news agencies do not want to deal with the complexity of having knowledge about all news

corporations. In addition, the wide-area communication links between continents need to be

managed efficiently so that congestion does not occur.

2

CHAPTER 1. INTRODUCTION 1.3. WHY EVENT-BASED MIDDLEWARE?

Office 1 Office 2

Meeting Room 1 Meeting Room 2

Office 3

P

P

P

P

P

P

P

P

S S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

S
S

Person

Sensor

Figure 1.2: The Active Office ubiquitous environment

1.2.2 Large-Scale Ubiquitous Systems

A different type of large-scale distributed system is a ubiquitous sensor-rich environment concen-

trated on a small area, such as the Active Office building shown in Figure 1.2. In this building,

sensors that are installed in offices provide information about the environment to interested

devices, applications, and users. The Active Office is aware of its inhabitants’ behaviour and

enables them to interact with it in a natural way. The large number of sensors potentially

produce a vast amount of data. Information consumers prefer a high-level view of the primitive

sensor data. Thus, a middleware used in this application scenario has to cope with high-volume

data and be able to aggregate and transform it before dissemination.

1.3 Why Event-Based Middleware?

The concept of a middleware was introduced to facilitate communication between entities in a

heterogeneous distributed computing environment. Middleware is usually an additional layer

between the operating system and the distributed application on every node that deals with

communication issues and attempts to provide a homogeneous view of the world to the applica-

tion. As such, it is widely used and has proved to be a successful abstraction that helps with the

design and implementation of complex distributed systems. However, traditional middleware is

based on the idea of request/reply communication between two entities in the system. A client

requests information from a server and then waits until the server has responded with a reply.

The client object must know the identity of the server and can only interact with a single server

at a time, which limits scalability.

Publish/subscribe communication is a more scalable paradigm that addresses the shortcomings

of request/reply communication by supporting many-to-many interaction among entities. A

client can be an information producer or an information consumer (see Figure 1.3). Consumers

3

1.4. RESEARCH STATEMENT CHAPTER 1. INTRODUCTION

Publish/Subscribe

System
Information Consumer

Information Producer

Information Producer

Information Consumer

Information ConsumerInformation Producer

Figure 1.3: A publish/subscribe system

state what kind of information they are interested in receiving and it is then the responsibility

of the publish/subscribe system to deliver this information from producers to consumers. This

means that information producers and consumers do not need to know about each other and a

single producer may cause information to be delivered to multiple consumers. It is obvious that

this communication model fits the two application scenarios introduced in the previous section,

as in both cases information has to be disseminated to all interested parties in the system.

A problem is that a pure publish/subscribe system is of limited use to a distributed applications

programmer because the implementation of the communication model alone does not constitute

an entire middleware platform. A better solution is to provide an event-based middleware that

complements the scalable and efficient implementation of the publish/subscribe model with addi-

tional functionality, commonly found in traditional middleware, such as programming language

integration or congestion control, and other functionality, such as composite pattern detection,

which is specific to the publish/subscribe style of communication. Only when an event-based

middleware supports all the features that a programmer expects from a middleware platform,

will publish/subscribe communication be widely adopted for the engineering of large-scale dis-

tributed systems.

1.4 Research Statement

This thesis argues that event-based middleware will form the next generation of middleware

for large-scale distributed systems. We make a case for our argument by describing a feature-

complete event-based middleware called Hermes and proposing three higher-level middleware

services that are implemented on top of Hermes to enhance its functionality. A novel model

of an event-based middleware is introduced that derives from the requirements of large-scale

distributed systems.

The main contribution of this work is the design and implementation of Hermes, a distributed,

content-based, event-based middleware architecture that focuses on scalability, expressiveness,

robustness, extensibility, usability, and interoperability. It substantially differs from previous

publish/subscribe systems by combining ideas from publish/subscribe, peer-to-peer, database,

middleware, and networking research. The main distinguishing features of Hermes are:

4

CHAPTER 1. INTRODUCTION 1.5. DISSERTATION OUTLINE

Peer-to-Peer Routing. The core content-based publish/subscribe functionality of Hermes

is implemented on top of a distributed hash table and uses a novel content-based event

routing algorithm to achieve scalable, robust, and efficient event dissemination. Peer-to-

peer techniques are used to manage the overlay network of event brokers in Hermes and

to recover from faults.

Simulational Evaluation. The efficiency of the Hermes’ routing algorithm is evaluated in a

distributed systems simulator. The performance is compared to a standard algorithm for

content-based event routing in order to prove the scalability and efficiency claims of our

approach.

Programming Language Integration. Hermes integrates publish/subscribe concepts into

the programming language by supporting strong event typing and event binding. Never-

theless, Hermes is not tied to a single programming language, and maintains a language-

independent representation of data.

Moreover, we develop three novel extensions to the core functionality of an event-based mid-

dleware. These higher-level middleware services address various requirements in large-scale

distributed systems and are implemented on top of an event-based middleware such as Hermes.

Congestion Control. A congestion control algorithm is proposed that detects congestion in

the overlay network of a content-based publish/subscribe system and removes its cause

by modifying system parameters. The performance of the congestion control algorithm

is evaluated with realistic experiments in an industrial-strength content-based publish/-

subscribe system.

Composite Event Detection. The expressiveness of the event-based middleware is increased

with a generic service for the distributed detection of composite event patterns. The

composite event detection service is based on extended finite state automata and supports

the decomposition of complex composite event expressions for distribution.

Security. We introduce a secure publish/subscribe model that adds access control to an event-

based middleware. The model supports fine-grained access control decisions down to the

level of individual event attributes and deals with various degrees of event broker trust.

1.5 Dissertation Outline

The remainder of this dissertation is organised as follows:

Chapter 2 provides a survey of the background that is necessary to understand the notion

of an event-based middleware. It first considers various types of existing synchronous and

asynchronous middleware and then gives an overview of current content-based publish/subscribe

systems. The chapter finishes by looking at different types of large-scale peer-to-peer systems.

5

1.5. DISSERTATION OUTLINE CHAPTER 1. INTRODUCTION

Chapter 3 considers the concept of an event-based middleware. It starts by identifying the

requirements of an event-based middleware with respect to building large-scale distributed sys-

tems. From that, several models are derived that describe different aspects of an event-based

middleware and map the design space.

Chapter 4 presents our incarnation of the event-based middleware model called Hermes. It

starts with an architectural overview and then focuses on a detailed presentation of the peer-to-

peer routing algorithms. The chapter concludes with a description of the Hermes implementa-

tion, emphasising language integration issues.

Chapter 5 evaluates the Hermes routing algorithms. After describing the simulational envi-

ronment and experimental setup, it shows the results of four experiments comparing Hermes

routing to a standard approach and discusses them.

Chapter 6 considers congestion in an event-based middleware and introduces our congestion

control algorithms as the first middleware extension. It begins by analysing congestion in a

content-based publish/subscribe system and then derives two complementary mechanisms to

deal with it. The chapter finishes with an evaluation of the congestion control algorithms in

experiments and a survey of relevant related work.

Chapter 7 presents a service for composite event detection, which is the second middleware

extension. First, composite events and suitable application scenarios are introduced in more

detail. After that, the chapter proposes a design and architecture for the distributed detection

of composite events focusing on the composite event language and the composite event detectors.

Finally, we deal with issues related to distributed detection and finish with an evaluation and

related work.

Chapter 8 describes the third middleware extension that addresses security in an event-based

middleware. The chapter analyses the requirements of access control in a content-based publish/-

subscribe system by looking at application scenarios. It explains our secure publish/subscribe

model focusing on boundary restrictions, event broker trust, and event attribute encryption.

Furthermore, we discuss our prototype implementation, an evaluation, and related work.

Chapter 9 gives a brief conclusion, summarising the work described in this thesis, and outlines

future work.

6

2
Background

The purpose of this chapter is to provide the necessary background required to understand the

concepts that relate to an event-based middleware. When designing any novel type of mid-

dleware, it is important to learn from past research experience, which has resulted in many

contrasting middleware technologies with different strengths and weaknesses. In addition, the

Internet has led to increased research into peer-to-peer systems, which created algorithms and

techniques for the design and implementation of large-scale distributed systems. Event-based

middleware can be seen as the intersection of publish/subscribe systems with middleware tech-

nology and peer-to-peer systems.

Consequently, this chapter is structured in a similar fashion starting with an overview of current

middleware technology in Section 2.1, discussing the applicability of each type of middleware

to large-scale distributed systems. After that, state-of-the-art publish/subscribe systems are

reviewed in Section 2.2 with special attention to the existence or lack of middleware features in

more expressive content-based publish/subscribe. The chapter ends with Section 2.3 that de-

scribes different kinds of peer-to-peer systems that handle routing and information dissemination

in large-scale distributed systems.

2.1 Middleware

The idea of a middleware first came up in the 1980s when LANs became commonplace. The

high bandwidth connectivity of LANs made it simpler to build distributed systems consisting

7

2.1. MIDDLEWARE CHAPTER 2. BACKGROUND

of multiple software components running on separate computers, however programmers had to

explicitly deal with the heterogeneity of these systems due to different platforms, protocols, and

programming languages. An obvious solution to the problem was a middleware layer between the

operating system and the application that provides a uniform abstraction to all applications in

the distributed computing environment [BH03]. Since there is no single agreed upon definition of

middleware, it is difficult to state where the operating systems ends and the middleware begins.

For the purpose of this dissertation, we will use a broad definition of middleware.

Definition 2.1 (Middleware) A middleware is a software layer present on every node of

a distributed system that uses operating system functions to provide a homogeneous high-level

interface to applications for many aspects of a distributed computing environment, such as com-

munication, naming, concurrency, synchronisation, replication, persistency, and access control.

One of the main responsibilities of a middleware is to manage the communication of components

in the distributed system. Thus, middleware can often be classified according to its commu-

nication model. A popular model for middleware is request/reply communication that derives

from the programming language concept of a procedure call. In the next section, we will give

an overview of synchronous request/reply middleware that follows this approach. Historically,

the first type of middleware was asynchronous messaging middleware that uses messages to pass

data between components. This type of middleware is more suited to large-scale systems, as

will be shown in Section 2.1.2.

2.1.1 Synchronous Request/Reply Middleware

From an applications programmer’s perspective, it is desirable to have to deal as little as possible

with the extra complexity introduced by distribution. This led to the extension of the program-

ming language concept of a local procedure or function call to a remote procedure call (RPC). In

RPC, a function calls another function that is located on a different node in the system. Since

today’s widely-used programming languages are mostly object-oriented, in practice, methods

on remote objects are invoked instead of single functions. A method of a client object invokes

a method of a remote server object that runs on a different node, resulting in a client/server

relation. Analogous to a local method call, the call is synchronous because the client is blocked

until the remote method returns with a result value from the server.

Synchronous object-oriented request/reply middleware implements this communication abstrac-

tion as illustrated in Figure 2.1. An object reference can either point to a local or a remote

object. A method invocation to a remote object is intercepted locally and the associated method

parameters are marshaled into a representation that can be transfered over the network. The

marshaling code is usually statically auto-generated by the middleware. After transmission,

the parameters are unmarshaled again and the method of the remote object is invoked at the

server-side. The whole process is repeated to return the result value from the server method

back to the client.

8

CHAPTER 2. BACKGROUND 2.1. MIDDLEWARE

Client

Object

Proxy

Object

Server

Object

Skeleton

Object

Application

Marshaling

Network

Local Host Remote Host

Remote Object Reference

Figure 2.1: Components of a synchronous request/reply middleware

The distribution transparency provided by a request/reply middleware creates the illusion that

local and remote method calls can be treated uniformly. As a consequence, a tight coupling

between clients and servers is introduced. Although this works well in a LAN, where network

communication is reliable and inexpensive in terms of latency and bandwidth, the paradigm

breaks down in WANs, where failure is common and the latency of remote calls can be several

orders of magnitude higher than that of local ones. Another problem when building a large-

scale distributed system with a request/reply middleware is that all communication is one-to-one

between exactly two entities, the client and the server. By contrast, in a large-scale system, a

single component may need to communicate with several other components in multicast style,

potentially without even having knowledge of all its communication partners.

In the following, we will describe two commonly used synchronous middleware platforms, CORBA

and Java RMI, in more detail. Even though the underlying synchronous communication paradigm

is not well suited to large-scale systems, it is worthwhile to look at the additional services that are

provided by those middleware platforms to ease the task of the application programmer. More-

over, many synchronous middleware platforms come with asynchronous extensions to alleviate

the problem of tight coupling of communicating entities.

CORBA

The Common Object Request Broker Architecture (CORBA) [OMG02b] is a platform- and

language-independent object-oriented middleware architecture designed by the Object Manage-

ment Group (OMG). CORBA is released as a specification of an open standard that vendors can

implement, which facilitates interoperability between different implementations. It is a mature

middleware technology that is widely used in financial and telecommunication systems and has

inspired many recent middleware initiatives. Some reasons for CORBA’s success are its good

programming language integration across several mainstream languages, the simple extensibility

of the platform using object services, and its adaptation to heterogeneous distributed systems.

The main parts of the CORBA framework are:

9

2.1. MIDDLEWARE CHAPTER 2. BACKGROUND

Service Name Description

Collection Service enables objects to be grouped into collections
Event Service provides asynchronous communication between objects
Naming Service translates names into remote object references
Notification Service extends the event service with filtered communication
Persistence Service supports the storage of objects on disk
Security Service deals with authentication and access control
Trading Services allows clients to discover interfaces
Transaction Service supports transactions across remote method calls

Table 2.1: Some object services in CORBA

Object Request Broker (ORB). The ORB forms the core of the middleware and handles

communication. It resolves object references, which are specified in the Interoperable Object

Reference (IOR) format, to locations and includes an object adapter, which is responsible

for interfacing with local implementations of server objects. Moreover, the ORB performs

the marshaling and unmarshaling of method parameters and sends invocations over the

network using the General Inter-ORB Protocol (GIOP).

Object Model. A powerful feature of CORBA is that it comes with its own object model that

has primitive and object types to define interfaces of remote objects. The object model is

language-independent and the specification provides mappings from the object model to

type systems of common programming languages.

Object Definition Language (IDL). Interfaces of remote objects are defined in IDL, which

is language-independent and supports various bindings. An IDL compiler transforms the

static interface definitions into stub and skeleton source code in a given programming

language that does the marshaling and unmarshaling of method arguments. This has the

advantage that remote method invocations can be statically type-checked by the compiler.

Dynamic Invocation Interface (DII). If the interface of the remote object to be invoked

is not known at compile-time, the DII allows the remote call to be constructed at runtime.

Dynamic invocation is essential when implementing general purpose proxy or browser

objects.

Interface and Implementation Repositories. The interface repository contains the IDL

definitions of interfaces for type-checking remote method calls. The repository can be

queried either at compile-time or at runtime. Correspondingly, the implementation repos-

itory contains all implementations of a remote interface at the server-side so that remote

objects can be activated on demand.

Object Services. The CORBA platform is extensible by means of object services that ad-

dress different facets of a distributed computing environment, ranging from transactional

support to security. Table 2.1 lists a selection of object services.

10

CHAPTER 2. BACKGROUND 2.1. MIDDLEWARE

Asynchronous Method Invocation (AMI). Standard CORBA provides one-way call se-

mantics for best-effort method invocations that do not expect a return value and thus does

not require blocking. A more advanced scheme is AMI where the result value of a remote

method call is supplied in an asynchronous callback to the client.

Although CORBA tries to address the need for asynchronicity in middleware communication for

large-scale systems, its core design is still based on synchronous communication. AMI is a step

in the right direction but it is not a complete solution as it relies on extensions to the IDL that

are hard to use. In addition, CORBA objects are heavy-weight entities due to their support

for many CORBA features and are thus not suitable for a light-weight messaging protocol. An

even more fundamental problem is that many-to-many communication is not part of the basic

services provided by the ORB and can only be simulated by less efficient object services.

Nevertheless, the language-independent and extensible design of CORBA is an important lesson

in how to build middleware for heterogeneous systems. In the next section, we will look at the

CORBA Event and Notification Services that explicitly deal with asynchronous communication.

CORBA Event Service. The OMG acknowledged the need for publish/subscribe commu-

nication in a middleware by introducing the CORBA Event Service [OMG95] as a CORBA

extension. It is centred around the concept of an event channel, which connects suppliers to

consumers of data in a decoupled fashion. The communication among suppliers and consumers

can be in pull mode, in which case a consumer requests data from suppliers via the event channel.

The alternative is that suppliers push data to the consumers in push mode. Data is represented as

events that are either typed or untyped. Untyped events are attributes of the CORBA datatype

any that can be cast to any datatype. For typed communication, suppliers and consumers agree

on a particular IDL interface and use its methods to exchange information in pull or push mode.

The Event Service enables CORBA clients to participate in many-to-many communication

through an event channel. The asynchronous communication is implemented on top of CORBA’s

synchronous method invocation and thus has the substantial overhead of performing a remote

method invocation for every event communication. Moreover, event consumers cannot limit the

events that they receive from an event channel because no event filtering is supported.

CORBA Notification Service. The CORBA Notification Service [OMG02a] addresses the

shortcomings of the Event Service by providing event filtering, quality of service (QoS), and

a lightweight form of typed events. These structured events are divided into a header and a

body. Both contain attribute/value pairs that hold the data associated with the event, but only

the header attributes are externally visible. This allows event consumers to restrict the events

that they receive from the event channel by specifying filters over the attributes using a filter

constraints language. In addition, events are categorised according to their type with a type

name field. A particular event may be uniquely identified through its event name.

11

2.1. MIDDLEWARE CHAPTER 2. BACKGROUND

With structured events, the Notification Service implements a sophisticated type mechanism

for event data. It comes with an expressive content-based filtering language for events and

has support for QoS attributes. However, since the Notification Service attempts to maintain

backwards compatibility with the Event Service, it suffers from the same problems with regard

to communication efficiency over synchronous request/reply.

Java RMI

The Java programming language is popular for network programming and has therefore built

in middleware functionality. The Java Remote Method Invocation (RMI) specification [Sun99b]

describes how to synchronously invoke methods of remote objects using request/reply communi-

cation between two Java Virtual Machines (JVMs) running on separate nodes. The Java RMI

compiler generates marshaling code for the proxy object and the server skeleton. Because of

the homogeneous environment created by JVMs, in which there is only a single programming

language, the burden on the middleware is lower. It is even possible to move executable code

between JVMs by using Java’s object serialisation to flatten an object implementation into a

byte stream for network transport.

Asynchronous event communication within a single JVM is mainly used in the Abstract Win-

dow Toolkit (AWT) libraries for graphical user interfaces. The EventListener interface can be

implemented by a class to become a callback object for asynchronous events, such as mouse or

keyboard events. The Jini framework, described below, extends this to provide event commu-

nication between JVMs. Other variants of asynchronous communication in Java are provided

by the messaging infrastructure of JMS (Section 2.1.2) and the tuple spaces in the JavaSpaces

specification (Section 2.1.3).

Jini. The Jini specification [Sun03b] enables programmers to create network-centric services

by defining common functionality for service descriptions to be announced and discovered. For

this, it supports distributed events between JVMs. A RemoteEventListener interface is ca-

pable of receiving remote callbacks of instances of the RemoteEvent class. A RemoteEvent

object contains a reference to the Java object where the event occurred and an eventID that

identifies the type of event. A RemoteEventGenerator accepts registrations from objects and

returns instances of the EventRegistration class to keep track of registrations. It then sends

RemoteEvent objects to all interested RemoteEventListeners. Event generators and listeners

can be decoupled by third-party agents, for example, to filter events, but the implementation is

outside the Jini specification and left to the programmer.

As is the case for CORBA, event communication in Jini is built on top of synchronous Java

RMI, so the same restrictions that limit scalability and efficiency apply. More recently, Jini

started to use tuple spaces for asynchronous communication (Section 2.1.3).

12

CHAPTER 2. BACKGROUND 2.1. MIDDLEWARE

Sender ReceiverApplication

Network

Local Host Remote Host

Message

Queues

Message Server

Figure 2.2: Components of an asynchronous messaging middleware

2.1.2 Asynchronous Message-Oriented Middleware

A purely asynchronous approach to communication in a middleware is taken by a message-

oriented middleware (MOM) [BCSS99]. Traditionally, it is used in connection with databases

and transaction processing systems. Message-oriented middleware is based on the model of

message-passing between a sender and a receiver in a distributed system, which is shown in

Figure 2.2. A sender sends a message to a receiver by first inserting it into a local message

queue. It then becomes the responsibility of the message-oriented middleware to deliver the

message through the network to the receiver’s message queue, which gets an asynchronous

callback once the message has arrived. The sender and the receiver are loosely-coupled during

their communication because they only communicate via the indirection of message queues and

thus do not even have to be running at the same time. Message queues can provide strong

reliability guarantees in case of failure by storing persistent messages on disk.

In a standard message-oriented middleware, communication between clients is still one-to-one

but the model is easily extensible to have many-to-many semantics, such as in publish/subscribe.

To increase scalability for large-scale systems, message queues can be stored on dedicated mes-

sage servers that may transform messages in transit and support multi-hop routing of messages.

A disadvantage of the message-passing model is that it is harder to integrate with a program-

ming language because interaction with the middleware happens through external application

programming interface (API) calls and is not part of the language itself, as is the case for re-

mote method invocation. This means that messages cannot be statically type-checked by the

compiler, but some messaging middlewares support dynamic type-checking of message content.

Event-based middleware and message-oriented middleware have many features in common be-

cause message-oriented middleware often includes publish/subscribe functionality. Therefore,

we will look at JMS and IBM WebSphere MQ, two widely-used messaging platforms, to point

out the characteristics of this type of middleware.

13

2.1. MIDDLEWARE CHAPTER 2. BACKGROUND

JMS

The Java Message Service (JMS) [Sun01] defines a messaging API for Java. JMS clients can

choose any vendor-specific implementation of the JMS specification, called a JMS provider.

JMS comes with two communication modes: point-to-point and publish/subscribe communica-

tion. Point-to-point communication follows the one-to-one communication abstraction of mes-

sage queues. Queues are stored and managed at a JMS server that decouples clients from each

other. Direct communication between a sender and a receiver without an intermediate server

is not supported. In publish/subscribe communication, the JMS server manages a number of

topics. Clients can publish messages to a topic and subscribe to messages from a topic.

Like structured CORBA events, a JMS message is divided into a message header and body.

The header contains various fields, including the destination of the message, its delivery mode,

a message identifier, the message priority, a type field, and a timestamp. The delivery mode can

be set to PERSISTENT to enforce exactly-once delivery semantics, otherwise best-effort delivery

applies. The type of a message is an optional field used by a JMS provider for type-checking the

message. However, most JMS providers currently do not support this. Apart from predefined

fields, the header can also contain any number of user-supplied fields. The message body is

in one of several formats: a StreamMessage, a TextMessage, and a ByteMessage contain the

corresponding Java primitive types. A MapMessage is a dictionary of name/value pairs similar

to the fields found in the header. Finally, an ObjectMessage uses Java’s object serialisation

feature to transmit entire objects between clients.

JMS provides a topic-based publish/subscribe service with limited content-based filtering sup-

port in the form of message selectors. A message selector allows a client to specify the messages

it is interested in by stating a filter on the fields in the message header. The selector syntax is

based on a subset of the SQL92 [SQL92] conditional expression syntax.

Although, at first sight, JMS appears to be a strong contestant for a large-scale middleware,

it suffers from several shortfalls: First, the entire model is centralised with respect to JMS

servers. As a result, JMS servers are heavy-weight middleware components and can become

bottlenecks because the JMS specification does not address the routing of JMS messages across

multiple servers or the distribution of servers to achieve load-balancing. Second, content-based

filtering of messages in JMS only considers the message header but not the message body. This

seriously reduces the usefulness of message filtering. Finally, JMS is tightly integrated with the

Java language. This has the advantage that object instances can be published in a message,

but comes with the price of only supporting Java clients, which is not feasible in a large-scale,

heterogeneous distributed system.

IBM WebSphere MQ

IBM WebSphere MQ [IBM02a] (formerly known as IBM MQSeries) is a message-oriented mid-

dleware platform that is part of IBM’s WebSphere suite for business integration. Messages are

14

CHAPTER 2. BACKGROUND 2.1. MIDDLEWARE

stored in message queues that are handled by queue managers. A queue manager is responsible

for the delivery of messages through server-to-server channels to other queue managers. A mes-

sage has a header and an application body that is opaque to the middleware. No type-checking

of messages is done by the middleware. Several programming language bindings of the API to

send and receive messages to and from queues exist, among them a JMS interface. WebSphere

MQ comes with advanced messaging features, such as transactional support, clustered queue

managers for load-balancing and availability, and built-in security mechanisms.

Having many features of a request/reply middleware, WebSphere MQ is a powerful middleware,

whose strength lies in the simple integration of legacy applications through loosely-coupled

queues. Nevertheless, it cannot satisfy the more complex many-to-many communication needs

of modern large-scale applications, as it lacks natural support for multi-hop routing and ex-

pressive subscriptions. To address these shortcomings, the Gryphon Event Broker, described in

Section 2.2.2, has been added to the WebSphere suite. It extends the basic messaging framework

with multi-broker, content-based publish/subscribe functionality.

2.1.3 Other Middleware

Apart from the previously discussed mainstream middleware platforms, there are also new mid-

dleware architectures that are targeted at specialised application domains. In the following we

present three approaches, web services, reflective middleware, and tuple spaces, that try to face

the novel middleware requirements introduced by large-scale distributed systems. Our design

for an event-based middleware benefits from drawing on these ideas and techniques, as these

middlewares are more deeply founded in current research.

Web Services

Web services [W3C03a, W3C03b, W3C03c] have received much interest in the recent past, as

they have been endorsed by many major software companies. They are an open middleware

framework for application interaction on the Internet that is based on open standards and

existing web protocols, such as XML and HTTP. The web services framework is divided into

three areas — communication protocols, service descriptions, and service discovery.

Simple Object Access Protocol (SOAP). SOAP is a communication protocol that sup-

ports both asynchronous messaging and synchronous RPC among web applications. It

is language-independent through using XML Schema [W3C01a, W3C01b, W3C01c] to

express message formats and invocation interfaces. SOAP messages are transported by

existing protocols, such as HTTP or SMTP. Programming language bindings exist that

tie SOAP RPC calls to client and server interfaces.

Web Services Description Language (WSDL). Interfaces of remote objects that imple-

ment a web service are described in WSDL. WSDL specifies the precise SOAP messages

15

2.1. MIDDLEWARE CHAPTER 2. BACKGROUND

that need to be exchanged when invoking a web service. Language-specific types in the

remote method signatures are mapped to corresponding XML Schema types.

Universal Description, Discovery, and Integration (UDDI). The final part of the web

services framework is the UDDI directory that enables clients to discover WSDL descrip-

tions of services that they want to invoke. Clients use SOAP messages to update and

query the UDDI directory.

Since web services are targeted at the development of internet applications, they support syn-

chronous and asynchronous communication. Synchronous request/reply is built on top of asyn-

chronous messaging by pairing request and reply messages. A web service can export a syn-

chronous and an asynchronous interface to the outside world. However, the interaction between

clients and services is restricted to one-to-one communication. This prevents web services from

being used for large-scale information dissemination. In other words, web services lack publish/-

subscribe functionality.

A design choice of the web services framework was the use of language-independent, open web

standards. This has the benefit that no new protocols or data formats need to be invented. XML

Schema is a powerful and widely-adopted specification for describing and expressing data. Web

services can take advantage of this and thus integrate well within a heterogeneous environment.

We follow the same approach when designing an event-based middleware.

Reflective Middleware

Reflection was first introduced as a programming language concept for languages that can reason

about and act upon themselves [Mae87]. The notion has been extended to middleware, such that

a reflective middleware [KCBC02, Cou01] is capable of inspecting its own state and adapting it

at runtime. This helps the middleware operate in dynamic environments, where the application

requirements and the underlying network properties, such as resource availability and link con-

nectivity, are constantly changing during the lifetime of the middleware. In such environments,

applications demand that the middleware exposes some of its internal state to them and that

it accepts application-specific requests, for example, to reconfigure the network protocol stack

when the wireless connectivity of a client is low. Contrary to traditional middleware, which

hides its state in order to give a high-level abstraction to applications, a reflective middleware

exposes this state by means of meta-interfaces. Its architecture is usually component-based so

that parts of the middleware can be replaced and reconfigured at runtime.

The OpenORB reflective middleware [BCA+01] is a CORBA implementation that leverages re-

flective techniques. The middleware divides into components that each have their own meta-level

components for reflection, populating the component’s meta-space. Meta-spaces are partitioned

into distinct meta-space models, which group together meta-level components that deal, for

example, with structural or behavioural reflection. Behavioural reflection is implemented with

interceptors that can alter interface invocations. Another reflective middleware project is dy-

16

CHAPTER 2. BACKGROUND 2.2. PUBLISH/SUBSCRIBE SYSTEMS

namicTAO [KRL+00], which is an extension of the TAO real-time ORB. It has component

configurators that support the on-the-fly replacement of middleware components. Interceptors

can also inject application code in the execution path of a remote method invocation.

Reflective features in a middleware for large-scale systems are essential to cope with changes

in the environment. Therefore, any novel middleware design, such as an event-based middle-

ware, should be component-based and harness reflective techniques. However, current reflective

middleware is strongly influenced by synchronous request/reply communication as proposed by

CORBA. In the more general case of many-to-many communication, it becomes even more im-

portant to involve the application in the complex interactions between middleware components.

Tuple Spaces

An abstraction for distributed shared memory computing is tuple spaces, first advocated in

the Linda programming language [Gel85]. A tuple space is a shared collection of ordered data

tuples that supports three operations: read to read a tuple from the tuple space that matches

a template, out to read and remove a tuple, and in to insert a new tuple into the space.

The JavaSpaces [Sun03a] specification uses Java’s type system to express elements in a tuple

space and rules for matching them. In addition, it supports transactional access to the tuple

space from distributed hosts. It extends the original Linda interface with a notify operation

that makes an asynchronous callback when a matching element is inserted into the space. To

do this, it follows Jini’s distributed event specification, transmitting a RemoteObject to an

EventListener. IBM’s implementation of tuple spaces is called T-Spaces [Wyc98]. T-Spaces

come with a tighter database integration and supports the dynamic addition of new operators

over the tuple space.

Tuple spaces with asynchronous callbacks as provided by JavaSpaces resemble publish/subscribe

systems. A notify operation can be seen as a subscription, whereas the addition of a new tuple

is a publication. This behaviour is made explicit in the distributed asynchronous collections

described in Section 2.2.2. The challenge, however, is not to rely on a centralised tuple space,

but instead implement a partitioned space in a scalable and efficient way without violating the

original model. Many of the problems here are the same as for an event-based middleware

implementation.

2.2 Publish/Subscribe Systems

The publish/subscribe model [EFGK03] is an asynchronous, many-to-many communication model

for distributed systems. It is an efficient way to disseminate data to a large number of clients

depending on their interests. From a programmer’s point of view, it is simple to use because

it ensures that information is delivered to the right place at the right time. In the publish/-

17

2.2. PUBLISH/SUBSCRIBE SYSTEMS CHAPTER 2. BACKGROUND

Publisher Subscriber

Network

PublisherPublisher SubscriberSubscriberPublish/Subscribe

System

Figure 2.3: Components in a publish/subscribe system

subscribe model, there are two different types of clients, information producers and information

consumers, that disseminate data in the form of events.

Definition 2.2 (Publish/Subscribe Model) The Publish/Subscribe Model has event pub-

lishers that produce events (or event publications) and event subscribers that receive them.

Event subscribers describe the kind of events that they want to receive with an event subscrip-

tion. Events coming from event publishers will subsequently be delivered to all interested event

subscribers with matching interests.

A publish/subscribe system implements the publish/subscribe model and provides a service to

applications by storing and managing subscriptions and asynchronously disseminating events.

An example of a publish/subscribe system with connected publishers and subscribers is given

in Figure 2.3. An important feature of the publish/subscribe model is that clients are decou-

pled. A publisher does not need to know all subscribers that receive an event and, similarly,

subscribers do not know the identity of publishers that send events to them. All communication

between them is handled by the publish/subscribe system. Thus, this loose coupling removes

dependencies between clients so that the publish/subscribe model is a scalable communication

paradigm for large-scale systems.

Many publish/subscribe systems exist that implement different variants of the publish/subscribe

model. A major distinction is how event subscriptions express the interest of event subscribers.

Two main forms of the publish/subscribe model have resulted from this, topic-based (Sec-

tion 2.2.1) and content-based (Section 2.2.2) publish/subscribe. We will use this distinction

to classify current commercial and academic publish/subscribe systems in the remainder of this

section. Moreover, the publish/subscribe model does not dictate whether the implementation is

centralised or distributed, but a centralised implementation can restrict scalability. As a result,

this survey of publish/subscribe systems focuses on distributed implementations.

2.2.1 Topic-Based Publish/Subscribe

The earliest variant of the publish/subscribe model is topic-based publish/subscribe. In topic-

based publish/subscribe, event publishers publish events with respect to a topic or subject.

Event subscribers specify their interest in a topic and receive all events published on this topic.

Therefore topics can be seen as groups in group communication [Pow96]. This makes the im-

18

CHAPTER 2. BACKGROUND 2.2. PUBLISH/SUBSCRIBE SYSTEMS

plementation of a topic-based publish/subscribe system simple and efficient since it can be built

on top of a group communication mechanism such as IP multicast [Dee89].

However, the application scenarios in Section 1.2 indicate that event subscribers benefit from

a more precise specification of interest than just a topic name. Subdividing the event space

into topics has the disadvantage that it is inflexible and may lead to subscribers having to

filter events coming from general topics. Some topic-based publish/subscribe systems alleviate

this effect with hierarchical topics that help structure the topic space. Wildcards in topics

names are often supported to allow subscription to several topics simultaneously. For example,

a subscription to /ActiveOfficeEvent/PeopleEvent/* will deliver all events in subtopics of

the PeopleEvent topic.

Most commercial publish/subscribe implementations are topic-based, such as Java JMS providers

(described in Section 2.1.2) or the TIBCO Rendezvous messaging system [TIB99]. Next, we will

look at the Information Bus architecture, an early topic-based publish/subscribe system, but

after this we will concentrate on content-based publish/subscribe, which is more suitable for an

event-based middleware.

Information Bus

A distributed implementation of a topic-based publish/subscribe system is the Information

Bus [OPSS93]. Data objects (events) are published on a logical information bus that links pub-

lishers with subscribers. The bus is implemented using Ethernet broadcasts in a LAN. Events

carry a hierarchical subject string that subscribers specify in subscriptions, potentially includ-

ing wildcards. Reliable event delivery is achieved by UDP packets with a simple retransmission

protocol. Systems spanning multiple networks can be supported by the architecture with infor-

mation routers that bridge Ethernet broadcasts across networks depending on subscriptions.

Apart from the obvious lack of expressiveness in topic-based publish/subscribe, the Information

Bus architecture suffers from limited scalability as the filtering of events is left to subscribers.

The network can easily be overwhelmed by too many event broadcasts. With a moderate

number of events, this architecture is a simple and effective implementation of a topic-based

publish/subscribe system in a LAN, but otherwise not applicable to large-scale systems.

2.2.2 Content-Based Publish/Subscribe

In a content-based publish/subscribe system, the structure of an event subscription is not re-

stricted — it can be any function over the content of an event. This introduces a trade-off

between scalability and expressiveness [CRW99]. The more expressive an event subscription

becomes, the more difficult it is to evaluate it, increasing the overhead in the publish/subscribe

system. Many schemes for expressing content-based event subscriptions have been proposed. A

content-based subscription usually depends on the structure of the event. As seen before, the

19

2.2. PUBLISH/SUBSCRIBE SYSTEMS CHAPTER 2. BACKGROUND

Event

Source

Event

Sink

1. Publish

3. Notify

Figure 2.4: The publish-register-notify paradigm in the CEA

structure of an event can be binary data, name/value pairs, semi-structured data such as XML,

or even programming language classes with executable code. A subscription is often expressed

in a subscription language that specifies a filter expression over events.

The following is an overview of research efforts that led to content-based publish/subscribe

systems. When describing these projects, we evaluate how suitable they are for the construction

of large-scale distributed systems with respect to scalability of event dissemination and with

emphasis on any middleware functionality.

CEA

The Cambridge Event Architecture (CEA) [BBHM95, BMB+00] was created in the early 90s to

address the emerging need for asynchronous communication in multimedia and sensor-rich appli-

cations. It introduced the publish-register-notify paradigm for building distributed applications.

This design paradigm allows the simple extension of synchronous request/reply middleware,

such as CORBA, with asynchronous publish/subscribe communication. Middleware clients that

become event sources (publishers) or event sinks (subscribers) are standard middleware objects.

The interaction between an event source and sink is illustrated in Figure 2.4. First, an event

source has to advertise (publish) the events that it produces; for example, in a name service. In

addition to regular methods in its synchronous interface, an event source has a special register

method so that event sinks can subscribe (register) to events produced by this source. Finally,

the event source performs an asynchronous callback to the event sink’s notify method (notify)

according to a previous subscription. Note that event filtering happens at the event sources,

thus reducing communication overhead. The drawback of this is that the implementation of an

event source becomes more complex since it has to handle event filtering.

Despite the low latency, direct communication between event sources and sinks causes a tight

coupling between clients. To address this, the CEA includes event mediators, which can decouple

event sources from sinks by implementing both the source and sink interfaces, acting as a buffer

between them. Chaining of event mediators is supported but general content-based routing, as

done by other distributed publish/subscribe systems, is not part of the architecture. More recent

work [Hom02] investigates the federation of separate CEA event domains using contracts that

20

CHAPTER 2. BACKGROUND 2.2. PUBLISH/SUBSCRIBE SYSTEMS

are enforced by special mediators acting as gateways between domains. A Java implementation

of the CEA, Herald [Spi00], supports storage of events.

The design goal of the CEA is to seamlessly integrate publish/subscribe with standard middle-

ware technology. Therefore, events are strongly-typed objects of a particular event class and are

statically type-checked at compile time. Initially, subscriptions were template-based for equality

matching only, but they were then extended with a predicate-based language with key/value

pairs. These subscriptions are type-checked dynamically at runtime. Furthermore, the CEA

provides a service for complex subscriptions based on composite event patterns [Hay96]. This

is an important requirement for an event-based middleware, and we present our approach for

detecting composite events in Chapter 7.

COBEA. The CEA was implemented on top of CORBA in the CORBA-Based Event Ar-

chitecture (COBEA) [MB98]. COBEA can be regarded as a precursor to the CORBA Event

Service that was described in Section 2.1.1. Events are passed between event sources and sinks

as parameters in CORBA method calls because fully-fledged CORBA objects would be too

heavy-weight as events. Event clients can by typed or untyped — a typed client encodes the

structure of an event type in an IDL struct datatype, whereas an untyped client uses the generic

any datatype. Type-checking for typed clients is done by the IDL compiler. The subscription

language consists of a conjunction of predicates over the attributes defined in the event type.

ODL-COBEA. The use of CORBA IDL to express event types is cumbersome since its orig-

inal purpose is the specification of interfaces for remote method calls. In [Pie00], COBEA is

extended with an event type compiler that transforms event type definitions in the Object Defi-

nition Language (ODL) [CBB+97] into appropriate CORBA IDL interfaces. The ODL language

is a schema language defined by the Object Data Management Group (ODMG). With ODL,

objects can be described language-independently for storage in an object-oriented database. The

advantage of using ODL for event definitions is that it provides support for persistent events

because it unifies the mechanisms for transmission and storage of events [BHM+00].

An example of an ODL-defined event type, as it would be used in the Active Office application

scenario, is given in Figure 2.5. Event types consist of a set of typed attributes and form an

ODL inheritance hierarchy, in which all types are derived from the BaseEvent ancestor class.

The BaseEvent type has attributes that all event types inherit, namely a unique id field, a

priority field, a source field with the name of the event source that generated this event,

1 class LocationEvent extends BaseEvent {
2 attribute short id;

3 attribute string location;

4 attribute long lastSighting;

5 };

Figure 2.5: An ODL definition of an event types in ODL-COBEA

21

2.2. PUBLISH/SUBSCRIBE SYSTEMS CHAPTER 2. BACKGROUND

and a timestamp. ODL-COBEA is aware of inheritance relationships between event types and

supports supertype subscriptions. When an event subscriber subscribes to an event type, it will

also receive any published events that are of a subtype of the type specified in the subscription.

This means that an event subscriber that subscribes to the BaseEvent type will consequently

receive all events published at a given event source.

The CEA and in particular the ODL-COBEA implementation recognise the importance of type-

checking for events in a publish/subscribe system. The object-oriented approach for defining

event types cleanly integrates with current object-oriented programming languages and middle-

ware architectures. Static type-checking, as done by an event type compiler, does not introduce

a runtime cost, but it tightly couples event sinks to sources.

The main disadvantage of the CEA is the lack of content-based event routing between event

mediators. This limits the scalability of the architecture as it forces a subscriber to know the

publisher (or mediator) that offers a particular event type. In addition, it makes the implementa-

tion of event sources challenging because they are required to perform event filtering depending

on subscriptions. Several distributed content-based publish/subscribe systems were proposed

after the CEA to address these problems.

Siena

One of the first implementations of a distributed content-based publish/subscribe system is

the Scalable Internet Event Notification Architecture (Siena) [Car98, CRW01]. Siena is a

multi-broker event notification service that is targeted at Internet-scale deployment. Event

publishers and subscribers are clients that first need to connect to an event broker in the logical

overlay network. Events published by publishers are then routed through the overlay network of

brokers depending on the subscriptions submitted by subscribers. This process of content-based

routing [CRW00] can be viewed as a distributed implementation of an event matching algorithm

so that events are delivered to all interested subscribers.

A Siena event, called a notification, consists of a set of typed attributes. Subscriptions are

conjunctions of event filters, which are predicates over the event attributes. A subscription covers

a notification if and only if all event filters in the subscription hold when evaluated with respect

to the notification. A subscription s1 covers another subscription s2 (or an advertisement a1) if

and only if any notification that is covered by s2 (or a1) is also covered by s1. A more detailed

presentation of the covering relation will be be given in Section 3.3.1.

Although several topologies for the network of event brokers in Siena are proposed, we will only

consider the general peer-to-peer topology because it is most realistic for a large-scale network.

The content-based routing algorithm for this topology uses three types of messages, advertise-

ments, subscriptions, and notifications. It is based on the idea of reverse path forwarding of

messages in broadcast algorithms [DM78]. A formal description of the Siena routing algorithm

can be found in [Müh02].

22

CHAPTER 2. BACKGROUND 2.2. PUBLISH/SUBSCRIBE SYSTEMS

B1

B2

B4

B3

P

S

a

n

n

s

s

a

aa

n

Figure 2.6: Content-based routing by event brokers in Siena

Advertisements. An advertisement message is sent by publishers to express their intention to

publish events. It sets up routing state in the broker network so that future notifications

can be delivered to all subscribers. The advertisement must cover all notifications that the

publisher intends to publish. An advertisement message is broadcast through the entire

overlay broker network unless it is covered by a previous advertisement.

Subscriptions. A subscription message contains the specification of interest submitted by a

subscriber. It creates state in the overlay broker network by following the reverse path of

any advertisement that covers this subscription.

When advertisement/subscription messages propagate through the network, they create entries

in advertisement/subscription routing tables that store (1) the advertisement/subscription mes-

sage, (2) the last hop, and (3) the next hop for this message.

Notifications. Notification messages carry the events that are delivered to subscribers. Noti-

fications follow the reverse path of any subscriptions that cover them. No state in event

brokers is created for notifications.

The operation of the content-based routing algorithm together with the state kept in routing

tables at event brokers is illustrated in Figure 2.6. In this example, event publisher P sends an

advertisement a that is stored at event brokersB1, B2, B3, andB4. After that, event subscriber S

creates a subscription s that is covered by the previous advertisement a. Therefore, s follows

the reverse path of a through the event broker B3 and B1, and state in subscription routing

tables is set up. Finally, P publishes the notification n that follows the reverse path of s and

reaches subscriber S.

A characteristic feature of this routing algorithm is that subscriptions are pushed close to the

publishers. This allows filtering to take place immediately after the publication of a notification,

thus saving network bandwidth as only events that have interested subscribers are propagated

further through the network. The propagation of a new, more specific advertisement/subscrip-

tion can be avoided if it is covered by a previous, more general advertisement/subscription. The

rationale behind this is that the new advertisement/subscription would not set up a new path

through the overlay network and hence can be discarded. This helps reduce the state kept in

routing tables and the bandwidth used in the network for advertisement/subscription messages.

23

2.2. PUBLISH/SUBSCRIBE SYSTEMS CHAPTER 2. BACKGROUND

B1

IB1

PHB

B2 B3

SHB1

B6

SHB2

B7

IB2

B4 B5

SHB3

B8

SHB4

B9

Figure 2.7: A Gryphon network with virtual event brokers

Siena is a promising approach for a large-scale middleware but it lacks support for type-checking

of events. The complete freedom given to publishers to advertise and publish any event makes it

harder to catch type-mismatch errors during system development. Even though the idea of event

patterns is introduced as a higher-level service, little detail is given on detection and temporal

issues, as addressed in Chapter 7.

