XenoTrust: Event-based distributed trust management

Boris Dragovic, Evangelos Kotsovinos, Steven Hand, and Peter R. Pietzuch
University of Cambridge Computer Laboratory
J J Thomson Avenue, Cambridge, UK, CB3 OFD
{firstname.lastname}@cl.cam.ac.uk

Abstract

This paper describes XenoTrust, the trust management
architecture used in the XenoServer Open Platform: a
public infrastructure for wide-area computing, capable of
hosting tasks that span the full spectrum of distributed
paradigms. We suggest that using an event-based pub-
lish/subscribe methodology for the storage, retrieval and
aggregation of reputation information can help exploiting
asynchrony and simplicity, as well as improving scalability.

1 Introduction

The XenoServer project [15] is developing a public infras-
tructure for general-purpose, public distributed computing.
Users of our platform can run programs at points through-
out the network in order to reduce communication laten-
cies, avoid network bottlenecks and minimise long-haul net-
work charges, or deploy large-scale experimental services.
Resource accounting is an integral part of the XenoServer
Open Platform, with clients paying for the resources used
by their programs and server operators being paid for run-
ning the programs that they host.

The nature of our business model for the XenoServer
Open Platform as an open and public infrastructure im-
poses several security and consumer protection require-
ments; users must be protected from intruders and snoops,
as well as from other participants who provide bad services
or abuse the platform. In the real world, servers and clients
operate autonomously. Servers may be unreliable; they may
try to overcharge clients, may not run programs faithfully,
or may even try to invade clients’ privacy and extract se-
crets. Clients may attempt to abuse the platform; they may
try to avoid paying their bills, or to run programs with nefar-
ious, anti-social or illegal goals. It is easy to see the need for
an efficient and scalable trust management infrastructure.

The architecture of our platform sets it apart from those
within which existing distributed trust management systems
operate. Unlike simple peer-to-peer recommendation ser-

vices, we are concerned with pseudonymous users, associ-
ated with real-world identities, running real tasks on real
servers for real money within a global-scale federated sys-
tem whose constituent parts may have different notions of
“correct” behaviour.

This paper describes the design and initial implementa-
tion of XenoTrust, the trust and reputation management ar-
chitecture that is used in the XenoServer Open Platform,
particularly focusing on its event-based functionality. In
companion papers, we introduce the platform as a whole
[11], and identify the threat model for XenoTrust [9].

2 Platform Overview

Figure 1 illustrates the architecture of the XenoServer Open
Platform, showing the various roles and interfaces.

register_xenoserver
validate_purchase_order
charge_from_purchase_order,

advertise_xenoserver
update_specificatic @ lookup_xenoserver 5
Xe ver client
Service
find_xenoservers
lookup_xenoserver - RD System

register_client
create_purchase_order

query_xenoserver_status
create_session
deploy_task

Figure 1. The XenoServer Open Platform

XenoServers host clients’ tasks in exchange for money,
and may be run by disparate organisations, akin to the
way in which server hosting facilities currently operate.
XenoServers function on a commercial basis using well-
maintained machines with long-term network presence —
not in “spare cycles” on users’ desktop systems. This, along
with the existence of XenoCorps, is an important distinction
between our system and “peer-to-peer” efforts.

XenoCorp provides authentication, auditing, charging



and payment, and has contractual relationships with clients
and with XenoServer operators — much as VISA or Mas-
terCard act as intermediaries between credit card holders
and the merchants from which they make purchases. It is
the third party trusted by both clients and servers.

The XenoServer Information Service (XIS) is used for
storing XenoServers’ status updates; each XenoServer pe-
riodically reports that it is alive, and provides information
about its capabilities and load. XIS uses XenoStore, which
provides the efficient distributed storage required to store
the updates. Clients may use the XIS directly to select ap-
propriate XenoServers; however, we anticipate that most
will make use of XenoSearch, which performs a match-
making process between clients and XenoServers, receiving
specifications of clients’ requirements and using a search al-
gorithm to identify a set of suitable servers.

3 XenoTrust Architecture

We consider XenoCorp to be self-authenticating, as a well-
known and trusted authority which is the root of the trust
delegation in the XenoServer Open Platform. Authentica-
tion of other entities in the XenoServer world is carried out
by credentials issued to the entities by the XenoCorp they
register with — more details on this process can be found in
[11]. Entities in our platform are associated with real world,
legal identities, through a XenoCorp.

