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Fig. 1. Distributed and shared memory communications in a role-parametric parallel HTTP downloader.

1 BACKGROUND
1.1 Channel-Based Concurrent and Distributed Programming in Go

Go is a popular industrial systems language.! One of its primary design features is first-class
language support for lightweight concurrency on multicore machines. Go offers easy spawning
of parallel coroutines, called goroutines, that are transparently multiplexed over an underlying
set of system threads. Goroutines communicate and synchronize via message passing over typed
channels, designed to alleviate the difficulties of low-level mechanisms such as mutexes, condition
variables and memory barriers commonly used in systems programming. As first-class objects, an
interesting and useful feature is the ability to pass channels over channels.

Go is also well-established in distributed systems; e.g., it is the implementation language of
frameworks such as Kubernetes, Docker and Jaeger. As the aforementioned concurrency features of
Go are specific to shared memory, a significant class of distributed programming in Go is conducted
using channel-based networking libraries via TCP, HTTP, etc. as transports. Developers appreciate
Go since distributed programming in practice often involves local concurrency: goroutines and
channels are effective for dealing locally with the inherent asynchrony of distributed interactions.

We illustrate such an application that integrates shared memory and distributed concurrency as
a running example, a parallel downloader (e.g., HTTP) which we refer to as Pget.” Fig. 1 depicts
the components of the application and the communication structures that arise.

(a) There are three categories of participants, one Master (M), n > 0 Fetchers (F), and one Server (S).
M creates a worker pool of n goroutines to serve as Fs, where the value of n is set at run-time,
and shares a Go channel with each to retrieve the data. Each F performs its download task (by
a Get/Res message exchange) with S concurrently via a separate HTTP channel.

(b) When an F finishes its download, it passes to M the data and a continuation channel over the
initially shared Go channel (this pattern is as in the implementation of htcat?).

(c) The passed channel (dotted line) permits M to relay the next message type in the protocol after
receiving a Data: e.g., to give the F another download task, or to end the goroutine (Done).

Go channels are homogeneously typed: the syntax of channel types is chan T for a given type T.
Channel passing as above (i.e., bundling the continuation channel into the current message) is
a way to affect the causality between the communications of different message types, as a safer
alternative to declaring and allocating all channels upfront: passing the continuation channel as
part of using the “current” channel helps prevent using them out of the intended order.

https://golang.org/. Companies using Go: https://github.com/golang/go/wiki/GoUsers. Go success stories: https://github.
com/golang/go/wiki/SuccessStories. Survey of 3,595 Go users: https://blog.golang.org/survey2016-results.

ZPget is based on htcat (https://github.com/htcat/htcat), a tool for parallelising HTTP GETs written in Go using channels
(and channel passing) and the standard net package, with performance gains compared to curl.
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1.2 Key Programming Challenges

The Pget example demonstrates some of the key challenges faced by distributed programmers in
many engineering languages, including recent languages like Go. As a terminology, we shall refer
to Go channels as shared memory channels, signifying intra-process message passing.

COMMUNICATION AND CONCURRENCY ERRORs Go offers convenient primitives for shared memory
channels, but does not offer any language support against classical errors such as deadlocks
(goroutines stuck on mutually blocking inputs). In a recent survey,' users perceived this to be the
main challenge in Go: “We asked how strongly people agreed [with] various statements about Go. [...]
Users least agreed that they are able to effectively debug uses of Go’s concurrency features.”
One factor is that Go’s channel types are limited. They do not at heart constrain the direction of
communication;® nor reflect the causality of communications across separate channels, which also
gives rise to reception errors (receiving an incorrect message type). These problems apply similarly
to uses of distributed channel libraries, that often are effectively “untyped” in practice.

DISPARATE COMMUNICATION ABSTRACTIONS Key to understanding an application like Pget as a
whole is the choreography of I/O behaviours by every participant across the multiple channels. At
the specification level, there is first the question of how to statically specify protocols where the
number and kinds of participants are dynamically determined: we refer to such protocols as having
dynamically-instantiated communication structures. In practice many protocols are only informally
specified, itself a cause of errors. This problem is compounded at the implementation level, where
disparate primitives/libraries are used to implement heterogeneous parts of an endpoint (e.g., shared
memory and HTTP in F)—even with an adequate specification, the programming abstractions do
not guide a correct implementation of the overall application protocol nor facilitate its verification.

1.3 Multiparty Session Types: Motivations

Towards addressing these challenges, in this paper, we present a new, practical framework for the
static specification and safe implementation of distributed Go programs, centred around a pivotal
extension of the theory of multiparty session types (MPST) [Coppo et al. 2016; Honda et al. 2016].
Our general motivation for using MPST to address the challenges in § 1.2 is as follows.

In common practice, channel-oriented communications programming, embodied by standard
networking libraries in many languages (including those with static data typing), is often effec-
tively “untyped”: for example, standard TCP socket APIs simply expose a raw byte stream in each
communication direction. Higher-level and more recent facilities, such as service-oriented APIs and
frameworks (e.g., SOAP, REST or Apache Thrift) and Go channels, can offer the improvement of
message-type safety: the messages to be sent and received can be statically checked to be of known
types. However, this still falls short of what is ultimately desired for communications-oriented
programming in general: protocol compliance. The aforementioned facilities mask this limitation
to certain extents: service-oriented frameworks essentially hardcode interaction structures to call-
return patterns, thus reducing protocol compliance (for individual invocations) to message-type
safety; Go channels are homogeneously typed, and often used with additional restrictions on the
communication direction (via ad hoc casting of channel types).

The above limitations of current practices are readily exposed in many applications. For example,
non-trivial service-based applications often involve, as a whole, the composition of multiple, smaller
services: e.g., invoke service A then B, which in turn uses either C (then the protocol is repeated
from the start) or D, and so on; such scenarios are increasingly promoted by architectures such as
microservices that favour fine-grained service decomposition. In the setting of Go channels, such
interaction structures require multiple independent channels to cater for the range of data types

3Go’s directed channel types (<-chan T or chan<- T) are derived by ad hoc casting, and offer no guarantees against deadlock.
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and communication directions. In contrast to the safety benefits of data typing enjoyed for “local”
computations, programming of such communications suffers from errors arising from protocol
violations (i.e., non-protocol-compliant I/O actions): despite message-type safety, these include the
classical reception errors (receiving an out-of-order message, e.g., an incorrect invocation of B before
A), deadlocks (a wait-for cycle of input dependencies) and orphan messages (“leftover” messages).
The idea of MPST is to detect such errors at compile-time through static typing.

The rest of this paper summarises our contributions (§ 2), demonstrates our work through the
running examples (§ 3), and presents our theory (§ 4), implementation (§ 5) and evaluation (§ 6).
Our Supplement’ gives additional examples and detailed proofs.

2 OUR CONTRIBUTIONS
2.1 In a Nutshell

(1) We develop the first theory of MPST to support role-parametric protocols in the traditional
distributed spirit of MPST, including proofs of decidability (inferring “role variants”; checking
well-formedness) and correctness of projection; § 2.2 details this contribution. Our theory is
directly motivated by Go applications, but the foundations are independent of Go. Our ap-
proach thus also applies to other settings where shared-memory and distributed channel-based
communication can be mixed (e.g., Rust).

(2) We implement our theory to give the first practical toolchain for MPST-based programming
in Go. Our toolchain generates lightweight, typed APIs for users to implement the endpoint
programs. Our toolchain is also the first to support practical programming of role-parametric
MPST, targeting a language such as Go (cf., dependently typed session z-calculus). It ensures a
statically well-typed endpoint program (i.e., by native Go type checking) will never perform a
non-compliant I/O action w.r.t. to the run-time instantiation of the role-parametric protocol.

(3) Besides safety, we confer programmatic benefits of MPST to Go. Our toolchain enriches channel-
over-channel passing in Go to session delegation (session-typed channel passing). Session code
written using our generated APIs is also transport-independent: switching and mixing transports
(e.g., Go channels, TCP) is safe and set by a single API argument.

(4) We demonstrate the applicability of our framework and run-time performance of our generated
APIs by specifying and implementing a range of use cases from parallel algorithms and Internet
applications, including modifying existing Go implementations of real-world applications—e.g.,
the overheads of our APIs are mostly negligible in programs adapted from [Gouy 2017].

We clarify the conditions for concrete applications of our practical framework:

e We target message passing applications where message delivery is reliable and order-preserving
between each pair of participants in each direction (e.g, TCP, or FIFOs in shared memory). Our
core theory is based on the standard asynchronous model of MPST, i.e., non-blocking outputs
with blocking inputs, but our results also hold for synchronous communications.

e Our framework is top-down from a source protocol specification, which must be well-formed
according to our definitions (§ 4). The expressiveness of our framework is attested by practical
examples (§ 3), formal examples (§ 4.2), and a range of real-world applications (§ 6.2).

2.2 The Advances of this Paper to MPST

MPST basics. Multiparty session types (MPST) is one of the approaches in the field of be-
havioural type theory [Ancona et al. 2016; Hiittel et al. 2016] proposed to address the challenges
discussed in § 1.2. Fig. 2 (a) depicts the standard top-down methodology of the originating MPST

“Technical report 2018/04, Department of Computing, Imperial College London.
https://www.doc.ic.ac.uk/research/technicalreports/2018/#4
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Fig. 2. Contrasting (a) the traditional top-down, distributed view of MPST [Coppo et al. 2016; Honda et al.
2016]; and (b) the “centralised” view of existing role-parametric MPST systems.

systems in the 7-calculus [Coppo et al. 2016; Honda et al. 2016], which we illustrate by a small
example: a ring communication structure between three Workers, W;, W;, and Ws.

G:W1—>W2 T Wo—> W3 :T. W3 — W :T.end

G is a global type: a specification of the communication structure (i.e., protocol) between the
participants (abstracted as roles) from a global perspective. G says W first sends a T message to W5,
who then sends a message to W5, who finally sends a message to W;. For each role r, the global
type is then projected to a local type, that describes the localised I/O actions from r’s perspective:

L1=W2!T.W3?T.end L2=W1?T.W3!T.end L3=W2?T.W1!T.end

L, says W should first send (!) a T message to W, followed by receiving (?) a T message from
Ws; the W, — W3 interaction is transparent to W;. Local types are used to statically type check
endpoint programs (formally, session z-calculus processes) implementing these roles: intuitively,
the typing checks protocol compliance by matching the structure of the I/O actions in the local
type to a correspondingly structured usage of I/O primitives in the program. A well-typed system
of processes, one for each role, is guaranteed free from reception errors and deadlocks.

A crucial design point of MPST is that projection promotes modularity: it decouples the program-
ming (and verification) of each endpoint. This is especially important for distributed programming,
which in addition to inter-process communications, may also be characterised by endpoints being
separately implemented by different programmers, using different techniques (e.g., multithreaded,
event-driven, etc.), technologies (e.g., client vs. server), and languages.

Addressing an open problem. One of the biggest challenges in MPST is expressiveness: essen-
tially, to attain the strong static guarantees that MPST aims to provide, global types are syntactically
limited and subject to conservative well-formedness and projectibility constraints (i.e., projection is
a partial operator).

A crucial practical limitation of MPST concerns the lack of support for role-parameterisation,
i.e., global and local types where roles are parameterised by indices. For instance, it should be
possible to write a single global type for a ring communication structure of any size, instantiated
dynamically; other applications include those involving parameterised worker/service instantiations
(e.g., Pget), and many parallel algorithms. The original theory of MPST does not support such
role-parameterisation, and while attempts have been made to extend the theory, these extensions
ultimately had to sacrifice (1) general decidability of type checking and (2) modularity of projection.

This paper presents a new theory that is the first to support role-parametricity in MPST without
the previous compromises, maintaining both decidability and modularity. Due to our new theory,
we are able to contribute the first practical toolchain for role-parametric, distributed, MPST-based
programming in an engineering language such as Go without relying on dependent types at the
implementation level. Our framework guarantees only I/O actions that are compliant with the
run-time instantiation of the role-parametric protocol are performed.
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Comparison. To further clarify our contributions, we illustrate the approach of Deniélou et al.
[2012]; Yoshida et al. [2010], the initial theoretical works that formulate a dependently typed MPST
for protocols with indexed roles by adding a primitive recursion operator R to types and processes.
The generalisation of the above example to a ring between k > 2 participants can be written as:

G =IIk:I.(RG’" 1i.Ax.G"") G’ =W[k] —w[e] :T.end G” = Wk-i-1] > W[k-1] :T. x
where I is the parameter domain (>2), i is an index variable, and x is a recursion variable. The use
of R in G can essentially be read as: repeat G” for i from k-1 to 9, then finish by doing G’.

In contrast to standard MPST, however, Fig. 2 (b) shows a corresponding top-down view of the
methodology promoted by these works. G is projected to a single local type (called the generic
projection) that encompasses the entire range of different index-value dependent behaviours as one.

Ly n=R(if p=wk] (We]!T.end)elseif p=Ww[e] (Wk]?T. end) else end)
(AL Ax.if p=Wk-i-1] W[k-1] ! T. x) elseif p=W[k-i] (W[k-i-1]?T . x) else x)
As the R operator iterates through the index range k..o for each participant p, the embedded
index expression cases will spell out the three distinct behaviours present in the ring: those of W[e],
W[1..k-1], and W[k]. We note that supplying the (valid) index domain, i.e., k > 2, in their system fixes
the type family—the intuitive case of a two-party ring requires declaring a separate type family (cf.,
k =1 is invalid in the above). Fixing the (finite) domain is required for decidability of type checking.
We now give the same example in our framework. The global type is:

Gring = W=>[1..k] : T. W[k] > W[1] : T . end
where = denotes a parameterised pipeline structure along the specified interval, i.e., W1] — W[2]...
W[k-1] — W[k]; it is syntactic sugar (§ 4.2) for an instance of our MPST-oriented foreach construct:
foreach W{i;:1..k-1,15:2..k} doW[i1] = W[iz] : T. cont (cf. the generic R). Our toolchain statically
determines there are three variants of W, with decoupled projections:

Lﬁﬂ; = w[2] ! . W[K]? Lﬁi[fg"k'” = w[self-1]2 . Wself+1]! LMK — =112 . wi]!
(We omit the T message labels and end.) self denotes the run-time value of the local process identifier.
From this single specification, the toolchain also determines the two valid endpoint families: that

comprising variants Lﬁﬂé and L\gi[lg (when k = 2), and when all three are involved (k > 2).

3 METHODOLOGY OVERVIEW
3.1 Go Basics

Wik]
Ring

We first summarise some basic Go features needed to understand our approach and code examples.

Types and variables. The following is a type declaration for a defined type (left), a variable
declaration (centre), and a shortened declaration (right):
type Init struct { Err error; id uint64; Ept *S_1tol } var data Data proto := Pget.New()
The left side defines a struct type named Init, that is a typed record with fields Err of type error,
id of uint64 and Ept of type *S_1to1 (i.e., a pointer type with base type S_1to1). The declaration in
the centre creates a variable data of type Data, automatically initialised to the zero value of that
type (e.g., nil for interfaces and pointers). The right side is a shortened declaration for variable
proto whose type and initial value is given by the expression Pget.New().

Methods and interfaces. A method is a function with a receiver, i.e., a value upon which the
method is invoked. The following is a method declaration (left) and a method call (right):
func (c *Foo) Job(a [JJob) *M_3 { /* Method body omitted %/ } y := x.Job(myJobs)
The left side declares a method Job, with receiver type *Foo, a parameter a of type []Job (method/
type names are unrelated), and result type *M_3. Arguments are always passed by value. An interface
specifies a set of methods; a type with a superset of methods implements the interface implicitly.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 29. Publication date: January 2019.
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Fig. 3. Main toolchain stages: role-parametric global protocol specification, projection onto a role variant,
and distributed Endpoint APl generation.

type Bar interface { m1(); m2() } func (b *Baz) m1() { } func (b *Baz) m2() { }
The left side defines an interface type Bar; the right side implements it for the base type Baz.

Package aliases. It is useful to note that Go allows packages (e.g., our generated APIs) to be
imported under an alias. This feature allows users of our APIs to locally alias the default generation
names, e.g., import S "github.com/.../pget/Protol1/S_1tol1" aliases S_1to1 as S.

3.2 Distributed, Role-Parametric MPST for Go: Overall Methodology - Pget

We demonstrate our framework by using our toolchain, depicted in Fig. 3, to work through Pget
(§ 1.1). For practical protocol specifications, we implement our new theory of role-parametric MPST
as an extension to Scribble (http://www.scribble.org/), an existing protocol language based on
standard MPST [Coppo et al. 2016]. From the spec, our toolchain generates lightweight APIs that
safely prescribe the I/O behaviour of each role variant (endpoint kind) as a whole, i.e., by capturing
the causality between I/O actions conducted over otherwise separate underlying channels.

Global protocol. The basic scenario comprises a Master (M) coordinating K Fetchers (F) to down-
load a file from an HTTP Server (S). The original project? upon which Pget is based implements the
former two, to interoperate with standard third party Web servers (e.g., Apache). A global protocol,
however, specifies the overall application from a neutral perspective: provided the interaction
structure can be expressed in terms of (MPST-based) message passing, the details of how any indi-
vidual endpoint may be implemented remain abstract at this level. This allows for the specification
of multiparty applications formed (or partly formed) by a composition of smaller services (e.g.,
traditional RPCs), similarly to the role of the HTTP server here.

Fig. 4 (top) lists a global protocol Pget written in our extended Scribble. We flesh out the de-
scription from § 1.1 but keep certain aspects simple for conciseness; subsequent examples will
demonstrate further features. We capture the channel mobility in Pget using session-typed channel
passing, called session delegation in the literature. The parameterised communication structure in
this example is also representative of protocols in other applications (e.g., § 6.2).

The protocol declares the three base role namesM, F and S. An asynchronous interaction is written,
e.g., Job from M to F[1,K1;, where M is the sender-side, and F[1,K] the receiver-side; F[1,K] stands
for the set of F in the inclusive, non-empty interval [1, k], where the value of K is to be supplied
when the session is initiated at run-time. By default, K is taken to be in N;: our well-formedness
conditions (§ 4.5) determine that the only valid instantiations of K are values >1 (specifically, well-
formedness dictates that every interval must be non-empty); the validity of concrete parameter
values is checked at run-time. Job is the message signature, declared in the Scribble module by, e.g.,

sig <go> "messages.Job" from "github.com/.../pget/messages" as Job;

where messages.Job is a Go data type that implements the Scribble API for data serialization.
We omit the similar declarations for the other messages. All together, this interaction specifies a

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 29. Publication date: January 2019.



29:8 David Castro, Raymond Hu, Sung-Shik Jongmans, Nicholas Ng, and Nobuko Yoshida

1 global protocol Pget(role M, role F, role S) {

2 Head from F[1] to S; Res from S to F[11; // (1) Obtain metadata from Server

3 Meta from F[1] to M; Job from M to F[1,K]; // (2) Allocate Fetcher download tasks
4 Get from F[1,K] to S; Res from S to F[1,K1; // (3) Perform downloads

5 Data from F[1,K] to M; Sync@A from F[1,K] to M; // (4) Gather data and control channels

6 3} // Sync@A is the local type projection of Sync onto A, i.e., a delegation
7 global protocol Sync(role A, role B) { choice at A { Done from A to B; } // Choice: terminate B (i.e., F;) or ...