Considering the content-based routing algorithm, the scalability of Siena suffers from the fact

that, in the worst case, advertisement messages have to reach every event broker in the overlay

broker network. This introduces an unknown delay until a message has been successfully pro-

cessed by all the event brokers and reduces the robustness of the routing algorithm. In addition,

the topology of the overlay network of event brokers is static and must be specified at deploy-

ment time. The efficiency of the content-based routing will therefore depend on the quality of

the overlay network topology. Having a static topology is not feasible for a large-scale system,

that may involve thousands of event brokers running at geographically dispersed sites.

Gryphon

The Gryphon project at IBM Research [IBM01] led to the development of an industrial-strength,

reliable, content-based event broker that is now part of IBM’s WebSphere suite as the IBM Web-

Sphere MQ Event Broker [IBM02b]. It is a mature publish/subscribe middleware implemen-

tation with a JMS interface that provides a redundant, topic- and content-based multi-broker

publish/subscribe service. The Gryphon event broker has been successfully deployed for large-

scale information dissemination at global sports events, such as the Olympic Games. It includes

an efficient event matching engine, a scalable routing algorithm, and security features.

Gryphon is based on an information flow model for messaging [BKS+99]. An information flow

graph (IFG) specifies the exchange of information between information producers and consumers.

Information flows can be altered by (1) filtering, (2) stateless transformations, and (3) stateful

24

CHAPTER 2. BACKGROUND 2.2. PUBLISH/SUBSCRIBE SYSTEMS

transformations (aggregation). A logical IFG is mapped onto a physical event broker topology.

Figure 2.7 shows an example of a Gryphon deployment. Nodes in the IFG are partitioned into

a collection of virtual brokers PHB, IB1,2, and SHB1−4, which are then mapped onto clusters of

physical event brokers called cells. Similarly, edges connecting nodes in the IFG are virtual links

that map onto link-bundles, containing multiple redundant connections between event brokers

for reliability and load-balancing.

An event broker that has publishing clients connected to it is called a publisher-hosting bro-

ker (PHB). It contains publisher endpoints (or pubends), which represent a collection of pub-

lishers that enter information into the IFG. Correspondingly, a subscriber-hosting broker (SHB)

consumes information through one or more subscriber endpoints (or subends) from the IFG

according to its subscriptions. An event broker that is neither publisher-hosting nor subscriber-

hosting is an intermediate broker (IB). The topology mapping is statically defined at deployment

time, although more recent work includes dynamic topology changes due to failure and evolution.

Several extensions are implemented as part of the Gryphon event broker.

Guaranteed Delivery. A guaranteed delivery service [BSB+02] provides exactly-once delivery

of events, as required for JMS persistent events. The propagation of information (knowledge)

from pubends to subends is modelled with a knowledge graph. Lost knowledge due to message loss

causes curiosity to propagate up the knowledge graph and trigger the re-transmission of events.

Curiosity is implemented as negative acknowledgement (NACK) messages sent by subscriber-

hosting brokers. A subscriber that remains connected to the system is guaranteed to receive

a gapless ordered filtered subsequence of the event stream published at a pubend. A more

detailed description of guaranteed delivery and how it can be extended to address congestion in

an event-based middleware will be given in Chapter 6.

Durable Subscriptions. The durable subscription service [BZA03] guarantees exactly-once

delivery despite periods of disconnection of event subscribers from the system. This means that

the event stream is buffered while a subscriber is not available and replayed upon re-connection.

As for the guaranteed delivery service, an event log is kept at publisher-hosting brokers and

cached at intermediate brokers.

Relational Subscriptions. The final extension is the relational subscription service [JS03].

The goal here is to implement the stateful transformations supported by Gryphon’s IFG model,

combining messaging with a relational data model. Relational subscriptions can be seen as a

continuous query over event streams, providing event subscribers with the expressiveness of a

relational language. This relates to the requirement for composite event detection in an event-

based middleware, which will be discussed in Chapter 7.

The Gryphon event broker includes many of the features that a distributed systems programmer

expects from an event-based middleware. However, the overlay network of event brokers is

25

2.2. PUBLISH/SUBSCRIBE SYSTEMS CHAPTER 2. BACKGROUND

B1

B2 B3

B4 B5

P S

e

e

e

e
e

s

s

s

Figure 2.8: Hierarchical event routing in JEDI

static, as it is defined in configuration files at deployment time. This makes it difficult for the

middleware to adapt to changed network conditions. Failure within a cell of event brokers can

be tolerated, but major changes to the IFG cannot be compensated for. Although composite

event detection is provided by relational subscriptions, a relational data model for messaging

can prove to be too heavy-weight for many applications.

JEDI

The Java Event-Based Distributed Infrastructure (JEDI) [CNF01] is a Java-based implemen-

tation of a distributed content-based publish/subscribe system from the Politecnico di Milano,

Italy. Events in JEDI have a name and a list of values for event parameters. Subscriptions are

specified in a simple pattern matching language. A JEDI system consists of active objects, which

publish or subscribe to events, and event dispatchers, which route events. Event dispatchers are

organised in a tree structure, and routing is performed according to a hierarchical subscription

strategy. Subscriptions propagate upwards in the tree and state about them is maintained at

the event dispatchers. Events also propagate upwards but follow downward branches whenever

they encounter a matching subscription, as shown in Figure 2.8. Advertisements are not used

to restrict the propagation of subscriptions.

The system has been extended to support mobile computing [CN01]. Event dispatchers support

moveOut and moveIn operations that enable subscribers to disconnect and reconnect at a different

point in the network. There is no single event dissemination tree for all subscriptions, but instead

a tree is built dynamically as a core-based tree [BFC93]. The core, called a group leader, has

to make a global broadcast to announce its presence. A new event dispatcher, wanting to

become part of the dissemination tree, directly contacts the group leader. The group leader

then delegates the request to an appropriate event dispatcher in the dissemination tree, which

becomes the parent of the new node. As a downside, this algorithm requires that every event

dispatcher must have knowledge of all group leaders in the system.

26

CHAPTER 2. BACKGROUND 2.2. PUBLISH/SUBSCRIBE SYSTEMS

An approach for dynamically reconfiguring the dissemination tree is proposed in [PCM03]. In

the strawman strategy, the failure of a link between event dispatchers triggers the propagation

of unsubscriptions that ensure that the routing tables stay consistent. In the same fashion,

new links in the overlay network cause the flow of subscriptions. To prevent unsubscriptions

from removing more state from routing tables than necessary, unsubscriptions are delayed by a

timeout value, although finding a suitable value is difficult in practice.

Although the JEDI system addresses the need for dynamic event dissemination trees, the overlay

network topology between event dispatchers is still tree-based. This makes it challenging to

achieve robustness in the system, as a single link failure between two event dispatchers partitions

the tree and can cause event loss. Moreover, the scalability of the system suffers from the fact

that subscriptions are broadcast to all event dispatchers to establish global knowledge about

group leaders.

Elvin

Elvin [SA97] is a notification service for application integration and distributed systems mon-

itoring developed by the Distributed Systems Technology Centre in Australia. It features a

security framework, internationalisation, and pluggable transport protocols, and has been ex-

tended to provide content-based routing of events [SAB+00]. Events are attribute/value pairs

with a predicate-based subscription language. An interesting feature of Elvin is a source quench-

ing mechanism, where event publishers can request information from event brokers about the

subscribers currently interested in their events. This enables publishers to stop publishing events

when there are no subscriptions, reducing computation and communication overheads.

Clients for a wide range of programming languages are available, which led to the implementation

of many notification applications. Applications, such as a tickertape, were evaluated as means

for collaboration in a pervasive office environment [FKM+02]. More recent work investigates

event correlation and support for disconnected operation in mobile applications [SAS01].

Rebeca

The Rebeca [FMB01] project investigates the potential of publish/subscribe technology for

large-scale e-commerce applications. The focus lies on scalable routing algorithms and software

engineering techniques for the design and implementation of event-based business applications.

In [Müh02, MFGB02], current content-based routing algorithms are formalised and evaluated

in the Rebeca infrastructure. It is shown that advanced routing algorithms with covering and

advertisements have a substantial advantage over näıve approaches that rely on flooding the

network with events. In addition, the idea of subscription merging is introduced [MFB02] as a

way of reducing the state kept in routing tables at event brokers.

27

2.2. PUBLISH/SUBSCRIBE SYSTEMS CHAPTER 2. BACKGROUND

Returns API Call Parameters

Object get ()

boolean add (Object o)

boolean contains (Notifiable n, Condition c)

Table 2.2: The interface of a distributed asynchronous collection

Event-based systems benefit from a modular design with novel structuring concepts, such as

event scopes [FMMB02, FMG03]. An event scope restricts the visibility of published events to

a subset of subscribers in the system. Scopes can be nested and are able to re-publish events.

When crossing scope boundaries, an event may be transformed according to an event mapping,

similar to gateways in event federations. Therefore, event scopes address the heterogeneity of

modern applications and are a powerful mechanism for structuring large-scale applications.

Narada Brokering

The Narada Brokering project [PF03] aims to provide a unified messaging environment for

grid computing, which integrates grid services, JMS, and JXTA. It is JMS compliant (see

Section 2.1.2), but also supports a distributed network of brokers as opposed to the centralised

client/server solution advocated by JMS. The JXTA specification [Gon02] is used for peer-to-

peer interactions between clients and brokers.

Events can be XML messages that are matched against XPath [W3C99b] subscriptions by an

XML matching engine. The network of brokers is hierarchical, built recursively out of clusters

of brokers. Every broker has complete knowledge of the topology, so that events can be routed

on shortest paths following the broker hierarchy. In general, there is the additional overhead

of keeping event brokers organised hierarchically, which can be costly. Dynamic changes of the

topology are propagated to all affected brokers.

Type-Based Publish/Subscribe

The work on type-based publish/subscribe [Eug01] recognises the need for better integration

of publish/subscribe communication with mainstream, object-oriented programming languages.

In type-based publish/subscribe, events are first-class programming language objects with fields

and methods. Subscriptions specify the programming language type of objects that a client is

interested in, while observing the subtyping relation. For a more fine-grained filter specification,

conditions using the methods in the event object can be provided by subscribers relying on

Java’s structural reflection features. An even tighter integration is proposed by adding new

primitives to the Java language for publishing and subscribing to events [EGD01]. Note that

our definition of type-based routing in Section 4.3.3 differs from the one presented here.

28

CHAPTER 2. BACKGROUND 2.3. PEER-TO-PEER SYSTEMS

In a prototype, type-based publish/subscribe is used to implement distributed asynchronous

collections (DACs) [EGS00] in Java. A DAC is an asynchronous, distributed data structure

that holds a collection of objects. Using Java language extensions for parametric polymor-

phism [BOSW98], a DAC can be parameterised to only hold Java objects of a specific type. An

excerpt from its interface is shown in Table 2.2. Apart from the standard synchronous methods

found in collections to add and remove objects, it has an asynchronous contains method that

will perform a callback to the Notifiable interface when an object is added to the DAC that

matches a Condition. This can be considered a subscription, whereas inserting an object into a

DAC corresponds to making a publication. DACs are implemented efficiently using probabilistic,

gossip-based multicast algorithms [EGH+03].

Advantages of type-based publish/subscribe are that the object-oriented principle of encapsu-

lation is not violated because fields in an object are only accessed via its methods, and no

separate subscription language is necessary to express interest in events. As a consequence,

publish/subscribe integrates seamlessly with the programming language, which is important for

an event-based middleware. The penalty to be paid is that event matching is less efficient as it

amounts to executing method calls that may involve reflection. When considering the semantics

of the DAC interface, some operations are not intuitive since, unlike standard tuple spaces, they

may or may not remove an object from the DAC after a notification.

2.3 Peer-to-Peer Systems

The term peer-to-peer [Ora01] first emerged in the context of file-sharing applications on the

Internet. It can be regarded as a way of building distributed applications that contrasts with

the traditional approach of a client/server architecture. Most peer-to-peer systems deal with

the sharing of a resource, such as storage or computation, and are often implemented as overlay

networks [Eri94] at the application-level. Research into peer-to-peer systems has resulted in

a diverse range of algorithms and applications, which makes it difficult to give a consistent

definition of what a peer-to-peer system is. The following is an attempt at highlighting the

main characteristics that make a distributed system a peer-to-peer system.

Definition 2.3 (Peer-to-Peer System) A Peer-to-Peer System is a decentralised, distributed

system that consists of symmetric nodes called peers. It is self-organising and capable of adapting

to changes such as failure.

A primary feature of peer-to-peer systems is the unstable connectivity between peers. This

means that failure is common in a peer-to-peer system, with nodes joining and leaving at all

times. Robustness has to be built into all mechanisms so that correct operation of the system

is ensured even under failure of a substantial number of peers. The fully decentralised approach

of peer-to-peer systems results in highly scalable systems that operate on an Internet-scale,

making peer-to-peer techniques attractive for large-scale middleware with the complexity of

many components.

29

2.3. PEER-TO-PEER SYSTEMS CHAPTER 2. BACKGROUND

The first generation of peer-to-peer systems was unstructured, and thus suffered from scalability

problems caused by flooding the system with messages [CP02]. The second generation had a

stronger foundation in research and managed to deliver the promised advantages of peer-to-peer

technology. In the next section we describe a common form of peer-to-peer overlay routing layer

that provides the abstraction of a distributed hash table. This is a powerful distributed data

structure that will be used for the implementation of our event-based middleware. Peer-to-

peer techniques are also applied to application-level multicast systems, as will be discussed in

Section 2.3.2.

2.3.1 Distributed Hash Tables

A distributed hash table (DHT) [Cla99] is a scalable data structure for building large-scale

distributed applications. It maps a key to a distributed storage location at a particular node in

the network. Instead of having global knowledge, nodes only need to know about a small subset

of all existing nodes. Requests for a key are routed via the overlay network to the destination

node that the key hashes to, even when nodes are constantly joining and leaving the DHT.

The load of storing data in the hash table is therefore spread across all nodes in the system.

The routing algorithm for the DHT builds a small-world network [WS98], which has a small

diameter, but is highly clustered, so that every node can be reached in a logarithmic number of

hops. In the following we will describe four implementations of DHTs with peer-to-peer routing

algorithms that can facilitate the content-based routing of events.

Pastry

Pastry [RD01] developed at Microsoft Research in Cambridge is a peer-to-peer location and

routing substrate with locality properties that forms a self-organising, resilient overlay network

that can scale to millions of nodes. Its main operation is a route(message, key) function that

reliably routes a message to the Pastry node that is responsible for storing the key. Messages

take O(logN) hops on average where N is the number of nodes in the Pastry network. The

overlay network of nodes is organised so that routes with a lower proximity metric, such as

latency or bandwidth, are preferred. In addition, two routes to the same destination converge

quickly [CDHR02]. Several applications are built on top of Pastry, such as PAST [RD01], a

persistent global store, and Scribe [RKCD01], an application-level multicast system, which will

be described in Section 2.3.2.

The routing algorithm of Pastry relies on the fact that each Pastry node has a unique node

identifier, called a nodeID. NodeIDs populate a 128-bit namespace that is uniformly distributed

and are grouped into digits with base 2b for a given value of b. The functionality of a DHT is

implemented by routing a message to a live node with a nodeID that is numerically closest to

the hash key. The routing of messages relies on two data structures, a routing table and a leaf

set, maintained by each node.

30

CHAPTER 2. BACKGROUND 2.3. PEER-TO-PEER SYSTEMS

123

333

133

212

010

311

322

200

032

m

m

m

Figure 2.9: Routing a message in a Pastry network

Routing Table. The routing table has log2b N rows with 2b − 1 columns. The rows contain

entries for nodes whose nodeID matches the current nodeID in the first d digits but then

differs afterwards. Among several candidate nodeIDs for an entry in the routing table, the

one with the minimum proximity metric is chosen. Secondary entries are kept as backup

in case the primary node fails.

Leaf Set. The leaf set has l nodeIDs as entries, which are the l/2 closest, numerically larger and

smaller nodeIDs with respect to the current nodeID. This invariant must be maintained

at all times and routing will fail if more than l/2 nodes with consecutive nodeIDs fail. The

leaf set is also used for data replication.

Routing in Pastry is a generalisation of prefix routing. A message is forwarded to a node that

shares a longer prefix with the destination nodeID than the current node. If such a node does

not exist in the routing table, the message is sent to a node with a nodeID that is numerically

closer to the destination. If the destination nodeID falls within the range of the leaf set, the

message is sent directly to the numerically closest nodeID. The process of routing a message

from node 123 to the key 333 with b = 2 is shown in Figure 2.9. The message is first forwarded

to node 311, which is obtained from the routing table at node 123. Each hop moves the message

closer to the destination node.

New Pastry nodes can join the system efficiently at runtime by following a join protocol. A new

Pastry node first chooses a random nodeID X and then asks an arbitrary existing node A to

route a join message with the key X. While the message traverses the network to a destination

node Z that currently manages key X, the message acquires the consecutive rows from the

routing tables of the nodes along the path to node Z. Finally, the node Z sends the routing

table data and its own leaf set to the new node A, which then initialises its data structures and

notifies its leaf set neighbours of its existence.

The Pastry implementation of a DHT is an efficient way of maintaining an application-level

overlay network for routing. Since routing tables are optimised to reflect the physical topology

of the network, the penalty of using overlay routing lies within a small constant factor [CDHR02].

A distributed event-based middleware needs to manage an overlay network of event brokers that

31

2.3. PEER-TO-PEER SYSTEMS CHAPTER 2. BACKGROUND

is scalable, fault-tolerant, and efficient. Applying peer-to-peer techniques to achieve this is a

promising novel approach.

Tapestry

Another implementation of a DHT routing layer that came out of the Oceanstore project at

the University of California at Berkeley is Tapestry [ZKJ01]. Its routing algorithm is similar to

Pastry’s but differs in how the last routing step to a destination node is handled. Tapestry does

not have leaf sets but instead uses surrogate routing [HKRZ02]. If the routing cannot continue

because the routing table at a node does not contain an entry that matches the destination

key’s nth digit in row n, the message is forwarded to a surrogate node with the next higher

digit at position n. The routing terminates when there is no other entry at the same level in the

routing table. This process ensures that a message routed to a key with a non-existing nodeID

will nevertheless map to a unique live node in the Tapestry network.

Chord

In Chord [SMK+01], nodeIDs are organised in a circular space. Messages are routed clockwise

in this space until they reach a node with a nodeID that is equal to or follows the desired

destination key. Every node in the ring knows its predecessor and successor. To make routing

more efficient, every node keeps a finger table with shortcuts. The ith entry in the finger table

contains the identity of the first node whose nodeID succeeds the current nodeID by at least 2i−1

in the circular space. By using the finger table to route a message as close to the destination

key as possible, the average hop count will be logarithmic.

CAN

The content-addressable network (CAN) [RFH+01] differs from the previous DHT schemes since

nodeIDs lie on an d-dimensional torus. The logical space is divided into hyper-rectangular zones

with a unique CAN node responsible for storing all keys that fall within a given zone. A CAN

node maintains a routing table with the identities of all its neighbours in the logical space.

Messages are routed on the straight line path through the space until they reach the destination

zone. The average hop count for routing a message is O(N 1/d), which is slightly less efficient

compared to Pastry or Tapestry. A new node is added to the network by dividing an existing

zone in half, splitting the key space between the old and new node. To preserve efficiency, the

logical space must be partitioned into equally-sized zones. An application-level multicast scheme

over CAN is presented in the next section.

32

CHAPTER 2. BACKGROUND 2.3. PEER-TO-PEER SYSTEMS

RN1

N2

N3
N8

N4

N5

N6

N7

ss

m

m

m

m

m
m

m m

m

Figure 2.10: Addition of a subscribing node in Scribe

2.3.2 Application-Level Multicast

Since native IP multicast support is not ubiquitously deployed on the Internet, multicast func-

tionality for information dissemination is often implemented over unicast links at the application-

level. In this section application-level multicast schemes [CRZ00] built over an overlay network

of nodes are introduced. The general strategy is to construct an information dissemination tree

that has the multicast group members as leaf nodes. Several approaches were proposed to build

application-level multicast on top of a distributed hash table offered by peer-to-peer routing

substrates, thus taking advantage of self-organisation and locality properties. The resulting

application-level multicast service is equivalent to topic-based publish/subscribe. Hermes, our

event-based middleware, extends simple application-level multicast routing to provide a content-

based routing algorithm with filtering (see Chapter 4).

Scribe

Scribe [RKCD01] is a large-scale event notification infrastructure built on top of Pastry. Scribe

uses Pastry to manage multicast groups associated with a topic. Each topic forms a multicast

tree depending on the subscribers interested in the topic. Scribe takes advantage of Pastry’s

locality properties so that the multicast tree is optimised with respect to a proximity metric.

The overlay multicast scheme implemented is similar to core-based trees [BFC93] since there

is a single well-known node that acts as the root of the multicast tree. Pastry’s randomisation

properties ensure that the multicast tree remains well-balanced. Scribe supports three main

operations, which are (1) creating a topic, (2) subscribing to a topic, and (3) publishing a

message on a topic.

Any Scribe node can create a new topic by routing a message via Pastry to the node that is

numerically closest to the hash of the topic name. This node then becomes the rendezvous

point for the topic and functions as the root of the multicast tree. A subscriber is added to a

topic by sending a subscription message towards the rendezvous point. Along the path of the

33

2.3. PEER-TO-PEER SYSTEMS CHAPTER 2. BACKGROUND

message, each node becomes a member of the multicast tree called a forwarder and adds the

previous hop to its children table. The propagation of the subscription message terminates when

a node is reached that is already a forwarder in the multicast tree. The addition of node N8

as a subscriber with the rendezvous point at node R is illustrated in Figure 2.10. Any node

can publish a message by sending it to the rendezvous point for the topic, which will in turn

propagate it along the multicast tree to all subscribed nodes, as demonstrated by node N1.

The Pastry overlay is also used to repair the multicast tree when nodes fail. When a forwarder

discovers the failure of its parent, it resends the subscription message to the rendezvous point.

Pastry’s routing algorithm ensures that the message takes a different path to the rendezvous

point unless a significant number of nodes in the overlay network have failed. Old state in

forwarders expires due to a soft state approach, which discards entries in children tables that

are not refreshed periodically by heartbeat messages. To prevent rendezvous points from being

single points of failure, they are replicated across the nodes in the original rendezvous point’s

leaf set.

Although subscription messages do not need to reach the rendezvous point in the multicast tree,

the same is not true for publications. This means that the rendezvous point may get overloaded

when there are many publishers in the system. As a general criticism, the lack of content-based

filtering of publications limits the expressiveness of subscriptions and makes Scribe unsuitable

as a general-purpose event-based middleware. Nevertheless, its scalable, fault-adapting message

dissemination algorithm is a good building block for an event dissemination algorithm in large-

scale middleware.

Bayeux

An application-level multicast solution over Tapestry is Bayeux [ZZJ+01]. Its algorithm is

similar to Scribe’s in the sense that it uses an overlay routing layer to build a tree for a multicast

topic. However, it differs in how the multicast tree is constructed. In Bayeux a subscription

message is routed all the way to the root of the multicast tree. The root node updates its

membership list for the topic and replies with a tree message destined for the new subscriber.

The tree message then creates state at the forwarding nodes along its path and ensures that the

new subscriber becomes part of the multicast tree.

Bayeux’s approach is less scalable because the root node has to keep membership information

about all nodes belonging to a multicast group. In addition, group membership management

is more costly as subscription messages are routed to the root node and trigger tree messages.

To alleviate the problem of the root node becoming a bottleneck, a scheme for partitioning the

multicast tree is suggested so that the load can be shared among several roots.

34

CHAPTER 2. BACKGROUND 2.4. SUMMARY

Multicast over CAN

A multicast mechanism over CAN is presented in [RHKS01]. The strategy adopted is different

from the previous approaches since no tree is constructed in the overlay network. Instead, a

separate content-addressable network within the global CAN is formed that only contains the

multicast group members. To publish a message to the group, the multicast CAN is flooded with

the publication so that all group members receive it. The flooding algorithm takes advantage of

the structure of the n-dimensional coordinate space of CAN nodeIDs to minimise the delivery of

duplicate messages. Any node in the multicast CAN can be the origin of a publication without

an indirection via a root node. A comparison has shown that this scheme is less efficient than

tree-based multicast approaches [CJK+03].

Overcast

Several application-level multicast schemes, such as Overcast [JGJ+00], exist that do not rely

on a distributed hash table. Instead, a scalable and reliable single-source multicast service is

provided by directly building a multicast tree out of Overcast nodes that are distributed in the

network. A new node joins the multicast tree by first contacting the root node. It recursively

obtains a list of children and then computes a proximity metric in order to find an optimal

location for itself in the tree. This adds a higher overhead to joining a multicast group compared

to DHT-based multicast.

2.4 Summary

This chapter has outlined the research that is relevant to the design and implementation of an

event-based middleware, for it to become the next generation middleware for large-scale sys-

tems. We began with an overview of current middleware technology, focusing on traditional

request/reply middleware and the more scalable asynchronous messaging middleware, which

is increasingly replacing synchronous middleware in Internet-wide systems. Even though syn-

chronous middleware is not suitable for a large-scale context, much can be learnt from it in

terms of supported services and programming language integration.

A survey of publish/subscribe systems was given that showed the power of publish/subscribe in-

teraction for distributed computing. However, the lack of middleware features in most publish/-

subscribe systems motivates the need for an event-based middleware. In addition, many current

publish/subscribe systems do not achieve the required scalability, which is why peer-to-peer tech-

niques in the form of distributed hash tables were discussed. Distributed hash tables are scalable

data structures that can be used as building blocks for information dissemination systems, such

as topic-based publish/subscribe.

35

2.4. SUMMARY CHAPTER 2. BACKGROUND

In the next chapter, we investigate the notion of an event-based middleware in more detail

with the ultimate goal of getting an understanding of the design space for such middleware.

The middleware techniques introduced in this chapter will be used as guidelines when design

decisions have to be made that affect the features of an event-based middleware.

36

3
Event-Based Middleware

In this chapter we present our notion of an event-based middleware in more detail. This is a new

kind of middleware that is targeted at the development of large-scale distributed systems and

therefore substantially different from previous middleware designs. Its communication strategy

follows the publish/subscribe model, and it also supports common middleware functionality.

When designing a novel type of middleware, many design decisions need to be made. After

the overview of relevant work in the areas of middleware, publish/subscribe, and peer-to-peer

research in the previous chapter, we are now in a position to survey the design space of an event-

based middleware. The aim is to develop a better understanding of an event-based middleware

and its functionality, with the ultimate goal of deriving a concrete architecture, Hermes, that

will be presented in the next chapter. All design decisions are motivated by the two application

scenarios introduced in Section 1.2. From these, we develop a list of requirements that need to

be satisfied by an event-based middleware.

We start with an overview of the concept of an event-based middleware, outlining its main

features. The remainder of the chapter is then concerned with partitioning the design space.

This process is guided by six requirements for an event-based middleware that are described in

Section 3.2. The design of the middleware is presented in relation to five design models that are

introduced and discussed in Section 3.3. By referring back to the requirements, we will make

sensible design decisions in this space to refine the models for an event-based middleware into

an actual architecture.

37

3.1. OVERVIEW CHAPTER 3. EVENT-BASED MIDDLEWARE

3.1 Overview

An event-based middleware [Pie02] can be contrasted with a simple publish/subscribe system,

such as the ones that were described in Section 2.2. A publish/subscribe system is a communica-

tion infrastructure that provides a service to clients. It exports an interface to its functionality,

but otherwise it is independent of its clients. In particular, a publish/subscribe system is only

concerned with communication and not with any other necessary support in a distributed com-

puting environment. The same is not true for an event-based middleware. It extends the notion

of a publish/subscribe system by providing general-purpose middleware support to clients. It can

be seen as the “glue” between the components of a large-scale distributed application, helping

them cope with the complexity and heterogeneity of the environment. An event-based middle-

ware is influenced by the distributed computing requirements of its clients. This means that, for

example, it tries to integrate with programming languages and provide a uniform abstraction

across languages.

An important question to ask is what functionality to expect from an event-based middleware.

Its main focus is communication support for components in a distributed system. The middle-

ware should efficiently and scalably assist the interaction between components. According to

the idea of distribution transparency [CDK01], the complexity of distribution should be partially

hidden from the programmer, thus simplifying the task of distributed application development.

In addition to basic communication between components, the middleware should also support

complex interaction patterns that are useful to programmers and relieve them from having to

implement this functionality in the application. For example with respect to communication

reliability, different levels of quality of service may be necessary to address the wide range of

requirements in today’s distributed applications.

Apart from communication, an event-based middleware, as with any form of middleware, must

facilitate aspects of software engineering. This means that it should give the necessary support

to the programmer, helping create a correct and well-structured distributed application. Issues,

such as the usability of the middleware, become important factors that determine the degree

to which an event-based middleware fulfils its task. Since a distributed application often must

integrate with legacy components, interoperability of the middleware must be ensured. At all

times, the complete life-cycle of a distributed application should be kept in mind. It must be

easy to deploy the distributed application together with the middleware across the Internet.

After deployment, the administration of the system has to be addressed, with the event-based

middleware playing a substantial role in this. Finally, a distributed system evolves over its life-

time, and the middleware must be extensible to accommodate this — it is often too costly to

redeploy an entire large-scale distributed system. For the purpose of this thesis, we will use the

following definition of an event-based middleware.

38

CHAPTER 3. EVENT-BASED MIDDLEWARE 3.2. REQUIREMENTS

Definition 3.1 (Event-based Middleware) An Event-based Middleware is a middleware

for large-scale distributed systems that provides scalable and efficient publish/subscribe commu-

nication between components. It also addresses traditional middleware requirements, such as

usability, administrability, interoperability, and extensibility.

In the next section, we return to the two application scenarios and use them to discuss some

of the requirements for an event-based middleware. A better comprehension of the problems

that a large-scale middleware aims to solve will lead to the development of design models that

describe the data, the components, the routing, and the services of an event-based middleware.

3.2 Requirements

To specify the requirements for an event-based middleware, we will examine the two application

scenarios introduced in Section 1.2 in more detail. The first application scenario, news story

dissemination, is characterised by the large-scale widely-distributed deployment of the system.

Scalability and efficiency are crucial in this context, but the heterogeneity of components also

makes development challenging for the distributed applications programmer. In the second

scenario, a ubiquitous computing environment, the complexity of the scenario comes from the

vast amount of sensor data handled by the system. Components of the system can only cope

with the data after preliminary filtering and processing by the middleware.

The requirements that will be derived from these two application scenarios can be grouped into

two categories: First, there are requirements that emerge from the use of an information dissem-

ination system, such as a publish/subscribe system. These requirements, such as scalability and

expressiveness, are common to any large-scale application and are already addressed, to varying

degrees, by current publish/subscribe systems. The second class of requirements are middle-

ware requirements that are valid for any middleware, such as administrability and usability.

Current middleware technology attempts to address them, and they are even more important

in an event-based middleware because of the increased complexity of large-scale systems.

3.2.1 Scalability and Expressiveness

A standard requirement for any information dissemination system is scalability, which is the

ability to support a large number of clients. The publish/subscribe communication model is

intrinsically scalable because publishers and subscribers are only loosely-coupled, and the im-

plementation of the event-based middleware must take advantage of this. However, this is chal-

lenging due to the trade-off between scalability and expressiveness [CRW99]. The expressiveness

of a publish/subscribe implementation determines how fine-grained the selection mechanism is

that information consumers use to characterise the kind of information that they want to receive.

As a general rule, higher expressiveness means more state and processing, which reduces the

overall scalability of the publish/subscribe system. Nevertheless, high expressiveness, as in a

39

3.2. REQUIREMENTS CHAPTER 3. EVENT-BASED MIDDLEWARE

content-based publish/subscribe system, is desirable from a client’s point of view. A client of the

ubiquitous computing environment in the second application scenario prefers to express interest

in data in as much detail as possible, delegating the data filtering burden to the producer-side.

To improve scalability, publish/subscribe systems have distributed implementations that spread

the publish/subscribe service among multiple nodes. Efficient network-level communication

primitives, such as IP multicast, can be used for distributing messages. However, relying on

network-level support has the disadvantage that it restricts deployment only to supported net-

works. Moreover, the expressiveness of the system can suffer from the lack of features at the

network-level, for example when providing content-based publish/subscribe over network-level

group communication. A different approach is to leverage scalable, application-level commu-

nication abstractions, such as distributed hash tables, and advanced routing algorithms at the

application-level to ensure expressiveness while maintaining scalability.

3.2.2 Reliability

Many distributed applications require strong reliability guarantees when using a middleware.

For example, a customer in the first application scenario that pays a news agency for an unin-

terrupted stream of news reports expects the contract to be honoured even under some degree

of failure. Similar to synchronous request/reply middleware that provides different invocation

semantics and message-oriented middleware that supports persistent messages that can resist

failure, an event-based middleware needs to provide different levels of reliability and be resilient

to failure. Especially in a large-scale context, the failure of communication links and middleware

components is not unusual. Resilience to failure must therefore be built into the event-based

middleware from the beginning.

Different choices can be made to increase the robustness of an event-based middleware. Adding

redundant middleware components improves availability but may be costly. As a general strat-

egy, the amount of state maintained at middleware components should be minimised so that less

state needs to be recovered after loss. This is non-trivial in a content-based publish/subscribe

system, which may manage state about millions of subscriptions. For reliable service semantics,

important state can be stored in persistent storage for simple recovery. Peer-to-peer techniques

can assist in building resilient large-scale systems that still operate after a substantial number

of their components have failed.

3.2.3 Administrability

An event-based middleware in itself is a complex distributed system with many components.

Easy administrability of such a system is an important requirement, especially because any large-

scale system may substantially evolve over its lifetime. When considering the first application

scenario, it becomes obvious that deployment of a large-scale system is not straightforward. For

instance, an event-based middleware may create a complex application-level overlay network,

40

CHAPTER 3. EVENT-BASED MIDDLEWARE 3.2. REQUIREMENTS

whose topology is not known in advance. The deployment not only determines the correct

operation of the system, but also influences the efficiency of information processing. When new

components are added to increase performance or availability, the event-based middleware has

to adapt without significant amounts of human intervention.

The administration effort can be reduced by making components as autonomous as possible.

Self-adapting systems can relieve the administrator from many decisions and thus facilitate the

task of system administration. For this, peer-to-peer techniques are again a sensible choice

because peer-to-peer systems are self-organising by definition. Adding a new component to the

event-based middleware should only be a matter of “plugging it in”. It is not realistic to assume

a single system administrator with global knowledge of the entire system. Instead, the task of

administration should be partitioned among multiple entities with partial responsibility.

3.2.4 Usability

A new middleware architecture will only be adopted if it is easy to use by the distributed

applications programmer. The usability of a middleware is therefore an important factor and

successful middleware platforms, such as CORBA and Java RMI, owe their success to features

that facilitate their use. Current publish/subscribe systems are very primitive in this respect,

whereas event-based middleware has to be designed with usability in mind. A deciding factor

for the usability of an event-based middleware is how well it integrates with the programming

language that is used to develop the distributed application. The data model of the event-based

middleware should take advantage of programming language features.

Programming Language Integration

Synchronous request/reply middleware integrates naturally with an object-oriented program-

ming language through proxy and remote objects. This programming model gives the illusion

of distribution transparency to the programmer. Event-based middleware should follow simi-

lar abstractions that help integrate it with programming languages. The API for invoking its

functionality should fit in with other services provided by the programming language. For ex-

ample, a publish/subscribe service in Java can be viewed as an implementation of a distributed

asynchronous collection [EGS00] that derives from the Collection datatype in the Java class

libraries. Tighter integration with the programming language can be achieved by custom exten-

sions to the language to support publish/subscribe functionality. However, this may result in

tying the middleware down to a single programming language, which contradicts the requirement

of interoperability stated below.

41

3.2. REQUIREMENTS CHAPTER 3. EVENT-BASED MIDDLEWARE

Handling of Event Data

Usability is also governed by how data handled by the middleware is represented in the pro-

gramming language. There should be a natural mapping from middleware data to programming

language objects. For example, in CORBA an IDL compiler creates language-specific stub code

that automatically translates communication data into programming language objects. In an

event-based middleware, data represented as events should be mapped to programming lan-

guage objects so that it can be processed with language constructs. Event data should also be

type-checked by standard language mechanisms, either statically at compile-time or dynamically

at runtime. Type information associated with events can then assist in finding typing errors

early on in the development process. Subscription data, which is used to specify a client’s in-

terest in event data, should also map to programming language entities and thus benefit from

type-checking.

3.2.5 Extensibility

As mentioned before, an event-based middleware will evolve over the life-time of a distributed

application. For example, in a large-scale system new communication protocols could be added

and the event-based middleware would have to adapt to take advantage of them. When the

communication requirements of middleware clients change, as may be the case after a new

application is added to a ubiquitous computing environment, the event-based middleware should

support the deployment of new services to address this. Features found in reflective middleware

should therefore be part of any modern middleware, enabling it to inspect and modify its own

components and their behaviour.

Extensibility in an event-based middleware can be achieved with a modular design. The mid-

dleware is partitioned into core components that are always needed and a set of domain-specific

extensions that provide optional services. An advantage of a modular design is that components

are only deployed when necessary, as opposed to a monolithic approach, in which the middleware

cannot be decomposed. Customised deployment is important for restricted environments, such

as embedded systems, where the memory footprint of the middleware has to be small.

Higher-Level Middleware Services

Middleware functionality is extensible with higher-level middleware services that are used by

applications on demand. Examples are the CORBA object services mentioned in Section 2.1.1,

which address a wide range of functionality from security to asynchronous messaging. Middle-

ware services are only deployed when required by an application and new services are added

to an existing middleware at runtime. Some services for an event-based middleware will be

standard services as found in CORBA, whereas other services will be specifically targeted at a

publish/subscribe environment with many-to-many communication semantics. An example of

42

CHAPTER 3. EVENT-BASED MIDDLEWARE 3.3. DESIGN

this would be a composite event detection service that enhances expressiveness of subscriptions

by allowing the specification of complex event patterns.

3.2.6 Interoperability

With the heterogeneity of large-scale systems, interoperability between different forms of middle-

ware becomes an important requirement. Connecting several types of event-based middleware

is facilitated by the loose coupling of components in the publish/subscribe model. To further

improve interoperability, an event-based middleware should be built on open standards that are

platform- and language-independent. For example, XML as a messaging format simplifies the

translation between different formats. The API exported by an event-based middleware should

include bindings to several programming languages. This allows the distributed application

programmer to choose the most convenient language for the implementation of a client.

Typically multiple deployments of an event-based middleware have a need to cooperate in order

to exchange information. This can be achieved by forming an event federation [Hom02] between

different event domains. In a federation, gateway components between domains translate the

core publish/subscribe functionality that is supported among all event-based middleware de-

ployments. A gateway component has to deal not only with structural but also with semantic

heterogeneity, translating event data and metadata to achieve interoperability.

3.3 Design

We have outlined the requirements that we place on an event-based middleware. In this section

we look at the design space for such a middleware and divide it into several design models that

handle various aspects of the middleware. We use these design models to make different design

decisions and point out the trade-offs with respect to our previous requirements. This discussion

will also help establish common terminology to talk about event-based middleware, which will be

used in the remainder of this dissertation. Previous work that structures an Internet-scale event

notification system into design models was done by Rosenblum and Wolf [RW97]. However, our

models substantially differ from previous ones as they explicitly acknowledge the distributed

nature of an event-based middleware and put a stronger emphasis on middleware features.

The five design models are as follows: The data handled in the event-based middleware is de-

scribed by an event model. The component model states the components that belong to the

middleware. Communication issues of the middleware are part of a routing model, and a relia-

bility model deals with resilience to failure. Finally, a service model describes how middleware

extensions interact with the other models. We do not claim to survey the entire design space

with these models, but they are a good starting point for an event-based middleware design.

43

3.3. DESIGN CHAPTER 3. EVENT-BASED MIDDLEWARE

3.3.1 Event Model

The main task of an event-based middleware is to disseminate data to all interested parties

in a large-scale distributed system. The question of how data, and interest in that data, is

expressed in the system is described by an event model. In general, data in an event-based

middleware is represented in the form of event publications (or events). Event publications are

manifested for routing and processing as event publication messages with a certain syntax and

semantics. Publication messages are transfered over the network between distributed middleware

components. The interest in events is formulated by event subscriptions. They can be regarded

as queries over future events. The event-based middleware passes them around the system in

the form of event subscription messages.

When designing an event model, its interaction with the data model of the programming lan-

guage becomes important. The semantic gap between event and programming language data

can be bridged by mapping publications and subscriptions onto programming language objects

when they reach the clients of the event-based middleware. This mapping can be very natural

if the event model respects the data model of the programming language. As a consequence,

the notion of datatypes should be present in the event model. Strong type-checking can then

verify that event data conforms to its type specification. In addition, most object-oriented pro-

gramming languages support the concept of type inheritance to create more specialised subtypes

from existing types. The same technique can be used to structure event data.

Event Publications. In our event model an event publication is an instance of an event type

that has a type schema that describes the event type. This links the concept of a programming

language type to an event. An event type contains an event type name and defines a set of event

attributes, which are typed attribute/value pairs that hold the data in an event instance of this

event type. Event publications can thus be regarded as record-like structures. An event type

may also be associated with a parent event type, inheriting all its event attributes and entering

into a subtyping relation with that type and all its ancestor types. The following definition

makes these concepts more precise.

Definition 3.2 (Event Publication) Every event publication e has an event type τ and be-

longs to the event space E,

(e : τ) ∈ E.

An event type τ is a tuple, τ = (nτ , τp, {τa1 , τa2 , . . . , τak}), where nτ is an event type name, τp

is a parent event type (τ � τp), and {τa1 , . . . , τak} is a set of event attribute types. An event

attribute type τa is a pair, τa = (nτa , ττa), where nτa is an attribute name and ττa is its datatype.

An event publication e is therefore a set of attribute/value pairs,

e : τ = {(na1 , va1), (na2 , va2), . . . , (nak , vak)},

44

CHAPTER 3. EVENT-BASED MIDDLEWARE 3.3. DESIGN

BaseEvent
timestamp
pubID

*Y

LocationEvent
zone
location

6
PersonEvent

personID

EquipmentEvent
type

*Y

LoginEvent
workstation
loginID

WhiteboardEvent
status
content

isa isa

isaisa

Figure 3.1: An example of an event type hierarchy

that conforms to the event type τ ,

∀(na, va) ∈ e : τ. ∃(nτa, ττa) ∈ τ. na = nτa ∧ τ(va) � ττa ,

where τ(va) is the datatype of va and � is the sub-typing relation.

Note that the introduction of event types into the event model to structure the event space E
is incompatible with pure content-based publish/subscribe. Traditional content-based publish/-

subscribe assumes a flat, unstructured event space, where events can posses arbitrary event

attributes. Subscriptions contain content-based filtering expressions that select a subset of events

from the event space. We argue that this unconstrained model is not realistic for distributed

application development because, for software engineering reasons, it is desirable to structure

the event space in order to cope with its size. The concept of types is an obvious way of doing

this, which is why many pure content-based publish/subscribe systems include a special event

attribute called type in all their event publications. By explicitly acknowledging event types

in an event-based middleware, content-based routing algorithms can be made more efficient, as

will be shown in Chapter 4.

A further benefit of types in the event model is that type inheritance can be naturally integrated

with the event-based middleware. New event types can be made more specialised after inheriting

event attributes from ancestor types. This allows event types in an event type hierarchy, such as

the example one shown in Figure 3.1 that could be used in the Active Office application scenario.

Note that all event types are derived from a common BaseEvent ancestor that captures event

attributes, such as an event timestamp timestamp and a publisher identifier pubID, that are

found in all events in the system. However, sometimes a single ancestor event type may be too

restrictive as it to some degree implies central administration of the event space.

45

3.3. DESIGN CHAPTER 3. EVENT-BASED MIDDLEWARE

When an event publication is expressed as a message, a language must be used that has a

powerful enough type system to support the typing of events and event attributes. An example

would be the ODMG Object Definition Language (ODL) that was used in the CEA to define

schemas for event types [Pie00]. With the recent proliferation of XML as a standard format

for semi-structured data, the more expressive XML Schema language [W3C01a] is a natural

choice for publication messages in a heterogeneous distributed computing environment. It has a

generic type system that supports the definition of new datatypes and provides type inheritance

through restriction and extension.

Event Subscriptions. By the same reasoning as for publications, event subscriptions are

typed as well. We propose a typed variant of content-based publish/subscribe called type- and

attribute-based publish/subscribe. In this variant event subscribers express their interest in events

in two stages. First, an event type (or a set of event types according to the event type inheritance

relation) is chosen by the subscription. Then, a content-based filtering expression is provided

that selects events of the specified event types that satisfy a set of predicates over their event

attributes. Type-checking ensures that attribute predicates in event subscriptions comply with

event type schemas. Type- and attribute-based publish/subscribe helps programmers decide

which events from the event space are of interest to a client because the event type hierarchy is

used to find relevant event types before specifying a content-based filter expression.