As discussed in [9], we believe augmenting XenoCorp
with a logically centralized “consumers relations” service
is insufficient; it is unrealistic to expect all participants to
agree on common standards of behaviour — and even if
a single “acceptable use policy” could be defined it would
most likely be written in a natural language.

Instead we suggested a two-level approach to managing
trust by distinguishing authoritative and reputation-based
trust: Authoritative trust is a boolean property established
between a XenoCorp and the clients and servers that regis-
ter with it. Reputation-based trust is a discrete continuous
property which quantifies, in a particular setting, the trust-
worthiness that one component ascribes to another. It is dis-
tributed and highly subjective, in the sense that each entity
has its own, independent view of others’ reputations.

3.1 Operations and interfaces

The purpose of XenoTrust is to model, administer, ac-
commodate and distribute the fine-grained reputation-based
trust between participants in the XenoServer Open Plat-
form. The service is open to all participants and is fully
optional, consistent with the human social behaviour anal-
ogy in that in the real world we can choose to what extent,
if at all, beliefs of others influence our own.

Reputation representation. Conceptually, each compo-
nent forms a reputation vector which stores values about
different aspects of the reputation of other components
in the platform. This information is built through inter-
component interaction based on the individual experiences
and criteria. Different aspects of component behaviour —
like performance or honesty — are reflected in the reputa-
tion vectors through fields called fokens.

Statement advertisement. A community as a whole may
benefit from exchanging reputation information, or, inline
with the real world example, gossipping. This is of particu-
lar interest to newcomers who have not yet formed opinions
based on personal experience.

A statement is the basic unit of reputation informa-
tion advertised. A statement is a tuple {advertiser,
subject, token, value(s), timestamp}, compris-
ing the identity of the advertiser and the subject, a token
denoting the aspect of the subject’s reputation that is being
considered, a series of values indicating the extent of this
reputation, and a timestamp. The tuple is signed using the
advertiser’s authoritative credentials to prevent forgery but,
beyond this, XenoTrust does nothing ensure that statements
are in any sense valid: as with real-world advertisements,
users are under no compulsion to believe what they see or
to pay any attention to it. Moreover, statement advertise-
ments are chosen to be soft-state, as the requirements from
our trust management architecture do not impose, we be-
lieve, a need for long-term, reliable storage of reputation
information (see Section 3.4).

Rule-set deployment. Components are welcome to
search XenoTrust directly for statements that have been
made; e.g. to issue queries of the form “return all the state-
ments naming participant A”. However, this scheme is far
from scalable and will only take into account direct state-
ments made about the component in question. Instead, the
approach that we take is to move the computation of reputa-
tion vectors from the participants involved into XenoTrust
itself. This allows aggregation of information to take place
within XenoTrust and, crucially, allows it to be updated in-
crementally as new statements are received. The results of
this computation can also be shared between participants
using the same rule-sets to derive their reputation vectors.

Reputation retrieval. When participants deploy rule-
sets, they specify whether they will use the event-based
mechanism, or simply use polling. In the former case,
XenoTrust will notify them when a significant change hap-
pens (see Section 3.3). In the latter case, the final step in
using XenoTrust is for a component to query the rule-sets
that it has deployed in order to retrieve elements from its
reputation vector.



3.2 Rule-set language

The choice of a rule-set description language is crucial,
as it specifies the expressiveness, as well as complex-
ity, of the XenoTrust model. In order to accommodate a
wide variety of different types of queries while keeping
the XenoTrust interface simple and efficient, XenoTrust di-
rectly supports only simple atomic rule-sets. Services run-
ning above XenoTrust (e.g. XenoSearch) are responsible
for decomposing complex rule-sets, forwarding the atomic
ones to XenoTrust, and subsequently combining the results.

The atomic rule-sets supported by XenoTrust take
the form: {principal, property, advertiser,
function, [trigger]}, where:

e principal is the subject of the query;

e property is the token that the query refers to — e.g.
performance, bandwidth, stability;

e advertiser is a nonempty set of components whose ad-
vertisements are considered during rule-set evaluation;

e function is a means to aggregate reputation informa-
tion from advertisements matching the above criteria
— e.g. min, max, mean, avg, and;

e rrigger is the threshold beyond which changes to the
result of the rule-set evaluation triggers an event noti-
fication to the user.

Specifying a trigger is optional; components that do not
wish to subscribe for explicit event notification simply do
not include triggers in their rule-sets.