8 or { ... }}
2 1 ? ?
y <DFI:EI.Meta/.\FIH,K:I.J'ob/.l F[1,K]?Data mFU,K].Sync@A
/ N\ % N
-5 SlHead ~ S?Res . M!Meta . M?2Job . SlGet . S?Res — M!Data — M!SynceA
NIV @® U U U U U U U O
~ F[1]?Head FL1]!Res F[1,K]?Get __F[1,K]!Res
s (1 O ) I

@), @),
M?job SlGet S?Res M!Data M!SynceA
e ) ) )
Fa.k (1) ), ), @), @), O

Fig. 4. Pget example from § 1.1 in our extended Scribble: (top) role-parametric global protocol; (bottom) the
projections onto each role variant, M, F; and F5_, represented as communicating FSMs.

scatter of Job messages (possibly with different values) from the single sender to the K receivers.
Similarly, Get from F[1,K] to S; specifies a gather of K Get messages from the Fs by the single S.
Singleton-indexed scatters/gathers coincide as a basic point-to-point interaction.

The message signature of the delegation action is Sync@A (adopting the syntax of Scalas et al.
[2017]), which denotes passing a channel for the A endpoint in the Sync protocol (obtained through
projection; see below). For clarity, we name M as A and F as B in Sync (M and F could be reused); and
give only the case for terminating the B/F goroutine by sending a Done on the delegated channel.

Projection. The distinct behaviours associated with each role name, i.e., the role variants, are
inferred from how the role names are indexed and used in the protocol body. A role name that is
never indexed is implicitly indexed over a singleton constant interval (whose value is irrelevant), as
is the case for M and S. Our toolchain infers from the indices that the definition of Pget induces four
role variants, i.e., four kinds of endpoints: M, Fy, F5_ and S. Fig. 4 (bottom) depicts the projection of
Pget onto each: our implementation uses a representation of our index-parameterised local types
(§4.2) based on communicating finite state machines [Brand and Zafiropulo 1983; Deniélou and
Yoshida 2012] that correspond straightforwardly to the syntactic types. In our setting, the FSMs
communicate via scatter/gather 1/O (subsuming basic point-to-point messaging), and may feature
nesting of FSMs inside states (demonstrated in § 3.3). The toolchain also determines these variants
form two valid families: one has M, F; and S (K = 1), and the other has all (K > 1).

The initial states are marked 1. For instance, in the FSM for M, the first action F[1]?Meta receives
the Meta message from F[11], followed by F[1,K]!Job that scatters Jobs to the K Fs. Then M waits
until it has gathered a Data from each F, and likewise the delegated control channel of type SynceA.

API types generation. The purpose of the API generation is to capture a projection as Go type
definitions to guide programming of the target variant, and impart safety assurances through a
combination of type checking and the functionality of the underlying generated code. It is possible
to generate various kinds of AP], suited to different programming styles—a benefit of our distributed
framework (cf. previous “monolithic” approaches Ng et al. [2015]; Yoshida et al. [2010]) is that
different endpoints could be separately implemented using different APIs: we present the most
direct API generation from a projection, that is close to channel-based programming in common
practices (e.g., TCP sockets, Go channels) and to the session 7-calculi in MPST formalisms.
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State type (with nested peer/action types) | Method name and signature (parameters, result type)

State | Peer(s) | I/O action Message label/values, aux. functions | Successor
M_1 F_1 Receive Meta(a *Meta) *M_2
M_2 F_1toK | Scatter Job(a [1Job) *M_3
M_3 F_1toK | Gather Data(a [JData) *M_4
M_4 F_1toK GatherAndSpawn Sync_A(run func(*A_1) End_A) End_M
1 func mainM(req HttpReq, K int) { 14 func runM(m *M_1) End_M {
2  proto := Pget.New() 15 var meta Meta; var data Data
3 M := proto.M.Kgt1.New(K) // API for K>1 16 // F[1]?Meta. F[1,KJ!Job. F[1,KI?Data. F[1,K]?Sync@A
4 ss1 := shm.Listen(8888+1); defer ssi.close() 17 return m.F_1 .Receive .Meta(&meta).
5 go mainF1(req, 8888+1) 18 F_1toK.Scatter .Job(split(&meta)).
6 M.F_1.Accept(ssl) 19 F_1toK.Reduce .Data(&data, agg).
7 for i :=2; i <=K; i++ { 20 F_1toK.GatherAndSpawn.Sync_A(runA)
8 ssi := shm.Listen(8888+i); defer ssi.close() 21 }
9 go mainF_2toK(req, 8888+i) 22
10 M.F_2toK.Accept(i, ssi) // Supported by K>1 API 23 func runA(a *A_1) End_A {
11 M.run(runM) // runM: func(+*M_1) End_M 24 return a.B.Send.Done() // Just do Done, for brevity
12} 3} 25 }

Fig. 5. (top) Go API types and /O method signatures generated for M in Pget; (bottom) an M endpoint
implementation using the generated API.

In short, the API generation takes the FSM for a target role variant and (i) reifies each state as a
state-specific Go type, that (ii) offers a generated I/O method for each of the transitions from that
state; the result type of each I/O method is set to the successor state of that transition. We refer to
instances of the state-specific types as state channels, and they are created only by the API itself.
A state channel API is basically an interlinked set of lightweight, variant- and state-specific type
wrappers that abstract from the concrete I/O actions on the underlying channels (Go channels,
TCP, etc.) to the various participants of a multiparty communication session.

Fig. 5 (top) summarises the state channel API generated for M. On the left, ‘State’ is the “top-level”
type for each protocol (FSM) state. ‘Peer’ is a type that denotes the valid interaction peers at each
state, accessed as a field of State; similarly the valid ‘I/O action’s are also denoted by types accessed
as fields of Peer. On the right, the valid message types for each action are offered as methods on
the action types, taking the message values as parameters, and resulting in the successor state type.
The various actions (e.g., Receive, Scatter) and parameters are generated based on the FSM state.

As an example, assuming variables m and meta of the initial state type M_1 and message type meta,
respectively, the first I/O action in an M program may be guided by the API as:

m.F_1.Receive.Meta(&meta) which can be read as: on channel m, do F;? Meta.
Since the result type of I/O methods is used for successor states, input methods like Receive/Gather
are generated to store the deserialized message values into the pointer arguments (e.g., meta),
following idiomatic usage of standard Go APIs (e.g., encoding/gob). The alternative of returning
a pair of the successor state and the deserialized values hinders fluent call-chaining. Variable
declarations in Go allocate memory initialised to zero values (and are thus safe to read).

We highlight that the I/O method parameters relate only to messages: all index computations
and mappings to underlying channels are internalised within the API from the source specification.
For simplicity, we use the default type/method naming as illustrated; users may instead use Go
package/type aliases (each state has a separate subpackage; cf. § 3.1) in the local program, or supply
name annotations in the protocol—i.e., specific naming schemes are not a crucial detail.

Endpoint programming. Fig. 5 gives an example Go implementation of M using the API gener-
ated as above. We assume Go type definitions (e.g., Get, Res) for each message signature as described
earlier, and a HttpReq helper type that holds the various field values of a HTTP request.
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ENDPOINT INITIATION An endpoint implementation typically starts by establishing a new session

for the target protocol, signified by instantiating the generated API frontend type: here, proto
of type Pget. This is used to create a new Endpoint by using the appropriate constructor from a
generated “menu” of nested type functions: e.g., line 3 in Fig. 5 uses the constructor for M under
the K_gt1 (K > 1) family. An incompatible K argument for this family is a run-time error: a check
on the implicit constraint (derived from the protocol) is built into the generated method (§ 5.3).
An Endpoint is first used to establish communication links to its peers by the generated connection
methods Accept (lines 6 and 10) and Dial (illustrated below), similarly to standard Socket APIs (e.g.,
tep or unix via the net package), with the additional option to use shared memory Go channels
(shm package) as a transport; in Pget, for instance, the Master and the Fetchers communicate via
shared memory, as indicated by the usage of the shm package on Lines 4 and 8. The K > 1 API
selected for M in this code supports (i.e., allows by static typing) the Accept (and Dial) method for
Fy. k (line 10); whereas the K =1 API has connection methods only for F;.
After initiating the session, we use a generated run method on the Endpoint to conduct the protocol
by supplying a func(*M_1) End_M, where M_1 is the initial state channel type of this endpoint, and
End_M is the terminal type. We note the result is set to the End type even for non-terminating
endpoints (i.e., persistent sessions)—since no generated I/O method will actually return a state
channel of this type, this signifies the function should be non-terminating.

PROTOCOL IMPLEMENTATION Intuitively from an FSM view, an implementation of the run argument
function using the state channel API must observe one simple usage condition: on the current state
channel, call exactly one I/O method to obtain the next, up to the terminal state (if any). Following
this, the implementation, e.g., runM (line 14), is thus guided by the static type of each state channel
as the programmer works through the protocol. For a given session instance, the only way to
obtain a value from the API that statically satisfies the End result type of a (terminating) endpoint
is to reach and perform a generated I/O method that corresponds to a terminal transition.

We have used the API in a concise call-chaining style; the user may also use the generated types
in more explicitly imperative (e.g., protocol steps as sequenced statements) or “functional” (e.g.,
via functions with state type parameters and result) styles, interleaved with other application
operations as needed. The Reduce method on line 19 is an additionally generated convenience
variant of the basic Gather (Fig. 5, top). We omit the simple definitions of functions split and agg.

TRANSPORT ABSTRACTION AND DELEGATION Endpoint programs for each variant are implemented
in a similar fashion. Assuming an F1 Endpoint object created using the generated API, we may
find in a preamble for F;:

F1.M.Dial(shm.Client, "localhost", portM); F1.S.Dial(tcp.Client, req.Host, req.Port)

F1 is used to connect (Dial) to M and S on shared memory and TCP transports, respectively.
Starting from the initial state channel (below, f), the programmer can rely on the API to guide the
way through the multiparty protocol for F; (cf. its FSM, Fig. 4) as a whole, correctly dispatching
the interleaved I/O operations with M and S on the underlying shm and tcp channels:

// Assuming vars req:HttpReq, res:Res, job:Job, etc., F; does: S!Head. S?Res. M!Meta. M?Job. ...
f. S.Send.Head(req.Head()). S.Receive.Res(&res). M.Send.Meta(res.Meta()). M.Receive.Job(&job). ...

Our API generation takes advantage of cheap goroutine spawning to offer various convenience
methods for delegations. In the run method of the delegation sender, i.e., Fy:

// New Sync session // Spawns B goroutine // M!Sync@A.end -- i.e., delegate 'a' to M
. proto := Sync.New(); a := proto.Shm.A.New(runB); return f8.M.Send.Sync_A(a)

The second step is a Scribble-Go API facility for establishing shared memory sessions: the New
constructs an A endpoint of a new session for the Sync protocol (Fig. 4), while spawning a goroutine
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s @F[”?Hea;d? 1 func runS(s *S_1) End { 7 func nested(i int, s %53_1) S3_End {
F[1]!Res 2 var head *Head 8 var get *Get
3

TTK return s.F_1.Receive.Head(head). 9 return s.F_i.Receive.Get(get).
| It F[i]?Getf.\F[i]!Res I 4 F_1.Send.Res(Res.New(head)). 10 F_i.Send.Res(Res.New(get))
@ N O 5 Foreach(nested) } 11 }

Fig. 6. Projection and example user code for S in the revision of Pget using foreach.

for the implementation function supplied for each of the other endpoints (i.e., runB for B); shm
channels are implicitly created between each endpoint. Assuming f8 is of the penultimate state
type for Fq, the Send then delegates the state channel a to M, satisfying the local type M! SynceA.
The GatherAndSpawn in M (Fig. 5, line 20) is generated for receiving channels: it implicitly spawns the
supplied function, typed from the received state to End, as a goroutine for each received channel.
STATE CHANNEL LINEARITY AND SAFETY GUARANTEES The use-exactly-once (i.e., linear use) con-
dition of state channel APIs means a program should never reuse a state channel instance: as
a default, the API generation inlines minimal run-time checks against repeat channel use into
the APL, though our examples illustrate how call-chaining may help avoid linearity errors by
keeping intermediate channel values implicit. But regardless of channel linearity, a generated API
guarantees that an endpoint implementation never performs a non-compliant I/O action w.r.t.
to the run-time instantiation of the parameterised protocol, up to premature termination (e.g.,
failures). We discuss linearity, options for static linearity, and our safety guarantees in § 5.4.

3.3 Pget - Revised using foreach (Role-Parametric Subprotocols as Nested FSMs)

Like the original program, an MPST-based (re-)implementation of the client side of Pget (M, F; and
F2. k) is interoperable with a third-party S such as Apache. However, our framework equally allows
to implement an S that would be interoperable with the original client (and our Scribble client).

The specification in Fig. 4 has: Get from F[1,K] to S; Res from S to F[1,K1;.As depicted there,
the projection onto S results in a gather from all Fs (F[1,K]?Get) and a scatter to all Fs (F[1,K]!
Res). In practice, the more desirable behaviour is for S to serve the Get-Res exchange with each F
concurrently. This may be specified via our foreach extension to Scribble, that allows to express a
form of role-parametric subprotocols: we can replace line 4 in Fig. 4 by

foreach F[i:1,K] { Get from F[i] to S; Res from S to F[i]; }

Fig. 6 depicts the projection by our toolchain onto S: the default behaviour is to repeat the nested
FSM for i:1. .K in sequence. The same FSMs and APIs are generated for F; and F,_ as in Fig. 4.

Fig. 6 (right) gives an implementation of S using the default foreach API generation. The basic
API generation for a state s with a nested FSM is to generate a Foreach method, that on entering s
first executes the subprotocols to completion: it takes the nested behaviour as a first-class function,
and performs it sequentially over the parameter range [1,K] (implicit within the generated API). In
general, Foreach then returns an intermediary value for performing the transition out of s; in this
example, it directly returns End. When parameterised variants within a foreach do not interact with
each other, however, an additional method is generated that alternatively performs the subprotocols
in parallel. As desired of S above, this allows by replacing lines 3-5 in Fig. 6:

return s. F_1.Receive.Head(head). F_1.Send.Res(Res.New(head)). Parallel(nested)
The Parallel method spawns a separate nested goroutine for each parameter value.
Further examples. We demonstrate protocol branching and recursion in a range of later exam-

ples, in formal notation (e.g., Ex. 4.4, Ex. 4.8 in §4.2) and our Go APIs (e.g., Fig. 13 in §5.3). An
implementation of F; and other larger examples are in the Supplement* (e.g., §1.1.3, § 1.2, § IV.1.2).
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E€E 2= E{+E; | E1-E; | a | k DeD == E..E aechA k ek iel x eEUI
G €G == rxi] = rlx2] :{¢; . Gj}jey | foreachR{ij:D;}jcjdoGy; Gy | cont | recX G | X | end
Lel == r[x]'"{€; . Lj}jey | r[x]1?{¢; . Lj}jey | foreachR{i;:Dj}jeydoL;; Ly | cont | recXL | X | end

Fig. 7. Syntax of rank expressions (E € E), intervals (D € D), global types (G € G), and local types (L € L)

4 THEORY

Our new theory generalises the original MPST [Coppo et al. 2015; Honda et al. 2016]. It consists of
the following contributions: § 4.1 — an abstract algebra of ranks to index role names, which subsumes
index domains in existing parameterised MPST approaches; § 4.2 — languages of parameterised
global types and local types, to specify communication patterns among indexed roles from a global
perspective and a local perspective, using a new foreach construct; § 4.3 — the first static inference
procedure for role variants; § 4.4 — a new projection operator that produces local types for role
variants, based on a global type; and § 4.5 — theorems that certify role variant inference is decidable,
checking well-formedness is decidable, and projection is correct (i.e., the set of local types projected
from a well-formed global type is equivalent to the global type; this implies safety).

4.1 Roles and Ranks

Roles. Let R denote the set of all role names, ranged over by r (and R over sets of role names).
Every role name identifies a role that individuals (i.e., endpoint programs, e.g., goroutines) enact in
a protocol. For instance, the role names in the Pget protocol are M for Master, F for Fetchers, and S
for Server. Our theory allows every single role to be enacted by multiple individuals.

Ranks. Let A denote the set of all ranks, ranged over by a. Every rank identifies an individual
among the possibly many that enact the same role (cf. ranks in MPI; principals in Wysteria [Rastogi
et al. 2014]), through indexed role names. For instance, F[3] identifies the third Fetcher.

Our theory is parametric in A, meaning we do not fix a specific set of ranks. Instead, more
abstractly, the only structure we assume of A is the existence of an operator +, a constant 0, and
relations < and <, such that: (A, +, 0) is a torsion-free abelian group; (A, <) is a partially ordered
set; (A, <) is a strictly totally ordered set; + preserves < and <; first-order formulas over (A, +, 0, <)
are decidable; and the set of ranks between any ranks a; and a; under < (i.e,, {a | a; < a < ay}) is
finite and enumerable. If these conditions are satisfied, we call (A, +, 0, <, <) a rank structure. The
Supplement,* § .1 motivates the need for these conditions.

Example 4.1 (1d). The set of all integers Z, with the standard integer addition for +, and with
the standard non-strict and strict integer orders for < and <, is a rank structure; (A, +, 0, <) yields
linear integer arithmetic, which is decidable.

Example 4.2 (2d). The set of all pairs of integers Z X Z, with coordinate-wise addition for +, with
the non-strict product order for <, and with the strict lexicographic order for <, is a rank structure;
(A, +,0, <) can be encoded in linear integer arithmetic, which is decidable. A = Z X Z enables
indexing role names with 2d coordinates, for matrix and mesh protocols; see Ex. 4.6, 4.7.

4.2 Global Types and Local Types

Preliminaries. Global types specify communication patterns among a possibly unknown num-
ber of individuals from a global perspective. We start with some preliminaries.

e We assume a set K = {ky, kg, ...} of all parameters, ranged over by k.
e We define the set E of all rank expressions, ranged over by E (Fig. 7, first line). If a rank expression
contains parameters, it is open; otherwise, it is closed.
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e We define the set D of all intervals, ranged over by D (Fig. 7, first line).
o We assume a set [ = {iy, iy, ...} of all index variables, ranged over by i. We use index variables to
iterate over intervals, denoted as i: D. Let E U I denote the set of all indices, ranged over by x.

Global types. Fig. 7, second line, shows the syntax
of global types. ri[x1] — rz[x2] : {¢; . G;}je; denotes an
asynchronous communication of a message labelled as
{; from sender ri[x;] to receiver ry[x,], for j € J (chosen
by the sender), followed by Gj; as the syntax of message

iter. i; iz Dbody after substitution

1 2 W1]—>W2]:val. cont
2 3 W2]—>W3]:Vval. cont

labels is irrelevant in our theory, we leave it unspecified. 7 8-1 8 W[8-1]—W[8]: Val . cont
We omit curly brackets if ] is a singleton; also, if a role

is enacted by only one individual, we omit its index (e.g.,  Gpipe = foreach W{i;:1..k-1,1,:2..k} do
we write M instead of M[@] for Master). rec X G denotes (W[i1] > W[iz]:Val. cont); end

recursion; end denotes termination.

foreach R{i;:Dj} ;e do Gy ; G2, the key novelty of our
language, denotes a loop of the communications specified
in body Gy, followed by continuation G,; cont indicates
the loop should continue with the next iteration. The iteration domain of foreach is specified by
R{ij:Dj};ej, where R denotes a non-empty set of role names, and where every D; has the same
length; it essentially constitutes a “table”, where “columns” correspond to index variables, “rows”
to iterations, and the “cell” in column ij, row u, contains the u-th rank in D; (sorted by <). The
intervals are iterated over in lock-step: the idea is that in the u-th iteration of the loop, at run-time,
individuals communicate with each other as specified in G, after substituting r[a] for r[i;], for
every r € R, and where a is the corresponding rank in the table. For instance, Fig. 8 shows the
table for the iteration domain in the Pipeline global type. By definition (i.e., the conditions on rank
structures, plus every interval has a lower and upper bound), every interval is finitely enumerable.