Definition 3.3 (Event Subscription) An event subscription s has an event type τ and con-

sists of a set of attribute predicates,

s : τ = {p1, p2, . . . , pk}.

An attribute predicate p is a tuple, p = (np, fp, vp), where np is an attribute name, fp is a

predicate filter function, and vp is an attribute value. The subscription s conforms to an event

type τ , s : τ , if and only if

∀(np, fp, vp) ∈ s : τ. ∃(nτa, ττa) ∈ τ. np = nτa ∧ τ(vp) � ττa

holds, where τ(vp) is the datatype of vp and � is the sub-typing relation.

An event matches a subscription if it is of the correct event type and satisfies all attribute

predicates specified in the subscription. Only the conjunction of attribute predicates is allowed

in subscriptions because disjunctive predicates can be emulated through multiple subscriptions.

Note that supertype subscriptions are supported because the subtyping relation determines if

the event types of the event publication and subscription are compatible. As in other publish/-

subscribe systems, we also include a coverage relation between subscriptions. A subscription is

covered by another subscription if the former is more specific than the latter. In this case the

second subscription is also matched by any event that is matched by the first subscription. A

content-based routing algorithm can then benefit from this relation between subscriptions to

reduce the state stored in the event-based middleware.

46

CHAPTER 3. EVENT-BASED MIDDLEWARE 3.3. DESIGN

Definition 3.4 (Subscription Coverage) An event e is covered by (or matches) a subscrip-

tion s,

e v s,

if and only if

∀p ∈ s : τs. ∃a ∈ e : τe. τs � τe ∧ a v p

holds. An event attribute a = (na, va) is covered by (or matches) an attribute predicate p =

(np, fp, vp),

a v p,

if and only if

np = na ∧ fp(vp, va)

holds. A subscription s1 is covered by another subscription s2,

s1 v s2,

if and only if

∀e ∈ E. e v s1 ⇒ e v s2.

Different alternatives for stating predicate filter functions are possible, which then influence the

expressiveness of subscriptions in the event-based middleware. Since subscriptions are queries

over future events, publish/subscribe systems often adopt database query languages, such as

SQL92 [SQL92] used by the JMS specification. This leads to very powerful filters and there-

fore makes the evaluation of coverage relations computationally expensive, because advanced

matching algorithms construct efficient indexing structures by discovering commonality between

filters. An opposite approach is to have very restricted predicate filter functions and only permit

equality predicates for template-based filtering.

Since we argued for XML as a format for writing event publication messages, a uniform approach

should be taken for event subscriptions in subscription messages. A single publication message

defined in XML Schema can be queried with XPath [W3C99b]. The XPath language includes a

wide range of built-in filter functions and follows the XML Schema type model. A fully-featured

query language for XML is XQuery [W3C03d], but detecting coverage between two arbitrary

XQuery expressions is non-trivial.

3.3.2 Component Model

We argued that a middleware for large-scale systems must have a distributed implementation

in order to be scalable and fault-tolerant. This means that the middleware consists of a number

of components that may differ in their purpose and run on separate nodes in the network. A

component model describes these components and the relation between them. As a general

principle, the load between components should be equally balanced so that no component can

47

3.3. DESIGN CHAPTER 3. EVENT-BASED MIDDLEWARE

PHB IB

P1

P2

S1

S2

SHB

Figure 3.2: Illustration of the component model

become a performance bottleneck or a single point of failure for the entire system. Adding

multiple redundant instances of the same component can improve the robustness of the system.

In our component model, we introduce two kinds of components for an event-based middleware,

event brokers and event clients. Event brokers implement the entire functionality of an event-

based middleware and provide a service to event clients. To use the event-based middleware,

event clients have to connect to at least one event broker. Event clients come in two flavours,

event publishers that publish and event subscribers that subscribe to events. Since event clients

closely interact with the application, they are not language-independent, whereas event brokers

are. An event-based middleware with event brokers and event clients is shown in Figure 3.2.

Next we describe the different types of event brokers using terminology that follows that used

by Gryphon in Section 2.2.2.

Event Brokers. Event brokers are the main components of an event-based middleware. A

single event broker constitutes a complete implementation of the middleware, but usually mul-

tiple event brokers are deployed together. Event brokers cooperate with each other by forming

an overlay routing network and execute a content-based routing algorithm for events, such as

the algorithm used by Hermes in Chapter 4. It is assumed that event brokers in the overlay

routing network all follow the same protocol to provide a service to event clients connected

to the middleware. As a consequence, less trust needs be assigned to event clients because a

misbehaving client can be removed from the middleware without affecting the service provided

to other clients. In contrast, a malicious event broker can substantially degrade the service of

the middleware and cause damage to all clients.

An event broker that has one or more event publishers connected is called a publisher-hosting

broker (PHB). An event broker becomes a subscriber-hosting broker (SHB) if it is maintaining

a connection to event subscribers. Event clients connected to event brokers consider them to be

their local event brokers, as they function as local entry points to the event-based middleware.

An event broker can be both subscriber-hosting and publisher-hosting, or neither, in which case

it is called an intermediate broker (IB). An event broker in the system only knows about a subset

of all existing event brokers, its neighbouring event brokers, and can only send messages to these

event brokers, as dictated by the routing algorithm. The relation of neighbouring event brokers

forms the overlay broker network of the event-based middleware. These concepts are illustrated

in Figure 3.2 and formalised below.

48

CHAPTER 3. EVENT-BASED MIDDLEWARE 3.3. DESIGN

Definition 3.5 (Event Broker) An event broker B ∈ B from the set of all event brokers B
maintains a tuple,

B = (CP , CS , NB ,S),

where CP is a set of event publishers and CS is a set of event subscribers that this event broker

is hosting, NB is a set of neighbouring event brokers, and S is routing state kept at the event

broker. An event broker is publisher-hosting if and only if CP 6= ∅, and subscriber-hosting if

and only if CS 6= ∅. If CP = CS = ∅ holds, then the event broker is an intermediate broker.

The graph forming the overlay broker network, GO = (B, NG), consists of all event brokers B
and the relation NG of neighbouring event brokers sets,

NG = {(B,N) | ∀B ∈ B ∀N ∈ NB . B = (CP , CS , NB ,S)}.

Event Publishers. An event publisher is a client component that produces event publications

and passes them to the event-based middleware for dissemination. It maintains a connection

to at least one local event broker and does not possess any middleware functionality by itself.

This has the advantage that event publishers are light-weight components with modest resource

requirements, making it possible to deploy them in embedded or mobile devices. Technically,

an event publisher is outside the event-based middleware model because it is under the control

of the distributed system programmer. Therefore, its correct behaviour cannot be guaranteed

and the event-based middleware must take account of this.

Event publishers use a client interface exported by event brokers to request middleware func-

tionality, such as managing event types and publishing events. Due to the heterogeneity of the

environment, this interface should be language-independent. Since this interface only handles

the communication of the event client with its local event broker, it may be synchronous or

asynchronous. An asynchronous interface has the advantage that event publishers do not need

to wait for a response when publishing events under best-effort semantics. Since inter-broker

communication is already XML-based, web services, as described in Section 2.1.3, are a natu-

ral choice for communication between event publishers and event brokers. Internally the event

publisher then exports a language-dependent interface to the application.

Definition 3.6 (Event Publishers) An event publisher P ∈ C from the set of all event

clients C maintains a pair,

P = (LP ,S),

where LP is a set of local event brokers that it has connections with and S is its state.

Event Subscribers. The second type of client component are the event subscribers, which

subscribe to events and consume event publications, passing them on to the application. Analo-

gously to event publishers, event subscribers are light-weight components and maintain connec-

tions to local event brokers to request middleware functionality. Their main interface operations

49

3.3. DESIGN CHAPTER 3. EVENT-BASED MIDDLEWARE

B1

B8

B3

B10

B19

B5

B12

B4

B11

B20 B21B18

B2

B7

B16

B6

B17B14

B9

B15B13

PHB
1

PHB
2

PHB
3

Figure 3.3: Event dissemination trees in a publish/subscribe system

deal with the management of event types, the specification of event subscriptions, and the no-

tification of matching event publications.

Unlike event publishers, event subscribers receive asynchronous notifications from their local

event brokers whenever an event is published that matches one of their subscriptions. For this,

they export an asynchronous callback interface to a local event broker. This interface must be

asynchronous to achieve a timely notification of events. Handling these callbacks makes the

implementation of event subscribers more complex than that of event publishers.

Definition 3.7 (Event Subscriber) An event subscriber S ∈ C from the set of all event

clients C maintains a pair,

S = (LS ,S),

where LS is a set of local event brokers that it has connections with and S is its state.

3.3.3 Routing Model

The distributed nature of an event-based middleware means that events have to be routed

in a network. Informally, events that are produced by event publishers enter the system at

publisher-hosting brokers and are disseminated to all subscriber-hosting brokers that have event

subscribers with matching event subscriptions. In content-based routing, events are routed de-

pending on their content, and routing decisions are made with respect to previously submitted

subscriptions. A trace-based semantics of the desired behaviour of a publish/subscribe sys-

tem can be found in [Müh02]. To achieve this behaviour, a routing model for an event-based

middleware describes the algorithms that govern the propagation of event publications and sub-

scriptions in the network and the routing state that is maintained at the middleware components.

Since it is usually assumed that event publications are more common than subscriptions, routing

state should be set up in response to subscriptions, so as to facilitate the routing of publications.

Most publish/subscribe systems construct one or more event dissemination trees that are used

for content-based routing. As shown by the three event dissemination trees in Figure 3.3, the

50

CHAPTER 3. EVENT-BASED MIDDLEWARE 3.3. DESIGN

root is a source of events, such as a publisher-hosting broker, and the nodes correspond to

subscriber-hosting brokers with event subscribers and potentially matching event subscriptions.

Event subscriptions propagate up the tree and establish filtering state at the nodes of the tree.

This filtering state then controls the downwards flow of events and ensures event types are

only delivered to interested event subscribers. The strategy of source-side filtering states that

filtering state is created as close to event producers as possible so that unnecessary events can

be discarded without wasting resources such as network bandwidth or processing power. There

is either a single event dissemination tree that is statically shared among all event producers, or

separate trees that are created dynamically as new event producers join the publish/subscribe

system. The disadvantage of a single event dissemination tree is that it is harder to support

multiple sources of events. Therefore, we use a forest of event dissemination trees that is rooted

at publisher-hosting brokers and supports the efficient dissemination of events of a given type

published by each publisher.

The construction of an event dissemination tree can be assisted by event advertisements that

help establish routing state in the system. An event advertisement is an indication sent by

an event producer that it will publish events of a particular event type. Advertisements also

support a coverage relation with event subscriptions and other advertisements that is evaluated

by the routing algorithm.

Definition 3.8 (Event Advertisement) An event advertisement a has an event type τ ,

a : τ.

A subscription s : τs is covered by (or matches) an advertisement a : τa,

s v a,

if and only if

τa � τs

holds, where � is the sub-typing relation. Coverage between advertisements is analogous.

Advertisements sent by publisher-hosting brokers and subscriptions sent by subscriber-hosting

brokers have to join in the network in order to set up a path from event producers to event

consumers. All those paths form a forest of event dissemination trees. A simple approach to join

advertisements and subscriptions is to make either globally known to all nodes in the network.

However, as argued below, global state in routing algorithms reduces scalability. Instead, the

Hermes routing algorithms, which will be presented in Chapter 4, use the concept of a rendez-

vous node, as a well-known point in the network at which advertisements and subscriptions

meet, resulting in a forest of event dissemination trees.

After construction of an event dissemination tree, routing of events at each node has two stages:

First, an event publication is matched against event subscriptions that were submitted by locally-

51

3.3. DESIGN CHAPTER 3. EVENT-BASED MIDDLEWARE

hosted event subscribers (local event matching). Then, the event publication is matched against

remote event subscriptions so that a routing decision can be made that establishes the next hops

for the event (remote event matching). A large body of work [ASS+99, FJL+01] addresses the

issue of efficient local event matching using database indexing techniques.

For scalable routing, it is important that the routing decision for an event does not require

global knowledge of, say, all event subscribers or all event brokers in the system. Instead, only

state about a subset of all brokers, such as the set of neighbouring event brokers, should suffice.

Messages should also not be globally broadcast to all nodes in order to create common state.

Such broadcasts defeat scalability as they introduce an unknown delay until a message has been

successfully processed by all nodes. Moreover, broadcasts limit the robustness of the event-based

middleware since a single node failure may cause the entire application-level broadcast to fail.

The shape of an event dissemination tree determines important properties of the publish/-

subscribe system, such as efficiency of event dissemination and resilience to failure. A tree can

be constructed in two ways, at the application-level or at the network-level. In application-

level routing, the routing of event publications is done entirely by application-level components

running at nodes, such as event brokers, whereas network-level routing uses efficient group

communication primitives and router support in the network. Next we will discuss the trade-

offs associated with both approaches.

Application-Level Routing

Application-level routing only requires full unicast connectivity between nodes in the network,

such as provided by IP communication on the Internet. Here the event dissemination tree is

built as a part of an overlay broker network on top of a physical network topology. Its nodes

consist of event brokers that route event publications and its edges are defined by the relation

of neighbouring event brokers. Routing an event to all interested subscriber-hosting brokers

involves the traversal of multiple application-level hops but does not need any special network

features.

An advantage of application-level routing is the flexibility of the routing algorithms that can be

implemented. Sophisticated routing decisions can be made at every hop as the entire processing

is implemented in the event-based middleware. In particular, robust routing with resilience to

failure is easier to achieve at the application-level because the overlay network benefits from

redundant routes and middleware components. Another benefit is that the deployment of the

middleware does not rely on the existence of any special network features, such as IP multicast,

which may not be available everywhere.

The price to be paid for this flexibility is a reduction in routing efficiency. As shown in Figure 3.4,

a single hop in the overlay network may result in multiple hops in the underlying physical network

topology. In this example, event broker B1 has a neighbouring event broker B3 in the overlay

network that is geographically far away in the physical network — the shortest path in the

52

CHAPTER 3. EVENT-BASED MIDDLEWARE 3.3. DESIGN

B4B2

P2

P3 P4

P5

P7

B1

P1
P6

B3

Overlay

Network

Physical

Network

Figure 3.4: Mapping an overlay network onto a physical network

physical network is 4 hops. Any communication between these two brokers will be expensive

in terms of network utilisation. Costs should be associated with links in the overlay topology,

reflecting the actual costs of routing messages in the physical network. The quality of the

mapping of the overlay network down to a physical topology will determine the efficiency of

routing in the event-based middleware. In Chapter 5 we will introduce cost metrics to evaluate

the efficiency of an overlay broker network.

Network-Level Routing

To avoid the penalty of application-level routing, the network can assist in establishing event

dissemination trees without the indirection of an overlay broker network. In network-level rout-

ing, the event-based middleware takes advantage of advanced network features that support

the routing of events in a publish/subscribe scenario. For instance, many current networking

technologies provide multicast communication to send a single message efficiently to members

of a group. A multicast routing algorithm constructs a dissemination tree with network routers

as nodes, taking the physical topology of the network into account. Networking technologies

deployed in specialised domains, such as mobile ad-hoc networks or sensor-rich environments,

often come with efficient group communication built into their core routing protocols.

In active networks [TSWM97], routers are programmable entities that can execute portions of a

content-based routing algorithm. This opens up the possibility of delegating parts of the event-

based middleware into the network itself and thus improving the efficiency of event dissemina-

tion [CBP+02]. Schemes, such as Generic Router Assist (GRA) [CST01], allow filter expressions

that derive from event subscriptions to be installed at routers in the network, which can then

perform content-based routing of events with a comparable efficiency to normal, address-based

routing. This new style of networking could be viewed as content-based networking [CW01] that

departs from the traditional concept of address-based routing of datagrams.

However, an event-based middleware that heavily relies on sophisticated network-level features is

difficult to deploy in general purpose networks. Traditional network-level group communication

primitives, such as IP multicast, are often hard to integrate with multiple information sources

and content-based routing, in which the notion of static membership of a limited number of

53

3.3. DESIGN CHAPTER 3. EVENT-BASED MIDDLEWARE

groups does not exist. As a result, efficiently mapping event subscribers to multicast groups

remains an unsolved problem [BCM+99, RLW+03]. Our event-based middleware, Hermes,

therefore routes events at the application-level, and will be described in Section 4.3.

3.3.4 Reliability Model

The reliability model handles fault-tolerance mechanisms to cope with failure in the event-based

middleware. Reliability has two aspects: When clients use a best-effort service for event dis-

semination, they expect the middleware to exhibit robustness against failure. A robust system

attempts to reduce degradation in service caused by failure to a minimum, otherwise best-effort

semantics become unusable in the face of frequent data loss. The second aspect of reliability is

when it is explicitly demanded by clients through a quality of service (QoS) specification. For

example, an event client may publish events under guaranteed delivery semantics, so that it be-

comes the responsibility of the middleware to correctly deliver those events to event subscribers,

even under failure.

When designing mechanisms that handle failure, it is necessary to have a failure model of the

supported types of failure in the event-based middleware. We distinguish between two common

types of failure, network failure of the physical network of links and routers, and middleware

failure of components of the middleware. Next we discuss options for addressing these types

of failure in an event-based middleware. We also outline mechanisms that provide stronger

reliability guarantees than best-effort semantics to event clients using persistent events. In

Section 4.3.7 we will present our implementation of the reliability model in Hermes.

Network Failure. Network failure can be modelled as link failure that results in the short-

or long-term inability of event brokers to contact neighbouring event brokers. It can be caused

by a failure at the network-level, such as a router fault. With application-level routing, the

robustness of the middleware can be increased by handling network failure in the overlay net-

work [ABKM01]. The overlay network has redundant paths between event brokers so that a

different path can be chosen when a given physical link — and thus any logical links that depend

on that link — is down. This means that the overlay network topology has to change because of

failure in the physical network. If the overlay network is managed using peer-to-peer techniques,

the adaptation of routing can occur transparently to the event-based middleware, avoiding loss of

events under best-effort semantics. To cope with the failure of local event brokers, event clients

can maintain redundant connections with multiple event brokers in the event-based middleware.

Middleware Failure. Failure of an event-based middleware component means that an event

broker or client has stopped working and thus cannot participate in the operation of the middle-

ware any more. Usually component failure in a distributed system is discovered with a heartbeat

protocol that exchanges messages among components at regular intervals when there is no other

communication. When an event broker fails, state about event dissemination trees may be lost,

54

CHAPTER 3. EVENT-BASED MIDDLEWARE 3.3. DESIGN

causing gaps in trees. The event broker may also lose state about hosted event clients. Note that

failure of an event client may also be voluntarily, if it decides to temporarily disconnect from

the middleware. For example, in a mobile environment event clients detach from and reattach

to event brokers while roaming.

A crucial part of the reliability model is the repair of event dissemination trees after failure

of event brokers. Rather than recovering an old tree, it is often easier to build a new event

dissemination tree by resending event advertisements and subscriptions. Since the overlay broker

network will have adapted to the failure, the resent messages will take different routing paths and

hence create state in new event brokers, circumventing the failed components and establishing

again a complete tree with filtering state. However, this still leaves the problem of garbage-

collecting old state from event brokers after the repair of an event dissemination tree.

State in the middleware can be hard or soft state. The difference is that hard state never

expires, as opposed to soft state, which has to be periodically refreshed to persist. This so-

called lease-based approach has the advantage that old state at event brokers does not have to

be garbage-collected, because old state will expire automatically when it is no longer refreshed

by other event brokers.

Persistent Events. The methods outlined above improve the robustness of best-effort se-

mantics, but may still lead to event loss. For event clients requiring stronger guarantees, event

publications have to be preserved on persistent storage to survive failure of the event-based

middleware. Persistent events will be eventually delivered to all interested subscribers once the

operation of the middleware can resume. For reliable event delivery, additional algorithms are

necessary that can resend events after recovery of the system or the reconnection of an event

subscriber in a mobile environment.

Events can be stored in a persistent log at every event broker during routing. Routing can then

resume from the last hop before the failure, but the performance of the middleware suffers from

the frequent accesses to persistent storage. If failures are isolated occurrences, a better solution is

to keep an authoritative copy of event publications at the original publisher-hosting broker that

can then resend events lost during propagation [BSB+02]. Intermediate brokers cache events

for a certain period to quickly satisfy requests for retransmission. Once the event has been

delivered and acknowledged by all event subscribers, it is removed from the authoritative log at

the publisher-hosting broker. Mobile event subscribers can use the log at the publisher-hosting

broker to request the replay of events missed during disconnection [BZA03].

3.3.5 Service Model

Extensibility of middleware was identified as an important requirement. Therefore we introduce

a service model that describes the interaction of middleware services with the remaining design

models. Only core communication functionality is part of the event-based middleware by default

55

3.3. DESIGN CHAPTER 3. EVENT-BASED MIDDLEWARE

and thus implemented by event brokers. Extensions not targeted at all applications are included

as services and used on demand. This section gives an overview of three useful services for an

event-based middleware. We infer the required support in the architecture of the event-based

middleware to realise these services and outline their interfaces with the rest of the middleware.

A wide range of higher-level services are conceivable for an event-based middleware. The list of

CORBA object services in Section 2.1.1 gives an idea of useful services in a distributed computing

environment. Next we highlight the features of an event-based middleware that are necessary to

support three different services. The first service, congestion control, prevents congestion in the

event-based middleware. The second service is composite event detection, which is a publish/-

subscribe-specific service that extends the expressiveness of middleware. Finally, a security

service adds access control to the event-based middleware.

Congestion Control

Congestion at event brokers or in the overlay network can lead to the collapse of event dissemina-

tion. A congestion control service solves the congestion problem by restricting the publication

rate of events when resources are scarce and congestion could occur in the event-based mid-

dleware. When a system is significantly overprovisioned or events can be discarded without

negative impact, congestion control in the middleware is unnecessary. Since not all distributed

applications require congestion control, it is implemented as an optional middleware extension.

A congestion control service focuses on the event brokers in the middleware. The event brokers

monitor for symptoms of congestion and adapt their processing appropriately. A modular design

of the event broker allows the insertion of a congestion control module into the data path taken by

event publications. Moreover, new types of messages may need to be added to the middleware

for notification of congestion bottlenecks in the system. These messages are intercepted by

the congestion control module. The marginal involvement of event clients in overlay network

congestion control means that a plug-in interface at event brokers is sufficient for this service

extension. In Chapter 6 our congestion control service will be described in detail.

Composite Event Detection

Composite event detection enhances the expressiveness of the event-based middleware with com-

plex subscriptions that allow the specification of interest in patterns of events. These composite

events are detected by dedicated composite event detectors, thus simplifying the implementation

of event clients with complex interests in events. Many applications do not need complex sub-

scriptions, which is why composite event detection is a good example of an optional middleware

service that is only meaningful in the publish/subscribe model.

This service is implemented by composite event detectors, which are additional middleware

components distributed throughout the system. Composite event detectors may be co-located

56

CHAPTER 3. EVENT-BASED MIDDLEWARE 3.4. SUMMARY

with event brokers or deployed as stand-alone components. From the perspective of the service

model, they behave like event clients and use the event-based middleware to communicate with

each other. Since composite event detection leverages publish/subscribe functionality to provide

a more expressive publish/subscribe service, this service can be understood as an additional layer

on top of the event-based middleware with relative independence of the internals of event brokers.

A full description of a composite event service will given in Chapter 7.

Security

The final service example makes an event-based middleware secure. Adding security to a mid-

dleware platform is challenging because security is a cross-cutting issue that has to be integrated

from the start, rather than being added retrospectively. A security service restricts access to

the perimeter of the event-based middleware, making access control decisions at local event

brokers when event clients request middleware functionality. In addition, confidentiality has

to be guaranteed through secure inter-broker connections and separate levels of trust for event

brokers.

A security module at the local event brokers handles the authentication and authorisation of

event clients. It must intercept API calls by event clients and make access control decisions.

Moreover, a cryptographic engine is inserted into the data path at event brokers in order to

encrypt and decrypt event publications. It also has to perform cryptographic key management

and ensure the security of connections in the overlay broker network. When event publications

can contain encrypted data, the coverage relation is affected, as well. From this, it becomes

obvious that a security service depends on a flexible and pluggable architecture so that modules

can be replaced with secure versions. The full extent of adding security to an event-based

middleware will be shown in Chapter 8.

3.4 Summary

In this chapter the notion of an event-based middleware was refined through a number of design

models. We started with an overview of the requirements for an event-based middleware. The

trade-off between scalability and expressiveness was discussed, and fault-tolerance was identified

as an essential requirement for large-scale systems. In addition, we stressed the importance of

administrability and usability of a middleware, such as good programming language integra-

tion, as this ensures that a new middleware platform will be adopted by distributed systems

programmers. Finally, the heterogeneity of large-scale systems requires extensible and interop-

erable designs.

The specification of requirements helped structure the design space for an event-based mid-

dleware into five design models. An event model for the data handled in the middleware was

57

3.4. SUMMARY CHAPTER 3. EVENT-BASED MIDDLEWARE

developed. This model features event typing as an important concept in an event-based mid-

dleware and a formalisation of event publications and subscriptions. The components of the

event-based middleware are part of a component model, with event brokers providing a service

to event clients. Algorithms for the dissemination of events belong to the routing model. We

made a distinction between application-level and network-level routing for event dissemination,

and chose the more flexible content-based routing of events at the application-level. To facil-

itate the construction of event dissemination trees, event advertisements were included in the

model. A reliability model addressed the requirement of fault-tolerance with mechanisms to

cope with certain types of failure in the middleware. Finally, we introduced a service model for

middleware services and discussed techniques for adding a service to the middleware with three

example services.

The design models from this chapter serve as a first step towards a concrete architecture for an

event-based middleware that satisfies our requirements. In the next chapter, a scalable, event-

based middleware architecture, called Hermes, will be presented that constitutes a named

selection from this design space. More detail on extensions to the core Hermes middleware in

the form of middleware services according to the service model will also be given in the remaining

chapters of this dissertation.

58

4
Hermes

This chapter presents Hermes [PB02], a scalable, event-based middleware architecture that

facilitates the building of large-scale distributed systems. Hermes has a distributed implemen-

tation that adheres to the design models developed in the previous chapter. It is based on an

implementation of a peer-to-peer routing layer to create a self-managed overlay network of event

brokers for routing events. Its content-based routing algorithm is highly scalable because it does

not require global state to be established at all event brokers. Hermes is also resilient against

failure through the automatic adaptation of the overlay broker network and the routing state

at event brokers. An emphasis is put on the middleware aspects of Hermes so that its typed

events support a tight integration with an application programming language. Two versions of

Hermes exist that share most of the codebase: an implementation in a large-scale, distributed

systems simulator, and a full implementation with communication between distributed event

brokers.

We begin with an overview of Hermes in the next section, followed by a description of its archi-

tecture in Section 4.2. In Section 4.3 we explain the novel routing algorithms used by Hermes

for content-based routing on top of a distributed hash table. Our prototype implementation

of Hermes is discussed in Section 4.4, justifying our decisions with respect to the event-based

middleware design models in more detail.

59

4.1. OVERVIEW CHAPTER 4. HERMES

B4B2

P2

P3 P4

P5

P7

B1

P1
P6

B3

B4B2

B1
B3

Overlay

Network

Physical

Network

Event

Dissemination

Tree

Figure 4.1: Layered networks in Hermes

4.1 Overview

A primary feature of the Hermes event-based middleware is scalability, as it is targeted at the

development of large-scale distributed systems. Hermes includes two content-based routing

algorithms to disseminate events from event publishers to subscribers. The type-based routing

algorithm only supports subscriptions depending on the event type of event publications. It

is comparable to a topic-based publish/subscribe service but differs by observing inheritance

relationships between event types. The second algorithm is type- and attribute-based routing,

which extends type-based routing with content-based filtering on event attributes in publica-

tions. In both algorithms, event-type specific advertisements, introduced in Section 3.3.3, are

sent by publisher-hosting brokers to set up routing state. Advertisements are not broadcast to

all event brokers, but instead event brokers can act as special rendezvous nodes that guarantee

that event subscriptions and advertisements join in the network in order to form valid event dis-

semination trees. The trade-offs associated with the two routing algorithms will be investigated

in Section 4.3.

Both routing algorithms use a distributed hash table to set up state for event dissemination

trees. The distributed hash table functionality is implemented by a peer-to-peer routing sub-

strate, called Pan, formed by the event brokers in Hermes. Pan is an extended implementation

of the Pastry routing substrate from Section 2.3.1. The advantage of such peer-to-peer overlay

network are threefold: first, the overlay network can react to failure by changing its topology

and thus adding fault-tolerance to Hermes. Second, the peer-to-peer routing substrate that

manages the overlay network is responsible for handling membership of event brokers in a Her-

mes deployment. Third, the discovery of rendezvous nodes, which must be well-known in the

network, is simplified by the standard properties of the distributed hash table.

The three layers of networks in Hermes are illustrated in Figure 4.1. The bottom layer is

the physical network with routers and links that Hermes is deployed in. The middle layer

constitutes the peer-to-peer overlay network that offers a distributed hash table abstraction.

60

CHAPTER 4. HERMES 4.2. ARCHITECTURE

Network Layer

Overlay Routing Layer

Type-based Publish/Subscribe Layer

Type- and Attribute-based Publish/Subscribe Layer

Event-based Middleware Layer

Services Layer

QoS Transactions Composite Events Security

Figure 4.2: Overview of the Hermes architecture

The top layer consists of multiple event dissemination trees that are constructed by Hermes

to realise the event-based middleware service. When a message is routed using the peer-to-peer

overlay network, a callback to the upper layer is performed at every hop, that allows the event

broker to process the message by altering it or its own state.

In addition to scalable event dissemination, Hermes supports event typing, the creation of event

type hierarchies through inheritance, and generic, supertype event subscriptions. This enhances

its integration with current object-oriented programming languages such as Java or C++.

4.2 Architecture

Mirroring the layered network structure, the architecture of Hermes has six layers, shown in

Figure 4.2. Each layer builds on top of the functionality provided by the layer underneath and

exports a clearly defined interface to the layer above. Apart from that, the layers are independent

of each other. A layered architecture for a communications system has the advantage that each

layer can have its implementation easily replaced by a different implementation if necessary.

For example, if a more efficient implementation of a distributed hash table becomes available,

Hermes can benefit from this without major modification. Since Hermes is implemented by

the event brokers, its layered structure is also reflected in the implementation of an event broker.

Next, we will describe the role of each layer, starting with the lowest one.

Network Layer. The lowest layer is the network layer that represents the unicast communi-

cation service of the underlying physical network. We assume that Hermes is deployed

in a network with full unicast connectivity between nodes, such as the Internet. No other

network-level services, such as group communication primitives, are necessary.

Overlay Routing Layer. The overlay routing layer implements an application-level routing

algorithm that provides the abstraction of a distributed hash table. A peer-to-peer im-

plementation of this layer is chosen for reasons of scalability and robustness. This layer

61

4.2. ARCHITECTURE CHAPTER 4. HERMES

takes application-level nodes, which are Hermes event brokers, and creates routing state

in order to hash keys to nodes. It also handles the addition, removal, and failure of nodes

in the overlay network. The topology of the overlay routing layer is optimised with respect

to a proximity metric of the underlying physical network.

Type-based Publish/Subscribe Layer. The type-based publish/subscribe layer exports a

primitive type-based publish/subscribe service on top of the distributed hash table estab-

lished by the previous layer. Type-based routing supports subscriptions according to an

event type, and observes the inheritance relationships between event types. Event dissem-

ination trees are then created with the help of rendezvous nodes in the system. Trees are

also repaired by retransmitting messages after state at event brokers has been lost.

Type- and Attribute-based Publish/Subscribe Layer. This layer extends the type-based

service with content-based filtering on event attributes. The same rendezvous node mech-

anism is used for the construction of event dissemination trees. However, the trees are

annotated with filtering expressions derived from the type- and attribute-based subscrip-

tions. These filtering expressions are placed at strategic locations in the network, usually

as close to event producers as possible in order to discard unnecessary events as soon as

possible.

Event-based Middleware Layer. At this layer event-based middleware functionality is added

to the content-based publish/subscribe system of the previous layers. Typing information

is maintained at the rendezvous nodes so that event publications and subscriptions can be

automatically type-checked by Hermes. The event-based middleware layer also extends

the API used by event clients to invoke Hermes.

Services Layer. The services layer is a set of pluggable extensions to the event-based middle-

ware layer. It allows Hermes to provide a wide range of higher-level middleware services.

For example, different guarantees of publication and subscription semantics can be sup-

ported by a QoS module at the services layer. Another service may deal with composite

event detection or transaction support. Services may violate the strict layering of the ar-

chitecture and obtain direct access to lower layers if this is necessary for their functionality.

Having described the general architecture of Hermes, we will concentrate on the components

of Hermes. Hermes closely follows the component model developed in Section 3.3.2, dividing

the event-based middleware into event brokers and event clients.

4.2.1 Event Brokers

A Hermes event broker implements all layers except the network layer. The overlay routing

layer is a Pan node, which represents a single node in the overlay network that is capable of

receiving values for keys in the distributed hash table. On top of this, the two publish/subscribe

routing layers export a client interface that event publishers and subscribers use. The event-

62

CHAPTER 4. HERMES 4.2. ARCHITECTURE

Returns API Call Parameters

void connectBroker (EventBroker broker, Credentials c,

EventBroker bootstrapBroker)

void disconnectBroker (EventBroker broker, Credentials c,

EventBroker disconnectBroker)

void disconnectBrokerFromAll (EventBroker broker, Credentials c)

Set getNeighbouringBrokers (EventBroker broker, Credentials c)

Table 4.1: The Hermes event broker API

based middleware layer of a Hermes event broker supports an external API that is used for

administration of Hermes.

An excerpt of the external Hermes event broker API is shown in Table 4.1. Note that excep-

tions raised by API calls in response to error conditions are ignored for ease of presentation. The

event broker API is as simple as possible in order to comply with the requirement for adminis-

trability from Section 3.2.3. All API methods take the event broker identity and authentication

credentials as parameters that are used for an access control decision, as will be described in

Chapter 8. The main task of this API is the establishment of the overlay broker network and

thus the maintenance of the set of neighbouring event brokers. For this, a new event broker that

wishes to join an existing Hermes deployment invokes the connectBroker method, passing the

identity of a bootstrapBroker as a parameter.

The bootstrapping event broker is only used as an initial entry point to the overlay network.

The join protocol of the distributed hash table, as outlined in Section 2.3.1, finds an optimal

set of neighbouring event brokers for the new broker with respect to the proximity metric. This

means that the quality of the overlay network does not depend on the choice of bootstrapping

event broker as that broker may not end up in the set of neighbouring event brokers. After the

new event broker has successfully connected to the bootstrapping broker, its set of neighbouring

event brokers will be populated with entries by the peer-to-peer routing substrate Pan. The

number of neighbouring event brokers for every event broker is a tunable parameter of Pan that

follows a trade-off between resilience and statefulness of the network.

A call to disconnectBroker disconnects an event broker. This is achieved by flagging the event

broker to be disconnected as failed, which causes the overlay routing substrate to remove the

broker and restore any invariants of the distributed hash table, adjusting the set of neighbouring

event brokers. Disconnecting particular event brokers in Hermes is mainly used for system

maintenance and policy enforcement so that, for example, an event broker in one administrative

domain may not have connections to brokers in a second domain. To leave a Hermes network

of event brokers, a call to disconnectBrokerFromAll removes an event broker entirely from the

overlay network and restores any invariants by following the leave protocol of the distributed

hash table. Finally, the method getNeighbouringBrokers returns the set of neighbouring event

brokers that an event broker is currently connected to.

63

4.2. ARCHITECTURE CHAPTER 4. HERMES

When an event broker is a member of a Hermes network, it can become part of one or more

event dissemination trees. Event dissemination trees are constructed by routing keys to event

brokers in the overlay network. Every event dissemination tree has at least one special event

broker functioning as a rendezvous node, described in the next section.

Rendezvous Nodes

In Hermes, a rendezvous node is used to ensure that all interested event brokers agree on the

same set of event dissemination trees for a particular event type. When constructing a tree, event

advertisements and subscriptions are routed towards the rendezvous node using the peer-to-peer

routing substrate, so that, in the worst case, they join at the rendezvous node. The rendezvous

node must exist at a globally known location in the network. The idea of rendezvous nodes was

first introduced in the context of core-based trees [BFC93] for building multicast trees. However,

the content-based routing algorithm of Hermes does not require that all event publications are

routed through the rendezvous node, thus avoiding a potential bottleneck at that node.

The type-based routing layer of Hermes maintains at least one rendezvous node for every event

type in the system because separate event dissemination trees per event publisher are built for

each type. Any event broker in Hermes can assume the role of a rendezvous node for one or

more event types. A rendezvous node is automatically created when a new event type is added

to Hermes. Once an event broker has become a rendezvous node, it is responsible for managing

that particular event type. The event broker acting as the rendezvous node is chosen by hashing

the unique event type name as a key to a destination event broker in the distributed hash table.

Due to the properties of the distributed hash table, the chosen event broker will be globally

agreed upon by all brokers so that every broker can use the peer-to-peer routing substrate to

send messages to this rendezvous node.

A rendezvous node manages the authoritative version of the event type schema used for type-

checking events of that type. When a rendezvous node is set up, it stores the event type schema

for the new type in its event type repository. It also supports a query interface to browse

for an event type schema and a management interface to modify it. To reduce the load on

the rendezvous node, copies of the event type schema are cached at other event brokers for

faster type-checking of event subscriptions and publications. Because an event type may be a

descendant from a parent type, a rendezvous node can be associated with a parent rendezvous

node. This may make it necessary to traverse a chain of rendezvous nodes to collect all type

information in the inheritance hierarchy when type-checking a child event type. If an event

client attempts to register an already existing event type, the rendezvous node can reject the

type message and notify the client of the name conflict.

Rendezvous nodes do not contain any state about the event dissemination trees itself, which

makes them simple to replace in case of failure. When a rendezvous node fails, a new rendezvous

node will take over because of the adaptation of the peer-to-peer routing substrate. To prevent

64

CHAPTER 4. HERMES 4.2. ARCHITECTURE

the event type schema information from being lost, it is usually replicated across multiple nodes.

We will describe several strategies for installing redundant rendezvous nodes, when discussing

Hermes’s fault-tolerance mechanisms in Section 4.3.7.

4.2.2 Event Clients

The event clients in Hermes follow the component model for an event-based middleware. They

are light-weight, language-dependent components without middleware functionality that connect

to a local event broker in order to request middleware services. Hermes has event publishers and

event subscribers as clients. For usability, an event client locally exports a language-dependent

event client API to the application and API calls are then passed on to the language-independent

client interface of Hermes event brokers. The communication with the client interface of the

event broker is XML-based and hidden from the application.

As can be seen from the event publisher and subscriber APIs exported to applications in Ta-

bles 4.2 and 4.3, every API method includes the client identity (in pub or sub) and a set of

credentials (in c) for an access control decision by the local event broker. Both types of event

clients support methods to connect to a Hermes event broker, which then becomes a publisher-

hosting or subscriber-hosting broker. To increase reliability and availability, an event client may

maintain connections to several local event brokers. The getLocalBrokers method returns the

set of local event brokers and a disconnect method removes the client from a broker. In addition,

both client APIs contain specific methods that depend on the capacity of the event client as an

event publisher or subscriber.

Event Publishers

The interface exported by an event publisher, as listed in Table 4.2, is primarily used to publish

events in Hermes. In addition to handling connections to local event brokers, the interface also

has methods for event type management. When an event publisher adds a new event type to

Hermes with the addEventType method, it becomes the event type owner for this type. Only

the event type owner is allowed to modify or remove the event type from the system. Any

publisher, pending the possession of the required credentials, can query an event type schema

by calling getEventType.

Before an event publisher can publish an event, it has to advertise the event type, which will

trigger an event advertisement message that updates the event dissemination tree. A correspond-

ing unadvertise method undoes a previous advertisement. Three methods exist to publish an

event. A call to publishType publishes an event that will only match type-based subscrip-

tions that are of the correct event type (or parent event type), whereas publishTypeAttr only

matches type- and attribute-based subscriptions that have a matching content-based filter on

the event attributes. The third method, publish, publishes an event that will potentially match

both types of subscriptions. Note that in Section 4.3.6 we will show that the publish method

65

4.2. ARCHITECTURE CHAPTER 4. HERMES

Returns API Call Parameters

void connectPublisher (Publisher pub, Credentials c,

EventBroker broker)

BrokerSet getLocalBrokers (Publisher pub, Credentials c)

void disconnectPublisher (Publisher pub, Credentials c,

EventBroker broker)

void addEventType (TypeOwner owner, Credentials c,

TypeSchema schema)

void modifyEventType (TypeOwner owner, Credentials c,

TypeSchema schema)

TypeSchema getEventType (Publisher pub, Credentials c,

EventType type)

void removeEventType (TypeOwner owner, Credentials c,

EventType type)

void advertise (Publisher pub, Credentials c,

EventType type)

void unadvertise (Publisher pub, Credentials c,

EventType type)

void publish (Publisher pub, Credentials c,

Event event)

void publishType (Publisher pub, Credentials c,

Event event)

void publishTypeAttr (Publisher pub, Credentials c,

Event event)

Table 4.2: The Hermes event publisher API

is more efficient than merely calling publishType and publishTypeAttr in sequence because

event publications are less likely to be duplicated during routing.

Event Subscribers

Event subscribers have an interface that enables them to subscribe to events. The getEventType

method in Table 4.3 returns the event type schema so that a type-safe subscription can be

made. Analogous to the API of event publishers, the subscribe and unsubscribe methods come

in three flavours. A subscription according to type-based routing is created by subscribeType,

subscribeTypeAttr submits a type- and attribute-based subscription with a content-based

filter expression, and subscribe will match events following either routing algorithm.

All three subscription methods include a callback parameter for the asynchronous notification

of event publications. The callback interface consists of a single notify method, shown in

Table 4.4. It is invoked by the event subscriber to deliver a matching event publication from

the local event broker to the application.

66

CHAPTER 4. HERMES 4.3. ROUTING ALGORITHMS

Returns API Call Parameters

void connectSubscriber (Subscriber sub, Credentials c,

EventBroker broker)

BrokerSet getLocalBrokers (Subscriber sub, Credentials c)

void disconnectSubscriber (Subscriber sub, Credentials c,

EventBroker broker)

TypeSchema getEventType (Subscriber sub, Credentials c,

EventType type)

void subscribe (Subscriber sub, Credentials c,

EventType type, Filter filter,

Callback callback)

void subscribeType (Subscriber sub, Credentials c,

EventType type, Callback callback)

void subscribeTypeAttr (Subscriber sub, Credentials c,

EventType type, Filter filter,

Callback callback)

void unsubscribe (Subscriber sub, Credentials c,

EventType type, Callback callback)

void unsubscribeType (Subscriber sub, Credentials c,

EventType type, Callback callback)

void unsubscribeTypeAttr (Subscriber sub, Credentials c,

EventType type, Filter filter,

Callback callback)

Table 4.3: The Hermes event subscriber API

4.3 Routing Algorithms

In this section the two routing algorithms for event dissemination in Hermes, type-based routing

and type- and attribute-based routing, are described. They each have their own trade-offs, which

is why event clients can choose the algorithm to use depending on their subscription or publica-

tion patterns. Type-based routing combines advertisements and subscriptions with core-based

trees [BFC93] over a distributed hash table, where the core is the event broker that functions as

the rendezvous node. Special consideration has to be given to event typing and type inheritance.

The more advanced type- and attribute-based routing algorithm extends core-based trees with

the technique of reverse path forwarding [DM78], which is used in publish/subscribe systems to

install filtering state at event brokers.

Returns API Call Parameters

void notify (Event event)

Table 4.4: The Hermes event subscriber callback API

67

4.3. ROUTING ALGORITHMS CHAPTER 4. HERMES

We start the presentation of the two routing algorithms with an overview of the message types

in Hermes. After that, the main data structures maintained at event brokers participating in

routing are explained in Section 4.3.2. A description of the type-based routing algorithm is given

in Section 4.3.3, with the necessary changes to support event type inheritance detailed in the

following section. In Section 4.3.5 we introduce type- and attribute-based routing. Issues related

to the execution of both algorithms in a single Hermes deployment and a formalisation of their

behaviour are given in Section 4.3.6. We finish with a survey of fault-tolerance mechanisms

supported by the algorithms in Section 4.3.7.

4.3.1 Message Types

To disseminate events in the event-based middleware, Hermes event brokers exchange four

types of messages, namely type, advertisement, subscription, and publication messages. The

latter three types correspond to the messages introduced in the event and routing models in

Sections 3.3.1 and 3.3.3. Type messages are specific to the management of rendezvous nodes

and the type-checking of event data. Both routing algorithms use the same set of messages

except that subscription and publication messages have an extra field to disambiguate whether

they are part of type-based or type- and attribute-based routing. Subscription messages in

type- and attribute-based routing also include a content-based filter expression. All message

types contain source and destination address fields, where the source address is the address of

the most recent event broker to process that message and the destination address is a destination

in the peer-to-peer routing substrate.