3.3 Event-based design

Most of the existing trust management architectures depend
on the traditional request/reply paradigm; participants re-
quest trust or reputation information from the infrastructure,
and then receive replies in return. This imposes a need for
polling, with all the associated communication overhead.
To avoid this overhead we advocate the use of an event-
based, publish/subscribe [10] framework for the efficient
advertisement of changes in reputation information.
Participants can subscribe to XenoTrust to receive events
whenever a defined change in the evaluation of their rule-
sets occurs. XenoTrust keeps track of the changes imposed
when incoming reputation statements are published (adver-
tised), calculates their impact on those rule-sets subscribed
for event notification, determines which participants need to
receive updates and notifies them accordingly. This event-
based design also allows very efficient rule-set aggregation.

3.4 Discussion

In the following we discuss some open issues and questions,
and present our initial thoughts.

Bootstrapping One obvious problem is the absence of
reputation information in XenoTrust at the start-of-day.
This means that, for some time after the platform has started
its operation, querying XenoTrust will be of little value.
However, if the right economic incentives are provided for
components to participate in the scheme, it is expected that
the critical mass of reputation information will be gathered
reasonably soon after the start-of-day.

Negative reputation problem Observing human social
behaviour, it is more common for people to give negative
feedback in response to poor service than to praise service
received at or above expectations. Therefore, it can be ex-
pected that the majority of statements will contain negative
reputation information, ultimately leading to a continual
global decrease in reputations, which could even get stuck
to the minimum. One simple solution might involve making
reputations relative to the average.

Statement expiry time Statement advertisement is soft-
state; statements are unreliably stored, and can be deleted
when they expire or when there is no more space to store
them. A malicious component might thus behave badly in
the hope that negative reports will expire before subsequent
interactions. However, we expect the lifetime of statements
will not be so short as to encourage such behaviour; and
even if it were, clients also maintain a local reputation vec-
tor, which they may consult and/or reinject to XenoTrust.

Sybil and Replay attacks Sybil attacks 8] are based on a
single malicious/faulty entity presenting multiple identities
to create a false reputation picture in the system. We ex-
plored the threat in depth in [9]. There are two main reasons
why Sybil attacks are unlikely in our architecture: difficulty
and cost of obtaining identities and inability to estimate the
impact of an attack, due to the nature of the trust model.

Replay attacks denote attempts to copy packets that pass
by and reinsert them later into a network to fool the le-
gitimate receiver [17]. With respect to our system, this
would comprise submitting multiple copies of reputation
statements. Signatures themselves provide only content au-
thenticity and integrity; our approach was to include times-
tamps creating the notion of statement freshness. Secure
clock related issues are addressed in [16, 3].

4 Deploying XenoTrust

This section considers the deployment of the XenoTrust ser-
vice and relevant parts of the two services it co-operates
with: XenoSearch and XenoStore.



Statement advertisements Reputation statements are
stored in XenoStore through XIS; for every new partic-
ipant in the XenoServer Open Platform, XenoCorp allo-
cates a XenoStore container for it, part of which is used for
storing the reputation statements the new participant sub-
mits. Those statements are made accessible to authenticated
users. XenoTrust then collects those reputation statements
from the respective containers, and stores them together in a
structured manner. The exact way of structuring data inside
XenoTrust can vary from one implementation to another;
in our prototype, we decided to use a simple, off-the-shelf
Relational Database Management System (MySQL).

Effectively, XenoTrust may collect statements from
the various containers using distributed call-backs, where
XenoTrust gets explicit notification of new statements be-
ing stored in a XenoStore container, or polling, where
XenoTrust has to regularly check the individual XenoS-
tore containers for new statement advertisements. For our
prototype implementation we decided to employ the latter
approach. Although using call-backs would slightly sim-
plify the implementation of XenoTrust, it would not offer
many substantial advantages. Also, the complexity of the
XenoServer Information Service’s design would rise dra-
matically, as it is a general-purpose system and call-backs
and interfaces would have to be reasonably generic.

Rule-set deployment The first step in obtaining reputa-
tion information from XenoTrust is deploying a suitable
rule-set. Following the description of the rule-set language
XenoTrust supports in Section 3.2, we decided to use SQL
for implementing rule-sets in our prototype; when a rule-
set is submitted to XenoTrust, the rule-set parser module
checks if it is a valid, atomic rule-set, and translates it to
an SQL query. Apart from simplicity, performance, public
acceptance and ease of use, one of the incentives for using
SQL is the ease of translating atomic rule-sets to it.