The bounded “counting” aspect of our foreach is inspired by dependent type theories and the
primitive recursion operator used in previous work (§ 2.2). However, a unique feature of our MPST-
oriented foreach is that it essentially iterates over indexed role names (W[ 1], W[2], ...) instead of over
“naked” indices (1, 2, ...; cf. primitive recursion). Leveraging this role-based information is key to
facilitating the static, decidable inference of role variants (§ 4.3), projection (§ 4.4), and checking
condition 3 of well-formedness (§ 4.5).

Fig. 8. Table (k = 8) for the iteration domain
in the Pipeline global type

Remark 1. An iteration domain {ry,...,r,}{i1: D1, ..., im:Dp} can equivalently, and closer to our
extended Scribble notation, be represented as a sequence ry[iy:D1], r1[iz: D3], ..., rn[im: Dim ], where
n and m are unrelated. Our present notation is more convenient to deal with in proofs.

Example 4.3 (Pget). Let k represent the number of Fetchers in the Pget protocol (§ 3.2). The
following global type specifies the first half of the Pget protocol (A = Z): Gpger =

F[1] > S:Head.S—F[1] : Res . F[1] & M: Size . foreach F{i:1..k} do (M— F[i] : Range . cont) ; ...

Example 4.4 (Ring). Let k represent the number of Workers in the Ring protocol (§ 2.2). The
following global type specifies the Ring protocol, extended with branching and recursion (A = Z):
Gring = rec X W[1] — W[2] :

Nx . foreach W{i;:2..k-1,1i5:3..k} do (W[i;] = W[is] : Nx . cont) ; (Wk] = W[1] : Nx . X)
{Dn . foreach W{i{:2..k-1,i3:3..k} do (W[i;] = W[iz] : Dn. cont) ; (Wk] = W[1]:Dn. end)}

Example 4.5 (Fibonacci). The following global type specifies a Fibonacci-k protocol (A = Z):
Grib = foreach Fib{i(g):1..k-2,i(1):2..k-1,1:3..k} do
(Fib[i(.)] — Fib[i] : val . Fib[i(y)] — Fib[i] : Val . cont) ; end
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(a) Horizontal wave (b) Diagonal wave (c) Column pipeline

Fig. 9. Basic mesh communication patterns (Ex. 4.7)

Example 4.6 (Hadamard). Let kq; and ky, represent the top-left and the bottom-right of 2d
matrices A, B, and C. The following global types specifies a protocol to compute the Hadamard
product (i.e., coordinate-wise product) of A and B as C (A = Z X Z):

GHaq = foreach {A,B,C}{i:kyi..kwn} do (A[i] = C[i]: Vval.B[i] —C[i]: Val. cont) ; end

Example 4.7 (Mesh). Let kq1, kin, kw1, and kyh represent the top-left, the bottom-left, the top-right,
and the bottom-right of a 2d mesh. The following global types (message labels omitted), three of
which are visualised in Fig. 9 for a 4x3 mesh, specify five basic mesh communication patterns:
horizontal wave, diagonal wave, column pipeline, 2d scatter, 2d gather.

GHWave = foreach W{il : kll .. kwh_(1 ,@), iz:k11+(1 ,@) .. kwh} do (W[ll] — W[ig] . cont) ; end
Gpwave = foreach W{ij:kqq..kwh=(1,1),1i2:k11+(1,1)..kwn} do (W[i1] = W[iz] . cont) ; end
GColPipe = foreach W{il :ki1..-k1h=(0,1),1i2:kq1+(0,1).. klh} do
(W[i1] = W[i2] . cont) ; W[kin] — W[k11] . end
Gadsca = foreach W{i:kii..kwh} do (M— W[i] . cont) ; end
G2dGat = foreach W{i:kqj..kwh} do (W[i] =M. cont) ; end

Remark 2. Although our foreach operator for global types unrolls iterations of its body sequentially
in terms of its index values, it maintains the concurrency characteristics of MPST. E.g., in standard
MPST, the two interactions in A— B :Foo . C — D :Bar are concurrent since the roles in each are
independent; this remains the case if such a fragment occurs inside a foreach, e.g., the A/B action of
the final iteration could potentially occur before the C/D of the first iteration.

In addition to such “latent” concurrency, a global foreach may be elided from the local type
by projection depending on the communication pattern. For instance, none of the Worker local
types in the Pipeline protocol (shown in the next paragraph) has foreach, contrasting the global
type in Fig. 8. This observation is more pronounced when extended to a Recursive Pipeline proto-
col, rec X (foreach W{ij:1..k-1,i5:2..k} do (W[i;] = W[i]: Val . cont) ; X), which allows multiple
Worker pairs (participating in different recursive calls) to communicate concurrently.

Our implementation also supports runtime parallelisation of foreach as an optimisation, when
parameterised variants do not interact (demonstrated in § 3.3).

Local types. Fig. 7, third line, shows the syntax of local types. r[x] !{{; . L;};jc; denotes the
send of a message labelled as ¢; to receiver r[x], for j € J (chosen by the sender), followed by the
actions specified in L;. Symmetrically, r[x] ?{{; . L;}jc; denotes the receive of a message labelled
as {; from sender r[x]. For instance, the local types for k = 3 Workers in the Pipeline protocol are:

L‘;’i[;j —W2]!T.end LM w127 . W[3]!T. end Lﬁi[se] = W[2]2T . W[4]!T. end

Pipe
The Supplement,* § I.2 contains more example local types, for the same protocols as above.

Syntactic sugar. Fig. 10 shows syntactic sugar for foreach in global types and local types.
-~ expands to an all-to-all global type; it demonstrates foreach nesting. = expands to a pairings
global type. Note that while senders may have multiple labels to choose from (if | J| > 1), each of
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r1[D1]5 r2[D] :{¢; . G’ }je; £ foreach ri{i1:D;} do
(foreach ry{iz: Dy} do (ri[i1] — ra[iz] : {¢; . cont}jej) ; cont) ; G’
foreach {rl, rz}{ille, iz!Dz}(rl[il]—)rz[iz] {gj . cont}jEJ) 5 G,
ri —>7'2[E1] {fj . foreach rz{i:E1+1 Ez} do (rl —>r2[i] f] . Cont) N GJ}JEJ
. foreach r{11 :Eq+1..Ey-1, 122E1+2..E2} do
(rl[i1] = r[iz] :¢; . cont) ; G; ies
foreach r{i:D} do (r[i] T{¢; . cont}jes); L" ift € {!,?}
r[E1] '{fj . foreach r{i:E1+1..E3} do (r[i]! fj .cont) ; Gj}jej if D=E;..E;

r1[D1]= r2[Da] : {¢; . G }jey
rn5rlEr B :{l; . Gj}jes

> >

r A Er Bl (6 Gy 2 r[El]—>r[E1+1]:{fj

r[DIT°{¢; . L }Yyeg
V[D] !l{fj . Lj}jg]

1> >

Fig. 10. Syntactic sugar for global types (<, =, 1, &) and local types (1*, 1), under A = Z

these choices has the same continuation G’. This is to syntactically enforce a fundamental rule
of interacting parties in a parameterised setting: if a protocol allows separate parties to make
independent (inconsistent) choices without additional synchronisation, the continuation of that
protocol cannot depend on any of those choices (because parties are not aware of all choices made).

L expands to a master-slaves global type, where the master (r;) chooses a message label from
{¢;}je; and communicates a corresponding message to all its slaves (r;); the distinguished com-
munication from the master to the first slave ensures the master commits to its initial choice. =
expands to a pipeline global type, where the front Worker chooses a message label from {¢;}¢;,
then corresponding messages are propagated onward. In these two sugars, only one choice is made
(in contrast to > and = ), known to all parties, allowing choice-dependent continuations.

T* expands to a send-to-all (f =) or receive-from-all (T = ?) local type that corresponds precisely
to the projections of (the expansion of) = . Similarly, !' expands to a send-to-all local type that
corresponds precisely to the projections of - . The difference between !* and ! pertains to the
number of choices made: with !*, the sender may choose a different message label for every receiver,
while with !!, the sender must choose the same message label for every receiver. (No special local
type sugar is needed for the remaining global type sugar, as its projections have no foreach.)

Example 4.8 (Syntactic sugar). The global types in Ex. 4.3, 4.4 can be rewritten:
Gpget = F[1] = S: Head . S—F[1] : Res . F[1] —M: Size . M— F[1..k] : Range . ...
GRing = rec X (W=>[1..k] : {Next . Wk] = W[1] :Next . X, Done . W[k] — W[1] :Done . end})

4.3 Role Variants

Role variants. In our theory, different individuals that enact a role with the same name may
have different communication behaviours; theoretically, role names are uninterpreted constants,
void of semantics. For instance, the front Worker (who only sends), the middle Workers (who both
receive and send), and the back Worker (who only receives) in the Pipeline protocol (Fig. 8) have
different communication behaviours, but they all enact the same role W.

This phenomenon presents a theoretical challenge: neither can we associate a single local type L
with a role r (i.e., L can impossibly cover all behavioural variations exhibited by individuals that
enact r), nor can we associate a local type with every individual (i.e., the number of individuals can
be unknown until run-time). To solve this problem, we introduce the concept of role variants: a
group of (ranks of) individuals that both enact the same role r and have “the same” behaviour, in
the sense that the behaviour of each of these individuals can be specified by the same local type.
For instance, the single local type that specifies the behaviour of every middle Worker is:

ng.[2"k_1] = W[self-1]?Vval . W[self+1]!val.end
1pe
where self denotes a distinguished parameter to abstractly represent the rank of a concrete Worker,

set at run-time (i.e., Lpipe wj2] O page 14 is obtained by setting self = 2).
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Inferring role variants (1). Our language of global types does not feature constructs to explic-
itly specify role variants. This is because they can be automatically inferred from intervals. Before
formulating our inference procedure in full generality, we explain its key points with two examples.

Reconsider the Pipeline global type Gpjp in Fig. 8. Suppose we aim to determine the behaviour
of Worker a. The iteration domain in Gpjp. specifies two intervals: 1..k-1 and 2..k.

e If a is contained in interval 1..k-1, but it is not contained in interval 2..k, then a = 1. In this case,
Worker a participates in exactly one iteration of the loop (i.e., the first one), as a sender.

e If a is not contained in interval 1..k-1, but it is contained in interval 2..k, then a = k. In this case,
Worker a also participates in exactly one iteration of the loop (i.e., the last one), as a receiver.

e If a is contained in both intervals, then 1 < a < k. In this case, Worker a participates in two
iterations of the loop: first as a receiver, and then as a sender.

The crucial insight demonstrated by this example is that the behaviour of any Worker is completely
determined by the intervals that contain its rank; there are no other sources of behavioural variation.
Moreover, since the number of intervals in any global type is bounded, the number of role variants
is bounded as well: role W occurs with only two intervals in Gpjpe, so W has at most 22 variants.

’

Pipe
Gpipe With an initial communication from the Master to the first Worker. In this global type, role
name W occurs actually with three intervals: two explicit ones in the iteration domain in Gpjp. (as
before), and one implicit one in the initial communication, namely 1..1. To see where this implicit

interval comes from, note that the initial communication can be rewritten with foreach:
foreach W{i:1..1} do (M—W[i] : Init . cont) ; Gpipe
(Such rewriting is not always possible, because it generally does not preserve well-formedness; we

do it here only to show what we mean with “implicit intervals”.) Since role W occurs with three
intervals in GII’ipe’ W has at most 2% variants. Four of these “potential variants” of W are invalid. For

Inferring role variants (2). Consider global type G, . =M—W[1] : Init . Gpjpe, which prefixes

instance, there exists no rank a that is both in interval 1..1 and in interval 2..k.

Inference procedure. We formulate our inference procedure as follows. Let ival(r, G) denote
the set of intervals consisting of {D;}jc; for every foreach RU {r}{i;j: D;}je; do Gy ; G2 in G and
E..E for every r[E] in G. Note that ival does not interpret intervals into sets of concrete ranks; every
element in ival(r, G) is syntactic, of the shape E; .. E,. Every binary partition D, D of ival(r, G), of
the total 2/Val("-G)l characterises a potential variant of role r; we denote this variant as r[D, D]. To
check its validity, we construct a formula (D, D). Let ky, ks, ... denote the parameters in G.

®(E;..Ey) = E; < self < E, (D, D) = Tself.[[ Apcp ®D)] A [ Apep ~2(D)]]

If 3k;.3k,....D(D, D) is true, there exists at least one instantiation of parameters ki, kz, ... such
that there exists a individual (i.e., 3self) whose rank is contained in all the intervals in D (i.e.,
Apep (D)), and not contained in all the intervals in D (i.e., A pegp ~P(D)). In more operational
terms, if ®(D, D) is true, there exists at least one run-time configuration of parameters in which
at least one individual enacts the role variant characterised by ®(D, D); thus, r[D, D] is valid.
Conversely, if ®(D, D) is false, there exists no such run-time configuration, meaning invalidity.

Thus, our inference procedure for variants of role r works as follows: (1) compute ival(r, G); (2)
for every partition D, D of ival(r, G), check ®(D, D); (3) ®(D, D) is true iff r[ D, D] is valid.

Inferring families. A family is a set of role variants that collectively constitute a consistent
run-time configuration of an application. For instance, the Pipeline protocol has two families (Fig. 8):
one for k =2 (front and last Worker), and one for k > 2 (front, middle, and last Worker).

Role variant families can be inferred using a similar approach as for role variants. Let V,;; denote
the set of all inferred role variants. For every partition V, V of Vy, construct the following formula:
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EV,V) = [ Avip.orev DD, D) A | Arip.piev ~2(D, D)|
If 3k;.3k,....E(V, V) is true, there exists at least one instantiation of parameters ki, ky, ... such that
only every variant in V is enacted by at least one individual, so V is a family.

4.4 Projection

Our final ingredient is a projection operator, [: it consumes as input a global type G and a role variant
r[D, D], and it produces as output one local type that specifies the behaviour of all individuals
that enact r[D, D). Below is an excerpt of the definition:

(rilx1] = ralx2] : {¢; . Gj}jey) I r[D, D] = (foreach R{ij:D;}je; do Gy ; Gy) | r[D, D] =
ralx2] ¢ . Gj 1 r[D, Dl}jey fri=r+ry, x1..x1 €D ... (omitted — see Supplement, §11.3) ifr € R
rl[xl]?{é’j.Gj[r[Z),D_]}jej ifritr=r, x2..x0 € D foreach R{i;j:Dj};cy do ifr¢ R
MG 1 1D, Dl}es TE (G1 [ F[D, D) ; (G | 1[D, D)

recXG|r[D,D]=recX (G]|r[D, D] Xr[D,D=X G|r[D,D]=G if: Ge {cont,end}

| recursively traverses the structure of global type G and checks for every communication whether
role variant r[D, D] (i.e., an individual that enacts r[D, D]) participates as the sender or the
receiver. If so, it adds a corresponding I/O action to the local type under construction; otherwise, it
continues the traversal and merges projections of the continuations using M; the definition of M is
standard (e.g., [Deniélou et al. 2012]), extended in the natural way for foreach. As usual (e.g., [Coppo
et al. 2016; Honda et al. 2016]), projection is partial: it is undefined for unsafe protocols.

If foreach is encountered, our projection operator checks if r is in the iteration domain. If it
is not, r[D, D] participates in all iterations of the loop (i.e., foreach must be preserved in the
local type under construction), and in every iteration, it behaves according to the projected body
(possibly empty, i.e., cont). Otherwise, if r is in the iteration domain, r[D, D] participates in only
some iterations (i.e., foreach must not be preserved), for which special measures need to be taken,
represented above as “...”; see the Supplement,* § I1.3 for the full definition.

Example 4.9. Role S does not occur in the iteration domain of foreach in Gpget, Ex. 4.3, so must
be preserved in Gpge; | S[{@..0}, 0]. This is as expected: Server receives from all Fetchers, so it
participates in all iterations. In contrast, role F does occur in the iteration domain, so foreach is lost
in Gpget | F[{2..k}, {1..1}]. This, too, is as expected: every Fetcher sends exactly once to Server.

4.5 Decidability and Correctness

Inference procedures. We first address the decidability of our inference procedures in § 4.3.
THEOREM 4.10. Inference of role variants and families is decidable.

Proor. Because ival(r, G) is ﬁr_lite (i.e., the set of intervals tl}at occur syntactically in G), the
number of binary partitions D, D is finite as well. Also, ®(D, D) and Z(V, V) are formulas over
(A, +, 0, <), which is decidable (see § 4.1 and Ex. 4.1, 4.2). O

Well-formedness. We guarantee correctness and safety for well-formed global types. Let K — A
denote the set of all partial substitutions of values for parameters, ranged over by o, 7; let G (o))
denote the instantiation of G in accordance with o. A substitution o closes global type G if G (o))
has no parameters; G ((o)) is well-closed if all intervals in G (o)) are non-empty.

A global type G is well-formed if for all o such that G (o)) is well-closed: (1) index variables and
type variables in G are bound by foreach and rec; (2) rec does not occur under foreach in G; (3) an
“inner” foreach in G cannot range over role names already ranged over by an “outer” foreach; (4)
all intervals in the same iteration domain in G ((c)) have the same length. Condition (2) ensures
that every iteration of a loop terminates; we support only tail recursion. Condition (3) ensures that
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the number of iterations an individual participates in can be computed statically. Condition (4)
ensures that the “table” for every iteration domain (e.g., Fig. 8) has a well-defined number of “rows”.

THEOREM 4.11. Checking well-formedness is decidable.

Proor. Conditions (1), (2), and (3) are structural and independent of o; checking them is triv-
ially decidable. In contrast, checking condition (4) requires universal quantification over the set
{o | G {o)) is well-closed}, which can be infinite. To check (4), we construct a first-order formula
over (A, +, 0, <), which is decidable (see § 4.1 and Ex. 4.1, 4.2), as follows. Let ki, ks, ... denote the
parameters that occur in G, and let 7 denote the set of all iteration domains that occur in G:

Yoo({ij:Ej,1.-Ej2}jeys) = Njej Ejn S Ej2 Y(I) = Vky Vky....| Nrer ¥-0(I) = Aser ¥=(D)]
"II:({ij :Ej,l -~Ej,2}j€]) = /\j1,j2€](Ej152_Ej151 = Ejz,Z_Ejz,l) Now, "I’(_Z-) is true iff (4) holds. O

Correctness and safety. In words, correctness of | means that the behaviour specified by an
instantiated well-formed global type G equals the joint behaviour specified by the instantiated local
types projected from G, namely one for every individual that enacts an inferred role variant.

Let L (1)), D (1)), and D {r)) denote the instantiation of the parameters in local type L and
sets of intervals D, D according to 7 (cf. G (o)), above). Let = denote trace equivalence of the LTSs
induced by a global type and a system (parallel composition) of local types [Deniélou and Yoshida
2013]. The following theorem states correctness; see the Supplement,* §I1.4 for our proof.