In addition to these four types of messages, there are unadvertisement and unsubscription mes-

sages, which are inverses of the corresponding messages described above. The routing algorithms

use them to remove state from event brokers, but for all practical purposes they behave in the

same manner as their positive counterparts. Next we will explain the purpose and structure of

each message type in turn.

Type Messages. Type messages originate at publisher-hosting brokers when an event pub-

lisher tries to add a new event type to the system. They are used to set up the rendezvous

node for a new event type and add its schema to the type repository maintained at the rendez-

vous node. In addition to the eventTypeName and the eventTypeSchema fields, an operation

field determines whether to add a new event type, or modify or remove an existing one. The

destination address is always the event broker that acts as the rendezvous node for the event

type. Type messages are the same for type-based and type- and attribute-based routing.

source destination operation eventTypeName eventTypeSchema

68

CHAPTER 4. HERMES 4.3. ROUTING ALGORITHMS

Advertisement Messages. An event publisher that is willing to publish events of a given

event type causes its hosting event broker to send an advertisement message. Advertisement

messages are routed towards the rendezvous node and contain the eventTypeName of the type to

be published. At each event broker that an advertisement message passes through, it may create

state in an advertisement routing table, which is later used to create an event dissemination tree.

source destination eventTypeName

Subscription Messages. A subscription message is sent by a subscriber-hosting broker when

an event subscriber submits a subscription. Like advertisement messages, subscription messages

are routed towards the rendezvous node. They contain an eventTypeName field and optional

filterExpression fields if used with type- and attribute-based subscriptions, as indicated by

the routingType field. Subscription messages may cause new entries to be added to subscription

routing tables at event brokers.

source destination eventTypeName filterExpression1 filterExpression2 ...routingType

Publication Messages. The fourth type of message is a publication message with a published

event. It is sent by a publisher-hosting broker that received an event publication from an

event publisher. The routing of publication messages is controlled by the advertisement and

subscription routing tables at event brokers. These messages contain an eventTypeName field,

a routing algorithm specification in a routingType field, and values for the event attributes in

the eventAttribute fields.

source destination eventTypeName eventAttribute1 eventAttribute2 ...routingType

4.3.2 Data Structures

The content-based routing algorithms in Hermes depend on two data structures maintained

by all event brokers. An advertisement routing table records information about advertisements

and a subscription routing table does the same for subscriptions. Both routing tables have an

identical form and are thus instances of the same data structure. Their purpose is to keep track

of the paths taken by advertisement/subscription messages that have passed through an event

broker. This information is then sufficient to create event dissemination trees for the subsequent

routing of event publication messages, coming from any number of event publishers.

For every advertisement/subscription, the routing table at an event broker contains an entry

that associates it with two sets: the set of event brokers that sent the message to the current

69

4.3. ROUTING ALGORITHMS CHAPTER 4. HERMES

event broker, and the set of event brokers that received the message from the current event

broker. The event brokers in these two sets must be neighbouring event brokers because only

these event brokers can directly communicate with the current event broker. An event broker

is only added to one set if the message originated or terminated at the current event broker.

Moreover, the routing table also allows efficient access to the coverage relation between the

advertisements/subscriptions it stores, as defined in Section 3.3.1.

Definition 4.1 (Advertisement/Subscription Routing Table) An advertisement/subscr-

iption routing table RTadv/sub contains a set of routing table entries, RTE,

RTE ∈ RTadv/sub.

An advertisement/subscription routing table entry RTE is a tuple,

RTE = (adv/sub, Bfrom, Bto),

where adv/sub is an advertisement/subscription, Bfrom is a set of event brokers that sent, and

Bto is a set that received this advertisement/subscription.

4.3.3 Type-Based Routing

As mentioned previously, the type-based routing algorithm disseminates event publications de-

pending on the event type only. Before an event of a given event type can be published, the

corresponding rendezvous node must be set up. This is done by routing a type message to the

event broker that is the destination node for the hashed event type name in the distributed hash

table. This event broker then becomes the rendezvous node for the new event type and stores

the event type schema in its type repository. When one of the remaining three types of messages

reaches an event broker, it is then processed as follows:

Advertisement Messages. An advertisement message is routed towards the rendezvous node

for the specified event type. At every broker the advertisement is added to the advertise-

ment routing table, recording the advertisement, the last, and the next event broker on

the message path. However, if the next event broker on the path to the rendezvous node

has already received a previous advertisement that covers the new one, the message is not

forwarded but discarded. Once the advertisement message reaches the rendezvous node,

it is added to the advertisement routing table and then also discarded.

Subscription Messages. A subscription message behaves analogously to an advertisement

message. It is routed towards the rendezvous node and creates entries in subscription

routing tables at each broker along the way. The message is discarded if the next broker

has already received a previous, covering subscription. The subscription message is also

discarded when it reaches the rendezvous node.

70

CHAPTER 4. HERMES 4.3. ROUTING ALGORITHMS

B1

B4

B3

B2

B5

P1 P2

S2

S1

t
2
a
1

p
1

s
1

s 1

s1
s
2

s2

a1 t2t2a2

a2p1

p 1

p1
p
1

p1

R

Figure 4.3: Type-based routing in Hermes

Publication Messages. Publication messages follow the forward path of matching advertise-

ments, as stored in advertisement routing tables, up to the rendezvous node. Whenever

they encounter an event broker with matching subscriptions, they follow the reverse paths

from the subscription routing table. Note that because of best-effort semantics no state

needs to be created at the event brokers that process publication messages, and they are

never forwarded to an event broker that was the previous hop on the message path.

By following the type-based routing algorithm, an event publication is disseminated to all in-

terested event subscribers that have submitted a matching subscription. The algorithm thus

creates several event dissemination trees — one for each publisher-hosting broker— that are

then used for the flow of event publications. In Figure 4.3 we illustrate the operation of type-

based routing in Hermes with an example. There are six event brokers B1...5 and R, two event

subscribers S1,2, and two event publishers P1,2 in this deployment. The rendezvous node for the

only event type in the system is at event broker R.

First the rendezvous node at event broker R is set up with the type message t2 coming from

event broker B2 that is hosting event publisher P2 with a request for event type creation. Now

P1 and P2 advertise so that advertisement messages a1 and a2 are routed to the rendezvous

node R. During this process, state in advertisement routing tables at event brokers B1, B2,

and R is created. Since advertisement a2 is covered by a1, the message a2 is discarded by event

broker B1. Next the two event subscribers S1 and S2 subscribe to this event type, triggering the

routing of two subscription messages s1 and s2 to R. Again entries in the subscription routing

tables at event brokers B1, B3, B5, and R are established. As a result, two event dissemination

trees have been created in the system. Note that no state is needed at event broker B4 because

it does not lie on one of the two trees.

Advertisement Bfrom Bto Subscription Bfrom Bto

{a1} {} {R} {s1} {B3} {R}
{a2} {B2} {}

Table 4.5: Routing tables at event broker B1 using type-based routing

71

4.3. ROUTING ALGORITHMS CHAPTER 4. HERMES

When event publisher P1 publishes an event, an event publication message p1 is generated

at event broker B1. The state in the advertisement and subscription routing tables at event

broker B1 is given in Table 4.5. At the first hop, the publication message is sent to event

broker R following the forward path of the advertisement message a1, and to B3 on the reverse

path of the subscription message s1. The event broker R forwards the message to B5 so that it

eventually reaches both event subscribers S1 and S2.

In type-based routing an event publication must reach the rendezvous node but may be discarded

there because it has already encountered all matching event subscriptions on its path to the

rendezvous node. Type- and attribute-based routing relaxes this requirement by not necessarily

routing event publications through the rendezvous node and thus preventing it from becoming a

bottleneck. In the next section we present a modified handling of advertisement and subscription

messages in type-based routing so that event type inheritance with supertype subscriptions, as

introduced in the event model in Section 3.3.1, is supported.

4.3.4 Type-Based Routing with Inheritance

Previously we argued that supertype subscriptions helped integrate object-oriented type inheri-

tance with a typed event model. With supertype subscriptions, an event subscriber submitting

a subscription for an event type will also be notified of published events of any of the de-

scendant event types of the original subscription type. The simplest way to realise supertype

subscriptions is to leave the responsibility of subscribing to all descendant event types with the

event subscriber. However, this adds unnecessary complexity to event subscribers, which can be

avoided by extending the type-based routing algorithm in Hermes to accommodate supertype

subscriptions explicitly.

The type message that establishes a rendezvous node in type-based routing contains the schema

of the new event type. This schema also includes the name of the parent event type. Therefore

a rendezvous node can contact its parent rendezvous node to notify it that a new child event

type has been added to the system. Since rendezvous nodes are now aware of all their descen-

dant types, supertype subscriptions can be supported by either advertisement or subscription

inheritance routing.

Advertisement Inheritance Routing. When an advertisement message reaches a rendez-

vous node, the message continues propagation recursively to the rendezvous nodes of all

ancestor event types. This results in additional state in advertisement routing tables. The

processing of subscription messages is unchanged, meaning that they are only sent to the

rendezvous node of the event type stated in the subscription. Now event publications,

which follow the forward path of advertisements, will reach the rendezvous nodes of all

ancestor event types and thus encounter all matching event subscriptions in the type

hierarchy.

72

CHAPTER 4. HERMES 4.3. ROUTING ALGORITHMS

B1

B2 B3

S1

P1

s 1
s
1 s1

s 1

s1

p 1
p1

p
1

p1

p
1 p 1

p 1

a1

a
1

R1 R2

R3

Figure 4.4: Supertype subscriptions with subscription inheritance in Hermes

Subscription Inheritance Routing. With subscription inheritance routing, the roles of ad-

vertisement and subscription messages are interchanged. Advertisement messages are only

sent to the rendezvous node for the event type from the advertisement. However, a sub-

scription message that arrives at a rendezvous node continues to be routed to all rendezvous

nodes of descendant types. As a consequence, a publication message, which follows the

forward advertisement path to a rendezvous node of a descendant type, has to encounter

all matching subscriptions for any ancestor event type.

In Figure 4.4 an example of subscription inheritance routing in Hermes is given using an event

type hierarchy with three event types τ1,2,3 and corresponding rendezvous nodes R1,2,3. The

subtyping relation τ3 � τ2 � τ1 holds between the event types. Note how a subscription s1 : τ1

at event broker B1 creates extra state in subscription routing tables at event brokers B2, R2,

and R3 because of the additional routing of subscription messages due to inheritance. The

event publication p1 : τ3 is delivered to the event subscriber that submitted the supertype

subscription s1 since it is matched at rendezvous node R3.

Whether to use advertisement or subscription inheritance routing depends on the ratio between

advertisements and subscriptions. If event advertisements triggered by event publishers are more

common, subscription inheritance routing has the advantage of a smaller overhead since adver-

tisements are only routed to a single rendezvous node in the event type hierarchy. Conversely,

if subscriptions are more common, it is more efficient to route event advertisement more widely

in the system. We will revisit a similar strategy for dealing with multiple rendezvous nodes in

Section 4.3.7 when looking at fault-tolerance mechanisms for content-based routing in Hermes.

4.3.5 Type- and Attribute-Based Routing

Type- and attribute-based routing is an extension of type-based routing that supports the

content-based filtering of events according to filter expressions on the event attributes in event

publications. It differs from type-based routing in that filtering state from subscriptions is

installed close to publishers so that unmatched events can be discarded early during event dis-

semination. The same mechanism as for type-based routing is used to set up rendezvous nodes

with type messages, and the processing of the remaining three message types is as follows:

73

4.3. ROUTING ALGORITHMS CHAPTER 4. HERMES

B1

B4

B3

B2

B5

P1 P2

S2

S1

a
1

p
1

s
2

s
1s 1

s1
s
2

s2

a1 a2s1a2

p1

p 1

p1
p
1

p1

R

Figure 4.5: Type- and attribute-based routing in Hermes

Advertisement Messages. Advertisement messages are used in the same way as in the type-

based routing algorithm. They are routed towards the rendezvous node for the advertised

event type and create new entries in the advertisement routing tables of the event brokers

that they pass through. The coverage relation between advertisements suppresses the

forwarding of more specific advertisements that are covered by previous, less specific ones.

An advertisement message is not forwarded further than the rendezvous node.

Subscription Messages. A subscription message is also routed towards the rendezvous node

for its event type. However, the subscription message also follows the reverse path of any

covering advertisements along the way. At each hop an entry in the subscription routing

table is created and the message may not be further propagated because of subscription

coverage. The regular routing of a subscription message finishes at the rendezvous node.

Publication Messages. The routing of publication messages is only controlled by the state in

subscription routing tables. Publication messages follow the reverse path of matching event

subscriptions. This means that they are not routed towards the rendezvous node for their

event type. As they are matched against type- and attribute-based event subscriptions

with attribute predicates, event publications are progressively filtered according to event

subscribers’ interests.

We illustrate type- and attribute-based routing in Hermes with the example in Figure 4.5.

The setup of event brokers and event clients is the same as in Figure 4.3. First, the two event

publishers P1 and P2 advertise the only event type in the system and thus cause the sending of

advertisement messages a1 and a2. These two messages add entries to the advertisement routing

tables at event brokers B1, B2, and R. When event subscriber S1 decides to subscribe, the sub-

Advertisement Bfrom Bto Subscription Bfrom Bto

{a1} {} {R} {s1} {B3} {R,B2}
{a2} {B2} {} {s2} {R} {}

Table 4.6: Routing tables at event broker B1 using type- and attribute-based routing

74

CHAPTER 4. HERMES 4.3. ROUTING ALGORITHMS

scription message s1 is routed towards the rendezvous node R. The routing table state at event

broker B1 is summarised in Table 4.6. There it encounters a matching event advertisement a2

and is therefore forwarded to event broker B2. It is also delivered to event broker R because

of rendezvous node routing. The subscription s2 from subscriber S2 is routed similarly, except

that it is discarded by event broker B1 due to coverage with subscription s1. Finally the event

publication p1 is routed along the reverse path of subscription s2, namely via B1, R, and B5.

It also follows the reverse path of subscription s1 to event broker B3 so that it is successfully

delivered to event subscribers S1 and S2.

When compared to type-based routing, type- and attribute-based routing creates more state

in subscription routing tables in the system. This is because event publications are filtered as

close to event publishers as possible, requiring more filtering state in the system. An advantage

of this routing scheme is that event publications do not have to reach the rendezvous node

any more as they are not routed along the path taken by event advertisements. Hence the

rendezvous node cannot become a bottleneck in event dissemination. In practice, accepting

more subscription state to make routing of event publications more efficient is a good trade-off

because publications are more frequent than subscriptions in most real-world applications since

event subscribers typically stay subscribed for many publications. A more in-depth evaluation

of the Hermes routing algorithms will be provided in Chapter 5.

4.3.6 Combined Routing

For maximum flexibility, a Hermes deployment should be able to support both type-based and

type- and attribute-based routing. This enables event clients to choose the service that best suits

their needs. If an event client does not need content-based filtering, a type-based subscription

has the advantage of creating less subscription state at event brokers. Type- and attribute-based

routing is necessary if event clients rely on more expressive content-based subscriptions with filter

expressions. Ideally an event publisher prefers to only publish a single event publication, which

will then be delivered to all type-based and type- and attribute-based subscribers.

The combination of type-based and type- and attribute-based routing in a single system involves

some subtleties due to interference between the two algorithms. In a näıve approach, where the

same advertisement, subscription, and publication messages are processed by both algorithms,

events might be delivered to event subscribers multiple times. This can occur when an event

publication encounters matching type-based event advertisements on the reverse path of a type-

and attribute-based subscription.

An extreme solution would be to completely separate type-based and type- and attribute-based

routing, each having its own set of messages. Although this would solve the problem, it would

lead to a less efficient system in terms of the number of messages sent. For example, an event

publication that is to be matched against both type-based and type- and attribute-based sub-

scriptions would have to be sent twice. Instead, we propose a mechanism in which event pub-

75

4.3. ROUTING ALGORITHMS CHAPTER 4. HERMES

lications record whether they are following a type-based or an type- and attribute-based event

dissemination tree. A new decision about the affiliation of an event publication is made at every

event broker in case the two kinds of event dissemination trees overlap.

We define the complete routing algorithm of Hermes, which combines type-based and type- and

attribute-based routing, with the pseudo code in Figure 4.6. The routing algorithm is divided

into four functions that are called when the specified message type is received at an event broker.

For simplicity of presentation, we assume that any necessary rendezvous nodes are set up and

supertype subscriptions are not supported.

At each hop, an advertisement that is routed towards the rendezvous node is processed by

the processAdvertisementMsg method in line 1. A new entry in the advertisement routing ta-

ble (advRT) is created that records the advertisement and the event broker it came from (line 2).

If the advertisement is not covered by an earlier one (line 3), it continues to be forwarded to the

next event broker on the path and this is recorded in the advRT (line 4), otherwise the advertise-

ment is discarded (line 6). The advertisement may trigger the reverse propagation of a previous

type- and attribute-based subscription, so that in line 7 it is matched against existing sub-

scriptions in the subscription routing table (subRT). Every matched type- and attribute-based

subscription (line 8) is possibly further propagated by a call to the processSubscriptionMsg-

TypeAttrBased method (line 9).

A type-based subscription is processed by the processSubscriptionMsgTypeBased method in

lines 11–16. It is analogous to the first part of advertisement processing described above, except

that entries are added to the subRT instead of the advRT. The processSubscriptionMsgType-

AttrBased method is responsible for type- and attribute-based subscriptions (line 18). They are

first processed like type-based subscriptions (line 19), propagating towards the rendezvous node,

but then additional filtering state needs to be set up closer to event publishers (lines 20–23).

Therefore the subscription follows the reverse path of all matching advertisements (line 20),

unless it is already covered by a previous subscription (line 21). A new entry in the subRT is

created (line 22) when the subscription is sent to a node (line 23).

Finally, event publications are handled in the processPublicationMsg method (line 25). They

need to be routed differently depending on whether they follow only type-based, only type-

and attribute-based, or both types of subscriptions. A publication message has hence two flags

(IsTypeBased and IsTypeAttrBased) to indicate its routing semantics. At first the next hop

sets for type-based (line 26) and type- and attribute-based routing (line 28) are computed. If

the publication came along a type-based event dissemination tree (line 29), it continues to be

routed this way (lines 30–34), but it is removed from the type- and attribute-based destination

set (line 33) so that it is not transmitted again to the same next broker on a type- and attribute-

based event dissemination tree. Type- and attribute-based dissemination is dealt with in line 35

and the event publication is disseminated to the remaining next hops (lines 37–38).

76

CHAPTER 4. HERMES 4.3. ROUTING ALGORITHMS

1 processAdvertisementMsg(adv):
2 advRT(adv).From ← advRT(adv).From ∪ adv.LastNode
3 IF (adv.NextNode /∈ covered(adv,advRT).To) THEN
4 advRT(adv).To ← advRT(adv).To ∪ adv.NextNode
5 ELSE
6 adv.NextNode ← NULL
7 ∀sub IN covered(adv,subRT)
8 IF (sub.IsTypeAttrBased) THEN
9 processSubscriptionMsgTypeAttrBased(sub)

10

11 processSubscriptionMsgTypeBased(sub):
12 subRT(sub).From ← subRT(sub).From ∪ sub.LastNode
13 IF (sub.NextNode /∈ covered(sub,subRT).To) THEN
14 subRT(sub).To ← subRT(sub).To ∪ sub.NextNode
15 ELSE
16 sub.NextNode ← NULL
17

18 processSubscriptionMsgTypeAttrBased(sub):
19 processSubscriptionMsgTypeBased(sub)
20 ∀node IN covered(sub,advRT).From
21 IF (node /∈ covered(sub,subRT).To) THEN
22 subRT(sub).To ← subRT(sub).To ∪ node
23 send(sub,node)
24

25 processPublicationMsg(event):
26 nodeSetTypeBased ← covered(event,advRT).To
27 ∪ covered(event,subRT).From
28 nodeSetTypeAttrBased ← covered(event,subRT).From
29 IF (event.IsTypeBased) THEN
30 ∀node IN nodeSetTypeBased
31 eventTypeBased ← event
32 eventTypeBased.IsTypeAttr ← (node∈nodeSetTypeAttrBased)
33 nodeSetTypeAttrBased ← nodeSetTypeAttrBased \ node
34 send(eventTypeBased,node)
35 IF (event.IsTypeAttrBased) THEN
36 event.IsTypeBased ← FALSE
37 ∀node IN nodeSetTypeAttrBased
38 send(event,node)

Figure 4.6: Pseudo code for combined event routing in Hermes

77

4.3. ROUTING ALGORITHMS CHAPTER 4. HERMES

4.3.7 Fault Tolerance

The reliability model for an event-based middleware states that event dissemination should be

robust against failure. Both routing algorithms used by Hermes have built-in fault-tolerance

features that enable event brokers to recover to a consistent system state after failure. In

this section we describe how Hermes handles network and middleware failure, distinguishing

between both classes of failure.

Failure in the underlying physical network results in the inability of event brokers to commu-

nicate with each other. Since all communication in the type-based and type- and attribute-

based routing layers is done through the primitives provided by the overlay routing layer, we

assume that after a network failure the overlay network will adapt and connectivity between

event brokers will eventually be restored. Since this may cause a change in the routing path

of advertisement and subscription messages, care must be taken to restore advertisement and

subscription routing tables to a consistent state.

A mechanism for repairing routing tables is also required to handle the failure of a middleware

component, such as an event broker. In Hermes, event brokers periodically exchange heartbeat

messages with their neighbouring event brokers in order to detect failure. All entries in routing

tables consist of soft state and are associated with leases. An entry will automatically be

removed from the routing table, unless its lease is renewed periodically by a heartbeat message

from the event broker that caused the entry to be added, by sending the original advertisement

or subscription message.

When an event broker fails, the subscription and advertisement messages that it forwarded to

other event brokers expire and are removed from the routing tables. In order to repair such a

damaged event dissemination tree, the event broker that detected the failure of a neighbouring

event broker resends all advertisement and subscription messages that previously went via the

failed broker to the rendezvous node. The peer-to-peer routing substrate ensures that the

messages reach the rendezvous node via a different path. New state is established at event

brokers that were previously not part of the event dissemination tree. Due to properties of the

peer-to-peer routing substrate, it is likely that a new route quickly joins an old path to a rendez-

vous node so that existing state in routing tables will be reused as much as possible [CDHR02].

The failure of an event broker in Hermes is demonstrated with an example in Figure 4.7. The

event broker B1 detects the failure of event broker B2 because of an absence of heartbeat mes-

sages. As a result, it resends advertisement a1 to the rendezvous node R, which was previously

propagated by event broker B2. Once the overlay routing layer has adapted to the failure of

node B2, it changes the set of neighbouring event brokers at broker B1 and forms a new connec-

tion through broker B4. The advertisement message is routed via B4, and new state is created

in the advertisement routing table. The same behaviour is repeated for the subscription s1

stored at event broker B5. The only special case that remains to be handled is the failure of the

rendezvous node itself.

78

CHAPTER 4. HERMES 4.3. ROUTING ALGORITHMS

B1

B4

B3

B5

P1

S1

s1

s
1

s1

s
1

s1

a1 a1

a
1

a 1
s 1

a
1

R

BB2B2

aa1a1

ss1s1

s
1
ss
1

aa
1
a

s
1
s
1
s

Figure 4.7: Fault-tolerance using type- and attribute-based routing in Hermes

Rendezvous Node Failure

Event routing in Hermes does not work without the existence of at least one rendezvous node for

an event type. In addition, the authoritative version of the event type schema for type-checking

is stored at the rendezvous node. To prevent rendezvous nodes from being single points of

failure, they are replicated so that another replica can take over when an event broker hosting

a rendezvous node fails.

Replication can be handled by the overlay routing layer because it is often directly supported

by a distributed hash table. For example, the destination node for a rendezvous node replica

can be obtained by concatenating a salt value to the event type name before computing the

hash function [ZKJ01]. If an event broker or client does not receive a response from the primary

rendezvous node, it attempts to contact one of the replicas with its salt value. However, a better

technique is to make access to replicas transparent to higher event routing layers. To do this in

Hermes, we rely on a property of the peer-to-peer routing substrate that guarantees that a key

in the distributed hash table is always routed to the numerically closest, live node in the system.

This guarantee is implemented using Pastry’s leaf set mechanism, described in Section 2.3.1.

Therefore, every rendezvous node is replicated across all nodes in its leaf set so that messages

are transparently routed to a live rendezvous node replica.

Another important aspect of replication is maintaining consistency between replicas. This in-

volves synchronising event type repositories and keeping advertisement and subscription routing

state consistent. Since an event-based middleware is a large-scale, distributed system, a pro-

tocol for maintaining weakly consistent state between event type repositories is most suitable.

The synchronisation of routing state is more subtle because inconsistent state at any time may

result in incorrect event routing. The most robust solution is to route every advertisement and

subscription message to all replicas in the system but this increases the number of messages

sent. We adopt a weaker, more efficient solution, in which a single event dissemination tree is

constructed that includes all rendezvous node replicas. Even though this means that some ad-

vertisement and subscription state may be lost when one rendezvous node replica fails, this can

be handled by the fault-tolerance mechanism for repairing event dissemination trees explained

in the previous section. Our proposed solution is similar to multicast with multiple cores [ZF01].

79

4.3. ROUTING ALGORITHMS CHAPTER 4. HERMES

B2

B1

B3

P1

S1

s1

s
1

s1

a1 a1

a
1

a 1

R1 R3

R2

Figure 4.8: Rendezvous node replication with redundant advertisements in Hermes

We identify four different approaches for exchanging advertisement and subscription messages

between rendezvous node replicas in order to unify them into a single event dissemination tree

with redundant rendezvous nodes.

Redundant Client Advertisements. When an event publisher causes a publisher-hosting

broker to route an advertisement message to a rendezvous node, separate advertisement

messages are sent to all rendezvous node replicas. Event subscriptions may then be ad-

dressed to a single live rendezvous node replica since they are guaranteed to encounter all

matching advertisements.

Redundant Client Subscriptions. With redundant client subscriptions, the strategy is re-

versed. Event subscriptions are issued to all rendezvous node replicas by a subscriber-

hosting broker and publisher-hosting brokers advertise to only one rendezvous node replica.

Redundant Rendezvous Node Advertisements. Instead of the publisher-hosting broker,

it becomes the responsibility of a rendezvous node replica to contact the other replicas.

A publisher-hosting broker sends a single advertisement message to any rendezvous node

replica, but the replica then forwards the advertisement message to all other replicas.

Event subscribers may contact any replica for their subscriptions.

Redundant Rendezvous Node Subscriptions. Finally, event subscriptions can be sent to

a single rendezvous node replica, which then subscribes to all other replicas on the event

subscriber’s behalf. Event publishers only advertise to one replica.

In Figure 4.8 rendezvous node replication with redundant advertisements is shown. The rendez-

vous node for the only event type in the system has three replicas, R1,2,3. When the event

advertisement a1 reaches the rendezvous node replica R1, it is forwarded to R2 and R3. This

sets up further state in the advertisement routing tables at event brokers B2, R2, and R3. When

the type- and attribute-based subscription s1 reaches rendezvous node replica R3, it encounters

an entry for advertisement a1 in the advertisement routing table and follows its reverse path to

the original replica R1.

The four approaches for integrating rendezvous node replicas with event routing in Hermes have

different trade-offs. As was the case for the inheritance routing schemes in Section 4.3.4, the

80

CHAPTER 4. HERMES 4.4. IMPLEMENTATION

decision whether to use redundant advertisement or subscription routing depends on the ratio of

advertisement and subscription messages in the system. If subscriptions are more common than

advertisements, it is better to add more state to advertisement routing tables using redundant

advertisement messages. Introducing redundant messages at the client-hosting brokers has the

benefit that event brokers can choose the best replica in terms of proximity or load for local event

dissemination. The downside is that event brokers have to be explicitly aware of replication,

which means that transparent routing to replicas without salt values cannot be applied. In

contrast, if redundant messages are sent by rendezvous nodes, rendezvous node replication is

hidden from client-hosting brokers.

4.4 Implementation

In this section we present our prototype implementation of Hermes. There exist two versions of

Hermes: an implementation in our distributed systems simulator DSSim that will be used for

the evaluation of the Hermes’ event routing algorithms in Chapter 5 and a regular implemen-

tation that provides event broker and client components that can be deployed on the Internet.

Both versions are implemented in Java and share most of the source code, in particular the

implementation of the event routing algorithms is the same. The main difference is that the

simulational prototype does not handle messaging issues, such as the serialisation of advertise-

ments, subscriptions, and publications to XML messages and inter-broker communication.

In the following we focus on the regular version and look at the communication aspects of Her-

mes. Event brokers communicate by sending XML messages through TCP connections between

event brokers. The use of the SOAP messaging protocol, as outlined in Section 2.1.3, would

have been an equally valid choice and was investigated, but the SOAP specification was still

in a preliminary stage when the development of Hermes began. The Hermes implementation

relies on the rich type model of the XML Schema specification. The communication protocol for

the client API between event brokers and clients is also based on XML messages. As a result,

event clients have an XML-to-event binding layer that maps programming language objects to

XML messages and vice versa.

We start with an overview of the implementation of Pan, our peer-to-peer routing substrate, in

the next section. In Section 4.4.2 we show how the Hermes implementation handles event data

by describing the format of XML messages and the XML-to-event binding used for programming

language integration. Features concerning the extensibility of event brokers are discussed in

Section 4.4.3.

4.4.1 Pan

The distributed hash table implementation for the overlay routing layer in the Hermes architec-

ture is called Pan. It implements a peer-to-peer routing substrate that uses the Pastry routing

81

4.4. IMPLEMENTATION CHAPTER 4. HERMES

Returns API Call Parameters

NodeID initPanNode (PanCallback callback)

void leavePanNode ()

void panRouteMessage (Message msg, NodeID node)

Message panRouteRequestReplyMessage (Message msg, NodeID node)

void panSendMessage (Message msg, Address addr)

Message panSendRequestReplyMessage (Message msg, Address addr)

Table 4.7: The Pan API

algorithm [RD01]. The main parts of Pan are the routing protocol for messages and the join

protocol to add new nodes to the network. We verified the correctness of the Pan implemen-

tation in our distributed systems simulator DSSim by successfully reproducing the average hop

count and latency results from an evaluation of Pastry [CDHR02] within a small error.

Every node in Pan has a unique, randomly distributed, 128-bit nodeID grouped into digits with

base 24. String values, such as event type names, are hashed with a SHA-1 hash function [FIP95]

to convert them to nodeIDs for the routing of messages. The main data structures of Pan are

a routing table and a leaf set, which were described in Section 2.3.1. The nodes in these two

data structures taken together form the set of neighbouring event brokers for a broker. Pan also

maintains a neighbourhood set that was part of early versions of the Pastry routing algorithm.

A neighbourhood set keeps track of nodes that are physically close to a given node. In Hermes

it is used by event brokers to inform clients of other brokers that could potentially become their

local event brokers in case of failure.

The API methods of Pan that are called by the type-based and type- and attribute-based routing

layers in Hermes are listed in Table 4.7. The join protocol to add a new node to the overlay

routing network is invoked through the initPanNode method. It requires a reference to an

implementation of the callback API described below and returns a randomly assigned nodeID

for the new node. The method leavePanNode removes the node from the network. The main

operation of the distributed hash table is invoked by calling panRouteMessage, which routes

the message msg to the destination nodeID node. For communication with rendezvous nodes,

the original Pastry interface was extended with a panRouteRequestReplyMessage method. It

provides overlay communication with request/reply semantics so that the destination node for

a message can directly return a response message to the sender. Finally, the last two methods

allow direct node communication when the destination IP address is known, bypassing multi-hop

routing in the overlay network.

Whenever a message is received at a Pan node, an invocation to the Pan callback interface,

shown in Table 4.8, is performed. A call to deliverMessage indicates that the message msg has

reached its final destination node, in other words, its key hashes to the current nodeID. Addi-

tional information in the callback are the nodeIDs of the original sender (sourceNode), of the last

hop (lastNode), and of the original destination key (destNodeID). The deliverRequestMessage

82

CHAPTER 4. HERMES 4.4. IMPLEMENTATION

Returns API Call Parameters

void deliverMessage (NodeID thisNode, Message msg,

NodeID sourceNode, NodeID lastNode,

NodeID destNodeID)

Message deliverRequestMessage (NodeID thisNode, Message msg,

NodeID sourceNode, NodeID lastNode,

NodeID destNodeID)

NodeID forwardMessage (NodeID thisNode, Message message,

NodeID sourceNode, NodeID lastNode,

NodeID nextNode, NodeID destNodeID)

void leafSetChanged (NodeID thisNode, LeafSet leafSet)

Table 4.8: The Pan callback API

method is similar, except that it expects a reply message for the request message msg that will

be returned to the sender. At every hop during message routing, the forwardMessage method

is called. The event routing layers in Hermes use this callback to update advertisement and

subscription routing tables. This method includes a nextNode parameter that holds the nodeID

of the next hop on the routing path to the destination node. The routing of a message in transit

can be influenced by altering this value. Since the leaf set of a rendezvous node is used to

manage rendezvous node replicas transparently, changes to the leaf set have to be signalled with

the leafSetChanged callback method so that replicated type repositories can be synchronised

by the event-based middleware layer in Hermes.

4.4.2 Event Data

For communication purposes, the prototype implementation of Hermes must be able to express

the event data as messages. As argued in Section 3.3.1, we decided to use the XML Schema

specification to represent type, advertisement, subscription, and publication messages in Her-

mes in the form of XML Schema instance documents. Event types referred to by these messages

are defined as XML Schema documents. This has the benefit that the type-checking of subscrip-

tion and publication messages is automatically performed by a validating XML Schema parser,

such as the Apache Xerces Parser [Apa01], which is used by Hermes. The XML Namespaces

specification [W3C99a] prevents name conflicts between user-defined event types and other data.

Figure 4.9 gives an example of a BaseEventType defined in XML Schema. This type can be

chosen as an ancestor for all event types in Hermes because it includes event attributes that are

useful to most event subscribers. An event type definition in Hermes populates a separate XML

namespace that is referenced in line 4. The event type schema is declared as a complex XML

Schema type in line 6. It has three optional event attributes (lines 8–10) that are defined with

their datatypes. An id field stores a publisher-specific identifier, the publisher field associates

the event with an event publisher, and a timestamp is stored in the timestamp attribute. The

actual schema element for the new event type is then defined in line 14.

83

4.4. IMPLEMENTATION CHAPTER 4. HERMES

1 <?xml version="1.0" encoding="UTF-8"?>

2 <xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

3 xmlns:t="http://www.cl.cam.ac.uk/opera/hermes/type"

4 targetNamespace="http://www.cl.cam.ac.uk/opera/hermes/type">

5

6 <xsd:complexType name="BaseEventType">

7 <xsd:sequence>

8 <xsd:element name="id" type="xsd:long" minOccurs="0"/>

9 <xsd:element name="publisher" type="xsd:string" minOccurs="0"/>

10 <xsd:element name="timestamp" type="xsd:dateTime" minOccurs="0"/>

11 </xsd:sequence>

12 </xsd:complexType>

13

14 <xsd:element name="BaseEvent" type="t:BaseEventType"/>

15 </xsd:schema>

Figure 4.9: An event type schema defined in XML Schema

Event type definitions, such as this one, are stored in the event type repository maintained at

the rendezvous node for the type. Subscriptions and publications can then be type-checked

against the schema from this repository. Type-checking is usually only performed at client-

hosting brokers when a subscription or publication message is received from an event client. To

do type-checking, the event broker first attempts to obtain the corresponding event type schema

from its local type repository cache. If this fails, it will contact the event type repository at the

rendezvous node and retrieve the authoritative version of the schema. Next, the event data is

validated against the schema by an XML parser and only admitted for further routing in Hermes

if this succeeds. Note that event brokers need to be aware of inheritance relationships between

event types in order to compute coverage relations between advertisements, subscriptions, and

publications. The local cache of the event type repository at an event broker is kept up-to-date

using meta-events published by the rendezvous node that indicate that an event type schema

has evolved. They are disseminated using the event-based middleware with the event brokers

acting as event subscribers.

Message Formats

The Hermes implementation has its own XML Schema definition for valid messages that can

be exchanged between event brokers. An event broker that receives a message from another

broker may check its conformance by validating it against the Hermes message schema and any

other necessary event type schemas. Hermes messages reside in a private namespace. Using

XML has the advantage that the messaging format can be extended with new elements as extra

functionality is added to Hermes. In the following we give examples of type, advertisement,

subscription and publication XML messages used by Hermes.

Type Message. A type message that sets up a rendezvous node for a new event type is

given in Figure 4.10. The message identifies itself as a type message (line 3) and defines a

84

CHAPTER 4. HERMES 4.4. IMPLEMENTATION

1 <?xml version="1.0" encoding="UTF-8"?>

2 <h:hermes xmlns:h="http://www.cl.cam.ac.uk/opera/hermes">

3 <type>

4 <addtype typename="LocationEvent" extends="BaseEvent">

5

6 <xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

7 xmlns:t="http://www.cl.cam.ac.uk/opera/hermes/type"

8 targetNamespace="http://www.cl.cam.ac.uk/opera/hermes/type">

9

10 <include schemaLocation="BaseEvent"/>

11

12 <complexType name="LocationEventType">

13 <complexContent>

14 <extension base="t:BaseEventType">

15 <all> <element name="position" type="xsd:string"/> </all>

16 </extension>

17 </complexContent>

18 </complexType>

19

20 <element name="LocationEvent" type="t:LocationEventType"/>

21 </xsd:schema>

22

23 </addtype>

24 </type>

25 </h:hermes>

Figure 4.10: An XML definition of a type message

new event type called LocationEvent that extends the previously defined BaseEventType in

line 4. Lines 6–21 are the XML Schema definition of the new event type within the type message

referring back to the parent type schema in line 10.

Advertisement Message. Advertisement messages are the simplest kind of message because

they only need to include the event type that is being advertised. In Figure 4.11 the advertise

element advertises the event type LocationEvent (line 4).

Subscription Message. A subscription message is first sent by a subscriber-hosting broker

and contains a type-based or type- and attribute-based subscription. An example of a type- and

attribute-based subscription with a filter expression is given in Figure 4.12. The message specifies

the event type of interest (line 4) and a filter expression on the event attributes in lines 5–7,

which filters on people with particular ids in an office. The filter expression is defined in the

1 <?xml version="1.0" encoding="UTF-8"?>

2 <h:hermes xmlns:h="http://www.cl.cam.ac.uk/opera/hermes">

3 <advertisement>

4 <advertise typename="LocationEvent"/>

5 </advertisement>

6 </h:hermes>

Figure 4.11: An XML definition of an advertisement message

85

4.4. IMPLEMENTATION CHAPTER 4. HERMES

1 <?xml version="1.0" encoding="UTF-8"?>

2 <h:hermes xmlns:h="http://www.cl.cam.ac.uk/opera/hermes">

3 <subscription>

4 <subscribe typename="LocationEvent">

5 <typeattr>

6 <xpath>child::*[child::id>3141 and child::position="FE02"]</xpath>

7 </typeattr>

8 </subscribe>

9 </subscription>

10 </h:hermes>

Figure 4.12: An XML definition of a subscription message

XPath language [W3C99b] in line 6, although any other filtering language could be used, as well.

Unfortunately, XPath does not use XML syntax, but instead has its own textual representation

for filter expressions over a single XML document. In Hermes, XPath filter expressions are

matched by an XPath processor, in our case Apache Xalan [Apa03].

Publication Message. As shown in Figure 4.13, an event publication is an XML Schema

instance document (lines 5–10) that is encapsulated in a publication message. The event type

to be published is given in line 4. Values for the event attributes in the LocationEvent type

are assigned in lines 6–9 using the event attribute elements from the XML Schema definition for

this event type.

Programming Language Integration

The communication between event clients and their hosting event brokers in Hermes uses XML-

defined messages similar to the inter-broker messages presented above. Rather than exposing

XML directly to the application, the Java implementation of event clients includes a binding

layer between Java objects and XML messages. The XML-to-event binding layer supports

the transparent translation of event publications to Java objects and vice versa so that the

application programmer does not have to work with the XML representation of events.

1 <?xml version="1.0" encoding="UTF-8"?>

2 <h:hermes xmlns:h="http://www.cl.cam.ac.uk/opera/hermes">

3 <publication routing="typeAttr">

4 <publish typename="LocationEvent">

5 <t:LocationEvent xmlns:t="http://www.cl.cam.ac.uk/opera/hermes/type">

6 <source>ActiveBat314</source>

7 <id>1234</id>

8 <timestamp>2003-06-20T12:00:00.000-00:00</timestamp>

9 <position>FE02</position>

10 </t:LocationEvent>

11 </publish>

12 </publication>

13 </h:hermes>

Figure 4.13: An XML definition of a publication message

86

CHAPTER 4. HERMES 4.4. IMPLEMENTATION

Returns API Call Parameters

XMLDocument toXML ()

void fromXML (XMLDocument doc)

XMLDocument toXMLSchema ()

Table 4.9: The XML-to-event binding API

A Java class that represents an event publication in Hermes extends the XMLDynamicBinder

abstract class, which provides the XML binding functionality for events. Its API, given in

Table 4.9, has methods that are implemented using the Java support for structural reflection. A

call to the toXML method returns an XML Schema instance document that is an event publication

message with values assigned to the event attributes, as it was shown in Figure 4.13. When a

client receives a callback with an event publication, the method fromXML reverses the process

and assigns the data from the publication to a Java object. The last method toXMLSchema helps

create new event types by translating a Java class definition to an XML Schema document that

defines a new event type. This is illustrated in Figure 4.14, showing a Java class declaration and

the corresponding XML Schema for an event type. Note that a fromXMLSchema method cannot

be provided in Java because the language does not support the construction of new classes at

runtime.

4.4.3 Middleware Service Extensions

The architecture of Hermes supports a services layer that provides extensions to event bro-

kers. Our prototype implementation is flexible enough to support the three higher-level services

for congestion control, composite event detection, and security that will be described in the

remaining chapters of this thesis.

The Hermes implementation follows a modular design with clearly defined internal interfaces

between modules. Plug-in modules that act as interceptors can be added to interfaces in order

to change the calls between modules in an event broker. For services, such as congestion control

and security, that depend on low-level access to messages, this plug-in approach is used to

1 <xsd:complexType name="BaseEventType">

2 <xsd:sequence>

3 <xsd:element name="id"

4 type="xsd:long" minOccurs="0"/>

5 <xsd:element name="publisher"

6 type="xsd:string" minOccurs="0"/>

7 <xsd:element name="timestamp"

8 type="xsd:dateTime" minOccurs="0"/>

9 </xsd:sequence>

10 </xsd:complexType>

1 public class BaseEventType {
2

3 public long id;

4

5 public String publisher;

6

7 public Date timestamp;

8

9

10 }

Figure 4.14: The mapping between an XML event type and a Java class

87

4.5. SUMMARY CHAPTER 4. HERMES

place service modules into the datapath of messages in the event broker. For example, it is

possible to intercept calls of the Pan callback API before they reach the event routing layers for

encryption. The XML-based approach for messaging in Hermes facilitates the addition of new

message types to Hermes, such as the two new inter-broker messages to detect and react to

congestion for the congestion control service in Chapter 6. Similarly, an extension to Hermes

for event federations [Hom02] uses new message types to set up contracts between event brokers

in different event domains.

4.5 Summary

In this chapter we described Hermes, our event-based middleware for large-scale distributed

systems. We started with an overview of the layered overlay networks in Hermes. This layered

approach manifested itself in the description of the Hermes architecture that contains six layers.

The architecture is realised in the Hermes event broker, whose inter-broker API was presented.

We also introduced rendezvous nodes, which are special event brokers that help construct event

dissemination trees. The second Hermes component is event clients, and the client APIs for

event publishers and event subscribers were explained.

Hermes supports two different event routing algorithms, type-based routing that provides sub-

scriptions depending on the event type, and type- and attribute-based routing that also includes

content-based filtering expressions on the event attributes. The two algorithms were described

by first listing the four types of messages that are exchanged between event brokers and then

presenting the data structures maintained at event brokers. After that, the two routing algo-

rithms were explained in more detail, with extensions to support event type inheritance and

fault-tolerant routing. A description of how to implement both routing algorithms in a single

system was given in pseudo code. The rest of the chapter focused on our prototype implemen-

tation of Hermes, in particular the implementation of the peer-to-peer routing layer, called

Pan, and the XML message formats used by the event brokers. The next chapter will verify

our claims with respect to scalability of Hermes’s routing algorithm by presenting simulation

results.

88

5
Evaluation

During the presentation of the Hermes event routing algorithms in the previous chapter, we

made claims regarding their scalability and efficiency. In this chapter we provide a perfor-

mance evaluation of Hermes routing to substantiate our claims with evidence from simula-

tions [PB03a]. The evaluation is done through a number of experiments in a distributed systems

simulator that investigate routing efficiency and routing state in the system. The experiments

show that Hermes is scalable and efficient when compared against a leading content-based rout-

ing algorithm for event dissemination which does not use peer-to-peer routing techniques. In

particular, peer-to-peer overlay routing in Hermes does not reduce the efficiency of routing, but

rather improves certain metrics, such as the latency of event delivery, because of an improved

mapping of the overlay broker network onto the physical network.