To illustrate the operation of the rule-set parser with re-
spect to the translation described above, as well as the de-
composition of complex rule-sets to atomic ones — done by
XenoSearch — we consider the following example: client
A submits the query “What is the average performance
reputation of XenoServer B”. As we described in Section
3.2, a rule-set is effectively a {principal, property,
advertiser, function, [trigger]} tuple. Deploy-
ing a rule-set involves calling the deploy interface exported
by XenoTrust, and providing the rule-set tuple. Thus, this
rule-set can be deployed by using the interface deploy (B,
-, AVG). The parser then translates this to

SELECT AVG(performance) FROM reputations
WHERE subject = ’B’

In the case of a complex rule-set like “What is the aver-
age performance reputation of XenoServer B, computed on
statements made by components that I valued to be in the

performance,

range of 0.5-0.7 with respect to their honesty”, XenoSearch
will decompose the rule-set into several atomic ones: “Who
are the XenoServers about who A has issued statements,
valuing their honesty to be between 0.5-0.7?” and “What is
the average performance for B computed on statements is-
sued by X", where X is each of the XenoServers that the first
query returned. Accordingly, it will deploy the two rule-sets
by calling deploy (-, performance, A, -) and deploy(B,
performance, X, AVG). The parser will then generate the
following SQL queries:

SELECT id FROM reputations WHERE advertiser = ’A’

AND (honesty > 0.5 and honesty < 0.6)

SELECT AVG (performance) FROM reputations
WHERE principal=B AND subject=X
We believe that, given the simple rule-set language
we propose, and the expressiveness of SQL queries,
XenoSearch along with the XenoTrust rule-set parser can
decompose and translate to SQL queries for most of the
complicated questions that clients may pose.

Reputation retrieval Each rule-set deployed in
XenoTrust is marked with a unique identifier, which
is passed back to the user who deployed it. This way,
the user can refer to the rule-set in the future, either to
view, change or remove the rule-set, or to ask for it to be
evaluated. The results of a rule-set that has been deployed
can be obtained either by polling XenoTrust, asking for
a rule-set evaluation and providing its identifier, or by
subscribing for explicit event notification, specifying on
what occasion the participant would like to be notified —
as explained in Section 3.3

The implementation of polling is simple; XenoTrust ex-
ports the evaluate interface through which users can invoke
this operation. For rule-sets that have subscribed to event
notification, XenoTrust evaluates them periodically after
checking the XenoStore containers for new statement ad-
vertisements. If the result evaluated result crosses the trig-
ger value, an event is multicast to the interested users.

Event composition Regarding events, we believe that
XenoTrust should support atomic events, which are primi-
tive notifications. An atomic event in XenoTrust is triggered
when the result of an atomic rule-set changes by more than
a predefined threshold — the “trigger” value in the rule-
set. However, applications will be more interested in the
combination of multiple atomic rule-set changes, i.e. in the
occurrence of composite event patterns that can be used for
trust-based decisions.

We delegate the task of monitoring complex changes in
rule-sets to a dedicated composite event detection layer that
runs on top of our platform as a generic middleware ser-
vice. The framework described in [14] enables clients to



detect arbitrary patterns of events in a distributed system in
an efficient and scalable way. Few assumptions are made
about the kind of publish/subscribe system the composite
detection service is deployed on. The language used to
specify composite event subscriptions is an extension of a
regular language with operators for timing, concurrency,
and parameterisation. As a result, instances of composite
events can easily be detected with extended finite state au-
tomata. Since certain composite events in XenoTrust will
be more popular than others, it is important to be able to
reuse composite event subscriptions. The composite event
framework supports this by decomposing complex compos-
ite event subscriptions into subexpressions that are then dis-
tributed throughout the system in the form of subdetectors.

5 Related Work

Over the last ten years, the notion of trust has evolved
immensely, from the first theoretical models [4], to span-
ning electronic communities [12]. The development of trust
models has progressed in multiple directions, such as on-
line auctions and retailers — like eBay and the amazon mar-
ketplace — and “regulator agent” based models [7]. Prob-
lems in this class of systems include very limited expres-
siveness, single-dimensional reputation and assumed uni-
formity of criteria. Another popular research avenue has
been in the area of peer-to-peer systems. Various mod-
els [1, 18, 2] have been developed, though showing exces-
sive resource usage (network and peer), information redun-
dancy, and high vulnerability. A different notion of trust,
viewed from the perspective of formulating security poli-
cies and credentials, is represented by projects such as PGP,
X.509, PolicyMaker [6] and KeyNote [5]. Probabilistic ap-
proaches like Maurer [13] have also been proposed.