THEOREM 4.12. For all well-formed G and o such that G (o)) is well-closed:
GUo) ={(G [ r[D, DY () | Fa: DwD =ival(r,G), T = o U {self — a}, = ®(D (), D (r))}

Projection guarantees safety if the joint behaviour specified by the instantiated local types
projected from a well-formed global type is free of deadlocks and reception errors. Safety is a
direct consequence of correctness: deadlocks and reception errors cannot be specified in our
language of global types, so a correct projection never produces an unsafe system of local types.
The formalisation of the following corollary relies on the same LTS semantics of global types and
systems of local types as the one that underlies Thm. 4.12; see [Deniélou and Yoshida 2013].

COROLLARY 4.13. Projection guarantees safety.

5 IMPLEMENTATION
5.1 Extension of Scribble based on Distributed, Role-Parametric MPST

We extend the Scribble protocol language for role-parametric protocols based on our core formalism
in § 4 and the syntactic sugars outlined in § 4.2. Our presented design results from experimenting
with various combinations of primitives and communication patterns for a range of examples
(summarised in Fig. 15). Fig. 11 (top) outlines our grammar: we add foreach, and cover the special
global type arrows from Fig. 10 by extending the global interaction of Scribble (from/to) with
indexed roles p and inline message choices ¢; or ... or ¢,, and adding the pair/pipe primitives;
for simplicity, we show a restriction to one-dimensional indices (Ex. 4.1). g is a protocol name,
and A stands for basic boolean expressions for constraints on index variables; other notation not
explicitly defined here (e.g., r, E) is as in § 4.2. p! means the restriction of D to [E, E] or [i]. In our
experience, these particular primitives are beneficial for writing protocols and using the generated
APIs (cf. “manual” foreach encodings), and also run-time performance.

Fig. 11 (bottom) illustrates the correspondence between our formal notation and Scribble syntax.
The Scribble PP choice subsumes the case of unary choices. For paired/pipelined-PP (top right),
pair corresponds to =, where the choice is made independently by each ry[i] to its opposing peer
in the r; interval; pipe may be used here as the special case where r; =r; (so the choice is made
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P == global protocol g @A (role ry, ..., rolery) { G} p == rlyl y == D | i D := E;, E,
G = {lyor...or &, fromp; topy; | choice at p'{ Gy} or ...or {Gp3} | dog(ri, ..., rn); | G1 Gy
| € pair py to pa; | € pipe r[D1; | foreach rili1:D11, ..., rplin:Dpl { G}

Role-parametric subprotocols foreach R{ij:Dj}jey do G;  foreach ri[Di1, ..., rp,[Dnp1{ G}
Choice(s) Scatter/gather/all-to-all: — Paired/pipelined unicasts: =
Peer-to-peer r1[Dy] 5 ry[De]{t1, b2} 5 G r[D1]= r[Dy {1, 6} 5 G
(PP): €1 or £y fromri [ D11 to ro[D21; G {1 or & pair ri[ D11 to r,[D21; G

1 1
Master-slaves plf’rZ[DZ]{fl‘Gl, KZ‘GZ} rﬁ.El..Ez{fl.Gl,fg.Gz}
MS): 1 choice at p! { €; from p! to rn[D1; G1} choice at r[E,]1 { ¢ pipe rLE;,E;]1; G}
(MS): or { £; from p! to rn[D1; G2} or { & pipe r[Ei,E;]1; G2}

Fig. 11. Practical syntax for role-parametric protocols: (top) extended Scribble grammar; (bottom) illustration
of global type and Scribble correspondence (cf., the formal syntactic sugars in Fig. 10).

at each step along the interval). The MS choice is for more than one case (we show only binary
choices for brevity). For pipelined-MS (bottom right), the interaction must be a pipe, where the
choice is propagated along the interval, for the MS choice to be consistent at all receivers. In the
Scribble foreach, (r[D1]);.., enumerates the ranges used in the formal notation (cf. Rem. 1).

We omit the implementation details of basic syntactic checks (e.g., valid combinations of choice
and from/pair/pipe as per Fig. 11) and well-formedness (§ 4.5) that are as expected. Cond. (4) of
well-formedness, valid role variants, and variant families are similarly determined following § 4.3.
Our toolchain integrates Scribble with Z3 to check the induced constraints; e.g., for Pipeline (Fig. 8),
this generated Z3 assertion confirms the middleman is a valid variant:

(assert (exists ((self Int) (K Int)) (and (> K 1) // Annotated domain constraint
(>= self 1) (<= self (- K 1)) (<=1 (- K 1)) (>= self 2) (<= self K) (<= 2 K) // D constraints for Wy k-1
(not (and (>= self 1) (<= self 1))) (not (and (>= self K) (<= self K))) ))) // D constraints for Wy x_;

5.2 Communicating FSM Based Representation of Local Types

Our toolchain uses an internal representation of local types (§ 4.2) based on communicating FSMs
with gather/scatter I/O and parameterised nesting of sub-FSMs within states. The correspondence
between the syntactic types and our FSMs is straightforward: we outline the correspondence below,
and provide a full definition in the Supplement,* § IIL.1.

Based on our local types, we write r[D] T £, T €{!, ?}, for the scatter/gather I/O of our FSMs.
Fig. 12 shows the FSMs for MS and PP choices; the latter demonstrates the basic FSM for foreach.

MS The !' send-to-all local type (§ 4.2), which selects the same choice at all peers, corresponds to
an FSM scatter: the type r[y] % {¢; . L;} ;< is simply represented as a state with each of the J cases
as a separate transition. Dually, MS input is implicitly a standard ? from a single peer (i.e., there is
no ?1), for MS choices to be consistent across all receivers.

PP Non-unary PP choices are represented as nested FSMs, via foreach desugaring of = /= (Fig. 10).
For the example type foreach r{i: D} do r[i] ¥ {¢; . cont};cs; L, the subprotocol - i.e., a {-choice
of J cases — is nested and parameterised within the initial state of the FSM for the continuation L,
denoted s;. This FSM is just a representation of the local type behaviour: first repeat the nested
FSM for each value of i in D in sequence, then perform one of @;_, (standard state transition).
At the local type level, unary PP choices coincide with MS choices: as an optimisation, we represent
unary PP choices similarly to MS choices (i.e., without nesting).

We introduce some notation for our FSMs, that we shall use for defining our Go API generation.
A role variant FSM (henceforth, FSM) is a tuple M = (S, R, so, T, §, ¢). Apart from the last element,
all are standard [Deniélou and Yoshida 2012]. S ={sy, 55, ...} is a set of state identifiers; sp € S is
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Master-slaves (MS) #e{!!,?} ["']=! [?]=? Peer-to-peer (PP) J > 1 (foreach) Te{!,?}

[25]
r[l]Tfl ’ r[lﬁgljllz;

sOL is the initial state of the FSM for L; ;. ,, are the actions at SOL

[yl {¢; - Li}je [y] ”RE [£0e foreach r{i:D} do
rly j - Ljtjey  riyll ]]Ll Lrly 171 Hi1H{C; . conthyess L
1 J

Fig. 12. Representation of local types as communicating FSMs (partial illustration).

the initial state. R = {ry,r,, ...} is a set of role names. T = {{y, (s, ...} is a set of message labels.
d : Sx{ay, @z, ...} — S is the transition function, where a1, a, ... are local actions of the form r[y] t €
with T €{!, ?}. Finally, ¢ : S — M X P is the nesting function, where M is the domain of FSMs and P
is the domain of sets of indexed intervals, ranged over by P.

By the syntax and properties of global types and projection (§ 4), every transition from a state
has the same action kind ; and every transition of an input state has the same peer r[y]. We also
collapse every occurrence of end in a local type, if any, to a single terminal state at the top level of
its FSM (similarly, for cont at the top level of a foreach). A “plain” state (i.e., that we depict without
a nested FSM) corresponds to a state that nests a sole (terminal) state.

5.3 State Channel API Types Generation for Go

We first explain the key types and methods generation for states, I/O and branching, and nested
FSMs. We simplify the presentation in two ways. First, we abstract from the details of specific
naming schemes for types and methods: we use the notation [[-]] to stand for any concrete name
mapping, e.g., [s]| is a Go type name for a state s, and [[s, a]| is an I/O method name for action « from
s. Second, we assume a “flat” naming scheme for methods, instead of the scheme presented in § 3,
e.g., S_Send_Head(...) instead of S.Send.Head(. . .); we illustrate the more cosmetically elaborate
types generation for the latter in the Supplement,* § .1.1. As noted earlier, a local program may
use Go package/type aliases, or the user could supply custom names as Scribble annotations.

In the following, assume a variant v = r[D, D] (of some protocol g), and let s be a state in the
FSM of v such that 5(s) = {aj = s;}; ¢ y and ¢(s) = M, P. Let [Mo]] (resp. [Menq]) be a type name
derived from the initial (resp. terminal, if present) state of M; and [[v]] be the type name of the
Endpoint for v (e.g., the type of M on the left of Fig. 5, line 3).

Nested FSMs. Fig. 13 (top) shows the types generated w.r.t. the nesting of M in s. [[s] is the
“main” (or entry) state channel type for s (e.g., the initial state, or result of the previous I/O method).
It offers a Foreach method, that takes a function from [M,] to [Mgnq]l, i-e., an implementation of
the nested behaviour. The result (after all nested behaviours are completed) is [[s]|’, an intermediary
type for finally performing a transition out of s. The basic Go code for executing a nested FSM and
the subsequent state transition may thus look like:

s.Foreach(nested).m(...) s is a variable of type [[s]], nested is of type func([Mo]l) [Menq]
Foreach is generated to repeat nested over the intervals P embedded into the API, and m is the I/O
method generated for the subsequent transition, explained next.
I/0 and branching. The generation of I/O methods depends on which kind of state s is.
OUTPUT OR UNARY-INPUT For each a; = r1[y] !{; with |]| > 1, or for a; = rj[y] ?{; when []| =1:

func (c *[s]) [s, ;] (m (€;)) *[5(s, €)] € --- } {¢;) is, e.g., xC; for Send/Receive, [1¢; for Scatter/Gather

(c[[s]") is the method receiver (i.e., the intermediary result type of Foreach), [[s, «;] is the method
name, and (¢;) stands for the parameters according to the I/O action kind (e.g., singleton Send
/Receive are special cases of Scatter/Gather). We omit details of further variations, e.g., Reduce.
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type [[s]] struct { Err error; id uint64; ep *[[v]]; ... } // State channel type: first do Foreach
func new_[[s]|(...) *[s] { ... return &[s]{...3 3 // Private constructor (used internally within API)
type [s]I” struct { Err error; id uint64; ep *[[v]]; ... } // Intermediary type (after Foreach done)

func (c *[[s]]) Foreach(nested func(int, *[[Mo]) [Mengall) *[sl { ... I // int is the Foreach index param

State type Method name, signature var n next; var d Done

State Peer 1/0 | Label, value Succ. for {

W_2toK_1 | W_self_subl Branch() *W_2toK_1_Cases SWitch c := w.W_self_subl.Branch().(type) {
W_2toK_2 | W_self_plusl | Send Next(a *Next) | *W_2toK_1 case *Iyext:

W_2toK_3 | W_self_plusl | Send Done(a *Done) | End w=c Receive.Next(&n).

W_2toK_1_Cases is an interface, implemented by the below case types case *tw‘se”‘pIUS1 -Send. Next(&n)
Done *

Next(a #Next) | *W_2toK_2 return c. Receive.Done(&d) .
Done(a *Done) | *W_2toK_3 W_self_plusi.Send. Done(&d) } 3}

INext n/a Receive
Done n/a Receive

Fig. 13. State channel API generation: (top) state channel and Foreach type signatures; (bottom) type switch
branch API types and 1/O methods for the Wy x —1 variant in Ring (Ex. 4.4), and an example implementation.

BRANCH-INPUT (|J| > 1) We show the branch API generation that targets Go type switch statements.

type [s]l_Cases interface { [[s]|_Case() }
func (c *[s]') Branch() *[s]l_Cases { ... }

type [[sl_¢; struct { Err error; id uint64; ep *[o]; ... }

func (*[s]_¢;) [sl_Case() { } // Implement _Cases i/face

func (c *[s]_€;) [s, ajll(m *&£;) *[S(s, €] € ... 3

On the left, [s]|_Cases is an interface representing the valid choice cases: on the right, for each
aj = r[x]?(;, we generate an [[s]l¢, type that implements this interface (via the token [[s]|_Case
method) and offers an appropriate [[s, ;]| input method. The Branch method, with receiver *[[s]’
(like the I/O methods above), is then generated to block until a message is received, and return the
corresponding implementation of the [[s]|_Cases interface.

As an example, Fig. 13 (bottom) summarises the branch API types generated for the Wy -1
“middleman” variant in Ring (Ex. 4.4) and gives a user implementation. A type switch switch ¢
:= ....(type) evaluates the expression (assigned to c) and selects the first case that matches the
run-time type of the result. IDEs can auto-generate exhaustive switch cases for the programmer.

Our implementation simplifies the generated API as expected in certain cases. E.g., when M is
a single state (i.e., s is a “plain” state), the API generation skips the intermediary [[s]" type and
Foreach method, and sets the receiver of the I/O methods directly to [[s]. Our examples in this
paper assume a [[-]| that maps terminal states to an End type; we also set the result of terminal I/O
methods to a non-pointer End type for stronger safety, as it prevents, e.g., return nil.

Note that FSMs are explicitly used only at compile-time for the presented types generation: the
point of the types is to statically guide the FSM structure implicitly in the program. At run-time,
the only checks introduced by our APIs are on session initiation parameters and channel linearity,
as explained in the next paragraph.

Automated inlining of dynamic checks. The static assurances of the generated Go API types
are supported by automated inlining of a few kinds of lightweight run-time checks into the APL

Go preliminaries: a defer statement pushes a function call (e.g., a channel closure) onto a list; the
list is executed after the surrounding function returns. Panic is a built-in function that stops the
control flow of the calling goroutine and executes any deferred calls at each level of its call stack;
control flow may be regained by (a deferred call to) the built-in recover function.

ENDPOINT INITIATION The first check is on the parameter values supplied to the Endpoint con-
structor (e.g., K in Fig. 5, line 3), derived straightforwardly from the D, D elements of the variant.
This is a simpler version of the compile-time Z3 assertion illustrated in § 5.1 that just checks
the constraints on concrete values (as a Go expression) rather than existential quantifications.
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Secondly, the Dial/Accept methods are generated to check for, e.g., duplicate connections; similarly,
the top-level run checks for missing connections. A violation of these checks raises a panic.

STATE cHANNEL API The implicit usage contract of a state channel API is to use every channel
instance exactly once, i.e., linearly. Repeat usage is dynamically checked by assigning a fresh ID
value to each channel instance (the uint64 fields in Fig. 13, top) and recording for each Endpoint
the ID of the currently active channel: every I/O method is generated to check the target channel
is the indeed the currently active one. Endpoint completion, guided by the End return type of the
generated top-level run method, is an (at most) one-time deferred check within run.

Error handling and failures. We integrate the call-chaining nature of the presented APIs with
the explicit error handling paradigm of Go. The API is generated to (1) set the state channel Err
field (Fig. 13, top) in the successor channel instance if the preceding action caused an error (error
is an in-built interface type), or else Err is nil; and (2) raise a panic when an I/O method is called
on a channel whose Err is not nil. By our safety guarantees (see below), an error means a failure
in the underlying I/O or networking facilities, or perhaps the reception of an incorrect message
type when interacting with a potentially unsafe participant—the deserialization operations in our
generated API code for inputs serve as implicit compliance checks on received message types.

Idiomatic Go error handling using a state channel API is as below (cf. lines 18-19 in Fig. 5).

if m3 := m2.F_1toK.Scatter.Job(split(&meta)); m3.Err != nil { // Explicit handling (e.g., networking failure)
... }else { ... m4 := m3.F_1toK.Reduce.Data(&data, agg) ... } // Using m3 with m3.Err != nil would raise a panic

Here, we use the standard Go construct if x := f(); P(x) { g(x) } else { h(x) }, which first evaluates
f() and assigns the result to x, then evaluates P(x) to true or false, and finally executes g(x) or h(x);
the scope of x is constrained to this statement. The above code thus first attempts a scatter to the
Fetchers. If no error (e.g., network failure) occurs, m3 is the expected successor state channel, m3.Err
is nil, and the then-branch is executed; if an error occurs, m3.Err is non-nil and the else-branch is
executed. Handling errors in this way is idiomatic Go.

5.4 Practical Safety Guarantees of our Generated APIs

Our results in § 4.5 ensure, for a given family in a well-formed role-parametric protocol, the set
of projections onto each variant constitutes a safe, distributed decomposition of the protocol.
In other words, a distributed instance of this protocol (i.e., a session) is guaranteed free from
reception errors, deadlocks and orphan messages, at the level of abstraction of our target model of
asynchronous, pairwise-ordered and reliable message passing between the endpoints. The purpose
of the API generation step of our framework is then to promote compliance of concrete endpoint
implementations to their projections via native Go type checking, supported by the dynamic checks
built into the API (§5.3).
Specifically, a generated state channel API ensures: in a successfully initiated session,

a statically well-typed endpoint implementation will never perform a non-compliant I/O action
w.r.t. the run-time instantiation of the role-parametric protocol, up to premature session termination.
This is because the only way to attempt a non-compliant I/O action is to violate linear usage of a
channel instance, in which case the in-built API check will (by default) raise a panic without actually
performing the offending action. Such a situation effectively results, at worst, in an incomplete or
premature termination of the endpoint, and thus the session, w.r.t. the protocol. Note, however, that
premature termination is always a caveat in practice, due to program errors outside the session
code, or node/network failures. In this regard, our API generation considers linearity violations

and failures (via Err) uniformly, appealing to Go’s in-built panic, defer and recover facilities.
Once a session is initiated, the only dynamic checks are on linear channel usage, giving an affine
form [Tov and Pucella 2011] of the MPST safety discussed above. If the simple linearity condition of
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our APIs is respected, however, Go type checking is sufficient to ensure MPST safety. It would thus
be possible to combine our approach with a technique for statically checking linear resource usage,
given such a technique (with associated restrictions), to obtain the classical MPST safety outright.

Another highlight of our approach, and a basis for safety, is that the API generation internalises
the management of parameter values and index expressions related to identifying the session peer(s)
of every I/O action in the protocol—the user-supplied arguments of the generated I/O methods
relate only to messages. As observed by Samofalov et al. [2005] of process rank indices/expression
bugs in the setting of MPI programming, incorrect management of indices and parameters can be a
tricky source of communication errors in practice.

On static channel linearity. We note dynamic linearity checks are not fundamental to our
overall approach. By our results in § 4.5, our framework is amenable to the use of alternative
API generation methods for separate endpoints: our toolchain also supports callback-based API
generation, illustrated below for the first two states of M in Pget (Fig. 4):

M.register(M_1.state, func(c Cache, meta *Meta) { c.meta = meta }) // Callback for M_1: F_17?Meta
.register(M_2.state, func(c Cache) { new M_2.F_1toK.Job(split(c.meta)) }) // M_2: F[1,K]!Job
.... // Callbacks registered by user for each state on the generated Endpoint M

The above style of generated API encapsulates all communication channels under the API and
internalises the FSM itself: after session initiation, the API calls back the user-supplied, state-
specific functions at each state (upon message receipt for input states). Consequently, a Go endpoint
program using the callback API enjoys fully static MPST safety (for a successfully initiated session
with compliant peers); the tradeoff is requiring programming in an event-driven style.