This chapter is organised as follows. In the next section we give an overview of our strategy for

evaluating Hermes. The simulation environment used for the experiments is described in Sec-

tion 5.2, with details on Internet topology generation, our distributed systems simulator DSSim,

and the implementation of CovAdv, a standard content-based routing algorithm. Section 5.3

focuses on the setup of the experiments and lists the main simulational parameters. The actual

four experiments are introduced and motivated in Section 5.4, including a presentation of the

results obtained.

89

5.1. OVERVIEW CHAPTER 5. EVALUATION

5.1 Overview

The implementation of an event-based middleware, such as Hermes, can be evaluated with

performance measurements using a real, deployed application or with experiments in a simula-

tor. Although an actual deployment results in a more realistic evaluation, it is more difficult to

instrument since a large-scale distributed system has substantial resource requirements in terms

of node count and network bandwidth. Instead, we decided to set up experiments in a dis-

tributed systems simulator that supports simulations with thousands of Hermes event brokers

and millions of messages. When simulating any large-scale system, it is important to ground

the simulation on realistic assumptions, such as a good Internet topology model [BP96, FP01].

Moreover, the usage pattern for the event-based middleware should be derived from realistic

application scenarios.

The goal of this evaluation is to point out the advantages of the dynamic overlay broker network

for event dissemination maintained by the peer-to-peer routing layer in Hermes, compared

to an approach with a static overlay broker network, as advocated by Siena. The quality of

the mapping of the logical overlay broker network onto the physical network topology is an

important factor for the overall efficiency of event routing in the system. A publish/subscribe

system that constructs event dissemination trees in the logical overlay network of event brokers

without taking account of the underlying physical network topology will have poor performance

and little fault-tolerance when disseminating events. The content-based routing algorithm should

build an optimal event dissemination tree for each publisher-hosting broker in the overlay routing

network that encompasses the subscriber-hosting brokers of all interested event subscribers. We

have chosen three cost metrics that evaluate the efficiency of event dissemination trees, and thus

event routing in an event-based middleware.

Latency. Many applications require event dissemination trees that minimise the time until all

interested subscribers have received a given publication. Therefore, routing paths in an

event dissemination tree should attempt to reduce the latency of message routing.

Hop Count. Since content-based routing is done by application-level event brokers, an in-

creased hop count can be expensive in terms of the latency experienced due to event

processing at event brokers, the required processing power at event brokers, and the in-

creased probability of event broker failure. Minimising the number of event brokers in an

event dissemination tree should therefore be desirable.

Bandwidth. An advantage of an overlay broker network is that it can share a physical network

with other applications. This means that event dissemination trees should use as little

bandwidth as possible leaving more for other applications. Bandwidth should be saved by

reducing the number of messages sent in the system.

To evaluate the efficiency of the Hermes routing algorithm, we compare it against our implemen-

tation of Siena’s content-based routing algorithm, called CovAdv. Such a relative performance

comparison is more meaningful than measured absolute values. We have chosen Siena for the

90

CHAPTER 5. EVALUATION 5.2. SIMULATION ENVIRONMENT

DSSIM

Network

Topology

Generator

Physical

Topology

HERMES CovAdv

Logical Node

Mapping

Physical

Visualisation

Logical

Visualisation Trace

File

Figure 5.1: The DSSim simulation environment

comparison because its routing algorithm is similar to algorithms used by many other systems

and it can therefore be regarded as a typical publish/subscribe system. Since Siena supports

content-based filtering of events, the experiments compare it to type- and attribute-based rout-

ing in Hermes with respect to event dissemination latency, physical network utilisation, and

routing state maintained at event brokers. The experiments in this chapter do not involve failure

or Hermes’s fault-tolerance mechanisms because we are interested here in the routing behaviour

of both algorithms under optimal conditions.

A further advantage of simulation is that it helps ensure the correctness of the routing algorithms

and their implementation in an event-based middleware. During the development of Hermes,

the simulator was an invaluable tool to simulate small Hermes deployments and verify that the

routing data structures maintained at event brokers behaved as anticipated.

5.2 Simulation Environment

The simulation environment should be powerful enough to support measurements of latency,

hop count, and bandwidth in the experiments. As a result, the simulator must be aware of the

underlying physical network topology so that multi-hop message routing is associated with the

latency of a path through network-level routers. Previous efforts to evaluate publish/subscribe

systems through simulation [Car98, MFGB02] often only considered the overlay network level

and hence could not determine the quality of the overlay network mapping.

One approach for a realistic simulation would be to use a standard network simulator, such

as ns-2 [MF99]. However, we found that the scalability of network simulators is limited to a

moderate number of nodes because of the complexity of their realistic network model. Since

our evaluation is more concerned with the efficiency of the distributed routing algorithms rather

than the lower-level network protocols, we decided to implement our own distributed systems

simulator DSSim.

91

5.2. SIMULATION ENVIRONMENT CHAPTER 5. EVALUATION

The simulation environment used for the rest of this chapter is depicted in Figure 5.1. It

consists of a network topology generator that creates realistic large-scale Internet topologies for

the experiments. The physical network topology is used as input to the distributed systems

simulator DSSim that executes the implementation of the middleware. A logical node mapping

specifies the location of event brokers and clients in the physical network. The simulator is then

capable of executing two different event routing algorithms, the Hermes type- and attribute-

based routing algorithm described in Section 4.3.5, and the CovAdv routing algorithm described

below, which is an implementation of Siena routing with a coverage relation and advertisements.

The simulator outputs a trace file with statistics gathered during the experiment run that can

be plotted as graphs. In addition, the simulator can display a logical or physical visualisation

of the currently running simulation on the screen.

5.2.1 Internet Topology Generation

Several topology models are supported by DSSim for the generation of physical networks. Simple

topologies, such as a euclidean plane and a spherical topology, are mainly used for testing the

correctness of the simulator and of the event routing algorithms. For our experiments, we

adopted the transit-stub model [ZCB96] to generate large-scale topologies that resemble the

structure of the Internet. A transit-stub topology consists of multiple domains that represent

Internet autonomous systems. A domain is a stub domain if it never caries any transit traffic,

otherwise it is called a transit domain. The purpose of transit domains is to interconnect stub

domains efficiently, thus forming an Internet backbone for other autonomous systems.

We use BRITE [MLMB01] as a transit-stub topology generator. It allows the customised cre-

ation of transit-stub topologies and assigns latency and bandwidth values to links so that inter-

domain (WAN) links usually have higher latency and lower bandwidth. A transit-stub topology

with 5 autonomous systems each having 20 nodes is shown in Figure 5.2. The latency of physi-

cal links varies from 10 ms to 1000 ms. A logical node mapping can now be used to place event

brokers on the physical nodes in the topology.

5.2.2 DSSim

The distributed systems simulator DSSim is implemented in Java as a single-threaded discrete

event simulator [BCM87]. The primary design consideration for DSSim was scalability. There-

fore, it supports simulations with 105 physical nodes while only having moderate CPU and

memory requirements. DSSim models the latency and the hop count of routing messages in

the physical network, and it also maintains a measure for bandwidth consumption. Note that

congestion caused by bandwidth-limited links is not modelled in DSSim. For now, we assume

that event publication messages are sufficiently small to never saturate a physical link leading

to congestion. This assumption will be revisited in Chapter 6 when we address congestion in an

event-based middleware and introduce a congestion control mechanism.

92

CHAPTER 5. EVALUATION 5.2. SIMULATION ENVIRONMENT

Figure 5.2: A transit-stub topology with five autonomous systems

DSSim distinguishes between a physical network topology generated by the topology generator

and a logical network topology obtained after mapping application-level nodes that execute a

distributed algorithm onto the physical nodes. Logical nodes communicate through message

passing, and DSSim simulates the routing of messages in the physical network topology. Expen-

sive routing table management frequently limits the scalability of network simulators. DSSim

uses a hierarchical two-level distance vector routing algorithm that mimics Internet routing

between and within autonomous systems.

An overview of the internal architecture of DSSim is provided in Figure 5.3. The core of DSSim

is an event loop that takes simulation events from a time-ordered event queue and executes

them. A simulation event is, for example, the request of a logical node to send a message, or the

routing of a message by a physical node. Events are added to the event queue by logical nodes

through the EnvironmentIF interface. This interface enables a logical node to interact with its

environment and handle messaging, monitoring, and time aspects during the simulation. The

execution of logical nodes is scheduled by the simulator, which calls a runNode method whenever

a particular node is supposed to run.

The functionality of the simulator can be extended with plug-ins that are inserted into the event

loop and can process simulation events. Currently there are four plug-ins implemented in DSSim:

a trace plug-in that records all simulation events in a file for later replay, a statistics plug-in that

93

5.2. SIMULATION ENVIRONMENT CHAPTER 5. EVALUATION

Logical
Node 1

Logical
Node 2

Logical
Node 3

Event

Loop

DSSIM

runNode

EnvironmentIFPluginIF

Trace
Plug-in

Statistics
Plug-in

Physical
Visualisation

Plug-in

Logical
Visualisation

Plug-in

Figure 5.3: The architecture of DSSim

gathers statistics during the simulation, and two visualisation plug-ins. The visualisation plug-

ins allow the display of a graphical representation of the logical and physical network topologies

and can visualise the routing of messages and the internal state of logical nodes. In Figure 5.4

an example visualisation is given showing the routing state at a Hermes event broker during

an experiment run. The visualisation plug-ins proved to be especially useful for the debugging

of Hermes.

5.2.3 CovAdv

For comparison, we implemented the Siena routing algorithm described in Section 2.2.2 in

DSSim. Our implementation is called CovAdv and exports the same API for event clients as

Hermes. It uses advertisement messages sent by publisher-hosting brokers, subscription mes-

sages sent by subscriber-hosting brokers that follow the reverse path of advertisements, and

publication messages that follow the reverse path of subscriptions. Covering between advertise-

ments and subscriptions in routing tables is implemented using shared code between Hermes

and CovAdv. As CovAdv does not support rendezvous nodes on top of a peer-to-peer routing

substrate, advertisement messages are broadcast to all event brokers unless they are covered by

previous advertisements.

Figure 5.4: Logical visualisation in DSSim

94

CHAPTER 5. EVALUATION 5.3. EXPERIMENTAL SETUP

Parameter Description Value

i number of experiment runs 5

NT number of physical nodes in network 1000
NAS number of autonomous systems in network 10
Nas number of physical nodes per autonomous system 100

bPan base for Pan nodeIDs 4
lPan leaf set size in Pan 4

nE number of event brokers 50 . . . 1000
nP number of event publishers 10 . . . 5000
nS number of event subscribers 10 . . . 5000

nτ number of event types 1, 10
nPτ number of event types per publisher 5, 10
nSτ number of event types per subscriber 5, 10

Table 5.1: Simulation parameters for the experiments

The overlay broker network in CovAdv follows Siena’s approach of an acyclic peer-to-peer topol-

ogy [Car98] that interconnects event brokers in an acyclic undirected graph. We also considered

testing the generic peer-to-peer topology in Siena that permits cycles in the overlay broker net-

work, but this would have required new extensions to the Siena routing algorithm in order to

patch up routing tables after topology changes. These topology changes occur during normal

operation when more efficient routing paths are discovered by the incremental distance-vector

routing algorithm used by Siena. Instead, the logical overlay network of CovAdv event brokers

is computed to be a minimum spanning tree with respect to network latency. A disadvantage

of this approach is that there is no redundancy in the neighbouring broker relation in CovAdv.

At deployment time the sets of neighbouring event brokers in CovAdv have to be statically

defined by a system administrator. An administrator at one site may not be aware of all

event brokers in the event-based middleware deployment, making it difficult to ensure global

properties, such as acyclicity or being a minimum spanning tree. In addition, the calculation of

global overlay network properties can be computationally expensive. Since the CovAdv overlay

network is static, it cannot adapt to failure and system evolution. Because of the requirement

of administrability from Section 3.2.3, Hermes does not have these restrictions.

5.3 Experimental Setup

All experiments that will be described in the next section were carried out in DSSim using a

transit-stub network topology with NT = 1000 physical nodes partitioned into NAS = 10 au-

tonomous systems with Nas = 100 nodes each. Although this physical network size is well below

the maximum supported by DSSim, we verified that the obtained results can be scaled up and

are representative of larger networks. Event brokers, publishers, and subscribers were assigned

randomly to physical nodes unless stated otherwise. The Pan peer-to-peer routing layer used

95

5.4. EXPERIMENTS CHAPTER 5. EVALUATION

nodeIDs with base bPan = 4 and a leaf set size of lPan = 4. Each experiment was repeated i = 5

times and arithmetic means were taken of any measured values. Table 5.1 lists all simulation

parameters for the experiments.

In the experiments, we varied the number of event brokers nE, event publishers nP , event sub-

scribers nS, and event types nτ in the system. Every event publisher published nPτ different

event types that were randomly selected from the total number of nτ event types. Only event

types that were going to be published were also advertised. Correspondingly, every event sub-

scriber subscribed to nPτ different event types either through a Hermes type- and attribute-

based subscription or a CovAdv subscription, depending on the routing algorithm in the ex-

periment run. For simplicity, filtering was only performed on event types and not on event

attributes but this had no effect on the performed experiments except for the introduction of

more rendezvous nodes in Hermes.

Although the number of event brokers remains at a moderate scale, this is more realistic of

current middleware deployments because such an overlay broker network can support a large

number of event clients. Since our evaluation focuses on overlay routing, we also limited the

number of event clients in the experiments because event routing is rather influenced by client-

hosting brokers and not event clients.

The Hermes and CovAdv experiments differed in the way the overlay broker network was

constructed. In the case of Hermes, event brokers were sequentially added to the simulated

system. The bootstrapping broker chosen for each new event broker was the closest (in terms

of network latency) already existing event broker in the physical topology. This is a realistic

deployment strategy, since a system administrator only needs to know of a single, close-by

Hermes event broker when adding a new broker to the system.

For CovAdv, we precomputed a minimum spanning tree of event brokers and used this for the

neighbouring broker sets. Although this gave CovAdv routing the advantage of an optimal

overlay broker network in terms of latency, it only directly affected the experiments that were

concerned with the latency of event delivery. In all other experiments, it ensured that CovAdv

routing would not suffer too much under a poor quality overlay broker network, thus allowing a

better comparison with Hermes routing.

5.4 Experiments

In this section we describe the four experiments E1–E4 that compare the performance of Hermes

routing with CovAdv routing and investigate different aspects of event dissemination in an event-

based middleware. The experiments were chosen to evaluate event routing in terms of the cost

metrics stated in Section 5.1. We will present the measured statistics in a series of plots and

then discuss the obtained results, referring back to the operation of the Hermes and CovAdv

routing algorithms.

96

CHAPTER 5. EVALUATION 5.4. EXPERIMENTS

The first experiment E1 looks at the efficiency of event routing in terms of latency and number

of hops in the physical network. This measures the quality of the overlay broker network

constructed by Hermes for event dissemination. The second experiment E2 shows the amount

of state kept in routing tables at event brokers for both algorithms. The distribution of routing

table state across event brokers is examined in experiment E3. Finally, experiment E4 considers

the bandwidth usage in the event-based middleware by measuring the total number of messages

sent by both algorithms when publishing a fixed number of events.

5.4.1 E1: Routing Efficiency

The efficiency of routing in Hermes and CovAdv is evaluated in experiment E1 using two metrics

to measure the efficiency of event dissemination. The average latency per event notification l̄ is

calculated as

l̄ =
Σli
ntotal

(5.1)

where li is the latency for the delivery of a given event publication to all interested subscribers

and ntotal is the total number of delivered publications. Note that this metric is independent of

the size of the event dissemination tree and states how efficiently the event dissemination tree

utilises the underlying physical network with respect to latency. Many distributed applications

benefit from a low delay between publication of an event and notification of a client. For the

second metric, the average hop count per event notification h̄ is defined as

h̄ =
Σhi
ntotal

(5.2)

where hi is the hop count for the delivery of a given event publication to all interested subscribers.

Physical nodes in the network topology that may host a logical node, such as an event broker,

count towards the hop count. Therefore this metric is the average number of hops until an event

is delivered and favours event dissemination trees that involve a smaller number of physical

and thus logical nodes. A smaller average hop count has the advantage that less processing is

performed at event brokers.

In experiment E1 the number of event brokers was nE = 500 and the number of event publishers

was nP = 10. Only a single event type, nτ = 1, existed in the system and all event clients

operated on this type. The number of event subscribers varied from nS = 10 . . . 500. At most

one subscriber was hosted by an event broker because the shape of event dissemination trees

is only affected by subscriber-hosting brokers and not by event subscribers with equivalent

subscriptions connected to the same broker. The experiment was repeated three times with the

two routing algorithms and different strategies for creating the overlay broker network.

97

5.4. EXPERIMENTS CHAPTER 5. EVALUATION

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 50 100 150 200 250 300 350 400 450 500

L
a

te
n

c
y
 i
n

 m
s

Number of Subscribers nS

Hermes
CovAdv (closest broker)

CovAdv (min. spanning tree)

Figure 5.5: E1: Latency per event versus number of event subscribers

Hermes with closest event broker. The closest, already existing event broker in the over-

lay network is chosen as the bootstrapping broker for a new event broker that is added to

the system. Proximity is defined in terms of network latency.

CovAdv with closest event broker. The same strategy as above is used to build the overlay

broker network in CovAdv.

CovAdv with minimum spanning tree. A minimum spanning tree in terms of latency be-

tween event brokers is precomputed for the neighbouring broker relation in CovAdv.

The plot in Figure 5.5 shows the average latency per event notification l̄ in milliseconds as a

function of the number of event subscribers. As expected, the latency per notification decreases

as more subscribers are added because event dissemination trees cover a larger portion of event

brokers. After a certain number of event subscribers, the system reaches a saturated state in all

three cases, where all event brokers have to receive a published event. In a realistic deployment

of CovAdv with the closest event broker for the neighbouring broker set, CovAdv exhibits poor

latency behaviour. Especially when the system is sparsely populated with subscriber-hosting

brokers, CovAdv shows the largest latency times since its overlay broker network does not ade-

quately reflect the latency of the links in the physical network when creating event dissemination

trees. In contrast, Hermes with the closest event broker results in a good compromise with

respect to event latency and is less dependent on the number of subscriber-hosting brokers. Un-

surprisingly the lowest latency is achieved by CovAdv with a precomputed minimum spanning

tree, but this requires the highest computational and administrative overhead.

The average hop count per event notification h̄ is plotted in Figure 5.6. The graphs for all

three cases reach a saturated hop count of one when an event subscriber is notified after every

routing hop. Hermes routing exhibits a very efficient behaviour with the smallest number of

98

CHAPTER 5. EVALUATION 5.4. EXPERIMENTS

1

2

3

4

5

6

0 50 100 150 200 250 300 350 400 450 500

H
o

p
 C

o
u

n
t

Number of Subscribers nS

Hermes
CovAdv (closest broker)

CovAdv (min. spanning tree)

Figure 5.6: E1: Hop count per event versus number of event subscribers

routing hops. This is mainly due to the larger size of the neighbouring broker sets that are

automatically maintained by Pan. Note that even when the overlay broker network is sparsely

populated with subscriber-hosting brokers (nS = 10), Hermes routing achieves a low hop count

of log16(500) = 2.24 on average. CovAdv with a minimum spanning tree has the highest average

hop count because its minimum spanning tree is constructed from many low latency links.

5.4.2 E2: Space Efficiency

The second experiment E2 focuses on the state stored in the event-based middleware that is

required for event dissemination for both routing algorithms. We measure the amount of state

as the number of entries in advertisement and subscription routing tables at event brokers.

Reducing maintained state at event brokers has the benefit that fewer resources are needed and

recovery after failure is simplified. In addition, increase in state as a function of the number of

event brokers or clients is one of the factors that determines the scalability of an event-based

middleware.

To evaluate space efficiency, we varied either the number of event brokers, event publishers, or

event subscribers while keeping the other parameters fixed and observed how this affected the

number of entries in advertisement and subscription routing tables. There were nτ = 10 event

types in the system, and each event client used nPτ = nSτ = 5 event types.

The result of the first experiment run with nE = 500 event brokers, nP = 10 event publishers,

and the number of event subscribers ranging from nS = 100 . . . 5000 is given in Figure 5.7. Con-

sidering entries in advertisement routing tables, Hermes creates a fraction of the state needed

by CovAdv because event advertisements are only propagated to rendezvous nodes instead of all

99

5.4. EXPERIMENTS CHAPTER 5. EVALUATION

0

1000

2000

3000

4000

5000

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

N
u

m
b

e
r

o
f

R
o

u
ti
n

g
 T

a
b

le
 E

n
tr

ie
s

Number of Subscribers nS

Hermes (Advertisements)
Hermes (Subscriptions)

CovAdv (Advertisements)
CovAdv (Subscriptions)

Figure 5.7: E2: Routing tables entries versus number of event subscribers

0

10000

20000

30000

40000

50000

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

N
u
m

b
e
r

o
f

R
o
u
ti
n
g
 T

a
b
le

 E
n
tr

ie
s

Number of Publishers nP

Hermes (Advertisements)
Hermes (Subscriptions)

CovAdv (Advertisements)
CovAdv (Subscriptions)

Figure 5.8: E2: Routing tables entries versus number of event publishers

100

CHAPTER 5. EVALUATION 5.4. EXPERIMENTS

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 100 200 300 400 500 600 700 800 900

N
u

m
b

e
r

o
f

R
o

u
ti
n

g
 T

a
b

le
 E

n
tr

ie
s

Number of Event Brokers nE

Hermes (Advertisements)
Hermes (Subscriptions)

CovAdv (Advertisements)
CovAdv (Subscriptions)

Figure 5.9: E2: Routing table entries versus number of event brokers

event brokers in the system. The size of advertisement routing tables stays constant because the

number of event publishers remains unchanged. Due to Hermes’ more efficient routing in the

overlay broker network, it can better exploit subscription coverage and therefore uses slightly

less state in subscription routing tables than CovAdv. As more subscribers are added, both

algorithms converge to the same number of entries because the routing tables are completely

filled when every subscriber-hosting broker has event subscribers subscribing to all events.

In the second experiment run in Figure 5.8, the number of event publishers varied from nP =

100 . . . 5000, whereas the number of event brokers (nE = 500) and event subscribers (nS = 100)

were kept constant. The count of entries in advertisement routing tables in CovAdv is unchanged

because broadcasts of advertisement messages immediately create a complete set of entries at

all event brokers. In contrast, entries for advertisements in Hermes scale sub-linearly with

the number of event publishers in the system. Since Hermes uses type- and attribute-based

subscriptions, which create more filtering state as more event publishers are added, the amount of

state in subscription routing tables increases sub-linearly, as well. Subscription state in CovAdv

scales less well because of its less efficient overlay routing.

The scalability of the overlay broker network with respect to the number of event brokers was

investigated in the third experiment run. For this, the number of event brokers was altered from

nE = 50 . . . 1000 with a fixed number of event publishers (nP = 10) and event subscribers (nS =

100). As can be seen in the plot in Figure 5.9, most state in routing tables in CovAdv is created

by advertisements that scale linearly with the number of event brokers. Since advertisements

only reach rendezvous nodes in Hermes, far less state is required. The increase in subscription

state is similar for both systems although the overlay broker network in Hermes scales slightly

more favourably.

101

5.4. EXPERIMENTS CHAPTER 5. EVALUATION

Total Number of Routing Table Entries

0 5 10 15 20

N
u

m
b

e
r

o
f

B
ro

k
e

rs

0

50

100

150

200

250
Hermes

CovAdv

Figure 5.10: E3: Distribution of routing tables entries at event brokers

5.4.3 E3: Space Distribution

In an event-based middleware not only the amount of state in the overlay broker network is

important, but also the distribution of state across event brokers. A system that distributes

state uniformly across all event brokers involves a larger number of components and is therefore

more prone to failure. The principle of local routing suggests that only event brokers on the

routing path of an event dissemination tree should be required to maintain state. Therefore,

experiment E3 surveys the distribution of routing tables entries in Hermes and CovAdv.

The experiment was run with fixed values for all parameters. The number of event brokers was

nE = 500 with nP = 10 event publishers and nS = 1000 event subscribers. There were nτ = 10

event types and each client used nPτ = nSτ = 5. The total number of routing table entries at

an event broker is the sum of entries in advertisement and subscription routing tables.

The distribution of routing table entries is presented in Figure 5.10. Routing state in CovAdv

is spread out across a large fraction of event brokers. Almost the majority of event brokers has

a maximum of 20 entries in routing tables and no single broker has less than 10 entries. As a

result, a random event broker failure is likely to result in the loss of significant routing state.

In contrast, Hermes clearly has a better distribution of routing table state. The most common

number of routing table entries is 10 with 100 event brokers. No event broker has more than 15

entries and 40 event brokers with empty routing tables are not involved in routing at all because

they are not part of any event dissemination trees. This result is mainly due to the fact that

routing in Hermes does not broadcast messages in the system.

5.4.4 E4: Message Complexity

The final experiment E4 examines a bandwidth cost metric in an event-based middleware. In-

stead of measuring the actual bandwidth used by the routing algorithms during event dissemina-

tion, network utilisation is expressed in terms of message counts of advertisement, subscription,

102

CHAPTER 5. EVALUATION 5.4. EXPERIMENTS

0

50000

100000

150000

200000

250000

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

N
u

m
b

e
r

o
f

M
e

s
s
a

g
e

s
 S

e
n

t

Number of Subscribers nS

Hermes (Advertisements)
Hermes (Subscriptions)
Hermes (Publications)

CovAdv (Advertisements)
CovAdv (Subscriptions)
CovAdv (Publications)

Figure 5.11: E4: Number of messages versus number of event subscribers

and publication messages. Fewer exchanged messages means that more network resources are

available for other applications and less processing has to be done at event brokers.

The same number of event brokers (nE = 500) was used as in the previous experiment. However,

more event types were available in the system (nτ = 100) in order to reduce coverage between

messages and hence exchange more messages. Clients also used a wider range of distinct event

types (nPτ = nSτ = 10). We performed two runs of the experiment, varying either the number

of event publishers nP or event subscribers nS and observed the counts for each message type.

In Figure 5.11 the plot of messages sent as a function of the number of event subscribers in the

range from nS = 100 . . . 5000 is shown. There were nP = 100 event publishers in the simulation.

The Hermes routing algorithm sends fewer publication messages than CovAdv due to its more

efficient event dissemination trees. However, an additional cost in terms of subscription messages

comes from subscriptions having to reach rendezvous nodes in Hermes. As a consequence,

Hermes sends more subscriptions messages when there are over approx. 1200 subscribers. As

discussed before, the counts of advertisement messages remain constant with substantially more

messages being sent by CovAdv.

In the second experiment run given in Figure 5.12, there were nS = 10 event subscribers and

the number of event publishers was changing (nP = 100 . . . 5000). As with a variable number of

event subscribers, fewer publication messages are sent by Hermes. Again, there is a threshold of

approx. 5000 publishers after which Hermes sends more advertisement messages than CovAdv

because of rendezvous node routing.

103

5.5. SUMMARY CHAPTER 5. EVALUATION

0

100000

200000

300000

400000

500000

600000

700000

800000

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

N
u

m
b

e
r

o
f

M
e

s
s
a

g
e

s
 S

e
n

t

Number of Publishers nP

Hermes (Advertisements)
Hermes (Subscriptions)
Hermes (Publications)

CovAdv (Advertisements)
CovAdv (Subscriptions)
CovAdv (Publications)

Figure 5.12: E4: Number of messages versus number of event publishers

5.5 Summary

This chapter has presented the simulational evaluation of event routing in Hermes. It started

with a motivation of our evaluation methodology by making a case for a simulational approach

that compared the routing algorithm of Hermes to another, well-known content-based routing

algorithm. Next cost metrics for the experiments in terms of latency, hop count, and bandwidth

were introduced. We then described the simulation environment based on DSSim, a large-scale

distributed systems simulator with a transit-stub topology generator and an implementation of

the Siena routing algorithm called CovAdv. The actual evaluation was carried out in the form

of four experiments that investigated different aspects of event dissemination.

The first experiment showed the quality of the constructed overlay broker network in Her-

mes used to build event dissemination trees. Both the average latency and hop count remain

low when compared to CovAdv. In general, Hermes maintains less state in routing tables at

brokers, which was demonstrated by the second experiment. The substantial saving in size of

advertisement routing tables is due to rendezvous node routing in Hermes and subscription

routing tables also benefit from the efficient overlay broker network. The results from the third

experiment on state distribution in routing tables illustrated Hermes’ approach of making rout-

ing decisions locally and only involving a small number of brokers. Finally, network utilisation

in Hermes is lower because fewer messages are sent by brokers. This saving is largest for

publication messages, which are the most common message type in an event-based middleware.

In summary, the Hermes peer-to-peer routing approach over a distributed hash table com-

pares favourably with a traditional content-based routing algorithm, such as Siena routing. A

Hermes event-based middleware does efficient event dissemination in terms of event routing

decisions and resource usage and scales to a large number of event brokers and clients.

104

6
Congestion Control

The evaluation of Hermes event routing in the previous chapter was based on the assumption

that event publication messages are negligible in size and therefore cannot saturate the available

network bandwidth or processing power. However, this is not true in practice and an event-

based middleware can suffer from congestion leading to a degradation of service to clients. In

this chapter we propose a scalable congestion control mechanism [PB03b] that prevents the

occurrence of congestion in a reliable publish/subscribe system. The mechanism is provided

as a higher-level service for an event-based middleware according to the service model from

Section 3.3.5. It consists of two algorithms, PDCC and SDCC, that are used in combination to

address different aspects of congestion control in the event-based middleware.

To motivate the need for congestion control in an event-based middleware, we begin with an

overview of the congestion control problem in the next section. From this, requirements for a

mechanism to handle congestion are developed in Section 6.2. The main part of this chapter is

the description of the two congestion control algorithms in Section 6.3. In Section 6.4 a prototype

implementation is described, which is then used to experimentally evaluate the congestion control

algorithms in Section 6.5. The chapter finishes with a discussion of related work in the area of

congestion control.

105

6.1. THE CONGESTION CONTROL PROBLEM CHAPTER 6. CONGESTION CONTROL

6.1 The Congestion Control Problem

We argue that it is necessary to provide congestion control for overlay networks, such as the one

established by an event-based middleware. In this section we illustrate the congestion control

problem by giving examples of undesired behaviour due to congestion. Congestion occurs when

there are not enough resources to sustain the rate at which event publishers send publication

messages in an event-based middleware. We distinguish between two kinds of congestion,

1. network congestion, where the network bandwidth between event brokers is the limiting

resource, and

2. event broker congestion, when the processing of messages at an event broker cannot cope

with the data rate.

Both kinds of congestion may lead to the loss of messages at event brokers. Message loss is

especially undesirable under guaranteed delivery semantics, as described by the reliability model

in Section 3.3.4, because the resulting retransmission of messages worsens the level of congestion

in the system. An event-based middleware suffers from congestion collapse when the message

loss dominates its operation and prevents event clients from receiving any useful service.

Usually there are two reasons for congestion in an event-based middleware. In many cases,

congestion is caused by the underprovisioning of the deployed middleware in terms of network

bandwidth or processing power of event brokers so that the middleware cannot handle resource

requirements of event dissemination during normal or peak operation. A second, more subtle

cause for congestion is the temporary need for more resources as a result of recovery after a

failure under guaranteed delivery semantics. We will give examples of both causes of congestion

in the form of two experiments in Gryphon using its guaranteed delivery service, but the results

are relevant to other publish/subscribe systems as well. Gryphon is an industrial-strength

publish/subscribe system that was described in Section 2.2.2.

The experiments use the Gryphon overlay broker network depicted in Figure 6.1, consisting of a

publisher-hosting broker PHB, an intermediate broker IB, and two subscriber-hosting brokers,

SHB1 and SHB2. The PHB has four publishing endpoints (pubends), which represent ordered

event streams from multiple event publishers hosted at the broker. As explained in Section 2.2.2,

PHB

IB

SHB1 SHB2

Figure 6.1: An overlay broker network topology with four event brokers

106

CHAPTER 6. CONGESTION CONTROL 6.1. THE CONGESTION CONTROL PROBLEM

0

100

200

300

400

500

600

700

0 50 100 150 200 250

m
s
g
/s

s

PHB
SHB1
SHB2

Figure 6.2: Congestion collapse with the IB–SHB1 link restricted

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000

0 50 100 150 200 250

K
B

s

IB: Output Queues

Figure 6.3: Queue utilisation at event broker IB during congestion collapse

delivery guarantees in Gryphon are made with respect to the aggregated event publications in

the event stream maintained in persistent storage at a pubend.

In the first example, the PHB publishes event publications at a rate of 500 msgs/s. The plot

in Figure 6.2 shows the message rates observed at the PHB and both SHBs as a function of

time. During the first 120 s, event dissemination is in a steady-state with 500 msgs/s being

received at both SHBs. After that, a bandwidth restriction is imposed on the IB–SHB1 link

limiting it to about one third of the required bandwidth. Since the PHB continues sending event

publications at an unchanged rate, outgoing buffer queues at the IB start to build up as can

be seen in Figure 6.3, and eventually overflow causing message loss because the IB cannot send

messages fast enough through the bandwidth-limited link. These lost publication messages need

to be recovered and are therefore retransmitted, which further increases congestion resulting in

congestion collapse with a drop of the message rate at SHB1 to zero.

The second example, shown in Figure 6.4, demonstrates congestion caused by increased resource

demand during recovery. Initially the bandwidth of the PHB–IB link is restricted to a value

slightly higher than what is needed for steady-state operation. The IB–SHB2 link is then brought

down for 120 s. After the link has come back up, the system attempts to recover the lost

messages, which creates congestion because the bandwidth bottleneck cannot accommodate the

107

6.2. REQUIREMENTS CHAPTER 6. CONGESTION CONTROL

0

100

200

300

400

500

600

0 50 100 150 200 250 300 350 400 450 500

m
s
g
s
/s

s

PHB
SHB1
SHB2

Figure 6.4: Congestion collapse with the PHB–IB link restricted during recovery

higher data rate due to retransmitted messages. As a result, the message rates observed at both

subscriber-hosting brokers fall below the publication rate and never successfully recover.

Note that even though connections between event brokers use TCP congestion control, this is

not sufficient to prevent congestion in the overlay broker network because of application-level

queueing at event brokers. Both network and event broker congestion manifest themselves as

the build up of buffer queues at event brokers. To deal with congestion, current middleware

deployments are often vastly overprovisioned, which is a waste of resources. Instead, we propose

a congestion control service for an event-based middleware to address the problem directly.

6.2 Requirements

A congestion control mechanism in a publish/subscribe context differs from traditional conges-

tion control found in other networking systems. This is due to the many-to-many communication

semantics supported by the publish/subscribe model and the content-based filtering of messages

at application-level event brokers during event dissemination. Not all event subscribers re-

ceive the same set of publication messages sent by event publishers, as opposed to the case in

application-level multicast, for example. Reliable event dissemination semantics leads to the se-

lective retransmission of publication messages to a subset of recovering event subscribers, which

further complicates congestion control. To guide the design of our congestion control mechanism,

we formulate six requirements for congestion control in an event-based middleware.

Burstiness. The processing of publication messages at event brokers is bursty because of

application-level scheduling and the variable processing cost of content-based filtering of

event publications. This means that a congestion condition can arise quickly, requiring

early detection by the congestion control mechanism.

Queue Sizes. Due to the burstiness of event routing and the need to cache event streams

for retransmission, buffer sizes at event brokers are much higher compared to standard

networking components. Buffer overflow only occurs when significant congestion already

108

CHAPTER 6. CONGESTION CONTROL 6.3. CONGESTION CONTROL ALGORITHMS

exists in the system. As a consequence, message loss cannot be used as an indicator for

congestion in the event-based middleware.

Recovery Control. The congestion control mechanism must ensure that event brokers that

are recovering event publications that were previously lost will eventually complete re-

covery successfully. At the same time, recovering event brokers must be prevented from

contributing to congestion. Although NACK messages are small and themselves cause little

congestion, they potentially trigger the retransmission of large event publication messages.

Robustness. It is important that the congestion control mechanism is robust and can protect

itself against malicious event clients. A possible design choice is to provide congestion

control in the overlay broker network only, ensuring that the publication rate of messages

by publisher-hosting brokers can be supported by all interested subscriber-hosting brokers.

Flow control between client-hosting brokers and event clients is handled by a separate

mechanism that can disconnect malicious clients.

Architecture Independence. The congestion control mechanism should not be tightly cou-

pled to internal implementation details of an event broker. Instead, as a higher-level

middleware service, it should support the evolution of the event broker implementation.

For example, the detection of congestion should not depend on a particular buffer imple-

mentation or queueing discipline used by event brokers.

Fairness. When congestion requires the reduction of publication rates, fair throttling of event

publishers must be ensured. The available resources at publisher-hosting brokers should

be split equally among all hosted event publishers or pubends.

6.3 Congestion Control Algorithms

Typically a congestion control mechanism first detects congestion in the system and then adapts

system parameters to remove its cause. In this section we describe two such algorithms that

provide congestion control for an event-based middleware in accordance with the requirements

stated in the previous section.

1. A PHB-driven congestion control algorithm ensures that publisher-hosting brokers cannot

cause congestion because of too high a publication rate. This is achieved by a feedback

loop between pubends and subscriber-hosting brokers to monitor congestion in the overlay

broker network and control the event publication rate at the pubends.

2. An SHB-driven congestion control algorithm manages the recovery of subscriber-hosting

brokers after failure. It limits the rate of NACK messages that cause the retransmission

of event publications from pubends depending on congestion.

These two congestion control algorithms are independent of each other but should be used in

conjunction to prevent congestion during both regular operation and recovery. Both algorithms

109

6.3. CONGESTION CONTROL ALGORITHMS CHAPTER 6. CONGESTION CONTROL

need to distinguish between recovering and non-recovering event brokers in order to ensure

that subscriber-hosting brokers can recover successfully. For a simpler presentation of the al-

gorithms, we assume that only intermediate brokers are internal nodes in event dissemination

trees with client-hosting brokers constituting the root or leaf nodes. Next we will describe the

two algorithms in turn.

6.3.1 PHB-Driven Congestion Control

The PHB-driven congestion control algorithm (PDCC) controls the rate at which new publica-

tion messages are published by a pubend. The publication rate is adjusted depending on a con-

gestion metric. We use the observed rate of publication messages at subscriber-hosting brokers as

our congestion metric, which is similar to the throughput-based metric of TCP Vegas [BOP94].

The rationale behind this is that a decrease in the message rate at a subscriber-hosting broker

with an unchanged publication rate at the pubend is an indication of more queueing in the over-

lay broker network. This queue build-up is considered to be caused by network or event broker

congestion in the system. Subscriber-hosting brokers calculate their own congestion metric and

notify the pubend whenever they believe that they are suffering from congestion. Congestion in-

dications are aggregated at intermediate brokers so that the pubend is only informed of the worst

congestion point. Two types of control messages are used to exchange congestion information

between event brokers in an aggregated fashion.

Downstream Congestion Query (DCQ) Messages. The PDCC mechanism is triggered

by DCQ messages sent by a pubend down the event dissemination tree to all subscriber-hosting

brokers. Since congestion control is performed per pubend, a DCQ message carries a pubend

identifier (pubendID). A monotonically increasing sequenceNo is used for aggregation and the

mPubend field stores the current position in the pubend’s event stream, which is for example the

latest assigned event timestamp.

pubendID sequenceNo mPubend

Upstream Congestion Alert (UCA) Messages. UCA messages are sent by subscriber-

hosting brokers to inform a pubend about congestion. They flow upwards in the event dissemina-

tion tree and are aggregated at intermediate brokers so that a pubend only receives a single UCA

message in response to a DCQ message. Apart from the pubend identifier and the sequence num-

ber of the triggering DCQ message, a UCA message contains the minimum throughput rates

observed at recovering (minRecSHBRate) and non-recovering (minNonRecSHBRate) subscriber-

hosting brokers.

110

CHAPTER 6. CONGESTION CONTROL 6.3. CONGESTION CONTROL ALGORITHMS

pubendID sequenceNo minRecSHBRate minNonRecSHBRate

Figure 6.5 summarises the propagation of DCQ and UCA messages through an overlay broker

network in the PHB-driven congestion control algorithm. For the PDCC scheme to be efficient,

DCQ and UCA messages must not suffer from congestion and should maintain low delays and

loss rates. This can be achieved by treating them as high-priority control messages, as will be

explained in Section 6.4. In the following we describe the behaviour of the three types of event

brokers when processing DCQ and UCA messages in the PDCC algorithm.

Publisher-Hosting Broker (PHB). A publisher-hosting broker triggers the PDCC mecha-

nism by periodically sending DCQ messages with an incremented sequence number. The inter-

val tdcq at which DCQ messages are dispatched determines the time between UCA responses in a

congested system. The higher the rate of responses, the quicker the system adapts to congestion.

When the PHB has not received any UCA messages for a period of time tnouca, it assumes that

the system is currently not congested. Therefore, it increases the publication rate if the rate is

throttled and the pubend could publish at a higher rate. To increase the publication rate, we

use a hybrid scheme with additive and multiplicative increase. The new rate rnew is calculated

from the old rate rold according to

rnew = max
[
rold + rmin, rold + fincr ∗ (rold − rdecr)

]
, (6.1)

where rdecr is the publication rate after the last decrease, fincr is a multiplicative increment factor,

and rmin is the minimum possible increase. Initially we used a purely additive scheme but this

resulted in a very slow increment and experiments showed that a more optimistic approach

achieved a higher message throughput. The multiplicative use of fincr allows the publication

rate to grow faster than a fixed additive increase. However, when the publication rate is already

close to the optimal operation point before congestion occurs, it is necessary to limit the increase.

This is done by recording the publication rate rdecr at which the increase started and using it

to restrict the multiplicative increase. As will be shown by the experiments in Section 6.5, this

PHB

IB

SHB1 SHB2

UCA

UCA

DCQ

DCQ DCQ

Figure 6.5: Flow of DCQ and UCA messages

111

6.3. CONGESTION CONTROL ALGORITHMS CHAPTER 6. CONGESTION CONTROL

scheme results in the publication rate probing whether the congestion condition has disappeared

and, if not, oscillating around the optimal operation point.

When the PHB receives a UCA message, a decision is made about a reduction of the current

publication rate. The rate is kept constant if the sequence number in the received UCA message

is smaller than the sequence number of the DCQ message that was sent after the last decrease.

The reason for this is that the system did not have enough time to adapt to the last change

in rate and therefore more time should pass before another adjustment. The rate is also not

reduced if the congestion metric in the UCA message is larger than the value in the previous

message. This means that the congestion situation in the system is improving, and further

reduction of the rate is unnecessary. Otherwise, the publication rate is decreased according to

rnew = max
[
fdecr1 ∗ rold, rdecr + fdecr2 ∗ (rold − rdecr)

]
iff rdecr 6= rold (6.2)

rnew = fdecr1 ∗ rold otherwise, (6.3)

where fdecr1 and fdecr2 are multiplicative decrement factors. The first term in Equation 6.2

multiplicatively decreases the rate by a factor fdecr1 , whereas the second term reduces the rate

relative to the previous decrement rdecr. Similar to Equation 6.1, the second term prevents an

aggressive rate reduction when congestion is encountered for the first time after an increase.

Since the PDCC mechanism constantly attempts to increase the publication rate in order to

achieve a higher throughput, it will eventually cause SHBs to send UCA messages if there is

resource shortage in the system, but this should not result in a strong reduction of the publication

rate. Taking the maximum of the two decrement values ensures that the publication rate stays

close to the optimal operating point. If the congestion situation does not improve after one

reduction, the publication rate is reduced again. This time a strong multiplicative decrease

according to Equation 6.3 is performed because the condition rdecr = rold holds.

Intermediate Broker (IB). To avoid the problem of feedback implosion [Dan89], aggrega-

tion logic for UCA messages at intermediate brokers must consolidate multiple messages from

different SHBs such that the minimum observed rate at any SHB is passed upstream in a UCA

message. This enables the pubend to adjust its publication rate to provide for the most con-

gested SHB in the system. Another requirement is that UCA messages that occur for the first

time are immediately sent upstream, allowing the pubend to respond as quickly as possible to

new congestion in the system.