Our system differs from these in that it combines hard se-
curity trust and soft, reputation-based trust within a flexible
and scalable architecture, suitable for global-scale systems.
Furthermore, we are not aware of any work incorporating
the notion of explicit event notification in a trust manage-
ment architecture.

6 Conclusion

In this paper, we have presented the design and initial im-
plementation of our distributed trust and reputation manage-
ment architecture, named XenoTrust, which provides inter-
faces for the users to submit their own perception about oth-
ers’ reputations, allows for simple reputation aggregation
rule-sets to be deployed, and provides asynchronous event
notification on significant reputation changes for its users.
We believe that our approach of exploiting distributed stor-
age, simple rule-sets, as well as event notification gives our
system unique flexibility, efficiency and ease of use.

7 Acknowledgements

We would like to thank Jon Crowcroft, Tim Deegan and
Tim Harris for their valuable suggestions, as well as Mar-
coni PLC for the financial support of Evangelos Kotsovi-
nos’ research.

References

[1] A. Abdul-Rahman and S. Hailes. Supporting Trust in Virtual

Communities. In Proc. HICSS, January 2000.
[2] K. Aberer and Z. Despotovic. Managing Trust in a Peer-2-

Peer Information System. In CIKM, pages 310-317, 2001.
[3] H. Attiya, A. Herzberg, and S. Rajsbaum. Optimal clock

synchronization under different delay assumptions (prelim-
inary version). In Symposium on Principles of Distributed

Computing, pages 109-120, 1992.
[4] T.Beth, M. Borcherding, and B. Klein. Valuation of Trust in

Open Networks. In Proc. ESORICS 94, pages 3-18, 1994.
[S] M. Blaze, J. Feigenbaum, and A. D. Keromytis. KeyNote:
Trust Management for Public-Key Infrastructures (Position
Paper). LNCS, 1550:59-63, 1999.
[6] M. Blaze, J. Feigenbaum, and J. Lacy. Decentralized Trust
Management. In Proceedings of the 1996 IEEE Symposium

on Security and Privacy, pages 164-173, May 1996.
[7] A. Chavez and P. Maes. Kasbah: An agent marketplace for

buying and selling goods. In Proc. PAAM’96, pages 75-90,
London, UK, 1996.

[8] J. R. Douceur. The Sybil Attack. In Proc. IPTPS, 2002.

[9] B. Dragovic, S. Hand, T. Harris, E. Kotsovinos, and
A. Twigg. Managing trust and reputation in the XenoServer
Open Platform. Jan. 2003. Accepted for publication at 1st

International Conference on Trust Management.
[10] P. Eugster, P. Felber, R. Guerraoui, and A. Kermarrec. The

many faces of publish/subscribe. Technical report, EPFL,

Lausanne, Switzerland, 2001.
[11] S. Hand, T. Harris, E. Kotsovinos, and I. Pratt. Controlling

the XenoServer Open Platform. In Proc. OPENARCH ’03,

Apr. 2003.
[12] S. Marsh. Formalising Trust as a Computational Concept.

PhD thesis, Department of Mathematics and Computer Sci-
ence, University of Stirling, 1994.

[13] U. Maurer. Modelling a Public-Key Infrastructure. In ES-
ORICS: European Symposium on Research in Computer Se-
curity. LNCS, Springer-Verlag, 1996.

[14] P. R. Pietzuch, B. Shand, and J. Bacon. A Framework for
Event Composition in Distributed Systems. In Proc. Mid-
dleware’03, June 2003.

[15] D. Reed, I. Pratt, P. Menage, S. Early, and N. Stratford.
Xenoservers: accounted execution of untrusted code. In
Proc. HotOS-VII, 1999.

[16] E. B. Schneider. A paradigm for reliable clock synchroniza-
tion. Technical Report TR86-735, 1986.

[17] P. Syverson. A taxonomy of replay attacks. In Computer
Security Foundations Workshop VII. IEEE Computer Soci-
ety Press, 1994.

[18] B. Yu and M. P. Singh. A Social Mechanism of Reputation
Management in Electronic Communities. In Cooperative
Information Agents, pages 154—-165, 2000.