The main API style presented in this paper promotes session programming in Go that is close to
standard channel/socket based APIs (and the session 7-calculi in MPST formalisms). One advantage
is it allows us to re-implement existing Go programs more directly, as part of evaluating the
applicability of our framework (see § 6). In our experience, debugging local linearity violations (as
exceptions) is much simpler than the full task of debugging reception errors or deadlocks between
distributed, non-compliant endpoint implementations.

The interested reader may find details on the Scribble-Go Runtime in the Supplement,* § II.2.

6 EVALUATION

We evaluate our framework in terms of run-time performance (§ 6.1), and applications (§ 6.2), using
a machine with an Intel i7-8770 processor (6 physical and 6 virtual cores) and 16GB RAM, running
Debian 9.1 and Go version go1.11.2. We used the Go benchmarking tools (https://godoc.org/testing).

6.1 Run-time Overheads of Generated APlIs

Microbenchmarks. We measure the overheads introduced by our framework during session
execution, due to using the generated state channel API, our Runtime, and dynamic linearity
checks. We first present microbenchmarks as a worst-case for the above overheads in isolation,
by performing no work other than I/O. We use three kinds of microbenchmark programs, for
the core patterns: One-to-Many (multi-destination send, single-source receive), Many-to-One
(single-destination send, multi-source receive), and Many-to-Many (multi-destination send, multi-
source receive). Each benchmark kind is parameterised on a k: in the first two, k is the number of
goroutines at the Many side; in the third, k is divided evenly between sender/receiver goroutines.

We implement each benchmark by two methods. (1) Scribble-Go: we specify the above patterns
as protocols in our extended Scribble and implement the Endpoints using our generated APIs. For
each Endpoint, we have two versions of initiation that differ only by the selected Runtime transport,
shm or tep. (2) Go base cases: each Scribble-Go program has a Go base case that corresponds to
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Fig. 14. Scribble-Go exec. time vs. Go base cases: (left) shm micro, (middle) tcp micro, and (right) CLBG.

replacing all occurrences and uses of state channels by direct references and uses of the underlying
communication facilities, i.e., (unbounded) Go channels, or TCP sockets from the net package. We
specify messages as having an int payload, and let k range over 1..11.

We measure the execution time from session start at the first sender (after all goroutines and
connections established — in Scribble-Go, that is after entering the generated top-level run), to the
end at the last receiver (before any connections closed). Since the execution time of a single instance
of the above patterns is very small (on the order of nanoseconds), we repeat the communication
actions (i.e., extend the “session length”) in a loop of N iterations in each endpoint program and
take the mean (N is set by the benchmarking tool, e.g., > 10°, such that a run exceeds one second).
The tcp endpoints are run as intra-process goroutines by the same setup as for shm, communicating
through localhost TCP. We repeat each benchmark run 40 times and take the mean.

Fig. 14 (left) shows Go base case shm session execution time relative to Scribble-Go: x ranges
over the value of k, and y is given by t4, / tapi (y =1 is the baseline). The relative overheads of
Scribble-Go are ~10% in most cases, over the range of k; for reference, we note that the absolute
overhead per pattern is ~20 nanoseconds. Fig. 14 (middle) shows the corresponding results for tcp:
the overheads are mostly < 3%. We remark that the relative overheads will continue to diminish as
latency increases, e.g., for TCP over LAN or the Internet.

Case study: Computer Language Benchmarks Game (CLBG). We next present benchmarks
using existing applications from Debian’s CLBG [Gouy 2017], a repository of programs used to
compare the performance of different languages (e.g., [Brunthaler 2010; Shirako et al. 2009; St-
Amour et al. 2012; Wrigstad et al. 2010]). We use three concurrent Go programs: (a) k-nucleotide
counts occurrences of molecule sequences in a DNA string, (b) regex-redux matches regex patterns
against a DNA string, and (c) spectral-norm computes the greatest eigenvalue of a matrix. All three
are based on scatter/gather work parallelisation between goroutines using Go channels. We take the
original programs, written by the Go Authors, as the Go base cases. For Scribble-Go, we specify
the (previously implicit) application protocols using our extended Scribble, each parameterised on
a number 1 < k < 12 of “worker” goroutines; and modify the original programs by replacing all
vanilla Go channels, sends and receives with shm state channels and calls to the generated APIs.

For these macrobenchmarks, we measure the execution time of the whole application (i.e.,
including channel creations, Scribble-Go Endpoint initiations, etc.). We use the standard inputs
defined in the CLBG, and take the mean of 20 repetitions for each application. Fig. 14 (right) shows
the execution time of the Go base cases relative to Scribble-Go: x ranges over k, and y is t4, / tapi.

The results show Scribble-Go performs at least as well as the original programs in most cases; we
expect the cost of computations in real applications such as these will often render the overheads
negligible, considering the absolute values measured in the microbenchmarks. Scribble-Go is
actually faster in some cases for regex-redux and k-nucleotide (observed for different versions of
our Runtime). We believe this is due to including channel creations in the time measurement, and a
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Fig. 15. Role-parametric protocols for communication patterns, topologies and applications in Scribble-Go.

small restructuring of the program to use the generated API: the original programs create their
goroutines and channels on the fly, whereas our adapted programs “pre-create” the goroutines
and channels up front in a session initiation phase. In profiling, we find the actual computation
code, which is the same in both versions, takes longer in the originals—one reason may be that the
adapted versions run with better thread locality and fewer cache misses without such “interruptions”
from goroutine spawning and channel creation.

6.2 Use Cases — Expressiveness and Applicability

We demonstrate the expressiveness and applicability of our framework by using our toolchain to
specify and implement protocols for a range of role-parametric communication patterns, topologies
and applications, listed in Table 15. The columns indicate the features of our extended Scribble used
in the protocol. We cite the background and related works from where we draw the examples—in
every case of parameterised session types literature, the parameterised aspect of the example was
treated by either an ad hoc or centralised (non-distributed) method. The topologies in 4-8 are
common in parallel algorithms. Due to space constraints, we explain the details of the examples in
the Supplement,* §IV.1.

7 RELATED WORK

Parameterised MPST and implementations of session types. § 2.2 gave initial discussions
of the closest related works on MPST for role-parametric protocols; we continue below.

Deniélou et al. [2012]; Yoshida et al. [2010] developed a role-parametric MPST using a dependent
types approach. Unlike our work, the top-down generic projection in their theoretical-only work does
not infer nor decouple role variants from the protocol; it simply encapsulates variant behaviours
into a consolidated local type. To compensate, they combine with a bottom-up mechanism of
taking endpoint decouplings from a pre-existing system of processes, and showing equivalence
between the generic projection and target types; roughly speaking, however, for types that are “not
syntactically close” (e.g., the generic projection of Ring and its role variants) the equivalence is often
undecidable. In general, the programmers of individual endpoints in a modular development of
some non-trivial multiparty application (e.g., not just binary RPCs) should commence development
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top-down from some notion of agreed protocol—otherwise the separate programmers cannot locally
determine the (inherently stateful) I/O structure that their endpoint should implement.

Charalambides et al. [2016] extend MPST theory with parameterised versions of session type
operators that represent repeat applications of the operator for some parameter value (possibly
run-time instantiated). Unlike our work, their system does not support role-parametric protocols as
their approach expressly requires prohibiting separate occurrences of a role with different indices;
this rules out, e.g., role-parametric pipeline structures. Also, they did not implement their theory.

Regarding implementations and applications, Ng et al. [2015]; Ng and Yoshida [2015] use param-
eterised MPST [Deniélou et al. 2012] to generate an MPI backbone in C that encapsulates the whole
protocol (i.e., every endpoint), and weaves (merges) it with user-supplied computation kernels.
Their approach fundamentally produces complete, “centralised” programs, due to lacking notions
of identifying and projecting role variants. By contrast, our toolchain generates typed APIs that
allow the programmer to implement an individual endpoint more flexibly, i.e., not tied to a specific
transport or messaging interface (MPI), nor a specific program structure.

Lopez et al. [2015] develop a verification framework for MPI/C inspired by multiparty session
types by translating parameterised protocol specifications to protocols in VCC [Cohen et al. 2009].
Their VCC verification is driven by program annotations, e.g., to match up individual control flow
statements (e.g., if-else, while) to choices and loops in the specification, and pre/post conditions
on recursive functions. Their approach is purely global (i.e., monolithic) from an MPST perspective:
their specific aim is to verify a complete MPI program directly against a global protocol.

None of the remaining works in this paragraph support parameterised session types. Our API
generation builds on the basic idea of Hu and Yoshida [2016] for Java, which our framework
reformulates and extends for parameterised endpoints/families and nested FSMs in Go. Our API
design leverages Go features that Java lacks (e.g., type switch, select); and is augmented in a range
of ways, e.g., explicit error handling, nested struct types for peers/actions (which improves the IDE
ergonomics of our APIs, while bypassing Go’s lack of method overloading and reliance on singleton
types), and promoting End-results to assist linearity. They did not evaluate run-time performance.
Dynamic linearity checking is also employed in applications of session types in OCaml (Padovani
[2017]) and Scala (Scalas et al. [2017]); our toolchain supports an alternative callback-based API
generation that does not require dynamic checks. Gay et al. [2010] and Kouzapas et al. [2016] apply
session types to object-oriented languages via typestates [Strom and Yemini 1986]. Unlike our API
generation that targets programming in native Go, both are implemented as heavier-weight Java
extensions with new syntax. (By contrast, the approach we use could possibly be described as
statetypes.) As in our work and others above, these typestate approaches again rely on some form
of cross-cutting linearity analysis.

Verification of message passing programs in Go. Our work aims to promote protocol
compliance-by-construction in distributed programs through generation of types, to exploit light-
weight error detection while programming and other support from IDEs and compile-time tools
(e.g., "dot-driven" content assist and code auto-completion). Alternatively, the following are sev-
eral recent works on a posteriori verification of message passing in existing Go programs. All of
them employ whole-program techniques, and support only the built-in Go channel primitives (i.e.,
intra-process messaging); none of them, however, support channel-over-channel passing (§ 6.2).

Ng and Yoshida [2016] extract a graph-based protocol specification [Lange et al. 2015] from a
Go program that is checked for deadlock-freedom; Stadtmiiller et al. [2016] extract a regex-based
protocol specification [Sulzmann and Thiemann 2016], checked for deadlock-freedom. Both ap-
proaches work only for programs restricted to synchronous Go channels; the former also requires all
goroutines to be spawned before any communication among them occurs, and the latter has limited
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support for branching behaviours. Lange et al. [2017, 2018] statically infer channel communication
patterns from a Go program as behavioural types, that are checked for liveness properties. The
earlier work focuses on their analysis, a bounded symbolic method that does not scale well to large
input models, and does not describe the inference procedure; it also does not take into account
channel aliasing. The later work puts forward a concrete inference algorithm (for a restricted subset
of Go) that considers channel aliasing. It checks the extracted types are restricted to finite control
(not required in our work), which is required by a subsequent verification of the types by model
checking; their model checker (mCRL2) also does not support channel passing, unlike our work
(e.g., Pget). Their verification is best-effort only, due to the imprecision of the inference, and the
verification times (and timeouts) preclude practical checking on the fly during programming.
The above works are the most related; we mention some further works in the Supplement* (§ V).

8 FUTURE WORK

We stated the conditions for concrete applications of our framework in § 2.1. We clarify further
limitations relevant to our aims in this paper, and how they may be addressed in future work.

Dynamic participants. Our framework supports protocols where the (parameterised) partici-
pants are fixed on session initiation, as standard in MPST. We plan to integrate with explicitly
(session-)typed connection actions [Hu and Yoshida 2017] for dynamic joining/leaving of param-
eterised participants during session execution; this would also eliminate some of the run-time
connection checks at endpoint initiation (§ 5.3). To do so, we will extend our well-formedness
based on the model checking approach of Hu and Yoshida [2017] for verifying MPST safety.

Failure handling. Our API generation is integrated with the explicit error handling paradigm of
Go, where errors include node and networking failures. Our API design and safety guarantees
currently consider the occurrence of such an error as a premature session termination (similar
to linearity violations). We will investigate extending our framework to fault-tolerant protocols,
e.g., for a session to continue between the remaining participants after one fails. We believe our
formalism developed in this paper, that interprets our extensions in terms of a core base theory
(§ 4), is well suited for such investigations: we may take one of the recent theoretical MPST works
on link failures [Adameit et al. 2017] or crash failures [Viering et al. 2018] as a base theory.

Programming styles. This paper focuses on an API style that is close to channel-based program-
ming using standard libraries and Go channels; our aim is to offer MPST-based programming
through a familiar interface to Go users, and to facilitate the reimplementation of existing Go
programs for our evaluation. The presented APIs promote a popular call-chaining programming
style (cf. fluent APIs) that permits some flexibility between more “imperative” or more “functional”
styles within the context of Go. We briefly illustrated our alternative callback-based API generation,
that inherently precludes run-time linearity checks, but requires programming in an event-driven
style—also a widely used style in practice. We plan to add further API generation styles, such as a
“monadic” or CPS-based style that relies less on side effects for input methods (cf. Fig. 5, line 17).
We note the necessary language features to implement (a basic version of) our approach are
relatively modest support for static typing of data and functions/methods. We have leveraged
additional Go specific features to produce better user APIs (e.g., type-switch and goroutines), but
they are inessential. We believe our approach may be readily ported to other languages, given that
we have demonstrated an implementation for Go whose type system is (by design) relatively bare.
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This supplement contains additional discussions and examples, omitted definitions and

full proofs of the results.

A note on section and figure numbering: references within this supplement are prefixed by
the part number, while references without a part number prefix refer to the main paper. E.g., §1.1

refers to the section in this supplement, while §3 refers to the section in the main paper.
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Part 1
[§3] Methodology Overview

I.1 [§3.2] Pget — Distributed, Role-Parametric MPST for Go: Overall
Methodology

I[.1.1 API Types Generation for API Style of §3

Following is an extract from the Go types and 1/O method signatures belonging to API generated
for M in Pget, as used in the example code in §3.2.

// Variant- and state-specific type wrappers for channel(s)

type M_2 struct { Err error; id uint64; F_1toK ¢i; ... }
// ti1.4 internal API types (not directly exposed to user)
type t; struct { Scatter to; ... }

type to struct { ... }

func (s *t3) Job(a []Job) *M_3 { ... /* Scatter al[i] to F */ }

type M_3 struct { Err error; id uint64; F_1toK t3; ... }

type t3 struct { Gather t4; ... }

type t4 struct { ... }

func (s *t4) Data(a [J]Data) *M_End { ... /* Gather from each Fi into al[i] */ }

[.1.2 Ergonomics of our Generated APIs

Below are screen shots of programming M in Pget in an IDE (GoClipse Eclipse) using the generated
APIT types and methods listed above. Our toolchain could be directly integrated as an IDE plugin.

func doM2(m2 *M_2) M_End {
if m3 := m2.

O Err: error
O F_1 to_k:tl

func doM2(m2 *M_2) M_End 1|
if m3 := m2.F_ 1 to k.|

O Scatter: t2
func doM2{m2 *M_2) M_End {
if m3 := m2.F_1 to k.Scatter.
@ Job(a [Jleb) *M_3

func doM2(m2 *M_2, meta *Meta) M_End {
if m3 := m2.F_1_to_k.Scatter.Job(split(meta)); m3.Err != nil {

I else {
return m3.F_1 to_k.Gather.

i @ Datala [|Data) M_End
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I.1.3 Example Endpoint Program for F; in Pget

Following is an example implementation of Fi; we do not explicitly list the generated API types, but
this code can be directly compared its the source CFSM.

1// Implementation of B (i.e., F) in Sync

2 func runB(b *B_1) End B { ... }

3

4 func mainF1(req HttpReq, portM int) {
proto := Pget.New()

F1 := proto.F_1.New() // F_1 API same for K>=1
F1.M.Dial(shm.Client, "localhost", portM)
F1.S.Dial(tcp.Client, req.Host, req.Port)
9 F1l.run(runF1)

10 }

11

12 func runF1(f *F_1_1) End_F_1 {

13 var res Res; var job Job;

14 f_deleg := f.

o N o v

15 S.Send .Head(req.Head()). // S!Head.
16 S.Receive .Res(&res). // S7Res.
17 M.Send .Meta(res.Meta()). // M!Meta.
18 M.Receive .Job(&job). // M?Job.
19 S.Send .Get (Get.New(&job)). // S!Get.
20 S.Receive .Res(&res). // S7Res.
21 M.Send .Data(res.Data()) // M!Data.

22 proto := Sync.New()

23 a := proto.Shm.A.New(runB) // Spawns B goroutine
24 return f_deleg.M.Send.Sync_A(a) // M!Sync@A.end
25 }

The Endpoint F1 is used to connect (Dial) to M and S on shared memory and TCP transports,
respectively. Then in runF1, the programmer can rely on the state channel API to guide the way
through the multiparty protocol as a whole, correctly dispatching the interleaved 1/O operations with
M and S on the corresponding underlying channels. On line 23, we use an API convenience facility for
establishing shared memory sessions: the New constructs an A endpoint of a new session for the Sync
protocol, while spawning a goroutine for the implementation function supplied for each of the other
endpoints (i.e., B); shm channels are implicitly created between each endpoint. Line 24 delegates the
state channel a to M, satisfying the local type action M!Sync@A and resulting in the generated End

type.

I.2 Ring — Extended with Protocol Branching and Recursion

Global protocol Fig. 1.2.1 (top) gives a version of Ring (cf. Gring in §2.2) elaborated with pro-
tocol branching and recursion. The annotation @K>1 specifies an additional domain constraint on K.
The choice construct specifies a branch point in the protocol where the choice subject W[1] makes
an internal choice about which case the protocol should follow (the specification abstracts from the
exact decision procedure); the decision result is then communicated as an external choice to the
other participants via explicit messages. The syntax Next pipe W[1,K]; describes a pipeline commu-
nication structure along the specified intervals: W[1] to W[2], W[2] to W[3], etc. The do-statement
in the Next case is a recursive protocol definition: the protocol allows zero or more cycles of Next
messages around the ring, followed by one cycle of Done messages.
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global protocol Ring(role W) @K>1 {
choice at W[1] { Next pipe W[1,K]; Next from W[K] to W[1]; do Ring(W); }
or { Done pipe W[1,K]; Done from W[K] to W[1]l; } }

! W[lself-1]7Next
W21 tNext o) 1Done . WIK]?7Done Wlself-117Done . W[self+1]!Done
O SO——-0O—0 k-1 O S O O
W[K] ?Next W[lself+1]!Next
State type Method name, signature
State Peer I/O Label, value Successor 1// Pre: K>2, 2<=self<K (self = local endpoint ID)
W1 W 2 Send N (a *N0 W19 2 func mainW_2toKsubl(left ScribTcpListener,
- = - en ext(a *Next) W1 3 K, self, right int) {
Done(a *Done) *W_1_3 4 defer left.close()
W12 W_K Receive | Next(a #*Next) | *W_1_1 5 proto := Ring.New()
6 mid := proto.W_2toKsubl.New(K, self)
W_1_3 W_K Receive | Done(a *Done) | End 7 mid.W_self_subl.Accept(left)
State type Method name signature 8 mid.W_self_plusl.Dial(tcp.Client, "host", right)
’ 9 mid.run(midman)
State Peer 1/0 Successor 10}
11
W_2toK_1 W 1f bl B h *W_2toK_1_Next,
-croR- -seit-su ranch ) (+W_2toK_1_Nex 12 func midman(w *W_2toKsubi_1) End {
*W_2toK_1_Done, 13 var n Next; var d Done
) 14 for { // Continuous loop (until return)
error 15 next, done, _ := w.W_self_subl.Branch()
W_2toK_1_Next | n/a Case(a *Next) | <-chan W_2toK_2 16 select { // Select between input on next/done
W_2toK_1_Done n/a Case(a *Done) <-chan W_2toK_3 17 case succ := <-next.Case(&n):
. 18 w = succ.W_self_plusl.Send.Next (&n)
State type Method name, signature case succ := <-done.Case (&d):
State Peer I/O Label. value Successor 20 return succ.W_self_plusl.Send.Done (&d)
b
21 }
W_2toK_2 | W_self_plusl | Send Next (a *Next) *W_2toK_1 22} }
W_2toK_3 | W_self_plusl | Send Done(a *Done) End

Fig. 1.2.1. A version of Ring (cf. Gring in §2.2) extended with branching and recursion: (top)
global protocol; (center) projections onto variants W, and We x_1 as CFSMs; (bottom-left) their
generated API types and I/O methods; (bottom-right) distributed (TCP) implementation of Wy x 1
“middleman” variant (i.e., K > 2).