In Figure 6.6 the algorithm for processing DCQ and UCA messages at an intermediate broker

is given. An IB stores the maximum sequence number seqNo and the minimum throughput

values for non-recovering (minNonRecSHBRate) and recovering (minRecSHBRate) SHBs from the

UCA messages that it has processed. After the initialisation of these variables (line 1), the

function processDCQ handles DCQ messages by relaying them down the event dissemination

tree in line 6. When a UCA message arrives, the function processUCAMsg is called, which first

112

CHAPTER 6. CONGESTION CONTROL 6.3. CONGESTION CONTROL ALGORITHMS

1 initialization:
2 seqNo ← 0
3 minNonRecSHBRate ← ∞, minRecSHBRate ← ∞
4

5 processDCQ(dcqMsg):
6 sendDownstream(dcqMsg)
7

8 processUCA(ucaMsg):
9 minNonRecSHBRate ← MIN(minNonRecSHBRate, ucaMsg.minNonRecSHBRate)

10 minRecSHBRate ← MIN(minRecSHBRate, ucaMsg.minRecSHBRate)
11 IF ucaMsg.seqNo > seqNo THEN
12 sendUpstream(ucaMsg.seqNo, minNonRecSHBRate, minRecSHBRate)
13 seqNo ← ucaMsg.seqNo
14 minNonRecSHBRate ← ∞, minRecSHBRate ← ∞

Figure 6.6: Processing of DCQ and UCA messages at IBs

updates the throughput minima (lines 9–10). A new UCA message is only sent upstream if

the sequence number of the received message is greater than the maximum sequence number

stored at the IB (line 11). This ensures that UCA messages with the same sequence number

coming from different SHBs are aggregated before propagation. The first UCA message with

a new sequence number immediately triggers a UCA message so that the pubend is quickly

informed about new congestion. Subsequent UCA messages from other SHBs that have the

same sequence number will be aggregated and contribute towards the throughput minima in the

next UCA message. After a UCA message has been sent in line 12, seqNo is updated (line 13)

and both throughput minima are reset in line 14.

We demonstrate the operation of the aggregation logic at IBs with the example in Figure 6.7.

The topology of six event brokers has two congested event brokers, SHB1 and SHB2, and three

intermediate brokers IB1,2,3 that aggregate UCA messages. Congestion in the system is first

detected by SHB1 and its UCA message with a congestion metric of 0.8 is directly propagated

to the PHB. When SHB2 notices congestion, its UCA message is consolidated at IB2, which

updates its throughput minimum to 0.4. Eventually a UCA message with the congestion value

of SHB2 will propagate up the event dissemination tree in response to a new DCQ message

because SHB2 is worse congested than SHB1.

PHB

IB2

IB1

SHB1

SHB2

UCA1

UCA1

UCA1

1 0.8

1 0.8

1 0.8

PHB

IB3

IB2

IB1

SHB1

SHB2

UCA2

UCA2
1 0.4

1 0.4

IB3

1 0.4

1 0.8

minNonRec
SHBRate

seqNo

1 0.8

(a) (b)

Figure 6.7: Consolidation of UCA messages at IBs

113

6.3. CONGESTION CONTROL ALGORITHMS CHAPTER 6. CONGESTION CONTROL

Subscriber-Hosting Broker (SHB). The congestion metric used by subscriber-hosting bro-

kers depends on their observed throughput of publication messages and is independent of the

actual publication rate of the pubend. An SHB monitors the ratio of pubend and SHB message

rate,

t =
rpubend

rSHB
, (6.4)

and uses this to decide when to send UCA messages with congestion alerts. To allow for

burstiness in the throughput due to application-level routing as mentioned previously, t is passed

through a standard first-order low pass filter,

t̄ = (1− α) t̄+ α t, (6.5)

to obtain a smoothed congestion metric t̄ with an empirical value of α = 0.1. An SHB has

to apply a different strategy for sending UCA messages depending on whether it is recovering

event publications or not. We assume that an SHB can determine whether it is a recovering or

a non-recovering event broker. A suitable criterion to detect recovery would be, for example,

that the SHB is ignoring new event publications because its event stream is saturated with old

events caused by NACK messages.

Non-Recovering SHB. A non-recovering SHB should receive publication messages at the

same rate at which they are sent by the pubend. Therefore, if the smoothed throughput ratio t̄

drops below unity by a threshold ∆tnonrec,

t̄ < 1−∆tnonrec, (6.6)

the SHB assumes that it has started falling behind in the event stream because of congestion.

In rare cases, an SHB could be falling behind slowly because t̄ stays below 1 but above 1 −
∆tnonrec for a long time. Unless there is already significant congestion in the system, this

will not cause a queue overflow if buffer sizes are large. An SHB can detect this situation

by periodically comparing its current position in its event stream mSHB to the pubend’s event

stream position mpubend from the last received DCQ message. If the difference is larger than ∆ts,

mSHB < mpubend + ∆ts, (6.7)

a UCA message is triggered, even though the congestion metric t̄ is above its threshold value.

Recovering SHB. A recovering SHB must receive publication messages at a higher rate

than the publication rate, or it will never manage to successfully catch up and recover all lost

114

CHAPTER 6. CONGESTION CONTROL 6.3. CONGESTION CONTROL ALGORITHMS

publication messages. In some applications there is an additional requirement to maintain a

minimum recovery rate 1 + ∆trec in order to put a bound on recovery time. Thus, a recovering

SHB sends a UCA message if

t̄ < 1 + ∆trec. (6.8)

The threshold value ∆trec influences how much of the congested resource will be used for recovery

messages as opposed to new publication messages and hence controls the duration of recovery.

6.3.2 SHB-Driven Congestion Control

The SHB-driven congestion control algorithm (SDCC) manages the rate at which an SHB re-

quests missed event publications by sending NACK messages upstream to the corresponding

pubend. An SHB maintains a NACK window to decide which parts of the event stream to

request. To control the rate of NACK messages being sent, the NACK window is open and

closed additively by the SDCC algorithm depending on the level of congestion in the system.

As for the PDCC mechanism, the change in recovery rate throughput is used as a metric for

detecting congestion.

At the start of recovery, an SHB uses a small initial NACK window size nwnd0. The NACK

window is adjusted during recovery when the recovery rate rSHB changes. The recovery rate rSHB

is defined as the ratio between the current NACK window size nwnd and the estimate of the

round trip time RTT , which it takes to retrieve a lost event publication from the pubend,

rSHB =
nwnd

RTT
. (6.9)

The NACK window size is changed in a similar fashion to TCP Vegas. When the recovery

rate rSHB increases by at least a factor αnack, the NACK window is opened by one additional

NACK message per round trip time. When rSHB decreases by at least a factor βnack, the NACK

window is reduced by one NACK message,

nwndnew = nwndold ± sizenack. (6.10)

This is sufficient to ensure that resent event publications triggered by NACK messages from

recovering event brokers do not overload the event-based middleware.

115

6.4. IMPLEMENTATION CHAPTER 6. CONGESTION CONTROL

Tick State Description

Data the tick contains an event publication
Silence no message was published
Final the tick is no longer needed
Question the state of the tick is unknown

Table 6.1: The states of a tick in a Gryphon event stream

6.4 Implementation

For evaluation with an industrial-strength, content-based publish/subscribe system, we have

implemented the PDCC and SDCC algorithms as extensions to the guaranteed delivery service

provided by the Gryphon event broker [BSB+02]. The implementation attempts to be indepen-

dent of Gryphon-specific details so that it can be added as a higher-level service to any other

event-based middleware. In this section we describe our prototype implementation starting with

an explanation of the Gryphon guaranteed delivery service.

Under guaranteed delivery semantics in Gryphon, the event stream that is managed by event

brokers is subdivided into discrete time intervals called ticks. Each tick potentially holds an

event publication and is in one of four states listed in Table 6.1.

Ticks are fine-grained so that no two event publications are ever assigned to the same tick. The

position of a tick in the event stream can be viewed as a real-time timestamp set by the pubend.

When no events are published, ticks in the event stream are assigned to the silence state and

the pubend sends an explicit silence message every tsilence ms to notify SHBs that they did not

miss any event publications.

An example of an event stream maintained at a subscriber-hosting broker is shown in Figure 6.8.

At first all ticks in the stream are initialised to the question state. The SHB then tries to resolve

all question ticks to either data or silence states by sending NACK messages upstream to the

pubend after a timeout if no event publication was received. When a tick has been successfully

processed by an SHB, its state changes to final and it can be removed from the event stream.

Every SHB maintains a doubt horizon, which is the position in the event stream until which there

are no question ticks. All ticks with event publications before the doubt horizon either already

Receive Window

FF... S D Q F D S Q D D Q Q S Q Q Q ...

NACK Window

Doubt Horizon

Figure 6.8: An event stream at an SHB

116

CHAPTER 6. CONGESTION CONTROL 6.5. EXPERIMENTS

Event Broker

Logic

Input

Queues

Output

Queues

Low Priority

High Priority

Low Priority

High Priority

TCP

Buffer

TCP

Buffer

Figure 6.9: The data path for messages in a Gryphon event broker

were or can be delivered to event subscribers. In addition, the SHB keeps a receive window of

all ticks that it is willing to process and a NACK window of ticks, for which retransmission

can be requested. In our PDCC implementation, SHBs use the rate of progress of the doubt

horizon rdh,

rdh =
ticks

time
= t, (6.11)

as the congestion metric t in order to detect congestion in the system. Since the event stream

contains seconds worth of ticks, rdh is has the dimension of “tick seconds” per second. The

advantage of the doubt horizon is that its progress is independent of the actual publication

rate of events at the pubend because the doubt horizon progresses constantly due to silence

messages. Therefore it can be used as a throughput-based congestion metric in our congestion

control algorithms.

As discussed earlier, the PDCC scheme relies on the free flow of DCQ and UCA messages

through a congested system. The data path in a Gryphon event broker with all buffers is shown

in Figure 6.9. The event broker has input and output buffer queues at the application-level

and TCP buffers in the protocol stack implementation. DCA and UCA messages circumvent

the regular data path taken by publication messages because they are handled in high priority

input and output queues in the event broker. The fact that they share TCP buffers with other

messages has little impact because the protocol buffers are much smaller than the application-

level buffers.

6.5 Experiments

In this section we discuss four experiments E1–E4 that evaluate the PDCC and SDCC mecha-

nisms under simulated congestion with two different overlay broker network topologies and show

how congestion collapse is avoided. The setup for all experiments was a dedicated network of

Gryphon event broker machines running AIX connected via Ethernet links. A summary of the

configuration parameters, as described in the previous section, for Gryphon and the congestion

117

6.5. EXPERIMENTS CHAPTER 6. CONGESTION CONTROL

Param. Description Value

tsilence interval for sending explicit silence messages by pubend 1000 ms
binput size of input buffer queues at event broker 24 MB
boutput size of output buffer queues at event broker 5 MB

tdcq interval for sending DCQ messages 1000 ms
tnouca interval without UCA messages before rate increase 2000 ms
rmin minimum rate increase for PDCC scheme 2 msgs
fincr multiplicative increment for PDCC scheme 0.05
fdecr1 multiplicative decrement for PDCC scheme 0.5
fdecr2 multiplicative decrement w.r.t. previous increment 0.25
α smoothing factor for low pass filter of congestion metric 0.1
∆tnonrec threshold value for UCA messages for non-recovering SHBs 50 tickms
∆trec threshold value for UCA messages for recovering SHBs 1000 tickms
∆ts threshold value for lag in message stream for SHBs 4000 tickms

nwnd0 initial size of NACK window 100 tickms
αnack recovery rate increase before NACK window is increased 0.1
βnack recovery rate decrease before NACK window is decreased 0.3

Table 6.2: Configuration parameters for Gryphon and the PDCC and SDCC algorithms

control algorithms that were used in the experiments is given in Table 6.2. The failure of physical

links was simulated by flushing an event broker’s output buffers and closing its TCP connection.

Network congestion was created as bandwidth limits on physical links by modifying an event

broker’s input buffers to only support a reduced processing rate. During an experiment run,

various event broker statistics were recorded to create the plots in the following section.

6.5.1 E1: Link Failure

The first experiment E1 shows how the congestion control mechanisms handle congestion due to

recovery after link failure. It is a re-run of the failure experiment from Figure 6.4 and uses the

same topology. However, now the PDCC and SDCC schemes ensure that the system recovers

successfully, as shown in the message rate plot in Figure 6.10. The publication rate of the PHB

is reduced by the PDCC algorithm after the IB–SHB2 link is reinstated at t = 245 because most

of its bandwidth is used by event broker SHB2 for recovery. After SHB2 has finished recovery

at t = 405, the PHB restores its publication rate back to the previous maximum value. Note

that the spike in SHB2’s event rate close to the end of the recovery phase occurs because the IB

caches recent ticks in the event stream and is therefore able to satisfy some of the final NACK

messages more quickly.

The plot in Figure 6.11 presents the behaviour of the NACK window during recovery, as con-

trolled by the SDCC algorithm. The NACK window starts with a small size of 200 tickms and

is then progressively enlarged until an optimal operation point of around 900 tickms is reached.

This controlled behaviour of the NACK window ensures that the system is not overwhelmed by

118

CHAPTER 6. CONGESTION CONTROL 6.5. EXPERIMENTS

0

100

200

300

400

500

600

700

800

0 50 100 150 200 250 300 350 400 450 500

m
s
g
s
/s

s

PHB
SHB1
SHB2

Figure 6.10: E1: Congestion control after an IB–SHB1 link failure

0

200

400

600

800

1000

1200

1400

0 10 20 30 40 50 60 70 80 90 100

ti
c
k
m

s

s

SHB2: NACK Window Size

Figure 6.11: E1: NACK window behaviour after the IB–SHB1 link failure

retransmitted event publications. The NACK window increases further towards the end of the

recovery phase because of the cached ticks at the IB.

6.5.2 E2: Bandwidth Limits

We investigated in experiment E2 how well the PDCC mechanism can adapt to dynamic band-

width limitations similar to the one that caused congestion collapse in Figure 6.2. The observed

message rates using the four event-broker topology from Figure 6.1 are shown in Figure 6.12.

At first, the IB–SHB1 link is restricted to about one third of the required bandwidth for 120 s.

After that, the limit is increased to about half the necessary bandwidth for 120 s, and then

reduced to the previous low value again. As can be seen from the publication rate graph, the

PDCC algorithm determines the optimal rate that can be supported by the restricted link with-

out causing congestion and manages to quickly adapt to new bandwidth bottlenecks. While

adapting, the output buffer utilisation at the IB, which is shown in Figure 6.13, is kept low.

Even when the available bandwidth is severely restricted at t = 100 and t = 340, the PDCC

algorithm is responsive enough to prevent queues at the IB from increasing above 1 MB. The

publication rate oscillates around the optimal value since the PHB is constantly probing the

119

6.5. EXPERIMENTS CHAPTER 6. CONGESTION CONTROL

0

100

200

300

400

500

600

700

0 50 100 150 200 250 300 350 400 450 500

m
s
g
s
/s

s

PHB
SHB1
SHB2

Figure 6.12: E2: Congestion control with dynamic bandwidth restrictions

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000

0 50 100 150 200 250 300 350 400 450 500

K
B

s

IB: Output Queues

Figure 6.13: E2: Output queue utilisation at broker IB

0

0.2

0.4

0.6

0.8

1

1.2

0 50 100 150 200 250 300 350 400 450 500

ti
c
k
s
e
c
/s

s

PHB:UCA_nonrec

Figure 6.14: E2: UCA messages received at pubend

120

CHAPTER 6. CONGESTION CONTROL 6.5. EXPERIMENTS

PHB

IB2

IB3

IB1

SHB1 SHB2 SHB3

SHB4 SHB5

Figure 6.15: A complex overlay broker network topology with sixteen event brokers

system to determine whether the congestion situation has improved. The rdecr mechanism in

the PDCC algorithm ensures that the publication rate stays close to the optimal value.

To illustrate the operation of the PDCC algorithm, Figure 6.14 plots the doubt horizon rate rdh

from UCA messages received at the pubend. When there is no congestion during the first 120 s,

UCA messages are not received except for transient messages at start-up. At t = 140 the doubt

horizon rate decreases to half of its previous value because of the new link bottleneck. Once

the publication rate at the pubend has been reduced sufficiently, the doubt horizon rate starts

increasing again. When the link bottleneck is unchanged, UCA messages with doubt horizon

rates slightly below the “real-time” rate of 1 ticksec/s are received periodically, preventing the

publication rate from increasing further.

6.5.3 E3: Link Failures and Bandwidth Limits

To evaluate how multiple sources of congestion in different parts of the network are han-

dled, we set up a complex overlay broker network for experiment E3. This topology has one

publisher-hosting broker PHB, three intermediate brokers IB1−3, and five subscriber-hosting

brokers SHB1−5, interconnected as shown in Figure 6.15. The topology is asymmetric with

different path lengths from SHBs to the PHB to ensure that IBs have to perform non-trivial

aggregation of UCA messages. Note that due to the distribution of subscribers in this exper-

iment, the event rate at an SHB should be 2/5th of the PHB’s publication rate under normal

conditions.

The experiment consists of a series of link failures and bandwidth limitations. Throughout the

entire experiment, the IB1–SHB1 link has a bandwidth limitation that does not cause congestion

in the absence of failure. At t = 190, the PHB–IB1 link is limited to half the required bandwidth,

and, after a further 120 s, the IB3–SHB5 link is failed for 120 s (t = 310 . . . 430). The event rates

at the PHB and the SHBs are plotted in Figure 6.16. At the beginning, the PHB publishes

events at the maximum rate but when the first bandwidth restriction comes into effect, all

SHBs receive events at a reduced rate because of the PDCC rate adjustment. After the failure

of the IB3–SHB5 link, the PHB decreases its rate even further to enable SHB5 to recover all

lost event publications. Even though failure and link restrictions occur in different parts of the

network at the same time, the PDCC algorithm drives the publication rate at the pubend by

the behaviour of the worst congestion point and successfully prevents queues from building up.

121

6.5. EXPERIMENTS CHAPTER 6. CONGESTION CONTROL

0

100

200

300

400

500

600

700

0 100 200 300 400 500 600

m
s
g
s
/s

s

PHB
SHB1
SHB2
SHB3
SHB4
SHB5

Figure 6.16: E3: Congestion control with link failures and bandwidth restrictions

0
0.5

1
1.5

2
2.5
3

3.5
4

4.5
5

0 100 200 300 400 500 600

ti
c
k
s
e
c
/s

s

SHB5: Doubt Horizon Rate
SHB5: isRecovering

Figure 6.17: E3: Doubt horizon rate with link failures and bandwidth restrictions

0

0.5

1

1.5

2

0 100 200 300 400 500 600

ti
c
k
s
e
c
/s

s

PHB:UCA_nonrec
PHB:UCA_rec

Figure 6.18: E3: UCA messages received at the pubend

122

CHAPTER 6. CONGESTION CONTROL 6.5. EXPERIMENTS

0

50

100

150

200

-0.5 0 0.5 1 1.5 2 2.5

s

ticksec/s

SHB5:Recovery Time

Figure 6.19: E4: Variation of recovery time with the ∆trec threshold

The doubt horizon rate rdh, as observed at SHB5, can be seen in Figure 6.17. Since the rate is

independent of the publication rate, it stays close to 1 ticksec/s until the IB3–SHB5 link is failed

at t = 310. The value of ∆trec in this experiment is 0.5 ticksec/s. After the failure, the SHB

switches to recovery mode (isRecovering) and the doubt horizon rate is kept above ∆trec. Close

to the end, the rate peaks to about 5 ticksec/s when the SHB5 reaches the point in the event

stream when the pubend reduced its rate and thus more ticks in the stream are small silence

ticks without data.

Figure 6.18 shows the consolidated UCA messages received at the PHB from recovering and non-

recovering SHBs. After a startup effect, messages from non-recovering SHBs (UCAnonrec) arrive

at regular intervals because of the PHB–IB1 link restriction. When SHB5 starts recovering at

t = 430, it sends UCA messages in recovery mode (UCArec) whenever its rate drops below ∆trec.

6.5.4 E4: Recovery Times

The final experiment E4 investigates how the duration of recovery can be influenced by the

threshold value ∆trec. In general, the higher this value, the earlier a recovering SHB will send

UCA messages so that more of the congested resource is used for retransmitted event publications

as opposed to new ones. This experiment uses the four event-broker topology with a bandwidth

restriction on the PHB–IB link and a failure of the IB–SHB2 link. Figure 6.19 plots the recovery

time in seconds as a function of ∆trec varying from −0.2 . . . 2.0 ticksec/s at 0.2 ticksec/s steps.

A value of ∆trec ≤ 0 is not used in practice, as it may result in an infinite recovery time.

The plot shows a clear correlation between ∆trec and the recovery duration. However, it is

not linear for two reasons: With ∆trec ≥ 1.8, the bandwidth restricted PHB–IB link becomes

saturated with resent publication messages. When ∆trec ≤ 1, there is an interaction between the

four pubends hosted at the PHB. Although the low threshold value does not force the pubends

to reduce their publication rate by much, some pubends tend to consume a larger fraction of

the bottleneck bandwidth, reducing the available bandwidth for the remaining pubends. These

pubends observe a very low rdh value and thus reduce their publication rate more than necessary.

123

6.6. RELATED WORK CHAPTER 6. CONGESTION CONTROL

This unfairness between pubends stems from the first-come, first-serve scheduling of messages

of the same priority at event brokers, which prevents the PDCC algorithm from synchronising

rate reductions at multiple pubends.

6.6 Related Work

A large body of work exists in the area of congestion control in networks, although these solutions

do not address the special requirements for congestion control in an event-based middleware (see

Section 6.2). In this section we provide a brief overview of applicable work, contrasting it with

our approach for congestion control.

Transmission Control Protocol (TCP). The TCP protocol comes with a point-to-point,

end-to-end congestion control algorithm with a congestion window that uses additive increase,

multiplicative decrease (AIMD) [JK88]. Slow start helps open the congestion window more

quickly. Packet loss is the only indicator for congestion in the system and fast retransmit enables

the receiver to signal packet loss by ACK repetition to avoid timeouts. TCP Vegas [BOP94]

attempts to detect congestion before packet loss occurs by using a throughput-based congestion

metric, which is similar to the congestion metric used in the PDCC and SDCC algorithms.

Reliable Multicast. Reliable multicast protocols are similar to reliable publish/subscribe

systems due to their one-to-many communication semantics, but typically they have no filtering

at intermediate nodes and do not guarantee that all leaves in the multicast tree will eventually

catch up with the sender. In general, multicast congestion control schemes can be divided into

two categories [YL00], namely:

1. sender-based schemes, in which all receivers support the same message rate, and

2. receiver-based schemes with different message rates by means of transcoded versions of

data.

Since we can make few assumptions about the content of event publications, a receiver-based

approach is not feasible. Congestion control for multicast is often implemented at the transport

level relying on router support. It must adhere to existing standards to ensure fairness and com-

patibility with TCP [FF99, GS99]. Since there are many receivers in the multicast tree, scalable

feedback processing of congestion information is important. Unlike feedback suppression [DO97],

our approach does not discard information because it consolidates feedback in a scalable way.

The pgmcc congestion control protocol [Riz00] forms a feedback loop between the sender and

the worst congested receiver. The sender chooses this receiver depending on receiver reports in

NACK messages. The congestion control protocol for SRM [SW00] is similar except that the

feedback agent can give positive and negative feedback, and a receiver locally decides whether

to send a congestion notification upstream to compete for becoming the new feedback agent.

124

CHAPTER 6. CONGESTION CONTROL 6.7. SUMMARY

An approach that does not rely on network support, except minimal congestion feedback in

NACK messages, is LE-SBCC [TSLK01]. Here a cascaded filter model transforms the NACK

messages from the multicast tree to appear like unicast NACKs before feeding them into an

AIMD module. However, no consolidation of NACK messages can be performed. All these

schemes have in common that they use a loss-based congestion metric, which is not a good

indicator for congestion in an application-level overlay network.

Multicast Available Bit Rate (ABR) ATM. The ATM Forum Traffic Management Spec-

ification [Sat96] includes an Available Bit Rate (ABR) category for traffic though an ATM

network. At connection setup, forward and backward resource management (FRM/BRM) cells

are exchanged between the sender and receiver to create a resource reservation, which is modified

at intermediate ATM switches. All involved parties agree on an acceptable cell rate depending

on the congestion in the system. In our case, it is difficult to determine an acceptable message

rate for an IB since the cost of processing event publications varies depending on size, content,

and event subscriptions.

Multicast ABR requires flow control for one-to-many communication. An FRM cell is sent

by the source and all receivers in the multicast tree respond with BRM cells, which are con-

solidated at ATM switches [Rob94]. Different ways of consolidating feedback cells have been

proposed [FJG+98]. These algorithms have a trade-off between timely response to congestion

and the introduction of consolidation noise when new BRM cells do not include feedback from

all downstream branches. Our consolidation logic at intermediate brokers tries to balance this

trade-off by aggregating UCA messages with the same sequence number, but also short-cutting

new UCA messages. The scalable flow control protocol in [ZSSK02] follows a soft synchroni-

sation approach, where BRM cells triggered by different FRM cells can be consolidated at a

branch point.

Overlay Networks. Congestion control for application-level overlay networks is sparse, mainly

because application-level routing is a novel research focus. A hybrid system for application-level

reliable multicast in heterogeneous networks that addresses congestion control is RMX [CMB00].

It uses a receiver-based scheme with the transcoding of application data. Global flow control

in an overlay network can be viewed as a dynamic optimisation problem [AADS02], in which a

cost-benefit approach helps find an optimal solution.

6.7 Summary

In this chapter we have addressed the requirement for congestion control in an event-based

middleware as a higher-level middleware service. We motivated the need for congestion control

by showing two examples of congestion collapse due to resource shortage during normal operation

and recovery. From this, we derived requirements for a congestion control mechanism focusing on

125

6.7. SUMMARY CHAPTER 6. CONGESTION CONTROL

the differences from traditional networking environments. Our solution consists of a PHB-driven

congestion control (PDCC) algorithm that ensures that the publication rate of new messages

can be supported by the middleware by exchanging DCQ and UCA messages for congestion

notification. Feedback is consolidated at intermediate brokers in an efficient and scalable way.

An SHB-driven congestion control (SDCC) algorithm regulates the rate of NACK messages

during recovery in relation to the available resources in the system.

The prototype implementation of the algorithms in the Gryphon event broker was used to

evaluate our solution within two different topologies. The four experiments showed that the

presented schemes were capable of handling dynamic bandwidth limitations in the network,

thus ensuring that congestion collapse could not occur. Moreover, additional resource demands

because of recovery after failure are handled graciously and guarantees about recovery within a

finite time are provided to the clients.

126

7
Composite Event Detection

For certain applications, the expressiveness of subscriptions in our event model from Section 3.3.1

is not sufficient. As a remedy, we propose a higher-level composite event service [PS02, PSB03,

PSB04] that facilitates the management of a large volume of events by enabling event subscribers

to specify their interest more precisely. The composite event service supports the advanced

correlation of events through the detection of complex event patterns. In this chapter we describe

our composite event service for an event-based middleware. It consists of composite event

detectors, implemented as extended finite state automata, for the detection of composite events

and a composite event language for their specification. To ensure scalability, the composite

event service decomposes complex composite event subscriptions and automatically distributes

the detectors throughout the overlay broker network in the event-based middleware.

We introduce the concept of a composite event in the next section. In Section 7.2 we moti-

vate the need for composite event detection with three application scenarios. After that, the

design and architecture of the composite event service is presented in Section 7.3. We describe

the two main parts of the service: the composite event detection automata (Section 7.4) and

the composite event language (Section 7.5). The distributed detection of composite events is

discussed in Section 7.6. We conclude the chapter with an overview of our prototype implemen-

tation, including an experimental evaluation, in Section 7.7, and a discussion of related work in

Section 7.8.

127

7.1. COMPOSITE EVENTS CHAPTER 7. COMPOSITE EVENT DETECTION

7.1 Composite Events

A composite event service is based on the notion of a composite event. Composite events prevent

event subscribers from being overwhelmed by a large number of primitive event publications by

providing them with a higher-level abstraction. A composite event is published whenever a

certain pattern of events occurs in the event-based middleware. This enables event subscribers

to directly subscribe to complex event patterns, as opposed to having to subscribe to all the

primitive events that make up the pattern and then perform the detection themselves.

When a composite event has been detected by the composite event service, it is published and

contains all events that contributed to its occurrence. Since our event-based middleware is

strongly-typed, every composite event has a composite event type that is built from the event

types of the included events and the relation between them in the composite event subscription.

Note that primitive events can also be considered degenerate composite events, thus unifying

primitive and composite event types within the middleware.

Definition 7.1 (Composite Event) Every composite event c has a composite event type τc

and belongs to the composite event space C,

(c : τc) ∈ C

A composite event type τc corresponds to a valid expression C in a composite event language,

τc ≡ C.

A composite event c consists of an interval timestamp tc and a set of composite sub-events

{c1, c2, . . . , ck},
c : τc = (tc, {c1, c2, . . . , ck}).

A composite event is associated with a timestamp tc that denotes when it has occurred. In a

distributed system, there is no concept of global time [Lam78], which is why we assume partially-

ordered interval timestamps [LCB99]. An interval timestamp has a start and end time so that

it can express the local clock uncertainty at an event broker and also the duration associated

with a composite event from the first contributing event to the last. We define a partial and a

total order over interval timestamps that will be used by the strong and weak transitions in our

detection automata described in Section 7.4.

Definition 7.2 (Interval Timestamp) An interval timestamp tc,

tc = [tlc; t
h
c],

has a start time tlc and an end time thc with tlc ≤ thc . Interval timestamps are partially-ordered (<)

128

CHAPTER 7. COMPOSITE EVENT DETECTION 7.2. APPLICATION SCENARIOS

Office 1 Office 2

Meeting Room 1 Meeting Room 2

Office 3

A

A

A

A

A

A

A

A

A

A

TT

T T

T

T

T

Location Sensor (Active Bat)

Temperature Sensor

W

W

W

Whiteboard Sensor

L

L

L

L

L L

L

Lighting Sensor

DDD

D

D

D D

Door Sensor

Figure 7.1: The Active Office with different sensors

and totally-ordered (≺) as follows,

tc1 < tc2 , thc1 < tlc2 ,

tc1 ≺ tc2 , (thc1 < thc2) ∨ (thc1 = thc2 ∧ tlc1<tlc2).

A composite event language allows event subscribers to submit composite event subscriptions to

the composite event service, which will then trigger the publication of composite events. Before

presenting our composite event language, we survey possible application scenarios that benefit

from composite event detection and hence obtain an understanding of the required features of

a composite event language.

7.2 Application Scenarios

Many application scenarios for an event-based middleware benefit from a general purpose com-

posite event service that enhances the expressiveness of the middleware. In the following we

will consider how composite events can be used in a ubiquitous computing environment, for

network systems monitoring, and for the dissemination of trust information in a large-scale dis-

tributed system. For each application scenario, we provide two examples of composite event

subscriptions.

The Active Office. The Active Office is a computerised building that was introduced in Sec-

tion 1.2.2. Building users wear Active Bats [ACH+01] that publish location information and

static sensors gather data about doors, lighting, equipment usage, and environmental condi-

tions, as shown in Figure 7.1. Composite event detection can help process the primitive events

produced by the large number of sensors and provide a higher-level abstraction to users of the

Active Office.

129

7.2. APPLICATION SCENARIOS CHAPTER 7. COMPOSITE EVENT DETECTION

P

P

P

P

SSS

P

P

P

P

P

P

P

P

P

P

Figure 7.2: A system for monitoring faults in a network

1. A user may subscribe to be notified when a meeting with at least three people working in

the messaging department takes place during working hours in one of the meeting rooms.

2. Building services may be interested in composite events about a drop in temperature under

15 degrees for at least 15 min in any occupied office.

Network Systems Monitoring. When monitoring the operation of networks [BCF94], net-

work entities publish events that are related to fault conditions in the network, such as shown

in Figure 7.2. In practice, millions of events may be published daily in respect of fewer than a

hundred real faults that require human intervention. The task of network systems monitoring

can thus be simplified by expressing patterns associated with real problems as composite event

subscriptions.

1. The network management centre may want to be notified when at least five workstations

in different parts of the network detect a degradation in network bandwidth.

2. A network customer may be interested in composite events when none of its load-balanced

web servers are available to the outside world unless the downtime is part of maintenance

work.

The XenoTrust Framework. Recent efforts, such as the XenoServer project [BDF+03],

are building large-scale, public infrastructures for general-purpose, distributed computing with

resource management and sharing. In such environments, reputation information about partic-

ipants must be disseminated in a timely and scalable fashion so that entities can make trust-

dependent decisions. Composite events can help participants receive notifications about changes

in reputation of their resource providers or consumers, thus creating a global-scale trust man-

agement system [KDHP03].

130

CHAPTER 7. COMPOSITE EVENT DETECTION 7.3. DESIGN AND ARCHITECTURE

Higher-

Level

Languages

Core Composite

Event Language

Composite Event

Detection Automata

Expressiveness

Human

Specification

Decomposition

and Distribution

Execution

and Detection

Figure 7.3: The components of the composite event detection service

1. A user may want to be notified when the reputation of any of its currently active resource

providers drops below a certain threshold and there is an alternative provider that is

capable of taking over the current resource contract.

2. A resource provider may submit a subscription causing a composite event when a new

client receives a low reputation rating from at least three other providers within three

days while requesting significant resources.

7.3 Design and Architecture

In this section the design and architecture of our composite event service is given. The design

requirements for the service can be derived from the above application scenarios. In general the

service should be applicable to a wide range of event-based middleware designs and therefore

make few assumptions about the underlying publish/subscribe implementation. Ideally it should

only rely on standard interfaces provided by the event-based middleware and not require special

extensions to the event model. For example, content-based routing and filtering support should

be exploited for the dissemination of composite events. To satisfy the requirement of scalability,

composite event detection must be distributed so that complex composite event subscriptions

can be decomposed into subexpressions that are then detected at different nodes in the system.

From the description of the application scenarios, it becomes clear that it is challenging to design

a single composite event language that is both expressive and intuitive to use by, say, a human

user in the Active Office environment. Therefore we propose the approach in Figure 7.3 with

several specification layers that have different powers of expressiveness. At the bottom layer,

composite event detection automata provide maximum expressiveness and perform the actual

detection of composite events described in the next section. Composite event subscriptions

specified in the core composite event language presented in Section 7.5 can be decomposed for

distributed detection. Finally, domain-specific higher-level languages constitute the top layer

131

7.4. COMPOSITE EVENT DETECTION AUTOMATA CHAPTER 7. COMPOSITE EVENT DETECTION

Network Transport

Event-based Middleware

Composite Event Service

Application

sub

sub(CE)

pubnotifysub pubnotify

Figure 7.4: The architecture for the composite event detection service

and only expose a subset of the core language — supporting a simpler definition of composite

events for a given application domain. Expressions in higher-level languages are automatically

compiled down to composite event detection automata by the composite event service.

The architecture for our composite event service is shown in Figure 7.4. The service uses the

event client API of the event-based middleware so that composite event detectors can subscribe

to primitive events and detect the occurrence of composite events. The event-based middleware

is also used to coordinate the detection of decomposed composite event expressions and publish

detected composite events. Note that the event-based middleware does not need to be aware

of composite event types because composite event publications can be disguised using new

primitive event types. Content-based routing and filtering of events is carried out by the event-

based middleware. An application with event clients can either use the composite event service

to submit composite event subscriptions and cause the instantiation of detectors, or interact

directly with the event-based middleware for normal middleware functionality.

7.4 Composite Event Detection Automata

The composite event service uses composite event detection automata — which are finite state

automata [HMU01] that are extended with support for temporal relationships and concurrent

events — to analyse event streams. Basing composite event detection on extended finite state

automata has several advantages. First, finite state automata are a well-understood computa-

tional model with a simple implementation. Their restricted expressive power has the benefit

of limited, predictable resource usage, which is important for the safe distribution of detectors

in the event-based middleware. Regular expression languages have operators that are tailored

towards the detection of patterns, which avoids the risk of redundancy or incompleteness when

defining a new composite event language. In addition, complex expressions in a regular language

may easily be decomposed for distributed detection.

A detection automaton consists of a finite number of states and transitions between them. To

ensure that each state only has to consider certain events for transitions, it is associated with

132

CHAPTER 7. COMPOSITE EVENT DETECTION 7.4. COMPOSITE EVENT DETECTION AUTOMATA

S0

Σ0

Initial State

S1

Σ1

Ordinary State

A;B

Σ2

Generative State

T1

Σ3

Generative Time State

(1 min)

Figure 7.5: The states in a composite event detection automaton

an input domain Σ, which is a generalisation of the concept of an input alphabet in traditional

finite state automata. An input domain is a collection of describable event sets A,B,C, . . ., which

correspond to sets of events that are matched by a primitive or composite event subscriptions.

In a given state, only these events need to be considered by the automaton because other

events are not relevant for the composite event being detected. In practice, the automaton

issues subscriptions for all describable event sets in the input domain of a state. The resulting

incoming events are ordered according to the total timestamp order (≺) (see Definition 7.2) into

an event input sequence and are consumed by the automaton sequentially.

As shown in Figure 7.5, a detection automaton has four kinds of state. Detection starts in

a unique initial state and continues through a series of ordinary states. A generative state

is an accepting state that also publishes the composite event that has been detected by the

automaton. Generative time states deal with timing by publishing an internal time event when

a timer associated with the state expires. The automaton treats time events like regular events

but they are not visible externally.

Each state can have two forms of outgoing transition that are labelled with the describable event

sets of the events that trigger them. Note that since describable event sets can be defined by

composite event subscriptions, our automata support the detection of event patterns involving

concurrency. In Figure 7.6 the transition between states S1 and S2 is a weak transition that

requires the timestamps of the events from the describable event sets A and B to be partially-

ordered (<). A strong transition, such as between states S2 and S3, mandates a total ordering (≺)

between events from B and C. Strong and weak transitions therefore allow the expression of

different temporal orderings between events. When an event that is part of the input domain but

without a matching outgoing transition is received, the detection in the automaton fails. Several

matching transitions and empty ε-transitions are followed nondeterministically. Although the

following presentation of the detection automata uses nondeterminism, standard techniques can

be used to convert them into deterministic automata [HMU01].

We illustrate our composite event detection automata with the example in Figure 7.7. This

automaton starts in state S0 with an input domain of A ∪ B. A strongly-followed event from

S1

Σ1

S2

Σ2

S3
A B C

Figure 7.6: The transitions in a composite event detection automaton

133

7.5. COMPOSITE EVENT LANGUAGE CHAPTER 7. COMPOSITE EVENT DETECTION

S0

A ∪ B

S1

ε

S2

ε

S3

(5 min)

C ∪ {t}

S4

A

B

ε

ε

C

Figure 7.7: A composite event detection automaton

A causes a transition to state S1, a weakly-followed event from B leads to state S2. Once the

generative time state S3 is reached, a timer starts that will expire after 5 min, publishing time

event t. Since this event is part of the input domain for state S3 but there is no corresponding

outgoing transition, detection will fail unless an event from C is received before the timer expires,

triggering a transition to state S4. The generative state S4 signals the successful detection of a

composite event with a composite event publication.

7.5 Composite Event Language

Composite event subscriptions use a core composite event language to specify the set of composite

events that an event client is interested in. In this section we introduce the language operators

and the construction of corresponding composite event detection automata from sub-automata.

Some operators in our language, namely concatenation, alternation, and iteration, are influenced

by those found in regular languages. However, other operators reflect the special features of our

detection automata. After the description of the operators, we give examples for core language

expressions and discuss three higher-level languages for composite event specification.

Atoms. [A,B,C, . . . ⊆ Σ0].

S0

Σ0

A,B,C, . . .

Atoms detect individual events in the input stream of all events that are in the input domain Σ0.

Here only events in the describable event sets A∪B∪C∪ . . . are matched and cause a transition

to a generative state. Other events in Σ0 result in failed detection, and events outside Σ0 are

ignored. The trivial atom [A ⊆ A] is abbreviated as [A].

Negation. [¬E ⊆ Σ] , [Σ\E ⊆ Σ]. Negation is only short-hand for an atom that matches all

events in the input domain Σ except for events in the negated describable event set E. Note that

this semantics differs from the more powerful negation operators found in other event algebras.

134

CHAPTER 7. COMPOSITE EVENT DETECTION 7.5. COMPOSITE EVENT LANGUAGE

Concatenation. C1C2.

S0 S0 S0

C1 C2
εε ε

C1 C2 C1C2

The concatenation operator detects a composite event matching expression C1 with a timestamp

that weakly follows the timestamp of a composite event matching C2. The detection automaton

for concatenation is constructed by connecting the generative state of C1 with a weak ε-transition

to the initial state of C2.

Sequence. C1; C2.

S0 S0 S0

C1 C2
εε ε

C1 C2 C1;C2

The sequence operator detects an event of type C1 strongly followed by an event of type C2.

Unlike concatenation, this means that the interval timestamps of the events matching C1 and C2

must not overlap. The construction of the sequence detection automaton uses a strong transition

for the ε-transition between the two sub-automata.

Iteration. C ∗1 .

S0 S0
ε

ε

C1

Any number of occurrences of C1 are matched by the iteration operator. Its detection automaton

creates a loop from the generative state of C1 back to its initial state. If C1 receives an event

that causes it to fail, then the composite expression C ∗1 also fails.

Alternation. C1 | C2.

S0

S0

S0

ε

ε

ε

ε

C2

C1

C2

C1

C1|C2

This composite event expression matches if either C1 or C2 is detected. The new automaton has

an initial and a generative state with ε-transitions to both of the two sub-automata introducing

nondeterministic behaviour.

135

7.5. COMPOSITE EVENT LANGUAGE CHAPTER 7. COMPOSITE EVENT DETECTION

Timing. (C1, C2)T1=tspec .

S0 S0 S0

Σ0∪{T1} Σ1∪{T1}

C1 C2
εε ε

T1

Timing relationships between composite events are supported by the timing operator that can

detect event combinations within, or not within, a given time interval. This operator generates

an event of type T1 at the relative or absolute time specification tspec after a composite event

of type C1 has been detected. The second expression C2 may then use T1 in its specification for

atoms and input domains. Since time events are only locally visible, automata C1 and C2 must

reside on the same node.

Parallelisation. C1 ‖ C2.

S0

C1‖C2C1

C2

C2

C1
S0 S0

C1 C2

The final operator is parallelisation, which allows detection of two composite events C1 and C2

in parallel, only succeeding if both are detected. Unlike alternation, any interleaving of the

two composite events is supported. The detection automaton for parallelisation is constructed

by creating a new automaton that uses the composite events detected by C1 and C2 for its

transitions.

7.5.1 Examples

The following are examples of valid expressions in the core composite event language. Let the

describable event set A represent events corresponding to the subscription that ‘Alice is in the

office’, let Ā be ‘Alice has left the office’, let B be ‘Bob is in the office’, and let P be ‘anyone is

in the office’, as detected by an Active Bat.

1. [A];[B]. Alice enters the office followed by Bob.

2. [A ⊆ {A,B}]. Alice enters the office before Bob.

3. ([A], [B⊆{B, T1}])T1=1 h. Alice enters the office and Bob follows within 1 h.

4. [Ā] [¬A⊆P] [A]. Someone else enters the office when Alice is away.

136

CHAPTER 7. COMPOSITE EVENT DETECTION 7.5. COMPOSITE EVENT LANGUAGE

7.5.2 Higher-Level Composite Event Languages

When designing a language for composite event detection, we have two conflicting requirements.

On one hand, the language should be machine-processable so that it supports the efficient

creation of composite event detection automata and the automatic decomposition of expressions

for distributed detection. On the other hand, the syntax and semantics of the language should be

high-level and intuitive, facilitating the task of writing expressions by programmers or end users.

This means that the language should be human-processable. To unify these two requirements,

we advocate the use of higher-level composite event languages for the specification of composite

events in a natural and domain-specific way. Expressions from higher-level languages are then

translated automatically into the core language described above. The following are three possible

higher-level composite event languages.

Pretty Language. The “pretty” language has a more verbose syntax compared to the core

language and resembles rule-based specification languages found in active database systems. It

has a redundant set of operators and specifications are close to English language statements. A

composite event specification, such as

Event A followed by Event B within 1 hour,

makes it easier for non-programmers to use composite events.

Programming Language Binding. Similar to the XML-to-event binding of Hermes in

Section 4.4.2, this binding provides programming language-specific access to composite event

specification. It avoids having to deal with a special composite event language by allowing the

construction of composite event expressions from method calls, such as

eventA.after(eventB.repeated(3)).

At runtime these method calls are translated into core composite event language expressions for

detector construction.

Graphical Composition Model. In a ubiquitous computing environment, a user-friendly

way for composite event specification is needed that makes it easy for users to interact with the

system at runtime. Composite events, such as ‘Turn the office light out after 7pm when the office

is empty’, can be described using a graphical composition tool that is based on a simple model

familiar to users. For example, composite event streams could be visualised as water flows with

different forms of piping for the construction of composite event expressions [HBWP01]. Alter-

natively, composite event detection could be modelled as the processing of events on conveyor

belts in a factory [Nir03].

137

7.6. DISTRIBUTED DETECTION CHAPTER 7. COMPOSITE EVENT DETECTION

CED1

CED2

CED3

CED4

Wide-Area

Network

P1

P2 P3 P4 P5

S1 S2 S3

Low-Bandwidth

Network Link

High-Bandwidth

Network Link

Figure 7.8: Illustration of distributed composite event detection

7.6 Distributed Detection

Our composite event service supports the distributed detection of composite events in an event-

based middleware. This is achieved by decomposing composite event expressions in our core

language into subexpressions that are detected by separate detectors distributed throughout the

system. The support for the decomposition of composite event expressions allows popular subex-

pressions to be reused among event subscribers, thus saving computational effort and network

bandwidth. In particular, the amount of communication is reduced because detectors for subex-

pressions can be positioned close to primitive event publishers that produce the events necessary

for detection. Subexpressions can also be replicated for load-balancing and increased availabil-

ity, and computationally expensive expressions can be decomposed to prevent any detector from

becoming overloaded.