Projection As for the earlier, simpler version of Ring, the toolchain infers this protocol definition
induces two endpoint families: one involving only variants W; and Wx, and the other additionally
involving Wy 1. Fig. 1.2.1 (centre) depicts the projections onto W; and Wy x 1. The keyword self
stands for the run-time value of the local endpoint ID (1..K). As in standard MPST: (i) the charac-
teristics of our role-parametric global types ensures that every (non-terminal) state of an endpoint
is either output-only or input-only; and (ii) recursion is restricted to tail recursion (FSM cycles).

API types generation State channel API generation for output choices is a straightforward
enumeration of each case as an output method (e.g., Send). State channel linearity implies exactly
one case must be selected. E.g., the W; API includes the W_1_z types in Fig. 1.2.1 (bottom left).
Recursion manifests as mutual references between the receiver and result types of the I/O methods.
For non-unary input choices, our implementation supports two styles of API generation, targetting
different Go features. Fig. 1.2.1 (bottom right) illustrates the API generation that targets the Go
select statement (for the initial state of Wy ). A select statement first evaluates the operands of
channel operations of every case, and then chooses a single case when one or more can proceed.
The generated Branch method returns a set of case wvalues, one for each case. Case values offer
a single Case method that takes a pointer for the expected message, and returns a Go channel that
produces the successor state channel if that case is enacted (e.g., type <-chan W_2toK_2 means a
channel for receiving W_2toK_2). Like state channels, case values are linear objects, implying each
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one should be used exactly once in the select. §5.3 explains our other Branch API style that targets
type switch statements.

Endpoint programming Fig. 1.2.1 (bottom-right) gives an implementation of Wy x 1 that con-
nects to its neighbours via TCP. An invalid self value (i.e., endpoint identifier) in the endpoint
constructor causes a run-time error. In the midman function, the select discerns the case received
from W[self-1] and assigns the according type to succ.

For the other two variants, the API family would be selected by the programmer: the API will
statically constrain whether or not connections to the middleman are allowed, supported by the
run-time check that the value of K is compatible with the selected API.



Part 11
[§4] Theory

I1.1

[§4.1] Conditions on Rank Structures

We motivate the need for the conditions on rank structures as follows:

(A, <) is a partially ordered set

We use < to define the set of ranks that are contained in interval F;..FE,, i.e., the formal
interpretation of Fy..E, is the set {a | [F1] = a = [Es]]}, where [Fi] and [E;] denote the
evaluations of E] and E5. The reason = is partial is that it offers more flexibility; our main
motivating example for this is the 2d-integers (Example 4.2).

If < were total, we would not have been able to instantiate it with the product order on pairs
of integers (as in Example 4.2), but only with some linear extension of that product order,
such as the lexicographic order. As a result, interval (1,1)..(2,2) would consist of not only
(1,1, (1,2), (2,1), and (2,2) (as intended, e.g., in mesh protocols), but also (1,3), (1,4),
(1,5) and infinitely many others. By allowing < to be partial (i.e., product order is fine), we
overcome this problem.

(A, <) is a strictly totally ordered set

While we use < to select the ranks in an interval E;..FE,, we use < to sort the ranks in the
selection, so they can be iterated over. This order must be total to ensure the semantics of
our parameterised global and local types is deterministic (just as global and local types in the
original MPST). It may be possible to incorporate nondeterminism in our approach as well
(by interpreting parameterised global and local types as sets of original global and local types,
instead of as individual ones), but we have not explored this yet. We also note that < does not
have to be a linear extension of <: after selection has occurred using <, any total order on the
resulting selection is fine.

(A, +,0) is a torsion-free abelian group and + preserves < and <

To explain the significance of these two requirements, we first need to introduce two auxiliary
concepts: the gradient of an interval and the distance between two intervals.

The gradient of an interval F; .. Fs is defined as the rank V = F;—FE,. For instance, with the
integers, V+1 coincides exactly with the number of elements in the interval (“4-1” because our
intervals are inclusive at both ends), i.e., the length of the interval. We use gradients to reason
about well-formedness (§4.5), and specifically, to check non-emptiness of closed intervals, and
to check that “all intervals in the same iteration domain [...] have the same length”. For the
former check, we require that + preserves <, and we require the existence of an identity element
0 in A such that a closed interval is empty iff its gradient equals 0. To define the gradient using
— (as we showed above), moreover, we need inverse elements of +.

The distance between intervals D, and Ds is defined as the rank A such that adding A to every
rank in D, yields D,; if such a A does not exist, the distance is undefined. We use distances
to reason about “offsets” in the projection operator. For instance, in the Pipeline protocol, the
projection operator needs to do some calculations with the intervals in the global type (Fig. 8)
to determine that in the local type for the middle Worker, such a Worker first receives from
self-1 and then sends to self+1 (i.e., the distance between intervals 1..k-1 and 2..k is -1
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in one direction, and 1 in the other). Moreover, the projection operator is undefined if the
distance between two intervals (in the same iteration domain) is the identity rank 0, because
this could lead to self-communications (which are traditionally forbidden in MPST). To prove
that these calculations performed by our projection operator are correct, we use associativity
of +, commutativity of 4, and torsion-freeness, but we speculate that some (or all) of these
requirements may in principle be superfluous: we assume them because they made an already
complicated proof somewhat easier, and because they are reasonable and unrestrictive (i.e.,
practically useful domains satisfy these requirements, including the n>1-dimensional integers).

e first-order formulas over (A, +,0, <) are decidable
This condition is necessary to ensure that inference of role variants and checking of well-
formedness are decidable. Specifically, note that the formulas that are constructed in the
proofs of Thms. 4.10 and 4.11 are first-order formulas over (A, +,0, <).

e the set of ranks between a; and a», under < is finite and enumerable

This conditions ensures that the body of every foreach is repeated only a finite number of
times, and that the intervals (i.e., iterations) can actually be computed.

I1.2 [§4.2] Examples of Local Types

Example I1.2.1 (Pget). The Pget protocol, as specified in Example 4.3 (main paper), consists of
three roles: M, F, and S. As M is enacted by only one individual, M has only one variant; this variant
is specified by one local type. The same holds for S. In contrast, F has two variants; accordingly,
each of these variants is specified by a different local type.

L, =F[1]?Size. foreach F{i:1..k} do (F[i]!Range . cont);
L;[glit =S !Head.S?Res.M!Size.M?Range.

L;[;t'k} = M?Range .
L}, =F[1]?Head.F[1]!Res.

Example I1.2.2 (Ring). The Ring protocol, as specified in Example 4.4 (main paper), consists of
one role, W, which has three variants: one for the front Worker, one for the middle Workers, and one
for the back Worker.

me

Ring = rec X (W[2] ! {Next . W[k| ? Next . X, Done . W[k|? Done . end})

L";{[izn'ék_l] =rec X (W[self-1] ?{Next . Wjself+1] ! Next . X, Done . W[self+1] ! Done . end})

Ly, =rec X (Wk-1]?{Next . W[1] ! Next . X, Done . W[1] ! Done . end})
Example I1.2.3 (Fibonacci). The Fibonacci protocol, as specified in Example 4.5 (main paper),
has one role, Fib, which has five variants: one for the first Fibonacci number, one for the second,

one for the penultimate, one for the last, and one for all the others.

LM —Fip[3]1Val . end
LUPP —Fip[3]1Val . Fib[4] ! Val . end
L2 _ pip[self-2]? Val . Fib[self-1]? Val . Fib[self+1] ! Val . Fib[self+2] ! Val . end
Lokt — Fip[k-3]?Val . Fiblk-2]? Val . Fibk] ! Val . end
[k~

L?iﬁ[k] = Fib[k-2]?Val . Fiblk-1]?Val . end



1.3 [§4.4] PROJECTION 11

Example I1.2.4 (Hadamard). The Hadamard protocol, as specified in Example 4.6 (main paper),
has three roles, A, B, and C, each of which has one variant.

Li.q = C[self] ! Val . end
L¥.q = C[self] ! Val . end
L{jaq = A[self]?Val . B[self|?Val . end

Example I1.2.5 (Mesh). The wraparound mesh protocol, as specified in Example 4.7 (main paper),
has one role, W, which has five variants.

L] — W[ky;+(1,0)] 1 Val . W[ky] ? Val .
W[ky1+(0,1)] ! Val . W[ky,] ? Val . end
Wiself+(1,0)] ! Val. W[self+ky;-k;;|?Val.
W[self-(0,1)]?Val. W[self+(0,1)]!Val. end

[
[
Lw[k11+(0,1)..k1h—(0,1)] [
[
Wkip+(1,0)] ! Val . Wkyy|?Val.
[
W[
W[

Mesh

Lieh

Wki,-(0,1)]?Val. Wky;|! Val . end
Wiself-(1,0)]?Val. W[self+(1,0)]!Val. end
W[self-(1,0)]|?Val. W[self-(ky;-k;;)| ! Val. end

LW[k11+(1,0) kyh—(1,0)]
Mesh -

W[kwl .. kwh]
LMesh

I1.3 [§4.4] Projection

The full definition of projection appears in Part VII, Section VII.8.2, Figure VII.8.2 (page 46), as
part of the collection of all definitions, lemmas, and theorems in our theory.

I1.4 [§4.5] Proof of Thm. 4.12

We recall the following from the main paper. Projection is correct if it satisfies the following equation,
for all well-formed G and o such that G (o)) is well-closed:

G o) ={(G17[D, D) () | DWD =ivals(r,G), 7 =0 U{self = a}, = o(D (), D{r)}

To prove correctness, our general strategy is as follows. We first prove correctness for well-formed
global types without parameters. In this restricted case, the correctness equation becomes:

G={(G1r[D,D]) () | DwD =ivals(r,G), 7 = {self s a}, = o(D (), D))}

First, we define the semantics of global types and sets of local types, by interpreting every global/
local type T in our theory as a global/local type [T] in the original theory of MPST (i.e., without
foreach), for which reduction semantics have been defined [DY13]. Essentially, [-] unrolls all loops,
which is possible because the restricted case has no parameters (i.e., all intervals can be evaluated
to concrete values), and because iteration domains are finite. Next, we prove that if D WD =
ivals(r, G), 7 = {self + a}, and |= ¢(D (7)), D (7)), projection and interpretation commute:
[(G | 7[D, D]) ({se1lf — a}))] = [G] lowg rlal, where |, denotes the projection operator in the
original theory. Finally, we leverage a result in the original theory of MPST, stating that [ ., is

orig
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Q) []

G Grestr Gorig
F O f O rorig
L <<>> ]Lfrestr [H] ]Lorig

Fig. I1.4.1. Proof strategy

correct,! under trace equivalence. Trace equivalence is sufficient, as global types and sets of local
types represent closed systems. Thus:

[GT Zorig 1G] Torig la] | rlal € [G]} == Tr[G] = Tr{[G] lowig 7la] | rla] € [G1} .
= Tr[G] = Tr{[(G | r[D, D)) (r)] | D@D = ivals(r, G), 7 = {self s a}, |= (D (), D ()}

— G ={(G|r[D,D)) (r) | DYD =ivals(r,G), 7 = {self — a}, = (D (), D ()}

To extend our proof to the general case, it is enough to show that projection and instantiation
commute: (G [ r[D,D]) (o)) = (G (o)) [ r[D (o)), D (o))]).

The crucial, non-trivial steps of our proof rely on the bold-emphasised properties above: com-
mutativity of projection and interpretation, and commutativity projection and instantiation; this
proof strategy is visualised in Figure 11.4.1 (a more detailed version of this figure appears in Sec-
tion VIL.8.2). The full definitions, auxiliary lemmas, and theorems appear separately in Part VII;
detailed proofs of these results appear separately in Part VIII.



13

Part 111
[§5] Implementation

I11.1 [§5.2] Communicating FSM Based Representation of Local Types

From local types to communicating FSMs. Let fsm denote a function from local types to
FSMs. The following equations inductively define fsm for core local types in terms of a graphical
notation for FSMs. Circles represent states; arrows represent transitions (labelled with scatter/gather
I/O actions, or silent action 7); dashed rectangles represent FSMs and serve either as continuation
FSMs or as nested FSMs inside states; labels below states indicate state identifiers (identifiers of
states without labels do not matter and are freshly generated by need). Let t € {!,7}.

fsm(r[z]T{¢; . L;};e) =

fsm(foreach R{i;:D;}jcs do Ly ; Lo) =

fsm(cont) = O

7777777

fsm(rec X L) = %(fsm(L)

fsm(X) =0

fsm(end) = O

end
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For instance:

fsm(rec X B[5|!{Foo. X ,Bar . end})

577

' 861‘ end

The last step explicitly shows that states with the same identifier are intended to be unified.

We also note that if a state s’ does not have a nested FSM, 7 transitions from a state s to s’ can
safely be abstracted away (up to weak bisimilarity, i.e., fsm never yields an FSM with 7-branching):
every outgoing transition of s’ is transformed into an outgoing transition of s, and the 7 transition
between s and s’ is removed. This essentially means that instead of explicitly making an internal
transition from s to s’ before being able to make the next external transition, any one of those external
transitions can be made immediately. Thus, the FSM in the previous example can be simplified to:
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Finally, the following equations additionally define fsm for our local type syntactic sugar:

O-—Pth fom(Ly) if: [J]=1

fsm(r[D] 1" {¢; . L;}jes) =

fsm(desugarred version of r[D]1*{¢; . L;};c;) otherwise

I11.2 Endpoint API Code Generation and the Scribble-Go Runtime

Transport abstraction. For the most part, the code generation for the I/O operations underlying
the API type signatures outlined above is as expected: our goal is to provide lightweight type
wrappers around standard channel communication facilities. Due to [DY13], our correctness results
are directly applicable to any concrete transport with the standard semantics of asynchronous session
types: an unbounded FIFO in each direction between each pair of endpoints (i.e., non-blocking
output, reliable, order-preserving). The API code generation targets our Runtime session I/0 library,
which declares an abstract interface for binary, bi-directional channels with the above semantics:
concrete transports are added to the Runtime by implementing this interface. API users select the
transport as part of using the generated Dial/Accept methods (as in, e.g., §3.2).

Our current implementation supports bindings for the distributed transports of the standard
net package (https://golang.org/pkg/net/), e.g., TCP and Unix domain sockets (we used such
standard APIs as a basis for our generation). Our shared memory bindings are implemented by
determining from the source protocol the set of message types that may be communicated between
the relevant endpoint pair, and establishing a pair of Go channels (for each direction) for each
type—we find this to be significantly faster than casting types through a raw chan interface{}. By
default, messages are passed as pointers; the user may also specify to pass messages by value. We
note that the core safety properties that we build on in §4.5 also hold for bounded asynchronous and
synchronous channels [DY10]—it is thus safe for our APIs to wrap any such Go channels.

Optimisations. The main (potential) sources of run-time overhead introduced by our APIs during
the execution of a running session are the creation and garbage collection of state channel structs,
indirection of I/O operations through the Scribble-Go interfaces, and dynamic linearity checks. In
early experiments, we found the former to be the dominating factor. In our current implementation,
we have eliminated these costs by pre-creating a single instance of each channel struct in the API on
Endpoint initiation. I/O methods are generated to simply return a pointer to the existing struct for
the successor state (with the id linearity field set to a fresh value).

We find checking channel linearity by our method to be faster than the alternative of checking
a bool usage guard pointed to from each channel struct in shared memory microbenchmarks; note,
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unlike our mechanism, directly embedding the bool as a struct field is unsafe due to potential copying
of structs by the user. The cost of either method, however, tends to be insignificant in applications
with non-trivial computations, and when using any other (more costly) transport than shared memory
such as TCP (see §6 for our performance evaluations).

§3.3 demonstrated the API generation of the Parallel method (alongside Foreach) for nested
FSMs where the indexed roles do not interact with each other. Parallel takes the same func type
argument for the nested behaviour as Foreach, but spawns a separate goroutine to execute the func
for each iteration; it returns after all the goroutines have terminated.

State channel delegation Our Runtime currently supports delegation in shm settings only, i.e.,
the state channel being delegated encapsulates only shm channels, and is being delegated over an shm
channel—delegation is supported “for free” over Go channels: the underlying Go type is, e.g., chan
*A_1 (cf., Pget); note our linearity checking method allows passing the state channel by pointer (the
channel is set as “used” at the sender-side via the Endpoint-tracked ID). Mechanisms for distributed
delegation (e.g, [HYHO08, SDHY17]) are orthogonal to this paper.
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Pt Sc Ga FE |Pt Sc Ga FE Pipe MS PP Rec Del
o 1. One-to-Many (§6.1) () O _ g 4. Pipeline (§4.2) |® °
< £ 2. Many-to-One (§6.1) ® O 2% 5. Ring (§4.2;1.2) |@ [ ) o o
o % 3. Many-to-Many (§6.1) ® e O %T‘i 6. Hadamard (§4.2)| @
Q
o & Above, O are possible alt. implementations a &= g Pl\{(l)(i?{}} J(()§izll{2) ® o0 ®
9. Pget? (O is the difference between the two versions in §3.2;§3.3 |@ @ @ O °
10. Vickrey auction (§1V.1.2) o0 0 0 o o
11. Jacobi solution of discrete Poisson equation. [BHY09] 0o 00 (] L J
. 12. n-body simulation (based on Ring) [BHY09] [ ) o o e o
£ 13. Iterative linear equation solver (based on Mesh) [NY15] o0 o o o
£ 14. k-nucleotide [Goul7] (§6.1) o0
= 15. regex-redux [Goul7] (§6.1) o0
5 16. spectral-norm [Goul7] (§6.1) o0 [ )
17. Fibonacci [LNTY17] [ ) o
18. Quote-Request [ABPRT04, NY15] o0 0  J
19. P2P multiplayer game [SDHY17] () e o e o o
20. Web Crawler [Akh16, NY17] TEXK,
21. n-buyers [HYC16, CDYP16] [ ) ) o o

Pt: point-to-point; Sc: Scatter; Ga: Gather; FE: Foreach; Pipe: Pipeline; MS: MS choices; PP: PP choices; Rec: Recursion; Del: Delegation
Fig. IV.1.1. Role-parametric protocols for communication patterns, topologies and applications in
Scribble-Go.

Part IV
[§6] Evaluation

IV.1 [§6.2] Use Cases

IV.1.1 Description of Use Cases

We demonstrate the expressiveness and applicability of our framework through Table IV.1.1. The
table lists protocols from this paper or in the literature that can be represented in our framework
which we can generate APIs for. All the protocols listed in the table are either parameterised, or
can be naturally adapted to be parameterised.

Each column represents a feature (or primitive) used by a given protocol, a @ indicates that a
feature is present in the protocol; a O or [J indicate features present in alternative representation
of protocol. The columns Pt, Sc, Ga mean direct peer-to-peer, one-to-many (scatter), and many-
to-one (gather) communication; FE means role-parametric subprotocols using the foreach primitive.
Peer-to-peer, scatter, and gather can all be represented with foreach (cf. Fig. 10), hence FE may be
present if either of the base primitives is. Pipe is the pipeline communication (the pipe primitive).
MS is branching (choice) and Rec is recursion with the do-statement. Finally, Del is delegation. The
protocols are divided into the following categories:

Basic communication patterns Protocols 1-3 are the three base communication primitives scat-
ter, gather, and all-to-all from the microbenchmarks in §6.1.

Common parallel topologies These protocols are commonly used in implementing parallel algo-
rithms. Protocol 4 (Pipeline) is the basic parameterised pipeline structure. Protocol 5-7 are examples
from §4.2: Ring (Example 4.4), Hadamard (Example 4.6), and Mesh (Example 4.7), MapReduce is
the distribution and collection protocol for large-scale data processing; a parameterised session pro-
tocol was given by [NY15].
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Protocols derived from applications Protocols in this category are extracted from real world
applications or described in the literature. Protocol 9 (Pget) and its optimised version from §3.3
are the running examples of this paper. The optimised version uses foreach instead of scatter-gather
communication. Protocols 14-16 are the three CLBG case studies in §6.1. Protocol 17 calculates
the Fibonacci sequence and its definition is given in Example 4.5. Protocol 18 is a Quote-Request
protocol specification (C-UC-002) [ABPRT04] published by the W3C Web Services Choreography
Working Group [W3C02]. The protocol describes the interaction between a buyer who interacts
with multiple suppliers who act as proxies to manufacturers to get a quote for goods or services.
A parameterised protocol was specified in session types by [NY15]. Protocol 19 is a peer-to-peer
multiplayer Game protocol introduced by [SDHY17]. The protocol describes three clients, initially
unknown to each other, connects to a “matchmaking” server which sets up a game session where
they can interact directly through delegation. We extended the protocol to be parameterised over
the number of clients. Protocol 20 is a protocol from an open source web crawler [Akh16], which
coordinates multiple processes to download then parse a specified webpage. A parameterised session
protocol was given by [NY17]. Protocol 21 is a parameterised n-buyer protocol, where n buyers
cooperate to buy a book from a seller. The protocol is adapted from the original three buyer protocol
by [BCDT08]. Protocol 10 is a Vickrey auction protocol, which describes an auction between multiple
bidders and a coordinator. The bidding process involves repeated rounds of bidding where the bidders
either post a higher bid to outbid their opponents or surrender until there is only one bidder left.
The protocol uses gather to collect the bids and decisions from the bidders. Details of the protocol
are given in §IV.1.2.

Comparison with existing parameterised MPST Previous theories and implementations of
parameterised protocols are monolithic, and require index-dependency support in the execution run-
time (e.g. generating code for MPI [NdFCY15]). Our framework supports most existing parame-
terised MPST protocols [DYBH12, NY15], but our approach brings the expressiveness of parame-
terised MPST protocols to independent, distributed endpoints that do not have dependent types.

IV.1.2 Example: Vickrey Auction

A Vickrey auction is an auction where k bidders aim to outbid each other through an auctioneer;
the bidder with the second highest bid wins (e.g., Google and Yahoo! use generalised variants of the
Vickrey auction to sell online advertisements [EOS07]). The auction proceeds in rounds.

In round n = 1, each of the k& bidders communicates an int (initial bid) to the auctioneer. The
auctioneer subsequently communicates an int (highest initial bid) to the bidders.

In round n > 1, each of the k bidders has a choice: communicate either an int (higher bid) or
a bool (skip round) to the auctioneer. If the auctioneer receives only bools, the auction is over,
and the auctioneer communicates a string (winner announcement) to the bidders. Otherwise, the
auctioneer communicates an int (new highest bid) to the bidders.

The Auction protocol with k& bidders is specified by the following global type:

Example IV.1.1 (Auction).

GAuction = B[1..k] *» A : InitialBid . A= B[1..k] : HighestBid.
_ , Bid . cont
rec X foreach B{i:1..k} do <B[1]—>A : { }) ;

Skip . cont
HighestBid . X

1 .
A% B[1..K]: { Winner . cont

} ; end
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Example IV.1.2 (Auction). The auction protocol as specified in Example IV.1.1, has two roles,
Bidder B and Auctioneer A.

LA — pyInitialBid. A?HighestBid .
Bid . A? {HighestBid . X, Winner . end}
Skip . A? {HighestBid . X, Winner. end}}
LA ction = B[1..X] ?* InitialBid . B[1..k] I* HighestBid .
rec X foreach B{i:1..k} do (B[i]? {Bid. cont, Skip. cont});
B[1..k] ' {HighestBid . X, Winner . end}

recXA!{

An example implementation of the Auction protocol using the generated APIs is given below:

// Main body of one of the 1..k Bidders
func Bidder(bl *B_1) End_B {
var (
highest int
winnerName string
)
b2 := bl.A.Send. InitialBid(myBid).
A Receive.HighestBid(&highest)
for {
if highest < myMaxBid {
b3 = b2.A.Send.Bid(myBid+1)

} else {
b3 = b2.A.Send.Skip(false)
}
highestBid, winner, _ := b3.A.Branch()
select {

case succ := <-highestBid.Case(&highest):
b2 = succ

case succ := <-winner.Case(&winnerName) :
print (winnerName)
return succ

}

}
}

// Main body of the Auctioneer
func Auctioneer(al *A_1) End_A {
var highest int
a2 := al.B_1toK.Gather.InitialBid(&bids)
highest := max(bids)
a3 := a2.B_1toK.Scatter.HighestBid(split(highest))
var bidorskip [1BidSkip

for {
a3 := a2.B_1toK.Gather.BidOrSkip(&bidorskip)
newHighest, winnerId := findWinner (bidorskip)

// sets winnerId if all skip
if newHighest > highest {
highest = newHighest
a2 = a3.B_1toK.Scatter.HighestBid(split(highest))
} else {
return a3.B_1toK.Scatter.Winner (winnerId)
}
}
3
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Part V
[§7] Related Work

V.1 Additional Related Work

Parallel programming abstractions and code generation for safe communication. An-
other approach of guaranteeing safety-by-construction is to hide communications behind an additional
layer of programming abstractions for parallel computations. Examples include high-level constructs
in languages with implicit/data parallelism [CGS*05, CCZ07, Jr.05, CLJ*07, Ble96, Cha01, Rei07],
algorithmic skeleton APIs [Col88, GL10, LP10, CK10, ADK"11], and domain-specific languages/
APIs that compile to parallel code [BSLT11, CSB*11, SLB*11, DJP*11, RBA"13|. Besides safety,
such languages/APIs are often highly optimised. However, the constructs of these languages/APIs
embody a fixed, predetermined range of communication patterns, typically by design with respect to
their target application domains. By contrast, our work targets open-ended specification and imple-
mentation of custom communication patterns and protocols, for any application or domain suited to
our supported communication semantics; domain-specific abstractions may be built on top (e.g., via
syntactic sugars or encodings; §4.2).

[ACRS16] present a calculus for parallel computations, that can encode abstractions for paral-
lelism such as fork-join. The calculus is expressive, but is untyped; it offers no support against errors
such as deadlock.
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A, +,0,—) is a torsion-free abelian group
A, <) is a partially ordered set

A
-
3. (A, <) is a strictly totally ordered set
[al as and az = a4] impl. a1 +a3 < as+ay
3

a1 < as and as = Cl4:| |mp| a1+ az < as + ay

6. d(a®, a) = 6(ak,al) impl. {a; + 5(aP,df) | ae <@ < al'} = {as | af < ay < al)

Fig. VIL.2.1. Addition, identity, inverse, selection, arrangement (ranks)

Part VII
Full Definitions

(The notation in this part and the next differs slightly from the notation above and in the main
paper.)

VII.1 Preliminaries

Definition VII.1.1. Let 9at = {o0,1,...} denote the set of all natural numbers, ranged over by n.

Remark VII.1.1. By convention, ~ indicates symbols bound by explicit quantifiers in mathematical
statement (e.g., Hﬁ # 0 impl. n > o} for-all ﬁ}) or by implicit quantifiers in set-builder notation
(e.g., {n+1]|ne€Nat}).

Remark VII.1.2. All lemmas are stated without proof; they follow directly from preceding definitions
and figures. In contrast, all theorems are stated with proof.

VII.2 Ranks
VII.2.1 Elements
Definition VII.2.1. Let A denote the set of all ranks, ranged over by a.

Definition VII.2.2. Let a; + as denote the addition of a; and as. Let 0 denote the identity. Let
—a denote the negation of a. Let a; =< as denote the selection of a; before as. Let a1 < ay denote
the arrangement of a; before ay. Let §(ay, as) = as + (—ay) denote the distance between a; and as.
Fig. VII.2.1 axiomatises +, 0, —, <, and <.

Lemma VII.2.1.
1. A% 0 impl. min({a+a|ae€ A}, <) =min(A4,<) +a

2. 6(af,al’) = d(as,ap) <0 impl. {a +d(ap,af) | af 2 a < al'} = {az | a5 < ay < ah’} #0
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head A = min (A, <)
tail A = A\ {min (A, <)}

5(141,142):@ if: {d1+a]&1€A1}:A27E(Z)
Fig. VII.2.2. Head, tail, distance (sets of ranks)

head A; < head A, tail A; < tail A,
Ay < A D<o

Fig. VIL.2.3. Arrangement (sets of ranks)

VII.2.2 Sets
Definition VII.2.3. Let 2* denote the set of all sets of ranks (ordered by <), ranged over by A.

Definition VII.2.4. Let head A denote the head of A. Let tail A denote the tail of A. Let (A, As)
denote the distance between A, and A,. Fig. VII.2.2 defines head, tail, and 0.

Lemma VII.2.2. head : 2% — A
Lemma VII.2.3. tail : 24 — 24
Lemma VII.2.4.
1.6:20 x 20 —~ A
2. §(A1, Ay) #£0 impl. Ay # Ay
3. 6({a1},{az}) = (a1, as)
Theorem VIIL.2.1. (A, Ay) € domd impl. §(A;, Ay) = §(head Ay, head As)
Proof. See Section VIII.1. m
Definition VII.2.5. Let A; < Ay denote the arrangement of A; before A,. Fig. VII.2.3 defines <.
Theorem VII.2.2. [O <a and {a;+al|a € A} = Ag] impl. A, < A,

Proof. See Section VIII.2. O]

VII.2.3 Families

Definition VII.2.6. Let Z denote the set of all rank variables, ranged over by z. Let fam (Z, A) =
Z — A denote the set of all families of ranks, ranged over by ¢. Let fam (Z,2%) = Z — 2* denote
the set of all families of sets of ranks, ranged over by ®.

Definition VIIL.2.7. Let ¢/z denote the normalisation of ¢ to z. Fig. VII.2.4 defines /.
Lemma VII.2.5.
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¢/z={2 = ¢(2) +6(6(2),¢(2)) | Z € Z}

Fig. VII.2.4. Normalisation (families of ranks)

head ® = {Z — head ®(2) | Z € Z}
tail® = {Z — tail ®(2) | Z € Z}
0P = {(Z1,22) — 0(P(Z1),P(22)) | 21,22 € Z}

len® =n if: n=|P(2)| for-all Z € domP
Fig. VIIL.2.5. Head, tail, distance matrix, length (families of sets of ranks)

1. /:fam(Z,A) x Z — fam (Z, A)

2. (¢,z) € dom / impl. ¢/z=¢

Definition VII.2.8. Let head ® denote the head of ®. Let tail ® denote the tail of ®. Let 6P denote
the distance matriz of ®. Let len ® denote the lengths of ®. Fig. VII.2.5 defines head, tail, 9, and len.

Lemma VII.2.6.
1. head : fam (Z,2%) — fam (Z, A)

2. [[®(2) # 0 for-all z € dom®]| impl. dom® C dom (head ®)| and dom (head ®) C dom @

3. [@(z) € dom head or z € dom (head @)] impl. head ®(z) = (head ®)(z)
4. ®; U Py € domhead impl. head ($; U &) = (head 1) U (head ®5)
5. @1\ @5 € domhead impl. head (®; \ ®2) = (head ®4) \ (head ®5)
Lemma VIIL.2.7.
1. tail : fam (Z, 2%) — fam (Z, 2*)
2. [[®(2) # 0 for-all 2 dom®]| impl. dom® C dom (tail ®)| and dom (tail &) C dom &
3. [@(z) € domtail or z € dom (taiICID)} impl. tail ®(z) = (tail ®)(2)
4. &1 U Py € domtail impl. tail (& U Do) = (tail @1) U (tail dy)
5. @1\ &y € domtail impl. tail (P \ $o) = (tail D) \ (tail dy)

Lemma VII.2.8.
1. 0 :fam (Z,2%) — (Z x Z — A)

2. dom 6P C (dom ®) x (dom P)
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@ ={Z—~{o(2)} UR(2) | Z € Z}

{Z— 0] %€ domd} if: ® € domlen and a € ®(z) and a = (head ®)(z)

2tozla) = {(head ®)-((tail &) to 2[a]) if: ® € domlen and a € ®(z) and a # (head ®)(2)

o if: ® € domlen and a € ®(z) and a = (head ®)(z)

@ from z{a] = {(tail ) from z[a] if: ® € domlen and a € ®(z) and a # (head )(z)

Fig. VII.2.6. Extension, largest prefix, smallest suffix (families of sets of ranks)

3. [(@(21), @(2)) € domd oF (21, 2) € dom 6B impl. §(D(21), D(22)) = D (21, 2)
4. [(21,22) € dom 6@ and ®(z) = (z)| impl. 6@ (21, 22) =0
5. [(21,2) € domd® and B(z1) # B(z)] impl. 60 (21, 2) # 0
Lemma VII.2.9.
1. len : fam (Z, 2‘*) — Nat
2. [® € domlen and ®(z) # 0] impl. len® > o

3. [® € domlen and @(z) # 0 and 2’ € dom @] impl. ®(2') # 0
Theorem VII.2.3.
1. [A = min (img ®, <) and A # @} impl. tail A = min (img (tail ®), <)

2. [A = max (img ®, <) and A # (7)} impl. tail A = max (img (tail @), <)
Proof. See Section VIII.3. O]
Theorem VIIL.2.4. (21, 25) € dom 0P impl. §P(z1,22) = §((head D)(21), (head P)(22))
Proof. See Section VIII.4. O
Theorem VIIL.2.5. len® > o impl. len (tail @) < len @
Proof. See Section VIIL.5. [

Definition VII.2.9. Let ¢-® denote the extension of  with ¢. Let ® to z[a] denote the largest prefix
of @ that excludes z[a]. Let ® from z[a] denote the smallest suffiz of ® that includes z[a]. Fig. VI1.2.6
defines -, to, and from.

Lemma VII.2.10.
1. - :fam (Z, A) x fam (Z,2%) — fam (Z,24)

2. dom ¢-® = (dom ¢) N (dom P)
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3. [[2 € dom¢ and z € dom®| or z € domg-@| impl. {p(2)}Ud(2) = (¢P)(2)
Lemma VII.2.11.
1. to: fam (Z,2%) x (Z x A) — fam (Z,2*)
2. (P, z[a]) € domto impl. dom ® = dom (P to z[al)
3. [(®,2[a]) € domto and 2’ € dom ®| impl. (®toz[a])(z') C B(2)
Lemma VII.2.12.
1. from : fam (Z, 2%) x (Z x A) — fam (Z, 2*)
2. (P, z[a]) € dom from impl. dom ® = dom (P from z[a])
3. [(@,z[aD € domfrom and 2’ € dom (ID} impl. (® from z[a])(2") C ®(2')
Theorem VII.2.6.
1. [(ID € domlen and a € ®(z) and a # (head Q))(z)} impl. head ® = head (¥ to z[a])
2. [(tail ®, z[a]) € domto and ® € domlen and a € ®(2) and a # (head ®)(2)]
impl. (tail ®)to z[a] = tail (P to z[a])
3. (P, z[a]) € domto impl. P toz[a] € domlen
Proof. See Section VIII.6. [

Theorem VII.2.7.

impl. @ from z3[a] = (P from z;[a]) from z3[a]
Proof. See Section VIIIL.7. m
Theorem VII.2.8.

1. [{@(21),®(2)) € domd and (®,2[a]) € domto and a # (head ®)(2)]
impl. §(P(21), P(z2)) = 6((Ptoz[a])(z1), (Ptoz[a])(z2))
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E € IVE = E1+E2 ’ El—EQ | a | k

E € E = E1+E2 | El-Eg | a

DeD == E°. EN

DeD == E°._ EN

é € (: = {Zi:Di}iEI if: {’ll % ig impl Ziq 7£ Z@é} for-all ihig el
é S @ = {Zi:Di}ieI if: {21 7é 19 impl Zi1 7& Zi2:| for-all il,ig el

Fig. VIL.3.1. Open/closed rank expressions, open/closed intervals, open/closed iterators

2. |:<q)(21),®(22>> € dom¢ and (9, z[d]) € domfrom}
impl. §(®(21), P(22)) = §((P from z[a])(z1), (P from z[a])(22))
Proof. See Section VIII.S8. [

Theorem VII.2.9.

1. [((I) U @, z[a]) € domto and ®(z) = max (img P, <) and [a ¢ Oo(2) for-all z € dom CI)COH
impl. a ¢ Uimg ((P U D) to z[a])

(® U D, 2[a]) € dom from and
®(z) = min (img ®, <) and [a ¢ Oo(2) for-all z € dom @co}
impl. o ¢ UJimg (tail (¢ U $e,) from z[a)))
((Q U Dy U @) from 24 [al, 22]a]) € domto and
3. |®(z1) = max (img &, <) and P(z3) = max (img (P \ {z; — P(21)}),<) and

[B(2) < Bgr(Zg) for-all z € dom®, 2, € dom Py | and [a ¢ Peo(2) for-all 2 € dom P
impl. a ¢ Jimg (tail ((® U ®g U Do) from 21 [a] to 2o[al))

Proof. See Section VIII.9. O

VII.3 Rank Expressions, Intervals, and Iterators

VII.3.1 Syntax

Definition VII.3.1. Let K denote the set of all parameters, ranged over by k. Let self € K denote
a distinguished parameter.

Definition VIL.3.2. Let E and E denote the sets of all open and closed rank expressions, ranged
over by E and E. Let D and D denote the sets of all open and closed intervals, ranged over by D
and D. Let 22 and 2 denote the set of all sets of open and closed rank intervals, ranged over by
D and D. Let € and C denote the sets of all open and closed iterators, ranged over by C and C.
Fig. VII.3.1 defines IE, I@, IDD, ]ﬁ>, (fj, and C.
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vars({z;: D; }ier) = {z | i € I}
ivals({z;: D;}ier) = {D; | i € I}

Fig. VIIL.3.2. Rank variables, intervals (open iterators)

v

[y

<

(WD)+(E2 (v))
{oN)-(E2 (&)

—

il
=
£
~
I
A\ QL o/~

Er+Es (1
Er-Es ()

a (Y
(k) if: ke domy
k

if: £ ¢ domv

© <V<¢>>) L (EM ()
2i: Di () Yier

BB ()
{zs: DiYier ()
()

v

Il
N A~

Fig. VIIL.3.3. Parameter instantiation (open rank expressions, open intervals, open iterators)

Definition VIL.3.3. Let EUZ and E UZ denote the set of all open and closed indices, ranged over
by # and £. We shall often write x instead of & and 2.