A system that benefits from distributed composite event detection is shown in Figure 7.8. The

composite event detectors CED1−4 for subexpressions are located close to the primitive event

publishers P1−5 that publish events at a high rate and therefore must be connected through

high-bandwidth network links. Low-bandwidth links in a wide-area network are used to connect

the composite event subscribers S1−3. The traffic on these network links is significantly lower

because fewer event publications need to be transmitted after composite event detection. Since

each detector subscribes to at most two event streams, no detector can get overwhelmed by the

event rate.

S0

{B} {P}

B;P
B P

C1

S0

{[B];[P],M}

C1|M
[B];[P],M

C2

[B];[P]

Figure 7.9: Two cooperating composite event detectors for distributed detection

138

CHAPTER 7. COMPOSITE EVENT DETECTION 7.6. DISTRIBUTED DETECTION

Construction DestructionControl

Figure 7.10: The life-cycle of a mobile composite event detector

The detection automata in our composite event service directly support distribution because they

can subscribe to composite events detected by other automata in the event-based middleware.

In Figure 7.9 the two automata C1 and C2 cooperate in order to detect the composite event

expression ([B];[P]) | [M]. The sub-automaton C1 detects the expression [B];[P], which is then

used by C2 in the event input domain and transition of state S0. When this composite event is

received, it causes a transition to the generative state S1.

In the next section we present the capabilities of mobile composite event detectors. The be-

haviour of mobile detectors is controlled by the distribution policies in Section 7.6.2. Timing

issues caused by the distributed detection of composite events are addressed by detection policies

in Section 7.6.3.

7.6.1 Mobile Composite Event Detectors

A mobile composite event detector implements the distributed detection of composite events in

our service. Mobile composite event detectors are agent-like entities co-hosted at event brokers

that encapsulate one or more composite event detection automata for expressions from the core

composite event language. They can subscribe to event publishers (and other mobile detectors)

and publish the composite events detected by their automata. In addition, a mobile detector can

move from one event broker to another in order to optimise the detection of composite events

in the system.

When an event subscriber submits a new composite event subscription, a mobile detector is in-

stantiated at an event broker and is then responsible for the detection of the new expression. The

life-cycle of a mobile composite event detector is summarised in Figure 7.10. In the construction

phase, the mobile detector establishes the detection of the new composite event subscription by

cooperating with other existing mobile detectors. It then enters a control phase, during which

the detection is optimised by adapting to dynamic changes in the environment and ensuring

that it maintains compliance with distribution and detection policies described below. Finally,

a destruction phase is reached when the mobile detector is no longer required because all event

clients have unsubscribed or other detectors have made it redundant.

While in its control phase, a mobile detector can carry out several actions that are governed by

distribution policies explained in the next section.

1. It can instantiate new automata for the detection of new composite event expressions or

any subexpressions.

139

7.6. DISTRIBUTED DETECTION CHAPTER 7. COMPOSITE EVENT DETECTION

D
e
c
o
m
p
o
s
it
io
n

N
o
n
e

F
u
ll

None Full

S
u
b
sc
ri
b
e
r

P
u
b
lis
h
e
r

N
o
n
e

Reuse

L
o
ca
lit
y

Figure 7.11: The design space for distribution policies

2. For distributed detection, it can decompose composite event expressions and delegate de-

tection to other, already existing, mobile detectors.

3. The mobile detector can migrate to another event broker that, for example, is closer to

the event publishers that the detector has subscribed to.

4. Finally, it can destroy any of its composite event detection automata that are no longer

required.

7.6.2 Distribution Policies

A remaining difficulty is the decision on an optimal strategy for the decomposition of composite

event expressions and the placement of composite event detectors in the system. This is com-

plicated by the fact that the requirements for distributing detectors are potentially conflicting.

For example, to minimise usage of network bandwidth, existing detectors should be reused for

subexpressions as much as possible. However, if low notification latency is important, detectors

should be replicated in various parts of the network, thus leading to increased bandwidth con-

sumption. An optimal solution is a trade-off that takes the static and dynamic characteristics

of the application and the network into account.

To make these trade-offs explicit, we introduce the notion of a distribution policy, which is a

set of heuristics that governs the actions of mobile composite event detectors in the control

phase. Each composite event subscription submitted to the composite event service includes its

own distribution policy for detection, depending on the application requirements of the event

140

CHAPTER 7. COMPOSITE EVENT DETECTION 7.6. DISTRIBUTED DETECTION

Policy Name Decomposition Reuse Locality

Minimum Latency none with locality only subscriber
Minimum Bandwidth for reuse only maximum publisher
Minimum Impact for reuse only maximum none
Minimum Load maximum maximum none
Maximum Reliability for reuse only at least n detectors none

Table 7.1: Summary of five distribution policies

subscriber. During their lifetime, mobile composite event detectors attempt to comply with

their distribution policy. Some distribution policies may require the aggregation of network or

event broker statistics by mobile composite event detectors, such as communication latency or

computational load. When defining distribution policies, three independent dimensions can be

identified that help restrict the design space, as shown in Figure 7.11.

Decomposition. In order to reuse existing detectors, the degree of decomposition of a compos-

ite event expression must be stated in the distribution policy. Decomposition may increase

the reliability of detection if multiple detectors are used for overlapping expressions. For

load-balancing reasons, a complex expression may be decomposed into manageable subex-

pressions. The degree of decomposition ranges from none to full decomposition, where

every possible subexpression is factored out. Some distribution policies only permit de-

composition if there already exist detectors in the system that can be reused.

Reuse. The dimension of reuse specifies to what extent already existing detectors are reused

for a new composite event expression or any of its subexpressions. Not reusing detectors

leads to more reliability, whereas maximum reuse can save network bandwidth and com-

putational effort. In situations in which detection latency is important, only detectors that

are in close proximity should be reused.

Locality. The final dimension deals with the location of a new mobile composite event detector

in the event-based middleware. The usage of network bandwidth can be reduced by moving

detectors close to primitive event publishers, resulting in publisher locality. This avoids

the wide dissemination of primitive events that may only be of interest to the composite

event detector. The opposite approach, subscriber locality, is to put new composite event

detectors close to composite event subscribers in order to improve detection latency.

In practice, only certain combinations of these three dimensions result in useful distribution

strategies. Five example policies are listed in Table 7.1 and described in the following.

Minimum Latency Policy. Detection latency is minimised by placing new detectors as close

to primitive event subscribers as possible. Composite event expressions are not decomposed into

subexpressions as this would increase detection latency. Existing detectors are only reused if

they are local to event subscribers and detect the exact required composite events.

141

7.6. DISTRIBUTED DETECTION CHAPTER 7. COMPOSITE EVENT DETECTION

Minimum Bandwidth Policy. Bandwidth consumption of a composite event subscription

is reduced by placing detectors close to primitive event publishers, relying on early filtering of

event publications. Moreover, existing detectors are reused as much as possible so that no new

network traffic is generated. Subexpressions are only created for reuse.

Minimum Impact Policy. The goal of this policy is to lower the impact of new detectors to

the entire event-based middleware. Apart from minimising the bandwidth as before, computa-

tional load is spread out evenly among detectors. This means that new detectors do not have

locality, and existing detectors are maximally reused.

Minimum Load Policy. Unlike the previous policy, a minimum load policy only minimises

the load at any given composite event detector ignoring global impact and bandwidth usage.

This is achieved by decomposing composite event expressions into the smallest possible subex-

pressions. The detectors are then evenly distributed across event brokers and already existing

detectors are reused.

Maximum Reliability Policy. The final distribution policy attempts to improve the reliabil-

ity of composite event detection by instantiating redundant detectors. At least n detectors have

to exist for each subexpression and existing detectors may be reused. To avoid the clustering

of detectors that might result in single points of failure, new detectors do not possess locality

constraints.

7.6.3 Detection Policies

In a distributed system, events from different event publishers travel along separate network

routes to mobile composite event detectors. Even if we assume that the network does not

reorder event publications, out-of-order arrival of events at a detection automaton will occur

because of the different associated network delays. This means that events in the event input

sequence for a state are not correctly ordered with respect to the total order imposed by the

interval timestamps. As a result, a detection policy is necessary that dictates when the next

event in the event input stream can safely be consumed by the detection automaton. Note that

premature consumption can lead to the incorrect detection or non-detection of composite events.

Next we describe three possible detection policies for a composite event subscription.

Best-Effort Detection Policy. The best-effort detection policy states that events are con-

sumed from the event input stream without delay and immediately cause a state transition or

failure in the detection automaton. Although this policy may lead to incorrect detection, it is

useful for subscribers that are more sensitive to detection delay than to bogus composite events.

142

CHAPTER 7. COMPOSITE EVENT DETECTION 7.7. IMPLEMENTATION AND EVALUATION

Guaranteed Detection Policy. Under a guaranteed detection policy, an event is only con-

sumed from the event input sequence once it has become stable [LCB99]. An event is considered

stable if there is no other event with an earlier, totally-ordered interval timestamp in the system

that should be part of this event input stream and be consumed next instead. When only stable

events are used by a detection automaton, composite events cannot be missed or detected spu-

riously. A detection automaton knows that an event is stable when another event with a later

timestamp from the same event publisher has been inserted in the event input stream. In case

event publishers do not publish events at a high enough rate, dummy heartbeat events can be

published that are used to “flush” the network and determine the stability of events.

Probabilistic Detection Policy. A disadvantage of the previous policy is that it introduces

an unbounded delay at composite event detectors. For example, an event publisher may fail or

decide not to cooperate by withholding heartbeat events. To avoid this problem, we propose a

probabilistic stability metric, instead of a simple binary one. A detector attempts to estimate the

probability that a given event in the event input stream is stable depending on the past history

of event publications coming from that event publisher. An event is only consumed when its

stability metric is above a certain threshold. This gives a good compromise between best-effort

and guaranteed detection to composite event subscribers.

7.7 Implementation and Evaluation

In this section we describe the prototype implementation of the composite event service on top

of JORAM [Obj02], an implementation of the Java Message Service (JMS) from Section 2.1.2.

We have chosen JMS as a the basis for our implementation because JMS is a popular publish/-

subscribe system and its lack of event-based middleware features demonstrates the wide appli-

cability of our composite event service even to primitive publish/subscribe systems. JMS has

the shortcoming that topics are centrally-hosted at a single JMS server without content-based

routing of publication messages in an overlay broker network.

To support the automatic distribution of composite event expressions, all mobile composite event

detectors subscribe to a common administration topic hosted by a well-known JMS server. For

each expression, the detectors decide about the instantiation of new detection automata by

exchanging messages through this topic. The locations of newly created detection automata are

recorded in a JNDI [Sun99a] directory for further reference. Composite event types are entirely

hidden from JMS because composite events are published in topics whose names are constructed

from the structure of the composite event types.

The efficiency of our composite event service in comparison with a näıve solution, in which

composite event detection is left to event subscribers, is evaluated through an experiment in the

Active Office application scenario. We assume that a user is interested in the list of participants

and the electronic white-board content of meetings that she attends. This information should

143

7.7. IMPLEMENTATION AND EVALUATION CHAPTER 7. COMPOSITE EVENT DETECTION

CED2

P1

S

P2 P3

Person WBoardon

CED1

P4

WBoardoff

Login

JMS2

JMS1

PDA

Wired

Network Link

Wireless

Network Link

Figure 7.12: The network architecture of the Active Office experiment

be sent to her PDA, that is connected via a low-bandwidth wireless network link, but only if

she does not return to the workstation in her office within 5 minutes of the meeting. The goal

of this scenario is to minimise the usage of the wireless link while maintaining a low notification

delay.

The composite event subscription can be expressed in our core composite event language as

C ≡ ([C1(f1)] , [T1] ⊆ {T1, Login(f2)})T1=5 min

C1 ≡ [WBoardon]
[
[Person(f3)] [Person(f3)]∗ [WBoardoff] ⊆ {Person(f3), Boardoff}

]
,

where Person, WBoardon, WBoardoff , Login are primitive events and f1,2,3 are JMS filter expres-

sions. Figure 7.12 shows how the composite event expression C is distributed by our composite

event service over two composite event detectors CED1 and CED2 after factoring out the subex-

pression C1. Most primitive event topics and the topic for composite events of type C1 are hosted

at the server JMS2, and C and Login events are hosted at JMS1.

We compare our composite event service (CE) against a JMS-only solution (PE), in which the

wireless PDA subscribes to all primitives events and performs the composite event detection in

an ad-hoc manner. In Figure 7.13 the total amount of data transfered over the wireless and

Subscribers
1 2 3 4 5 6

M
s
g
s
 (

K
B

)

0

500

1000

1500

2000

2500

CE CE CE CE CE CEPE PE PE PE PE PE

Wireless

Wired

Figure 7.13: The amount of data sent in the Active Office experiment

144

CHAPTER 7. COMPOSITE EVENT DETECTION 7.8. RELATED WORK

Delay (ms)
130 140 150 160 170 180 190 200 210 220

F
re

q
u
e
n
c
y

0

5

10

15

20

25

30

35

Figure 7.14: The delay distribution in the Active Office experiment

wired parts of the network is shown as a function of the number of composite event subscribers

with expression C. There is a small overhead of using distribution in our composite event service

for a single subscriber. However, as the number of event subscribers increases, less data is sent

over the wireless network because composite event detectors can be reused so that primitive

events do not have to be sent over the wireless network to the PDA.

The additional notification delay introduced by our composite event service due to the involve-

ment of multiple detectors remains small. The plot in Figure 7.14 shows the distribution of the

delay for event subscribers in our experiment. The notification takes at most 220 ms after the

composite event has logically occurred in the system and is dominated by the network latency.

7.8 Related Work

In this section we provide an overview of related work on composite event detection. Composite

event detection first arose in the context of triggers in active database systems. Other related

application areas are network systems monitoring and the interaction with ubiquitous computing

environments. In general, distributed publish/subscribe systems leave the detection of composite

events to the application programmer. An exception is Siena (described in Section 2.2.2), that

includes restricted event patterns without defining their precise semantics or giving a complete

pattern language. A service for the detection of composite events using CORBA is presented

by Liebig [LCB99]. Like our composite event service, it uses interval timestamps to make the

uncertainty of timestamps in a distributed system explicit. The notion of event stability is

introduced to handle communication delays.

Active Database Systems. Composite event detection in active database systems is usually

not distributed. Early languages for triggers follow an event-condition-action (ECA) model [PD99,

DBC96] and resemble database query algebras with an expressive, yet complex, syntax. In the

Ode object database [GJS92], composite events are specified with a regular language and de-

tected using finite state automata. Equivalence between the language and regular expressions

145

7.8. RELATED WORK CHAPTER 7. COMPOSITE EVENT DETECTION

is shown. Since a composite event has a single timestamp — that of the last primitive event

that led to its detection, a total event order is established that does not deal with time issues.

Composite event detectors based on Petri nets [Pet77] are used in the SAMOS database [GD94].

Coloured Petri nets can represent concurrent behaviour and store complex event data during ex-

ecution. A disadvantage is that even for simple composite event expressions, Petri nets quickly

become complicated. SAMOS does not support distributed detection and has a simple time

model. The motivation for Snoop [CM93] was to design an expressive composite event language

with temporal support. A detector in Snoop is a tree that mirrors the structure of the composite

event expression. Its nodes implement language operators and conform to a given consumption

policy. A consumption policy determines the semantics of operators by resolving the order in

which events are consumed from an event history. For example, under a recent consumption

policy only the event that most recently occurred is considered and others are ignored. Detection

then propagates up the tree with the leaves being primitive event detectors. A drawback of this

approach is that detectors are Turing-complete, which makes it difficult to estimate their re-

source usage in advance. In addition, consumption policies influence the semantics of operators

in a non-intuitive and operator-dependent way. For simplicity we have decided to only support

a chronicle consumption policy.

Distributed Systems Monitoring. Similar to network systems monitoring in Section 7.2,

composite events can be used for the monitoring of distributed systems. Schwiderski presents

a distributed composite event monitoring architecture [Sch96] based on the 2g-precedence time

model. This model makes strong assumptions about the clock granularity that are not valid in

large-scale, loosely-coupled distributed systems. The composite event language and detectors are

similar to Snoop and suffer from the same shortcomings. The work addresses the issue of delayed

events in distributed detection by evaluation policies. Asynchronous evaluation allows a detector

to consume an event without delay, whereas synchronous evaluation forces it to wait until all

earlier events have arrived, as indicated by a heartbeat infrastructure. Although the detection

can be made distributed, the placement of detectors in the system is left to the user. The

GEM system [MSS97] has a rule-based event monitoring language. It also follows a tree-based

approach and assumes a total time order. Communication latency is handled by annotating

rules with tolerable delays, which is not feasible in an environment with unpredictable delays,

such as a large-scale distributed system.

Ubiquitous Systems. Research efforts in ubiquitous computing have resulted in composite

event languages that are intuitive to use by users of environments such as the Active Office.

The work by Hayton [Hay96] on composite events in the Cambridge Event Architecture defines

a language that is targeted at non-programmers. Push-down finite state automata are used to

detect composite events, but the semantics of some of the operators is non-intuitive. Although

detection automata can use composite events for input, distributed detection is not handled

explicitly and only scalar timestamps are used in the time model.

146

CHAPTER 7. COMPOSITE EVENT DETECTION 7.9. SUMMARY

7.9 Summary

In this chapter we described a distributed higher-level service for composite event detection in

an event-based middleware. We explained our idea of composite events and motivated their use

with examples from three application scenarios. We then introduced the layered design of our

service, each layer providing different levels of expressiveness. Composite events are detected

by automata that support distribution and a flexible time model for composite events. Event

subscribers of the composite event service use a core composite event language to specify event

patterns using a series of operators. We also gave examples for three higher-level specification

languages for composite events that are domain-specific. After that, we described distributed

composite event detection by presenting the features of our mobile composite event detectors

and explained how they are controlled by distribution and detection polices. The design space

for distribution polices gives rise to a variety of different strategies for distributing composite

event expressions. Finally, the efficiency of our service was demonstrated with an experiment

from the Active Office scenario.

147

148

8
Security

The third service presented in this thesis adds security to an event-based middleware. Secu-

rity has received little attention in publish/subscribe systems so far and, unlike the previous

services, it affects many different parts of an event-based middleware. We propose a security

service [BEP+03] that uses role-based access control to provide three mechanisms: restrictions

on the interaction of event clients with the middleware, trust levels for event brokers, and the

encryption of event data to control information flow in the middleware on a fine-grained basis.

An advantage of our approach is that we do not require separation of the overlay broker network

into distinct trust domains. The prototype implementation of our security service is built on

top of Hermes.

The security service is influenced by the security needs of the two applications scenarios discussed

in the next section. In Section 8.2 we define the requirements of a security service, showing

how publish/subscribe communication impacts on security. The secure publish/subscribe model

implemented by our service is introduced in Section 8.4. It includes boundary access control

using restrictions, different-levels of event broker trust, and encryption of event attributes. The

chapter finishes with an overview of a prototype implementation (Section 8.5) using Hermes,

a brief evaluation (Section 8.6), and related work on security in publish/subscribe systems in

Section 8.7.

149

8.1. APPLICATION SCENARIOS CHAPTER 8. SECURITY

EmergencyEvent
location
severity
isDrill

*Y

FireEvent
buildingType
enginesPresent

6
FireAlarmEvent

detectorType

PoliceEvent
polCode
source

*Y

AccidentEvent
roadType
casualties
specialHazard

BurglaryEvent
zoning

isa isa

isaisa

Figure 8.1: An event type hierarchy for the Active City

8.1 Application Scenarios

In this section we revisit the two application scenarios from Section 1.2 and examine how they

motivate the need for security in an event-based middleware. When considering security, we

focus on issues of access control to the middleware and confidentiality of the event data being

disseminated in the system.

8.1.1 The Active City

The Active City is an extension of our previous Active Office environment to a geographically

larger system covering an entire city. In an Active City, different city services, such as police

and fire departments, ambulances, hospitals, and news agencies, cooperate using a shared event-

based middleware for information dissemination. Since these city services are under separate

management and each have individual security implications, the event-based middleware must

be flexible enough to accommodate a wide range of security policies and mechanisms to enforce

them.

An excerpt of an event type hierarchy with event attributes that could be employed by cooper-

ating services in an Active City is shown in Figure 8.1. Information about a road traffic accident

reported to the police in an AccidentEvent should be visible to the emergency services so that

an ambulance can be dispatched if there are any casualties, but only anonymised data should

be passed on to a news agency. The challenge is that some information may flow freely through

the Active City, whereas other information has to be closely controlled. A näıve solution would

be for each city service to operate a separate, trusted event-based middleware deployment with

150

CHAPTER 8. SECURITY 8.2. REQUIREMENTS FOR SECURITY

controlled gateways between networks, forming an event federation [Hom02]. However, this

would result in complex policy management at the gateways, a significant waste of resources

due to redundancy, and an increased event notification delay between services. It would also

prevent event clients from one domain using the infrastructure of another while roaming.

8.1.2 News Story Dissemination

In an Internet-wide system for the dissemination of news stories, it is important that customers

only receive the service that they are paying for. For example, a customer who has subscribed

to a premium service should receive up-to-date news bulletins without delay, as opposed to a

standard service subscriber that can only see events relating to older news reports. Moreover,

subscribers should only be allowed to subscribe to the news topics that they are entitled to. To

ensure this, it is not sufficient to merely rely on subscriptions in the event-based middleware

because event brokers that perform content-based routing of news events may be under the

administration of customers and thus not trusted to honour subscriptions correctly. Using

partially trusted event brokers for event dissemination in customer networks is otherwise in

the interest of news agencies because it reduces the resource requirements of their middleware

deployments. When the service subscription of a customer changes, the event-based middleware

should quickly adapt to the change in policy.

8.2 Requirements for Security

Security mechanisms for an event-based middleware differ from traditional middleware security

because of publish/subscribe communication semantics. Many-to-many interaction in an event-

based middleware mandates a scalable access control mechanism. The anonymity of the loose

coupling between event publishers and subscribers makes it difficult to use standard security

techniques, such as access control lists, since principals can often not be identified beforehand.

Content-based routing of events conflicts with the encryption of data because an event broker

must have access to the content of an event for its routing decision [WCEW02]. Any access

control mechanism should incur little overhead at publication time because event publications

may have a high rate and thus routing should be carried out as quickly as possible.

Since event clients are not trusted, a security service should include perimeter security to control

access of event clients to the event-based middleware. As seen in the application scenarios, event

brokers are trusted to cooperate for the sake of event dissemination but they may not be allowed

to see all event data. Different levels of event broker trust are necessary and must come with

mechanisms to remove compromised event brokers. The confidentiality of data stored in event

attributes must be preserved even in the light of event matching and content-based routing.

At the same time, as much as possible of the overlay broker network should be used for event

151

8.3. ROLE-BASED ACCESS CONTROL CHAPTER 8. SECURITY

Principals Roles Privileges

Figure 8.2: The role-based access control model

dissemination so that a single infrastructure for both public and private information exists in

order to improve efficiency, administrability, and redundancy in the event-based middleware.

8.3 Role-Based Access Control

We decided to follow the role-based access control model (RBAC) [SCFY96] in our security

service. RBAC simplifies security administration by introducing roles as an abstraction between

principals and privileges, as shown in Figure 8.2. Roles permit principals and privileges to be

grouped intuitively in the system and addresses the anonymity of event clients in an event-based

middleware. This grouping increases scalability of the access control mechanism because there

are fewer roles than principals and privileges in the system. To obtain privileges, a principal

such as an event publisher or subscriber presents credentials that allow it to acquire a role

membership that is associated with the desired privileges.

The Open Architecture for Secure Interworking Services (OASIS) [BMY02] is a distributed im-

plementation of a role-based access control model that is used in the security service for access

control decisions. It includes an expressive policy language to specify rules for role acquisi-

tion. Due to its session-based approach, event communication is used to revoke currently active

roles of principals in a timely manner when prerequisite credentials are revoked. The OASIS

implementation uses X.509 certificates [ITU00] for authentication and proof of role membership.

8.4 The Secure Publish/Subscribe Model

In this section we describe our secure publish/subscribe model for an event-based middleware. As

a general design philosophy, the model couples access control with event types. Since the event

B1

B3

B2

B5

B4

P1

S1

cred1

cred2OASIS

OASIS

PoliceEvent

EmergencyEvent

Permitted Event Type

police trainingtraining

Key-Class

police

fire

fire

Figure 8.3: Illustration of the secure publish/subscribe model

152

CHAPTER 8. SECURITY 8.4. THE SECURE PUBLISH/SUBSCRIBE MODEL

space is already structured into event types, it is intuitive to leverage this for the specification of

access control policy, but more fine-grained specification in terms of event attributes and type-

and attribute-based subscriptions is also supported by the model.

An example of an event-based middleware deployment that implements the secure publish/-

subscribe model is given in Figure 8.3. There are three mechanisms in the model to accomplish

access control. First, boundary access control to the middleware, as described in the next

section, is achieved by controlling access of event clients to local event brokers with an OASIS

policy. Middleware services requested by event clients can either be granted, rejected, or partially

granted after imposing restrictions. In Section 8.4.2, the second mechanism assigns an event

broker to a particular trust category that prescribes the types from the event type hierarchy

that the event broker is permitted to handle. Finally, confidential event attributes in an event

publication are encrypted, limiting access to those attributes so that a single event publication

can contain both public and private data. Content-based routing decisions on encrypted event

attributes can only be carried out by event brokers that possess the necessary decryption key.

Event attribute encryption will be explained in Section 8.4.3.

8.4.1 Boundary Access Control

Local event brokers that host event clients are OASIS-aware and perform access control checks

for every request made to them. This ensures that only authorised clients have access to the

event-based middleware in compliance with access control policies. As shown in Figure 8.3, local

event brokers delegate the verification of credentials passed to them by event clients to an OASIS

engine. Four types of OASIS policy are employed to restrict the actions of event clients. The

event client that creates a new event type becomes its event type owner and is then responsible

for specifying policy.

Connection Policy. This policy states the required credentials for an event client to be per-

mitted hosting by a given event broker. A client can only invoke event-based middleware

services if it maintains a connection with at least one local event broker.

Type Management Policy. The creation, modification, and removal of event types in the

event type hierarchy is controlled by a type management policy. Usually, credentials

certifying that an event client has the role of event type owner for an event type allow

it to perform type management. This also avoids conflicts between clients from different

applications.

Advertisement Policy. For every event type in the system, an advertisement policy specifies

the roles an event publisher must acquire in order to advertise events of this type. This

policy is generally specified by the event type owner.

153

8.4. THE SECURE PUBLISH/SUBSCRIBE MODEL CHAPTER 8. SECURITY

Subscription Policy. Similarly, a subscription policy lists the necessary roles for an event

subscriber to subscribe to events of that type. The policy may also prescribe the content-

based filter expressions that are permitted and is again defined by the event type owner.

When an event client violates the connection or type management policies, the event broker

rejects the operation invoked by the client. For advertisement and subscription policies, certain

requests may be partially accepted by imposing a restriction on the original event advertisement

or subscription. An advertisement restriction limits the advertisement by restricting the events

that the event publisher is allowed to publish. Likewise, a subscription restriction transforms

the client-requested subscription into a different, less powerful one. The client may or may not

be notified by its local event broker that a restriction has been imposed for privacy reasons. The

secure publish/subscribe model supports two flavours of restrictions.

Publish/Subscribe Restrictions. This kind of restriction takes the original submitted ad-

vertisement or subscription and replaces it by a different, more limited one. In the case of an

event advertisement, the event type in the advertisement is replaced by a less specific parent

type from the event type hierarchy. For event subscriptions, the publish/subscribe restriction

specifies an upper bound on the event type and content-based filtering expression that the event

subscriber is allowed to submit. If the submitted subscription is covered by the subscription re-

striction, the subscription is accepted without change, otherwise it is automatically downgraded

to the restricted subscription.

Generic Restrictions. A generic restriction is not expressible by the event-based middleware

since it can include any predicate evaluations permitted by OASIS. Although the original

advertisement or subscription submitted by the event client is passed on to the event-based

middleware, all later events are restricted according to the arbitrary predicate function in the

generic restriction. For example, a generic advertisement restriction may reject the publication

of events with certain content, and a generic subscription restriction may perform additional

filtering of events on the message size of the event publication, which otherwise could not be

expressed in an event subscription.

The advantage of publish/subscribe restrictions is that they do not incur an overhead during

the dissemination of events. Since the original advertisement or subscription is replaced by a

more limited version, the event-based middleware implicitly enforces policy and no events need

to be dropped at client-hosting brokers. The same is not true for generic restrictions because

their additional expressiveness comes with the price of having to evaluate arbitrary predicates

at client-hosting brokers to decide whether an event client can publish or be notified of a given

event publication.

154

CHAPTER 8. SECURITY 8.4. THE SECURE PUBLISH/SUBSCRIBE MODEL

8.4.2 Event Broker Trust

The previous mechanism for boundary access control using restrictions assumes that all event

brokers are equally trusted to process data, which is not true in practice. When an event broker

joins the event-based middleware, it authenticates with its credentials and is then believed to

participate correctly in the routing of events according to the type- and attribute-based routing

algorithm. It maintains encrypted network connections with its neighbouring event brokers in

the overlay broker network. However, an event broker may not be trusted enough to gain access

to data in particular event publications or subscriptions. To make these trust relationships

explicit, event brokers are associated with event types from the event type hierarchy that they

are permitted to handle. This is illustrated in Figure 8.3, where event broker B3 is only permitted

to process events of type PoliceEvent. Event brokers may be authorised to handle all event

types that are more specific or more general than a given type, in other words are sub- or

supertypes of an event type.

When routing event advertisements, subscriptions, and publications in the overlay broker net-

work, an event broker only passes on a message to the next event broker after obtaining proof

in the form of a role membership certificate that this event broker is authorised to handle that

particular event type. Otherwise, the event broker is forced to make a different routing decision.

This can be done by acting as though the untrusted event broker has failed, relying on the

fault-tolerance properties of event routing in Hermes that will ensure a different routing path.

Note that event broker trust encompasses the handling of entire event types only, but we relax

this restriction through the use of event attribute encryption, as described in the next section.

8.4.3 Event Attribute Encryption

Event broker trust from the previous section excludes brokers that are not trusted to handle

specific event types from routing. As argued before, this coarse-grained approach effectively

splits the overlay broker network into several trust domains, thus weakening the reliability

and efficiency of event routing. A better solution is to prevent an untrusted event broker

from accessing confidential data but still enabling it to perform content-based routing on other

attributes. We achieve the goal of a single event that can hold private and public information by

encrypting event attributes in event publications with different cryptographic keys. Although

this introduces a larger runtime overhead due to cryptographic operations during event routing,

this is justifiable as it leads to more expressive access control specifications where event types no

longer have to be strictly divided into private and public categories. Another advantage of this

scheme is that access control policy can also associate event clients, which have access privileges,

to event attributes.

In addition to event types, event brokers are also trusted with a number of key-classes. A

key-class is a collection of cryptographic keys for encrypting event attributes, that supports key

rotation and revocation. Access control to individual event attributes is achieved by signing

155

8.4. THE SECURE PUBLISH/SUBSCRIBE MODEL CHAPTER 8. SECURITY

EmergencyEvent
locationemergency∨police∨fire∨∅
severity∅
isDrill(police∧training) ∨ (fire∧training)

*Y

FireEvent
buildingType∅
enginesPresentfire

6
FireAlarmEvent

detectorType∅

PoliceEvent
locationpolice∨fire∨∅
polCodepolice

sourcepolice

*Y

AccidentEvent
roadType∅
casualtiespolice∨∅
specialHazardpolice∨fire∨∅

BurglaryEvent
locationpolice

zoning∅

isaisa

isaisa

Figure 8.4: An event type hierarchy with attribute encryption

and encrypting them with a key from a given key-class so that only trusted event brokers can

decrypt these attributes. An event broker can only read or write an event attribute if it has a role

membership that includes access to the appropriate key-classes. This also means that an event

client can only submit an event subscription or publication that refers to encrypted attributes

to its local event broker if it can prove that it owns credentials for the required key-classes. The

event broker then performs the cryptographic operations on the client’s behalf.

To include event attribute encryption in the Hermes event model, the event type hierarchy is

extended with a description of the key-classes that are necessary to access the content of event

attributes, as shown in Figure 8.4. Each event attribute is annotated with its key-classes in

disjunctive normal form. A conjunction of key-classes means that the attribute is encrypted

with keys from several key-classes in sequence. For example, the isDrill attribute in the

EmergencyEvent type has to be either encrypted under the police and training, or under the fire

and training key-classes. This prevents anyone receiving emergency-related events in the Active

City from finding out whether this is an exercise drill unless they are a training instructor with

access to the training key-class. Unencrypted event attributes are denoted with the empty key-

class ∅. In Figure 8.3 event brokers are annotated with the key-classes that they are permitted

to use.

Note that the standard subtyping relation between event types must still hold so that a subtype

is more specific than its parent type. As a result, key-classes can only be removed from inherited

event attributes but never added. This is illustrated with the location attribute whose access

becomes more restrictive as new event types are derived.

156

CHAPTER 8. SECURITY 8.4. THE SECURE PUBLISH/SUBSCRIBE MODEL

Encrypted Attribute Coverage

When an event subscriber submits a type- and attribute-based subscription for an event type

with encrypted attributes, attribute predicates in the subscription must also be encrypted with

appropriate key-classes for the subscription to match events. The subscriber selects one or more

key-classes, from all the key-classes for which it is authorised to use, for the encryption of the

attribute predicate. As a consequence, the event model from Section 3.3.1 must be extended

to support a coverage relation between event subscriptions and publications, and among event

subscriptions that use attribute encryption. Informally, an encrypted attribute predicate can

only be matched by an encrypted event attribute in a publication if it was encrypted with the

same key-classes. When an attribute predicate should match attributes encrypted under several

different key-classes, it must be disjunctively encrypted multiple times using these key-classes

and several copies of the attribute predicate must be included in the subscription. For coverage

among subscriptions, an attribute predicate encrypted under particular key-classes is covered

by another encrypted predicate if the second predicate covers the first and is encrypted under

at least the key-classes of the first predicate.

Definition 8.1 (Encrypted Attribute Coverage) An encrypted event attribute aK is cov-

ered by (or matches) an encrypted attribute predicate pL,

aK v pL,

if and only if

a v p ∧K ⊆ L

holds, where K is the set of key-classes under which a is conjunctively encrypted and L is the set

of a conjunction of key-classes under which p is disjunctively encrypted. An encrypted attribute

predicate pL1
1 is covered by another encrypted attribute predicate pL2

2 ,

pL1
1 v pL2

2 ,

if and only if

∀a. a v p1 ⇒ a v p2 ∧ L1 ⊆ L2,

holds, where a is an event attribute and L1 and L2 are sets of conjunctions of key-classes with

disjunctive encryption.

We illustrate this updated coverage relation in Figure 8.5, showing six example subscriptions

with regard to the previous event type hierarchy. Subscription s1 is most generic because it does

not include any attribute predicates. The attribute predicate in subscription s3 does not match

events with an unencrypted location attribute and therefore s3 is covered by s2. Subscription s4

is most specific because the attribute predicate is only encrypted under the police key-class.

157

8.5. IMPLEMENTATION CHAPTER 8. SECURITY

s1: PoliceEvent

?
s2: PoliceEvent

p1(locationpolice∨fire∨∅)

� j
s3: PoliceEvent

p1(locationpolice∨fire)

� j
s4: PoliceEvent

p1(locationpolice)
s5: BurglaryEvent

p1(locationpolice∨fire)

s6: BurglaryEvent
p1(locationpolice∨fire∨∅)

)
coverscoverscovers

covers covers

Figure 8.5: Subscription coverage with attribute encryption

8.5 Implementation

As a proof of concept, the security service was implemented as part of the Hermes implementa-

tion in DSSim and interfaced with an OASIS RBAC implementation. In this section we present

how symmetric and asymmetric cryptography is used to implement the secure publish/subscribe

model, and we have a closer look at the interaction of the security service with Hermes.

8.5.1 Cryptographic Techniques

The implementation of the secure publish/subscribe model uses several different types of keys

(for symmetric cryptography) and key pairs (for asymmetric cryptography) stored at event

brokers and clients. Asymmetric key pairs are used for initial authentication of event brokers

and clients using the OASIS implementation.

Event Client Asymmetric Key Pair kEC. Event clients require an authentication key pair

in the form of an X.509 identity certificate for their interaction with a local event broker.

This enables event clients to acquire OASIS role memberships so that local event brokers

can verify policy governing boundary access control and access to key-classes.

Event Broker Asymmetric Key Pair kEB. Likewise, event brokers have an authentication

key pair to acquire OASIS role memberships that allow them to join the overlay broker

network, maintain encrypted SSL connections with their neighbouring event brokers, and

obtain access to event types and key-classes.

Event attribute encryption uses key-classes that contain symmetric keys for the fast decryption

of event attributes during event routing. A key-class is managed by an event broker that acts

as the key-master for the key-class. Since event clients in Hermes are less trusted than event

brokers, symmetric keys of a key-class are only kept at event brokers that may encrypt or decrypt

158

CHAPTER 8. SECURITY 8.5. IMPLEMENTATION

B1

KM1

KM2

B4

B3

P1

S1
fire kKM

fire kKM

fire kKC

fire kKCpolice kKC

police kKC

police kKM

police kKM

kEC

kEC
kEB

kEB

kEB

kEB

kEB

B2

kEB

police kKC

Figure 8.6: Cryptographic keys and key-masters for key-classes

data on behalf of authorised event clients. Key rotation within a key-class is regularly initiated

by key-masters and provides new symmetric encryption keys to authorised event brokers so that

compromised event brokers or keys can be excluded.

Key-Class Symmetric Key k̄KC. A current symmetric key of a key-class is used to encrypt

and decrypt event attributes. An event attribute is signed and encrypted at the local event

broker hosting the event publishers that published the event. It may then be decrypted

at every authorised event broker along its routing path that requires access to the event

attribute in order to evaluate attribute predicates. Before delivery to an authorised event

subscriber, the local event broker decrypts the event attribute on behalf of the client.

Key-Master Asymmetric Key Pair kKM. The key-master for a given key-class has an au-

thentication key pair so that it can authorise the rotation of symmetric keys of the key-

class. Updated symmetric keys are signed by the key-master prior to distribution to event

brokers that require access to the key-class.

For reliability reasons, key-masters are replicated and follow an election protocol to choose a

leader that initiates key rotations. A new symmetric key k̄KC for a key-class is distributed to all

authorised event brokers by first signing it with the key-master key kKM and then encrypting it

individually with the identity keys kEB of all event brokers that should have access to the key-

class. A standard event publication disseminates the package of encrypted copies of the updated

symmetric key k̄KC to event brokers, which act as event subscribers for key-class update events,

which are another type of meta-event.

An example of a system with two key-classes police and fire and two replicated key-masters KM1

and KM2 managing both key-classes is shown in Figure 8.6. Event brokers and clients are

annotated with their cryptographic keys, as described above.

8.5.2 Hermes Integration

The implementation of the security service closely interacts with Hermes and takes advantage

of peer-to-peer routing with rendezvous nodes. The rendezvous node for an event type must be

159

8.6. EVALUATION CHAPTER 8. SECURITY

trusted with the event type that it manges. It also functions as a policy repository for boundary

access control that contains the type, advertisement, and subscription polices, which are signed

by the event type owner’s authentication key. For faster OASIS policy verification, client-hosting

brokers may keep a local policy cache that is updated using policy evolution events. These meta-

events are disseminated from the event type owner to all interested client-hosting event brokers

to update their local policy cache during policy evolution.

Key-masters in the system are installed with help of the distributed hash table provided by

Pan. The key-master for a key-class resides at the event broker whose nodeID is numerically

closest to the hash of the key-class name. Similar to rendezvous node replication, event brokers

from the leaf set of the primary key-master are chosen to host replicas. Meta-events are used

by key-masters to distribute updated symmetric encryption keys for a key-class to other event

brokers.

Our secure publish/subscribe model states that only event attributes can be encrypted but not

event type names. This could potentially result in undesired leakage of information to event

brokers and clients. However, this is not the case in the Hermes event routing algorithm,

because publication and subscription messages are routed according to the SHA-1 hash of the

event type name, thus protecting the clear-text event type name from unauthorised access.

8.6 Evaluation

Referring back to the two applications scenarios that motivated security in an event-based

middleware, our secure publish/subscribe model provides sufficient mechanisms to implement

both applications. We set up an experiment in the context of an Active City that compared

selective attribute encryption, as supported by our service, against a näıve approach, where

the entire event publication is encrypted several times with all relevant keys to achieve the

same behaviour. In such an approach, the same event has to be published multiple times,

once for every security domain in the event-based middleware [PPF+03]. As expected, attribute

encryption results in a substantial saving of network bandwidth because fewer event publications

need to be disseminated by the event-based middleware.

8.7 Related Work

In this section we provide a brief overview of previous work in the area of security in publish/-

subscribe systems. Preliminary work on security issues under publish/subscribe semantics can

be found in [WCEW02]. It identifies the necessity for ensuring the confidentiality of event

publications and subscriptions and suggests accountability for billing purposes, however, no

mechanisms are provided. In the work by Miklós [Mik02], upper bound filters on advertisements

and subscriptions in Siena are proposed but the confidentiality of event publications within

160

CHAPTER 8. SECURITY 8.8. SUMMARY

the publish/subscribe system is not guaranteed. The Narada Brokering project includes a dis-

tributed security framework [PPF+03, YHF+03] that uses access control lists to control event

publishers and subscribers for a topic, limiting the scalability. Cryptographic keys for encrypting

publications are centrally managed by a Key Management Centre (KMC). An event publisher

can choose to use a central topic key from the KMC or the public keys of all event subscribers

for encryption, which contradicts decoupled publish/subscribe semantics. Access control can

only be provided at the granularity of whole events, and event brokers are implicitly trusted,

rather than using different trust levels as supported by our security service.

8.8 Summary

The final higher-level service for an event-based middleware described in this thesis deals with

security. We motivated the need for security in an event-based middleware with two application

scenarios that require fine-grained access control to events, even with a partially-trusted infras-

tructure of event brokers. The main part of the chapter presented our secure publish/subscribe

model that leverages role-based access control to regulate access to the event-based middleware.

Within the middleware, event brokers have different levels of trust that map to the event types

that they can process. Event attributes can be encrypted using key-classes and the coverage

relation in the event model was extended to reflect this. We finished the chapter with a descrip-

tion of our prototype implementation of the secure publish/subscribe model and summarised

how cryptographic keys were used and how the service interacted with Hermes.

161

162

9
Conclusions

With distributed systems becoming increasingly large-scale and dynamic, the nature of appli-

cations has changed substantially over the last decade. Traditional distributed systems arose

from research into LAN-based systems and were based on assumptions such as long-lived group

membership, mostly reliable communication, and one-to-one interaction between entities. These

no longer hold for today’s large-scale, Internet-wide, heterogeneous systems. The recent prolif-

eration of peer-to-peer applications is a clear indication of this, and their need to handle highly

dynamic participants and communication faults has led to novel routing algorithms and fault-

tolerance mechanisms. These approaches can be used to make any large-scale distributed system

more robust and adaptive to dynamic environments, thus embracing principles from autonomic

computing [KC03].

In this thesis we addressed an important issue when developing large-scale distributed systems

for deployment on the Internet: that of having proper middleware support, which handles the

communication needs of application clients in a scalable and efficient way, and all without

compromising traditional middleware features. We argued that event-based middleware can

provide this support and described Hermes, a distributed, event-based middleware that employs

peer-to-peer techniques for scalable and robust event dissemination. Hermes leverages peer-to-

peer techniques for managing its overlay network of event brokers and adding fault-tolerance to

its event dissemination algorithms. We found that a distributed hash table is a powerful data

structure for application-level routing algorithms in large-scale distributed systems.

A core middleware platform that provides only communication support is not sufficient because

the requirements of large-scale distributed applications differ. It is therefore essential that a

163

9.1. SUMMARY CHAPTER 9. CONCLUSIONS

middleware platform, such as Hermes, is extensible through higher-level middleware services in

a distributed computing environment. To demonstrate aspects of a fully-featured event-based

middleware, we introduced three middleware services that give evidence of the flexibility and

extensibility of this type of middleware. A congestion control service avoids congestion in the

overlay broker network and thus enables a resource efficient deployment of the middleware. The

expressiveness of subscriptions is enhanced with a composite event service that detects complex

patterns of events, allowing event clients to specify their interests more precisely and to control

high volume event dissemination. Finally, a security service, which supports events carrying both

public and private data, integrates fine-grained access control with the event-based middleware,

addressing the access control and privacy needs of applications. These services facilitate large-

scale application development because an application programmer can rely on their help when

having to cope with the complexity of a heterogeneous and dynamic environment.

9.1 Summary

We began with an overview of the requirements of an event-based middleware if it is to support

a variety of dynamic, large-scale applications. We then investigated the functions and features

of this novel type of middleware, which led to five design models that helped structure the design

space in terms of event data, components, routing, reliability, and services. Particular emphasis

was placed on the programming language integration of the middleware, which resulted in the

inclusion of event types and type inheritance into the event model. Application-level event

dissemination in the routing model was extended with fault-tolerance mechanisms from the

reliability model.

Our primary goal was the development of Hermes, our event-based middleware platform. We

described its layered architecture and the two event routing algorithm supported by Hermes,

type-based routing, which supports subscriptions according to an event type, and type- and

attribute-based routing, which provides content-based filtering on event attributes as well. Both

routing algorithms use rendezvous nodes to construct scalable event dissemination trees on top

of a distributed hash table. Because of our requirement of programming language integration,

we extended the routing algorithms with event type inheritance and support for supertype

subscriptions. We also described the fault-tolerance mechanisms in the algorithms that are based

on a soft-state approach and the replication of rendezvous nodes. A prototype implementation of

Hermes was presented in more detail, as was an evaluation of Hermes routing in a distributed

systems simulator, comparing it with the Siena routing algorithm, which is standard for content-

based routing of events. The experiments showed that Hermes routing builds efficient event

dissemination trees and minimises the state stored in routing tables at event brokers.

The issue of congestion in an event-based middleware was addressed by our congestion control

service. This service takes into account the special properties of congestion control in overlay

broker networks. It is able to perform congestion control during normal operation and recovery

164

CHAPTER 9. CONCLUSIONS 9.2. FURTHER WORK

after failure. The congestion control mechanism consists of a publisher-driven, and a subscriber-

driven algorithm that regulate the rate of event publications and NACK messages in order to

prevent congestion from occurring. We also described the implementation of the two algorithms

as part of the Gryphon event broker and evaluated their behaviour with realistic experiments.

The evaluation proved that the algorithms can quickly adapt to congestion in the system and

change system parameters to compensate for whatever resource shortage is causing congestion.

We argued that ubiquitous computing applications, such as the Active Office, benefit from more

expressive subscriptions in the form of composite event subscriptions. Our second service for

an event-based middleware provides the distributed detection of complex event patterns. We

introduced the two main parts of the service: composite event detection automata, that detect

patterns with limited resource requirements, and a core composite event language, that allows the

specification of event patterns with operators similar to regular expressions. The composite event

service improves on previous work on pattern detection in distributed systems by supporting

the decomposition and distribution of complex composite event expressions. Distribution and

detection polices control the behaviour of distributed detectors according to the requirements of

event subscribers. An experiment in the Active Office scenario showed that our generic composite

event service operates with negligible overhead compared with a client-side implementation.

This work indicates a way to approach the problem of managing environments with potentially

excessive volumes of primitive events.

The final service developed in this thesis addresses security. It is motivated by the requirements

for access control and confidentiality in an event-based middleware. We argued that security is a

crucial factor that determines the wide-spread adoption of a middleware platform. The security

service follows a secure publish/subscribe model that ties role-based access control to event

types. It consists of three main parts: a mechanism for boundary access control of event clients

that use the middleware, different levels of trust in event brokers specifying their access rights

to event types, and the encryption of attributes in event publications to ensure confidentiality.

We argued that our secure publish/subscribe model has the advantage of using a single shared

infrastructure that can accommodate the security needs of different clients, as opposed to having

an inefficient physical separation of the overlay broker network into distinct trust domains. We

also described cryptographic key management and how the service interoperates with Hermes.

9.2 Further Work

There are a wide range of potential research avenues in which an event-based middleware, such

as Hermes, can be extended. In general, more intelligence can be added to the middleware

layer, which then takes over data processing responsibilities in addition to pure communication

tasks. Composite event detection is already a step in this direction but event-based middleware

can benefit further from a tighter integration with database systems. Similar to the CORBA

object services in Section 2.1.1, the event-based middleware can be extended with a variety of

165

9.2. FURTHER WORK CHAPTER 9. CONCLUSIONS

additional services. For a large-scale deployment, a naming and directory service is necessary to

support the global querying and browsing of event type repositories stored at rendezvous nodes.

Next we list three interesting research challenges for an event-based middleware.

Reliable Delivery Semantics. The reliability model for an event-based middleware in Sec-

tion 3.3.4 demands guaranteed delivery semantics for events. However, a challenging problem is

how to implement persistent events efficiently so that the overall scalability of the system does

not suffer. The guaranteed delivery service of Gryphon (see Section 2.2.2) reliably disseminates

events but relies on a rather static overlay broker topology, so integration of reliable delivery

semantics with robust peer-to-peer routing using dynamic topologies still remains as research to

be investigated.

Mobility Support. Support for mobile clients is important in mobile ad-hoc networks and

event-based middleware is a promising platform in these environments because of its loose cou-

pling between components. To support the roaming of event clients, peer-to-peer event routing

algorithms must be adaptable to changes in the location of event clients, thus using an even

more dynamic notion of event dissemination trees. The desire of event clients to have durable

subscriptions, which allow the selective replay of events missed during times of disconnected op-

eration, motivates the addition of a query language that also enables event clients to subscribe

to past events. This brings event-based middleware closer to database systems, thus unifying

communication and storage.

Transaction Support. Transaction support has been proposed for message-oriented middle-

ware [TR00, LT00]. Event-based middleware can also benefit from transactions because they

allow stronger event dissemination semantics. Routing algorithms must observe the state of

transactions while disseminating events. For example, the rollback of a primitive event pub-

lication can undo the detection of composite events at a detector. In addition, new types of

transaction semantics are necessary to handle many-to-many communication in an event-based

middleware.

166

Bibliography

[AADS02] Yair Amir, Baruch Awerbuch, Claudiu Danilov, and Jonathan Stanton. Global Flow Con-
trol for Wide Area Overlay Networks: A Cost-Benefit Approach. In Proceedings of OPE-
NARCH’02, pages 155–166, June 2002.

[ABKM01] David G. Andersen, Hari Balakrishnan, M. Frans Kaashoek, and Robert Morris. Resilient
Overlay Networks. In Proceedings of the 18th ACM Symposium on Operating Systems Prin-
ciples (SOSP’01), Chateau Lake Louise, Banff, Canada, October 2001.

[ACH+01] Mike Addlesee, Rupert Curwen, Steve Hodges, Joe Newman, Pete Steggles, Andy Ward,
and Andy Hopper. Implementing a Sentient Computing System. IEEE Computer Magazine,
34(8):50–56, August 2001.

[Apa01] The Apache Project. Xerces Java Parser 1.4.0 Release. http://xml.apache.org/

xerces-j/, June 2001.

[Apa03] The Apache Project. Xalan XSLT Processor. http://xml.apache.org/xalan-j/, 2003.

[ASS+99] Marcos K. Aguilera, Robert E. Strom, Daniel C. Sturman, Mark Astley, and Tushar D.
Chandra. Matching Events in a Content-Based Subscription System. In Proceedings of the
18th ACM Symposium on the Principles of Distributed Computing (PODC’99), Atlanta,
GA, USA, May 1999.

[BBHM95] Jean Bacon, John Bates, Richard Hayton, and Ken Moody. Using Events to Build Dis-
tributed Applications. In Proceeding of the IEEE Services in Distributed and Networked
Environments Workshop (SDNE’95), pages 148–155, Whistler, BC, Canada, June 1995.

[BCA+01] Gordon S. Blair, Geoff Coulson, Anders Andersen, Lynne Blair, et al. The Design and
Implementation of Open ORB Version 2. IEEE Distributed Systems Online, 2(6), 2001.

[BCF94] Anastasios T. Bouloutas, Seraphin Calo, and Allan Finkel. Alarm Correlation and
Fault Identification in Communication Networks. IEEE Transactions on Communications,
42(2/3/4):523–533, February 1994.

[BCM87] Rajive L. Bagrodia, K. Mani Chandy, and Jayadev Misra. A Message-Based Approach for
Discrete-Event Simulation. IEEE Transactions on Software Engineering (TSE), 13(6):654–
665, June 1987.

[BCM+99] Guruduth Banavar, Tushar Chandra, Bodhi Mukherjee, Jay Nagarajarao, Robert E. Strom,
and Daniel C. Sturman. An Efficient Multicast Protocol for Content-Based Publish-
Subscribe Systems. In Proceedings of the 19th IEEE International Conference on Distributed
Computing Systems (ICDCS’99), pages 262–272, Austin, TX, USA, May 1999.

[BCSS99] Guruduth Banavar, Tushar Deepak Chandra, Robert E. Strom, and Daniel C. Sturman.
A Case for Message Oriented Middleware. In Prasad Jayanti, editor, Proceedings of the
13th International Symposium on Distributed Computing (DISC’99), volume 1693 of LNCS,
pages 1–18, September 1999.

[BDF+03] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho, Rolf Neuge-
bauer, Ian Pratt, and Andrew Warfield. Xen and the Art of Virtualization. In Proceedings
of the 19th ACM Symposium on Operating Systems Principles (SOSP’03), pages 164–177,
Bolton Landing, NY, USA, October 2003.

167

BIBLIOGRAPHY BIBLIOGRAPHY

[BEP+03] András Belokosztolszki, David M. Eyers, Peter R. Pietzuch, Jean Bacon, and Ken Moody.
Role-Based Access Control for Publish/Subscribe Middleware Architectures. In H. Arno
Jacobsen, editor, Proceedings of the 2nd International Workshop on Distributed Event-Based
Systems (DEBS’03), ACM SIGMOD, San Diego, CA, USA, June 2003. ACM.

[BFC93] Tony Ballardie, Paul Francis, and Jon Crowcroft. Core Based Trees (CBT). In Proceedings
of ACM SIGCOMM’93, San Francisco, CA, USA, September 1993.

[BH03] Jean Bacon and Tim Harris. Operating Systems: Concurrent and Distributed Software
Design. Addison-Wesley, 2003.

[BHM+00] Jean Bacon, Alexis Hombrecher, Chaoying Ma, Ken Moody, and Walt Yao. Event Stor-
age and Federation using ODMG. In Proceedings of the 9th International Workshop on
Persistent Object Systems (POS9), pages 265–281, Lillehammer, Norway, September 2000.

[BKS+99] Guruduth Banavar, Marc Kaplan, Kelly Shaw, Robert E. Strom, Daniel C. Sturman, and
Wei Tao. Information Flow-based Event Distribution Middleware. In Proceedings of the
Workshop on Electronic Commerce and Web-Based Applications. In conjunction with the
International Conference on Distributed Computing Systems (ICDCS’99), pages 114–122,
Austin, TX, USA, May 1999.

[BMB+00] Jean Bacon, Ken Moody, John Bates, Richard Hayton, Chaoying Ma, Andrew McNeil,
Oliver Seidel, and Mark Spiteri. Generic Support for Distributed Applications. IEEE
Computer, pages 68–77, March 2000.

[BMY02] Jean Bacon, Ken Moody, and Walt Yao. A Model of OASIS Role-Based Access Control and
its Support for Active Security. ACM Transactions on Information and System Security
(TISSEC), 5(4):492–540, November 2002.

[BOP94] Lawrence S. Brakmo, Sean W. O’Malley, and Larry L. Peterson. TCP Vegas: New Tech-
niques for Congestion Detection and Avoidance. In Proceedings of ACM SIGCOMM’94,
London, United Kingdom, August 1994.

[BOSW98] Gilad Bracha, Martin Odersky, David Stoutamire, and Philip Wadler. Making the Future
Safe for the Past: Adding Genericity to the Java Programming Language. In Proceedings
of the 13th ACM Conference on Object-Oriented Programming Systems, Languages and
Applications (OOPSLA’98), pages 183–200, Vancouver, BC, Canada, October 1998.

[BP96] Lawrence S. Brakmo and Larry L. Peterson. Experiences with Network Simulation. In Pro-
ceedings of the ACM International Conference on Measurement and Modeling of Computer
Systems (SIGMETRICS’96), pages 80–90, Philadelphia, PA, USA, May 1996.

[BSB+02] Sumeer Bhola, Robert Strom, Saurabh Bagchi, Yuanyuan Zhao, and Joshua Auerbach.
Exactly-once Delivery in a Content-based Publish-Subscribe System. In Proceedings of
the International Conference on Dependable Systems and Networks (DSN’02), pages 7–16,
Washington, D.C., USA, June 2002.

[BZA03] Sumeer Bhola, Yuanyuan Zhao, and Joshua Auerbach. Scalably Supporting Durable Sub-
scriptions in a Publish/Subscribe System. In Proceedings of the International Conference
on Dependable Systems and Networks (DSN’03), San Francisco, CA, USA, June 2003.

[Car98] Antonio Carzaniga. Architectures for an Event Notification Service Scalable to Wide-Area
Networks. PhD thesis, Politecnico di Milano, Milano, Italy, December 1998.

[CBB+97] Rick G. G. Cattell, Douglas Barry, Dirk Bartels, Mark Berler, Jeff Eastman, Sophie Gamer-
man, David Jordan, Adam Springer, Henry Strickland, and Drew Wade. The Object
Database Standard: ODMG 2.0. Morgan Kaufmann, San Francisco, CA, USA, 1997.

[CBP+02] Jon Crowcroft, Jean Bacon, Peter Pietzuch, George Coulouris, and Hani Naguib. Channel
Islands in a Reflective Ocean: Large-scale Event Distribution in Heterogeneous Networks.
IEEE Communications Magazine, 40(9):112–115, September 2002.

168

BIBLIOGRAPHY BIBLIOGRAPHY

[CDHR02] Miguel Castro, Peter Druschel, Y. Charlie Hu, and Antony Rowstron. Exploiting Network
Proximity in Distributed Hash Tables. In Ozalp Babaoglu, Ken Birman, and Keith Marzullo,
editors, International Workshop on Future Directions in Distributed Computing (FuDiCo),
pages 52–55, Bertinoro, Italy, June 2002.

[CDK01] George Coulouris, Jean Dollimore, and Tim Kindberg. Distributed Systems: Concepts and
Design. Addison-Wesley, 3rd edition, 2001.

[CJK+03] Miguel Castro, Michael B. Jones, Anne-Marie Kermarrec, Antony Rowstron, Marvin
Theimer, Helen Wang, and Alec Wolman. An Evaluation of Scalable Application-level Mul-
ticast Built Using Peer-to-Peer Overlays. In Proceedings of INFOCOM’03, San Francisco,
CA, USA, April 2003.

[Cla99] Ian Clarke. A Distributed Decentralised Information Storage and Retrieval System. Master’s
thesis, University of Edinburgh, 1999.

[CM93] Sharma Chakravarthy and Deepak Mishra. Snoop — An Expressive Event Specification
Language For Active Databases. Technical Report UF-CIS-TR-93-007, Department of Com-
puter and Information Sciences, University of Florida, March 1993.

[CMB00] Yatin Chawathe, Steven McCanne, and Eric A. Brewer. RMX: Reliable Multicast for Het-
erogeneous Networks. In Proceedings of INFOCOM’00, pages 795–804, Tel Aviv, Israel,
March 2000.

[CN01] Gianpaolo Cugola and Elisabetta Di Nitto. Using a Publish/Subscribe Middleware to Sup-
port Mobile Computing. In Proceedings of Middleware for Mobile Computing Workshop. In
Conjunction with Middleware’01, Heidelberg, Germany, November 2001.

[CNF01] Gianpaolo Cugola, Elisabetta Di Nitto, and Alfonso Fuggetta. The JEDI Event-Based Infras-
tructure and its Applications to the Development of the OPSS WFMS. IEEE Transactions
on Software Engineering (TSE), 27(9):827–850, September 2001.

[Cou01] Geoff Coulson. What is Reflective Middleware? IEEE Distributed Systems Online, 2(8),
2001. http://computer.org/dsonline/middleware/RMarticle1.htm.

[CP02] Jon Crowcroft and Ian Pratt. Peer to Peer: Peering into the Future. In Advanced Lectures
on Networking, NETWORKING 2002, volume 2497 of LNCS, pages 1–19. Springer Verlag,
2002.

[CRW99] Antonio Carzaniga, David S. Rosenblum, and Alexander L. Wolf. Challenges for Distributed
Event Services: Scalability vs. Expressiveness. In Proceedings of Engineering Distributed
Objects (EDO’99), Los Angeles, CA, USA, May 1999.

[CRW00] Antonio Carzaniga, David S. Rosenblum, and Alexander L. Wolf. Content-Based Address-
ing and Routing: A General Model and its Application. Technical Report CU-CS-902-00,
University of Colorado, Department of Computer Science, January 2000.

[CRW01] Antonio Carzaniga, David S. Rosenblum, and Alexander L. Wolf. Design and Evaluation of a
Wide-Area Event Notification Service. ACM Transactions on Computer Systems, 19(3):332–
383, August 2001.

[CRZ00] Yang-hua Chu, Sanjay G. Rao, and Hui Zhang. A Case for End System Multicast. In
Proceedings of the International Conference on Measurement and Modeling of Computer
Systems (SIGMETRICS’00), pages 1–12, Santa Clara, CA, USA, June 2000.

[CST01] Brad Cain, Tony Speakman, and Don Towsley. Generic Router Assist (GRA) Building
Block Motivation and Architecture. Internet Draft, IETF, July 2001.

[CW01] Antonio Carzaniga and Alexander L. Wolf. Content-based Networking: A New Commu-
nication Infrastructure. In NSF Workshop on an Infrastructure for Mobile and Wireless
Systems, volume 2538 of LNCS, pages 59–68, Scottsdale, AZ, USA, October 2001.

[Dan89] Peter B. Danzig. Optimally Selecting the Parameters of Adaptive Backoff Algorithms for
Computer Networks and Multiprocessors. PhD thesis, University of California, Berkeley,
1989.

169

BIBLIOGRAPHY BIBLIOGRAPHY

[DBC96] Umeshwar Dayal, Alejandro P. Buchmann, and Sharma Chakravarthy. The HiPAC Project.
Active Database Systems: Triggers and Rules For Advanced Database Processing, pages
177–206, 1996.

[Dee89] Steve Deering. Host Extensions for IP Multicast (RFC 1112). Internet Engineering Task
Force (IETF), 1989.

[DM78] Yogen K. Dalal and Robert M. Metcalfe. Reverse Path Forwarding of Broadcast Packets.
Communications of the ACM, 21(12):1040–1047, December 1978.

[DO97] Dante DeLucia and Katia Obraczka. Multicast Feedback Suppression Using Representatives.
In Proceedings of INFOCOM’97, pages 463–470, Kobe, Japan, April 1997.

[EFGK03] Patrick Th. Eugster, Pascal A. Felber, Rachid Guerraoui, and Anne-Marie Kermarrec. The
Many Faces of Publish/Subscribe. ACM Computing Surveys, 35(2):114–131, June 2003.

[EGD01] Patrick Th. Eugster, Rachid Guerraoui, and Christian H. Damm. On Objects and Events.
In Proceedings of the 16th ACM Conference on Object-Oriented Programming Systems, Lan-
guages and Applications (OOPSLA’01), pages 131–146, Tampa, FL, USA, October 2001.

[EGH+03] Patrick Th. Eugster, Rachid Guerraoui, Sidath Handurukande, Rachid Guerraoui, Petr
Kouznetsov, and Anne-Marie Kermarrec. Lightweight Probabilistic Broadcast. ACM Trans-
actions on Computer Systems (TOCS), 21(4):341–374, November 2003.

[EGS00] Patrick Th. Eugster, Rachid Guerraoui, and Joe Sventek. Distributed Asynchronous Col-
lections: Abstractions for Publish/Subscribe Interaction. In Proceedings of the 14th AITO
European Conference on Object Oriented Programming (ECOOP’00), pages 252–276, Sophia
Antipolis and Cannes, France, June 2000.

[Eri94] Hans Eriksson. MBONE: The Multicast Backbone. Communications of the ACM, 37(8):54–
60, August 1994.

[Eug01] Patrick Th. Eugster. Type-Based Publish/Subscribe. PhD thesis, EPFL Lausanne, Lausanne,
Switzerland, 2001.

[FF99] Sally Floyd and Kevin Fall. Promoting the Use of End-to-end Congestion Control in the
Internet. IEEE/ACM Transactions on Networking, 7(4):458–472, 1999.

[FIP95] FIPS 180-1. Secure Hash Standard. National Institute of Standards and Technology (NIST),
April 1995. Federal Information Processing Standard (FIPS).

[FJG+98] Sonia Fahmy, Raj Jain, Rohit Goyal, Bobby Vandalore, Shivkumar Kalyanaraman, Sastri
Kota, and Pradeep Samudraand. Feedback Consolidation Algorithms for ABR Point-to-
Multipoint Connections in ATM Networks. In Proceedings of IEEE INFOCOM’98, volume 3,
pages 1004–1013, San Francisco, CA, USA, March 1998.

[FJL+01] Francoise Fabret, Arno Jacobsen, Francois Llirbat, Joao Pereira, Kenneth Ross, and Dennis
Shasha. Filtering Algorithms and Implementation for Very Fast Publish/Subscribe. In
Proceedings of the 20th International Conference on Management of Data (SIGMOD’01),
pages 115–126, Santa Barbara, CA, USA, May 2001.

[FKM+02] Geraldine Fitzpatrick, Simon Kaplan, Tim Mansfield, Arnold David, and Bill Segall. Sup-
porting Public Availability and Accessibility with Elvin: Experiences and Reflections. Com-
puter Supported Cooperative Work, 11(3):447–474, 2002.

[FMB01] Ludger Fiege, Gero Mühl, and Alejandro Buchmann. An Architectural Framework for
Electronic Commerce Applications. In Informatik 2001: Annual Conference of the German
Computer Society, 2001.

[FMG03] Ludger Fiege, Gero Mühl, and Felix C. Gärtner. Modular Event-based Systems. The
Knowledge Engineering Review, 17(4):55–85, 2003.

[FMMB02] Ludger Fiege, Mira Mezini, Gero Mühl, and Alejandro P. Buchmann. Engineering Event-
based Systems with Scopes. In B. Magnusson, editor, Proceedings of the European Confer-
ence on Object-Oriented Programming (ECOOP’02), volume 2374 of LNCS, pages 309–333,
Malaga, Spain, June 2002.

170

BIBLIOGRAPHY BIBLIOGRAPHY

[FP01] Sally Ford and Vern Paxson. Difficulties in Simulating the Internet. IEEE/ACM Transac-
tions on Networking (TON), 9(4):392–403, August 2001.

[GD94] Stella Gatziu and Klaus R. Dittrich. Detecting Composite Events in Active Database Sys-
tems Using Petri Nets. In Proceedings of the 4th International Workshop on Research Issues
in Data Engineering: Active Database Systems (RIDE-AIDS’94), pages 2–9, February 1994.

[Gel85] David Gelernter. Generative Communication in Linda. ACM Transactions on Programming
Languages and Systems, 7(1):80–112, January 1985.

[GJS92] Narain H. Gehani, H. V. Jagadish, and Oded Shmueli. Event Specification in an Active
Object-Oriented Database. In Proceedings of ACM International Conference on Manage-
ment of Data (SIGMOD’92), pages 81–90, San Diego, CA, USA, June 1992.

[Gon02] Li Gong. Project JXTA: A Technical Overview. Whitepaper, Sun Microsystems, October
2002. http://www.jxta.org.

[GS99] S. Jamaloddin Golestani and Krishan K. Sabnani. Fundamental Observations on Multicast
Congestion Control in the Internet. In Proceedings of INFOCOM’99, pages 990–1000, New
York, NY, March 1999.

[Hay96] Richard Hayton. OASIS: An Open Architecture for Secure Interworking Services. PhD
thesis, University of Cambridge Computer Laboratory, Cambridge, United Kingdom, June
1996. Technical Report No. 399.

[HBWP01] Jie Huang, Andrew Black, Jonathan Walpole, and Calton Pu. Infopipes — An Abstraction
for Information Flow. In Proceedings of the ECOOP Workshop on The Next 700 Distributed
Object Systems, Budapest, Hungary, June 2001.

[HKRZ02] Kirsten Hildrum, John D. Kubiatowicz, Satish Rao, and Ben Y. Zhao. Distributed Ob-
ject Location in a Dynamic Network. In Proceedings of 14th ACM Symposium on Parallel
Algorithms and Architectures (SPAA’02), pages 41–52, Winnipeg, Canada, August 2002.

[HMU01] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to Automata
Theory, Languages, and Computation. Addison-Wesley, 2001.

[Hom02] Alexis B. Hombrecher. Reconciling Event Taxonomies Across Administrative Domains. PhD
thesis, University of Cambridge Computer Laboratory, Cambridge, United Kingdom, June
2002.

[IBM01] IBM TJ Watson Research Center. Gryphon: Publish/Subscribe over Public Networks.
http://researchweb.watson.ibm.com/gryphon/Gryphon, December 2001.

[IBM02a] IBM Corporation. IBM WebSphere MQ. http://www.ibm.com/software/integration/

wmq/, April 2002.

[IBM02b] IBM Corporation. IBM WebSphere MQ Event Broker. http://www.ibm.com/software/

integration/mqfamily/eventbroker/, May 2002.

[ITU00] ITU-T. ITU-T X.509. Recommendation, ITU-T International Telecommunication Union,
Geneva, Switzerland, 2000.

[JGJ+00] John Jannotti, David K. Gifford, Kirk L. Johnson, M. Frans Kaashoek, and James W.
O’Toole. Overcast: Reliable Multicasting with an Overlay Network. In Proceedings of the
4th Symposium on Operating Systems Design and Implementation (OSDI’00), San Diego,
CA, USA, October 2000.

[JK88] Van Jacobson and Michael J. Karels. Congestion Avoidance and Control. In Proceedings of
ACM SIGCOMM’88, pages 314–332, Stanford, CA, USA, August 1988.

[JS03] Yuhui Jin and Rob Strom. Relational Subscription Middleware for Internet-Scale Publish-
Subscribe. In H. Arno Jacobsen, editor, Proceedings of the 2nd International Workshop on
Distributed Event-Based Systems (DEBS’03), ACM SIGMOD, San Diego, CA, USA, June
2003.

171

BIBLIOGRAPHY BIBLIOGRAPHY

[KC03] Jeffrey O. Kephart and David M. Chess. The Vision of Autonomic Computing. IEEE
Computer Magazine, 36(1):41–50, January 2003.

[KCBC02] Fabio Kon, Fabio Costa, Gordon Blair, and Roy H. Campbell. The Case for Reflective
Middleware. Communication of the ACM, 46(6):33–38, June 2002.

[KDHP03] Evangelos Kotsovinos, Boris Dragovic, Steven Hand, and Peter R. Pietzuch. XenoTrust:
Event-Based Distributed Trust Management. In Proceedings of Trust and Privacy in Digital
Business (TrustBus’03). In conjunction with the 14th International Conference on Database
and Expert Systems Applications (DEXA’03), Prague, Czech Republic, September 2003.

[KRL+00] Fabio Kon, Manuel Roman, Ping Liu, Jina Mao, Tomonori Yamane, Luiz Caludio Maga-
lhaes, and Roy H. Campbell. Monitoring, Security, and Dynamic Configuration with the
dynamicTAO Reflective ORB. In Proceedings of the IFIP/ACM International Conference
on Middleware (Middleware’00), volume 1795 of LNCS, pages 121–143, New York, NY,
USA, April 2000.

[Lam78] Leslie Lamport. Time, Clocks, and the Ordering of Events in a Distributed System. Com-
munications of the ACM, 21(7):558–565, July 1978.

[LCB99] Christoph Liebig, Mariano Cilia, and Alejandro P. Buchmann. Event Composition in Time-
dependent Distributed Systems. In Proceedings of the 4th International Conference on Co-
operative Information Systems (COOPIS’99), pages 70–78, Edinburgh, Scotland, September
1999.

[LT00] Christoph Liebig and Stefan Tai. Advanced Transactions. In Proceedings of the 2nd Interna-
tional Workshop on Engineering Distributed Objects (EDO’00), Davis, CA, USA, November
2000.

[Mae87] Pattie Maes. Concepts and Experiments in Computational Reflection. In Proceedings of the
ACM Conference on Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA’87), pages 147–155, Orlando, FL, USA, October 1987.

[MB98] Chaoying Ma and Jean Bacon. COBEA: A CORBA-Based Event Architecture. In Joe
Sventek, editor, Proceedings of the 4th Conference on Object-Oriented Technologies and
Systems (COOTS’98), pages 117–132, Santa Fe, NM, USA, 1998.

[MF99] Steven McCanne and Sally Floyd. UCB/LBNL/VINT Network Simulator - ns (Version 2).
http://www.isi.edu/nsnam/ns/, April 1999.

[MFB02] Gero Mühl, Ludger Fiege, and Alejandro P. Buchmann. Filter Similarities in Content-Based
Publish/Subscribe Systems. In Proceedings of the International Conference on Architecture
of Computing Systems (ARCS’02), volume 2299 of LNCS, pages 224–238, Karlsruhe, Ger-
many, April 2002.

[MFGB02] G. Mühl, L. Fiege, F. Gärtner, and A. Buchmann. Evaluating Advanced Routing Al-
gorithms for Content-Based Publish/Subscribe Systems. In Proceedings of the 10th IEEE
International Symposium on Modeling, Analysis, and Simulation of Computer and Telecom-
munication Systems (MASCOTS’02), pages 167–176, Fort Worth, TX, USA, October 2002.

[Mik02] Zoltán Miklós. Towards an Access Control Mechanism for Wide-area Publish/Subscribe
Systems. In Proceedings of the First International Workshop on Distributed Event-Based
Systems (DEBS’02), Vienna, Austria, July 2002.

[MLMB01] Alberto Medina, Anukool Lakhina, Ibrahim Matta, and John Byers. BRITE: An Approach
to Universal Topology Generation. In Proceedings of MASCOTS’01, pages 346–356, Cincin-
nati, OH, USA, August 2001.

[MSS97] Masoud Mansouri-Samani and Morris Sloman. GEM: A Generalised Event Monitoring
Language for Distributed Systems. IEE/IOP/BCS Distributed Systems Engineering Journal,
4(2):96–108, June 1997.

[Müh02] Gero Mühl. Large-Scale Content-Based Publish/Subscribe Systems. PhD thesis, Darmstadt
University of Technology, Darmstadt, Germany, September 2002.

172

BIBLIOGRAPHY BIBLIOGRAPHY

[Nir03] Anusha Nirmalananthan. A GUI Application for Composing Event Streams. Computer
Science Tripos Part II Project Dissertation, University of Cambridge Computer Laboratory,
Cambridge, United Kingdom, May 2003.

[Obj02] ObjectWeb Open Source Middleware. JORAM Java Open Reliable Asynchronous Messaging
3.2.0 Release. http://www.objectweb.org/joram, October 2002.

[OMG95] OMG. CORBA: Event Service, Version 1.0. Specification, Object Management Group
(OMG), March 1995.

[OMG02a] OMG. CORBA: Notification Service, Version 1.0.1. Specification, Object Management
Group (OMG), August 2002.

[OMG02b] OMG. The Common Object Request Broker Architecture: Core Specification, Revision 3.0.
Specification, Object Management Group (OMG), December 2002.

[OPSS93] Brian Oki, Manfred Pfluegl, Alex Siegel, and Dale Skeen. The Information Bus — An Ar-
chitecture for Extensible Distributed Systems. In Proceedings of the 14th ACM Symposium
on Operating System Principles (SOSP’93), pages 58–68, Asheville, NC, USA, December
1993.

[Ora01] Andrew Oram, editor. Peer-to-Peer: Harnessing the Power of Disruptive Technologies.
O’Reilly & Associates, 1st edition, March 2001.

[PB02] Peter R. Pietzuch and Jean M. Bacon. Hermes: A Distributed Event-Based Middleware
Architecture. In Jean Bacon, Ludger Fiege, Rachid Guerraoui, H. Arno Jacobsen, and Gero
Mühl, editors, Proceedings of the 1st International Workshop on Distributed Event-Based
Systems (DEBS’02). In conjunction with the 22nd International Conference on Distributed
Computing Systems (ICDCS’02), pages 611–618, Vienna, Austria, July 2002. IEEE.

[PB03a] Peter R. Pietzuch and Jean Bacon. Peer-to-Peer Overlay Broker Networks in an Event-Based
Middleware. In H. Arno Jacobsen, editor, Proceedings of the 2nd International Workshop on
Distributed Event-Based Systems (DEBS’03), ACM SIGMOD, San Diego, CA, USA, June
2003. ACM.

[PB03b] Peter R. Pietzuch and Sumeer Bhola. Congestion Control in a Reliable Scalable Message-
Oriented Middleware. In Markus Endler and Douglas Schmidt, editors, Proceedings of the
4th International Conference on Middleware (Middleware’03), volume 2672 of LNCS, pages
202–221, Rio de Janeiro, Brazil, June 2003. ACM/IFIP/USENIX, Springer Verlag.

[PCM03] Gian Pietro Picco, Gianpaolo Cugola, and Amy L. Murphy. Efficient Content-Based Event
Dispatching in the Presence of Topological Reconfiguration. In Proceedings of the Inter-
national Conference on Distributed Computing Systems (ICDCS’03), Providence, RI, USA,
May 2003.

[PD99] Norman W. Paton and Oscar Diaz. Active Database Systems. ACM Computing Surveys,
31(1):63–103, March 1999.

[Pet77] James L. Peterson. Petri Nets. ACM Computing Surveys, 9(3):223–252, September 1977.

[PF03] Shrideep Pallickara and Geoffrey Fox. NaradaBrokering: A Middleware Framework and Ar-
chitecture for Enabling Durable Peer-to-Peer Grids. In Markus Endler and Douglas Schmidt,
editors, Proceedings of the 4th International Conference on Middleware (Middleware’03),
volume 2672 of LNCS, pages 41–61, Rio de Janeiro, Brazil, June 2003.

[Pie00] Peter R. Pietzuch. An Event Type Compiler for ODL. Computer Science Tripos Part II
Project Dissertation, University of Cambridge Computer Laboratory, Cambridge, United
Kingdom, June 2000.

[Pie02] Peter R. Pietzuch. Event-Based Middleware: A New Paradigm for Wide-Area Distributed
Systems? 6th CaberNet Radicals Workshop, February 2002.

[Pow96] David Powell. Group Communication. Communications of the ACM, 39(4):50–97, April
1996.

173

BIBLIOGRAPHY BIBLIOGRAPHY

[PPF+03] Shrideep Pallickara, Marlon Pierce, Geoffrey Fox, Yan Yan, and Yi Huang. A Security
Framework for Distributed Brokering Systems. http://www.naradabrokering.org, 2003.

[PS02] Peter R. Pietzuch and Brian Shand. A Framework for Object-Based Event Composition
in Distributed Systems. Presented at the 12th International Network for PhD Students in
Object Oriented Systems (PhDOOS’02) Workshop. In conjunction with the 16th European
Conference on Object-Oriented Programming (ECOOP’02), June 2002.

[PSB03] Peter R. Pietzuch, Brian Shand, and Jean Bacon. A Framework for Event Composition in
Distributed Systems. In Markus Endler and Douglas Schmidt, editors, Proceedings of the
4th International Conference on Middleware (Middleware’03), volume 2672 of LNCS, pages
62–82, Rio de Janeiro, Brazil, June 2003. ACM/IFIP/USENIX, Springer Verlag.

[PSB04] Peter R. Pietzuch, Brian Shand, and Jean Bacon. Composite Event Detection as a Generic
Middleware Extension. IEEE Network Magazine, Special Issue on Middleware Technologies
for Future Communication Networks, 18(1):44–55, January/February 2004.

[RD01] Antony Rowstron and Peter Druschel. Pastry: Scalable, Decentralized Object Location and
Routing for Large-Scale Peer-to-Peer Systems. In Proceedings of the 3rd International Con-
ference on Middleware (Middleware’01), pages 329–350, Heidelberg, Germany, November
2001.

[RFH+01] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott Shenker. A Scal-
able Content Addressable Network. In Proceedings of ACM SIGCOMM’01, San Diego, CA,
USA, August 2001.

[RHKS01] Sylvia Ratnasamy, Mark Handley, Richard Karp, and Scott Shenker. Application-Level
Multicast Using Content-Addressable Networks. In Jon Crowcroft and Markus Hofmann,
editors, Proceedings of 3rd International Workshop on Networked Group Communication
(NGC’01), volume 2233 of LNCS, pages 14–29, London, United Kingdom, November 2001.

[Riz00] Luigi Rizzo. pgmcc: A TCP-Friendly Single-Rate Multicast Congestion Control Scheme. In
Proceedings of ACM SIGCOMM’00, Stockholm, Sweden, August 2000.

[RKCD01] Antony Rowstron, Anne-Marie Kermarrec, Miguel Castro, and Peter Druschel. Scribe: The
Design of a Large-Scale Event Notification Infrastructure. In Jon Crowcroft and Markus
Hofmann, editors, Networked Group Communication, Third International COST264 Work-
shop (NGC’2001), volume 2233 of LNCS, pages 30–43, London, UK, November 2001.

[RLW+03] Anton Riabov, Zhen Liu, Joel L. Wolf, Philip S. Yu, and Li Zhang. New Algorithms
for Content-Based Publication-Subscription Systems. In Proceedings of 23rd International
Conference on Distributed Computing Systems (ICDCS’03), pages 678–686, Providence, RI,
USA, May 2003.

[Rob94] Lawrence Roberts. Rate-based Algorithm for Point to Multipoint ABR Service. ATM Forum
Contribution 94-0772R1, November 1994.

[RW97] David S. Rosenblum and Alexander L. Wolf. A Design Framework for Internet-Scale Event
Observation and Notification. In Proceedings of the 6th European Software Engineering
Conference/ACM SIGSOFT 5th Symposium on the Foundations of Software Engineering,
Zurich, Switzerland, September 1997.

[SA97] Bill Segall and David Arnold. Elvin has left the Building: A Publish/Subscribe Notification
Service with Quenching. In Proceedings of AUUG Technical Conference ’97, Brisbane,
Australia, September 1997.

[SAB+00] Bill Segall, David Arnold, Julian Boot, Michael Henderson, and Ted Phelps. Content Based
Routing in Elvin4. In Proceedings of AUUG2K, Canberra, Australia, June 2000.

[SAS01] Peter Sutton, Rhys Arkins, and Bill Segall. Supporting Disconnectedness — Transparent
Information Delivery for Mobile and Invisible Computing. In Proceedings of the IEEE Inter-
national Symposium on Cluster Computing and the Grid (CCGrid’01), Brisbane, Australia,
May 2001.

174

BIBLIOGRAPHY BIBLIOGRAPHY

[Sat96] Shirish S. Sathaye. ATM Forum Traffic Management Specification 4.0. ATM Forum af-tm-
0056.000, April 1996.

[SCFY96] Ravi Sandhu, Edward Coyne, Hal L. Feinstein, and Charles E. Youman. Role-Based Access
Control Models. IEEE Computer, 29(2):38–47, 1996.

[Sch96] Scarlet Schwiderski. Monitoring the Behaviour of Distributed Systems. PhD thesis, Univer-
sity of Cambridge Computer Laboratory, Cambridge, United Kingdom, 1996.

[SMK+01] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari Balakrishnan.
Chord: A Scalable Peer-to-peer Lookup Service for Internet Applications. In Proceedings of
ACM SIGCOMM’01, San Diego, CA, USA, August 2001.

[Spi00] Mark David Spiteri. An Architecture for the Notification, Storage and Retrieval of Events.
PhD thesis, University of Cambridge Computer Laboratory, Cambridge, United Kingdom,
January 2000.

[SQL92] X/Open CAE: Structured Query Language (SQL). Specification Data Management Version
2, The Open Group, March 1992.

[Sun99a] Sun Microsystems. Java Naming and Directory Interface (JNDI). Specification, Sun Mi-
crosystems, July 1999. http://java.sun.com/products/jndi/.

[Sun99b] Sun Microsystems. Java Remote Method Invocation (RMI). Specification, Sun Microsys-
tems, 1999. http://java.sun.com/products/jdk/rmi/.

[Sun01] Sun Microsystems. Java Message Service. Specification, Sun Microsystems, 2001. http:

//java.sun.com/products/jms/.

[Sun03a] Sun Microsystems. JavaSpaces Service Specification, Version 2.0. Specification, Sun Mi-
crosystems, June 2003.

[Sun03b] Sun Microsystems. Jini Specification, Version 2.0. Specification, Sun Microsystems, June
2003. http://java.sun.com/products/jini/.

[SW00] Sherlia Shi and Marcel Waldvogel. A Rate-based End-to-end Multicast Congestion Con-
trol Protocol. In Proceedings of 5th IEEE Symposium on Computer and Communication
(ISCC’00), Antibes-Juan les Pins, France, July 2000.

[TIB99] TIBCO. TIBCO Rendezvous. http://www.rv.tibco.com, 1999.

[TR00] Stefan Tai and Isabelle Rouvellou. Strategies for Integrating Messaging and Distributed Ob-
ject Transactions. In Joe Sventek and Geoff Coulson, editors, Proceedings of the IFIP/ACM
International Conference on Distributed Systems Platforms and Open Distributed Processing
(Middleware’00), pages 308–330, Hudson River Valley, NY, USA, 2000.

[TSLK01] Puneet Thapliyal, Sidhartha, Jiang Li, and Shivkumar Kalyanaraman. LE-SBCC: Loss-
Event Oriented Source-based Multicast Congestion Control. Technical report, Rensselaer
Polytechnic Institute ECSE, 2001.

[TSWM97] David L. Tennenhouse, Jonathan M. Smith, W. David Wetherall, and Gary J. Minden. A
Survey of Active Network Research. IEEE Communications Magazine, 35(1):80–86, 1997.

[W3C99a] W3C. Namespaces in XML. W3C Recommendation, World Wide Web Consortium, January
1999.

[W3C99b] W3C. XML Path Language (XPath) Version 1.0. W3C Recommendation, World Wide Web
Consortium, November 1999.

[W3C01a] W3C. XML Schema Part 0: Primer. W3C Recommendation, World Wide Web Consortium,
May 2001.

[W3C01b] W3C. XML Schema Part 1: Structures. W3C Recommendation, World Wide Web Consor-
tium, May 2001.

[W3C01c] W3C. XML Schema Part 2: Datatypes. W3C Recommendation, World Wide Web Consor-
tium, May 2001.

175

BIBLIOGRAPHY BIBLIOGRAPHY

[W3C03a] W3C. SOAP Version 1.2 Part 0: Primer. W3C Recommendation, World Wide Web Con-
sortium, June 2003.

[W3C03b] W3C. SOAP Version 1.2 Part 1: Messaging Framework. W3C Recommendation, World
Wide Web Consortium, June 2003.

[W3C03c] W3C. SOAP Version 1.2 Part 2: Adjuncts. W3C Recommendation, World Wide Web
Consortium, June 2003.

[W3C03d] W3C. XQuery 1.0: An XML Query Language. W3C Working Draft, World Wide Web
Consortium, November 2003.

[WCEW02] Chenxi Wang, Antonio Carzaniga, David Evans, and Alexander L. Wolf. Security Issues
and Requirements in Internet-scale Publish-subscribe Systems. In Proceedings of the 35th
Annual Hawaii International Conference on System Sciences (HICSS’02), page 303, Big
Island, HI, USA, 2002.

[WS98] Duncan J. Watts and Steven H. Strogatz. Collective Dynamics of Small-World Networks.
Nature, 393:440–442, June 1998.

[Wyc98] Peter Wyckoff. T-Spaces. IBM Systems Journal, 37(3):454–474, 1998.

[YHF+03] Yan Yan, Yi Huang, Geoffrey Fox, Shrideep Pallickara, Marlon Pierce, Ali Kaplan, and
Ahmet Topcu. Implementing a Prototype of the Security Framework for Distributed Bro-
kering Systems. In Proceedings of the International Conference on Security and Management
(SAM’03), pages 212–218, Las Vegas, NV, USA, June 2003.

[YL00] Yang Richard Yang and Simon S. Lam. Internet Multicast Congestion Control: A Survey.
In Proceedings of the International Conference on Telecommunications (ICT’00), Acapulco,
Mexico, May 2000.

[ZCB96] Ellen Zegura, Kenneth Calvert, and Samrat Bhattacharjee. How to Model an Internetwork.
In Proceedings of INFOCOM’96, pages 594–602, San Francisco, CA, USA, 1996.

[ZF01] Daniel Zappala and Aaron Fabbri. An Evaluation of Shared Multicast Trees with Multiple
Active Cores. In Proceedings of the IEEE International Conference in Networking (ICN’01),
pages 620–629, Colmar, France, July 2001.

[ZKJ01] Ben Y. Zhao, John Kubiatowicz, and Anthony D. Joseph. Tapestry: An Infrastructure
for Fault-Tolerant Wide-Area Location and Routing. Technical report, Computer Science
Division, University of California, Berkeley, Berkeley, CA, USA, April 2001.

[ZSSK02] Xi Zhang, Kang G. Shin, Debanjan Saha, and Dilip D. Kandlur. Scalable Flow Control
for Multicast ABR Services in ATM Networks. IEEE/ACM Transactions on Networking,
10(1), February 2002.

[ZZJ+01] Shelley Q. Zhuang, Ben Y. Zhao, Anthony Joseph, Randy H. Katz, and John D. Kubiatow-
icz. Bayeux: An Architecture for Scalable and Fault-tolerant Wide-Area Data Dissemina-
tion. In Proceedings of the 11th International Workshop on Network and OS Support for
Digital Audio and Video (NOSSDAV’01), June 2001.

176