Lemma VIL.3.1. E - E
Lemma VIL3.2. DCD
Lemma VIL3.3. C C C

Definition VIL.3.4. Let vars(C) denote the rank variables that occur in C. Let ivals(C') denote the
set of all rank intervals that occur in C'. Fig. VII.3.2 defines vars and ivals.

Lemma VII.3.4.

1. vars: CUC — 22

2. z:D e C impl. z € vars(C)
Lemma VII.3.5.

1. ivals: CUC — 2P U 2P

2. z:D e C impl. D € ivals(C)

VII.3.2 Parameter Instantiation

Definition VII.3.5. Let ¥ = K — A denote the set of all parameter substitutions, ranged over by
1. Let 2% denote the set of all sets of parameter substitutions, ranged over by W.

Definition VIIL.3.6. Let E (), D (), C (1), and z (1)) denote the parameter instantiation of
E, D, C, and z with ¢. Fig. VII.3.3 defines - ((-)).
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[[5:71“?2]] = [[/?1]] + [[Ez]]A
[E£1-Es] = [E1] + (—[E2])
[a] = a
[[EAvIoA“EAvhi]] _ {CNL | [[Elol] j i j [[Ehl]]}
[2] = =

Fig. VII.3.4. Denotation (closed rank expressions, closed intervals, closed iterators, rank variables)

Lemma VII.3.6.

1 () : (EUDUCUZ)x¥ - REUDUCUZ

S T S . N N S T S
Q)¢
=

< <
=

< = =
=
<
N
N~
I
Q)¢
N
<
=

~
)
—~
A

~
~
=

S
Il
=

12. % () () = Z (1 U (2 \ {k = ha(k) [ £ € (dom¢py) N (domhy)})))

VII.3.3 Semantics

Definition VIL3.7. Let [E], [D], [C], and [z] denote the denotation of E (as a rank), D (as a set
of ranks, ordered by <), C' (as a family of sets of ranks, ordered by <), and z (as a rank variable).
Fig. VIL.3.4 defines [].

Lemma VII.3.7.
1. []:EuDUCUZ — AU2*Ufam (Z,2*) UZ
2. [z:f? e C impl. z € dom [[CA’]]} and Hz € dom [C] impl. z:D e CA’} for-some D
3. [2:D € C impl. [C](2) = [D]] and [[C](z) = [D] impl. 2:D € (]

4. él U C’z € dom [H] |mp| [[él U C’Q]] = [[él]] U [[ég]]
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A(E17E2> = EQ_El

A(EY..EY, B3 .. E3) = A(EY, E7)

A({zi: Ditier) = {(zi1, 2i,) = A(Diy, Diy) | i, iz € I}
V(E®..EM) = A(E", E")

Fig. VII.3.5. Distance (open rank expressions, open intervals, open iterators), gradient (open
intervals)

() []

ExE

v () . [
E £ A

Fig. VII.3.6. Theorem VII.3.2

5. [C1UCy e dom[] and = € dom [C4]] impl. [C1UCa)(2) = [C1](2)

6. [C\{z:D}] = [CT\ {= — [DI}
Theorem VIL3.1. dom [C] = vars(C)
Proof. See Section VIII.10. O

VII.3.4 Distances

Definition VII.3.8. Let VA(E17E2>, A(Dy, Ds), and A(é’) denote the distance from E; to Es,
the distance from Dy to D, and the distance matriz of C. Let V(D) denote the gradient of D.
Fig. VII.3.5 defines A and V.

Lemma VIL3.8. A: (ExE)x (DxD)x (CxC)->RBUEU(Z x Z — k)
Lemma VIL.3.9. V:D — E
Theorem VI11.3.2. The diagram in Fig. VII.3.6 commutes:
1. A(Ey, B) () = A(E (), B2 ()
2. [A(Ey, B,)] = 6([Er], [Fa])
Proof. See Section VIII.11. O]
Theorem VII.3.3. The diagram in Fig. VII.3.7 commutes.
1. A(Dy, Ds) (W) = A(D1 (), Dz ()
2. [V(D1)] = [V(D2)] =1 0 impl. [A(Dy,D5)] = 6([D:]. [Da])
Proof. See Section VIII.12. O
Theorem VIL3.4. (21, 2) € dom A(C) impl. A(C) (21, 22) (¥) = A(C (W) (21, 22)
Proof. See Section VIII.13. O
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=
<
=
=
=

24 » oA

S«
X
S«
S
X
S

. () . [
D D A

Fig. VIL.3.7. Theorem VII.3.3

[EP (), EY (v) € B impl. [EP (v)] < [ES (w)]] for-all v
20 BP LB < 291 EY L EY

Fig. VII.3.8. Arrangement (open iterators)

[V(D;,)] = [V(Ds,)] =0 for-all iy,iy € I
[zil # 2, impl. [A(D;,, Dy,)] # 0} for-all iy, € I
({2:D;}ier, <) is a strictly totally ordered set
{21 Diticr €V

Fig. VIIL.3.9. Tick (closed iterators)

VII.3.5 Arrangement

Definition VII.3.9. Let zlle < ZQ:DQ denote the arrangement of z :Dl before ZQ:DQ.
Fig. VII.3.8 defines <.

Theorem VIL.3.5. z: D = max (C, <) impl. z:D () = max (C (1)), <)
Proof. See Section VIII.14. O

VIL.3.6 Tick
Definition VII.3.10. Let v* denote the set of all ticked iterators. Fig. VII.3.9 defines v'.
Lemma VII.3.10.
1. vcc
2. |[Cev and 2:D1,2:D; € C| impl. [V(D1)] = [V(Dy)] <10
3. [C’ ev and z:Dy,20:D5 € C and z +# 22:| impl. [[A(f)l,f?g)]] #0
4. CLuCyev impl. Gy ev
5 Crev impl. 01\ Cyev
Theorem VIIL.3.6. C € v impl. len [C] > o
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Proof. See Section VIII.15. O
Theorem VII.3.7.

1. C e v impl. domd[C] = dom A(C)

2. C e v impl. domd[C] = vars(C) x vars(C)

3. [(21,2) € dom6[C] and C € v| impl. 3[C] (21, 22) = [A(C)(21, )]

4. [<21,22> € dom 6[[@]] and z; = 2, and C € \/} impl. 5[@](21,22) =0

5. [(21,2) € domd[C] and 2 # 2 and C € v| impl. 5[C](z1,2) # 0
Proof. See Section VIII.16. O
Theorem VII.3.8.

1. [Cev and 2:Dy,2%:Dy € C and 2:D) < 2: Dy impl. [C](z1) < [C](22)
2. [C’ € v and z:D = min (C, <<>] impl. [C](z) = min (img [C], <)

3. [C’ € v and z:D = max (C, <<>} impl. [C](z) = max (img [C], <)
Proof. See Section VIII.17. O

VIL.4 Non-Parametrised Theory (Syntax; Well-Formedness; Unfolding)

VII.4.1 Syntax

Definition VII.4.1. Let R denote the set of all role names, ranged over by r. Let 2% denote the set
of all sets of role names, ranged over by R. Let £ denote the set of all labels, ranged over by £. Let
X denote the set of all type constants, ranged over by X, Y. Let end, cont € X denote distinguished
type constants.

Definition VII.4.2. Let G denote the set of all basic global types, ranged over by G. Let L denote

the set of all basic local types, ranged over by L. Let Q denote the set of all queues, ranged over by
Q. Fig. VII.4.1 defines G, L, and Q.

Definition VIL.4.3. Let Gree = {rec X G| X € X and G € G} denote the set of all recursive
basic global types. Let G UL denote the set of all basic types, ranged over by T. Let R = R x A
denote the set of all ranked role names, ranged over by 7,7, 7; we shall write r[a] instead of (r, a).
Let R = R x Z denote the set of all iterated role names, ranged over by 7y, 7y, 7*; we shall write r|[z]
instead of (r,z). Let Act = (R x A) x (R x A) x {1, ?} x £ denote the set of all actions, ranged
over by «; we shall write r175 10 and 7175 ?2¢ instead of (ry, 7, 1, ¢) and (ry, 7, 2, ).

VI1.4.2 Well-formedness

Definition VII.4.4. Let Wf; x(T") denote the well-formedness of T. Fig. VII.4.2 defines WHF.
Lemma VII.4.1.

1. Wy x(T) impl. Wfy »(T)

2. Wf;»(T) impl. Wf; xy(T)
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GeG L= 7’1[331] —97’2[132] 1{& . Gi}ie[
| rec X G if: X ¢ {end, cont}
| X

Lel = TQ[ZEQ] '{El . Li}ie[
| mfz] ?{l . Litier
| rec X L if: X ¢ {end, cont}
| X

ReQ == 1Q
| ¢

Fig. VII.4.1. Basic global types, basic local types, queues

ry € dom f impl. z; € f(r) ro € dom f impl. x5 € f(12) Wf; x(G;) for-all i€ [
WH ¢ v (r1[z1] = ma[ze] 1 {l; . Gi}ier)

ro € dom f impl. 25 € f(r2) Wf; x(L;) for-all i € I
Wi g x(ra[wa] {0 - Li}ier)

ry € dom f impl. z, € f(r) Wf; x(L;) for-all i e[
Wiy x(rilea] 2{€; .« Li}ier)

Wff,XU{X}(T) XeX
Wf; y(rec X T) Wt x(X)

Fig. VII.4.2. Well-formedness (basic global types, basic local types)

VII.4.3 Unfolding
Definition VII.4.5. Let T {Ty /Y } denote the unfolding of every Y to Ty in T. Fig. VI1.4.3 defines
H{/}
Lemma VII.4.2.
1. - {/}:(GUL)x (GUL)x X —>GUL
2. T{Y/Y}=T
3. Yi =Yy impl. T{Ty/Y1}{T3/Y2} = T{T1 {T/ Y2}/ Y1}
4. Y1 # Yy impl. T{Ty Y1} {To/Ys} = TH{L/ Y2 {Th {T2/ Y2} / Y1}
Theorem VII.4.1.
1. |Wfpx(T) and Wf;x(Ty)| impl. Wf; (T {T}/Y})

2. [WFj xU(conty (T) and WH x(Teone )| impl. WEp (T {Teons /cont })
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rifr) = rofa] :{l . Gitier {Ty )Y} = rifz] = ro[wa] :{li . Gi{Ty /Y } }ier
ri[zy] = ralro] {0 . GR{Ty /Y } = ri[z1] = rofza] {0 . G{Iv/Y}}

(2]

[21]

rol@o) Wli « Litier {Ty /Y } = rolwo] Wl « Li{Ty /Y } }icr
ril) ?{li - Litier {Ty /Y } = mi[m1] 2{l; - Li{Ty /Y } }ier

rec X T if: X=Y

rec X T{Ty/Y} = {rec X (T{Ty/Y}) i X£Y
Ty ifi: X=Y
XAT /Y = {XY ;f: X4Y

Fig. VII.4.3. Unfolding (basic global types, basic local types)

rolxe) 1{l; . Lix M Lis}tier if: L1 = ro[wo] 1{li . Li1}icr and
Ly = rofzo) Y{l; . Lis}ier
ri(@1) {0 - LijYiernn U if: Ly =r[x1])?{l;. Li1}ier, and
Ly Ly = {4« Lia}iern, U Ly =ri[x1]?{l; . L;2}ic1, and
{0; . Liy T LisYienn, iy # s, For-all iy € I\ Io,is € I\ 1)
rec X (Lxi1MLxp) ift Ly =rec X Lx; and Ly, =rec X Lx,
X ifit L1=Ly=X

Fig. VIL.5.1. Merge (basic local types)

Proof. See Section VIII.18. [
Theorem VII.4.2. Wf; y\(y1(T) impl. T {1y /Y} =T
Proof. See Section VIII.19. O

VIL.5 Non-Parametrised Theory (Merge; Projection)

VII.5.1 Merge
Definition VII.5.1. Let L; M Ly, denote the merge of Ly and Ls. Fig. VII.5.1 defines M.
Lemma VIIL.5.1.
I.Mm:LxL—~L
2. LNL=1L
Theorem VIIL.5.1.
1. (L1, L) € domT impl. (L1 M Ly){L/Y} =L {L/Y} N Ly {L/Y}
2. (L, L) € domM impl. L{Ly N Ly/Y}=L{L;/Y} N L{Ly/Y}
3. (L1 M Ly){LsMLy/Y} # L1 {L3/Y} 1 Ly {Ly/Y} for-some Ly, Ly, L3, Ly, Y
Proof. See Section VIII.20. O
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rolxo] W{l; . Gy I r[a]}ier i vi[z1] = 7[a] # rofx]
ri|xi] = ralxe] :{l; . Gitier [ rla] = {rl[xl] ?2{l;. Gi [ rlal}ier if: mi[z1] # rla] = rofzy)
[HGi I r[a]}ier if: rifa1] # rla] # rof2s]
rec X G [r[a] =rec X (G | r|a])
X [rla)=X

Fig. VIL.5.2. Projection (basic global types)

rlg(z)] if: r€ R and z € dom ¢
rlel (Blg]) {r[x] if: ¢ R or v ¢ dom¢
rifza] = rafo] :{li . Gitier (R[9]) = ri[z1] (R[¢]) = raf22] (R[B]) :{li . Gi (R[¢]) }ier
rafwa] 1{l; . Li}ier (R[9]) = ralzo] (R[¢]) {4 - Li (R[]) }ier
rilza] P« Litier (R[9]) = rilz1] (R[¢]) ?{4: - Li (R[]) }ier
rec X T (R[¢]) =rec X (T'(R[¢]))
X (R[g]) = X

Fig. VIL.6.1. Variable instantiation (basic global types, basic local types)

VII.5.2 Projection
Definition VIL.5.2. Let G | r[a] denote the projection of G onto r[a]. Fig. VIL.5.2 defines |.
Lemma VIL5.2. [:G xR —~L
Theorem VIIL.5.2. [(G,T[a]) € dom [ and (Gy,r[a]) € dom [}
impl. (G [r[a]){Gy [r[a]/Y} = G{Gy/Y} [ r]d]
Proof. See Section VIII.21. O

VII.6 Non-Parametrised Theory (Variable Instantiation; Iteration)

VII.6.1 Variable Instantiation

Definition VIIL.6.1. Let r[z] (R[¢])) and T (R[¢])) denote the variable instantiation of r[z] and T
under R[¢]. Fig. VIL.6.1 defines - ((-)).

Lemma VIL6.1. - (1) : (R x (EUZ))UGUL) x (28 x fam (Z,A)) - (R x (EUZ)) UG UL
Theorem VIIL.6.1. Wf; x(T) impl. Wf; »(T (R[¢]))

Proof. See Section VIII.22. m
Theorem VIL.6.2. T (R[¢]) {Tv (R[¢])/Y} =T {Tv/Y} (R[¢])
Proof. See Section VIII.23. O

Theorem VIIL.6.3. (L, Ly) € dom impl. (L M L) (R[¢]) = L1 (R[¢]) M Lo (R[@]))
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T (R[head ®))) {iter(T3, Ty, R, tail ) /cont} if: lend > 0

iter(7}, Ty, R, ) =
ter(Ty, T2 ) {TQ if: len® =0

Fig. VIL.6.2. Tteration (basic global types, basic local types)

Proof. See Section VIII.24. O
Theorem VIL6.4. [(G,r[a]) € dom|[ and r ¢ R| impl. (G [r[a]) (R[¢]) = G (R[¢]) I r[al
Proof. See Section VIII.25. O

Theorem VIL.6.5.
1. ROR =0 impl. z (R[g]) (R'[¢) =z (R[¢) (R[¢])
2. RO R =0 impl. T (R[¢])) (R'[#]) =T (R[¢]) (R[¢])
Proof. See Section VIII.26. [
Theorem VIL6.6. |Wfi(rsdomojrer) ¥(G) and (expr G) N Gree =0 and r € R and a ¢ img ¢|
impl. [cont = G [ r[a] and cont = G (R[¢]) | r[a]]
Proof. See Section VIII.27. ]

VI1I.6.2 Iteration

Definition VII.6.2. Let iter(T}, Ty, R, ®) denote the iteration over ® of Ty, followed by Ts.
Fig. VII.6.2 defines iter.

Lemma VII.6.2.
1. iter: (GUL) x (GUL) x 2% x fam (Z,2%) - GUL
2. ® € domlen impl. iter(7},cont, R, ®) {T>/cont} = iter(T3, Ty, R, D)
Theorem VII.6.7.
{(d), z[a]) € dom to and (P, z[a]) € dom from}
impl. iter(7T,cont, R, ®to z[a]) {iter(T, cont, R,  from z[a]) /cont } = iter(T, cont, R, D)
Proof. See Section VIII.28. O
Theorem VII.6.8.

1. € domlen an x(17) an x(T5)| impl. x(iter(11, 13, R,
| € dom| d Wf;x(T1) and Wf; v (T3)] impl. Wi x(iter(Ti, T, R, @)

2. [® € domlen and Wy (cone) (T1) and Wiy x(T3)| impl. Wfy x(iter(T3, Ty, R, ©))
Proof. See Section VIII.29. O

Theorem VII.6.9. [(ID € domlen and Wff,{cont}(Tl)}
lmpl iter(Tl, Tz, R, (I)) {Ty/Y} = iter(Tl, T2 {Ty/Y}, R, (I))
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Proof. See Section VIII.30. O
Theorem VII.6.10.
1. iter(Ly M Lo, L, R, ®) # iter(Ly, L, R, ®) Miter(Ly, L, R, ®) for-some L, L, Ly, R, ®
2. [(Ll,L2> € domln and ® € domlen}
impl. iter(L, L1 M Ly, R, ®) = iter(L, Ly, R, ®) Niter(L, Ly, R, D)
Proof. See Section VIII.31. O

Theorem VIIL.6.11. [(Gl,r[a]) € dom | and (G, r[a]) € dom [ and ® € domlen and r ¢ R}
impl. iter(Gy [ rla], G2 [ r[a], R, ®) = iter(G1, Go, R, @) | r[a
Proof. See Section VIII.32. O
Theorem VIL6.12. [ € domlen and RN R = 0|
impl. iter(Ty (R'[¢]), T2 (R'[¢]), R, @) = iter(T1, T5, R, @) (R'[¢]))
Proof. See Section VIII.33. m

® € domlen and Wf s\ (7sdom oj7c R}, {cont} (G) and expr G N Gyee = () and
re R and a ¢ Jimg
impl. cont = iter(G,cont, R, ®) | r|a

Theorem VII.6.13. [

Proof. See Section VIII.34. O

VIL.7 Parametrised Theory (Syntax; Parameter Instantiation;
Well-Formedness; Unfolding; Denotation)

VIL.7.1 Syntax

Definition VIL.7.1. Let G and G denote the sets of all open and closed global types, ranged over
by G and G. Let L and L denote the sets of all open and closed local types, ranged over by L and L.
Let * range over {*,"}. Fig. VIL.7.1 defines G, G, L, and L.

Definition VIL.7.2. Let G UL denote the set of all open types, ranged over by T. Let GUL denote
the set of all closed types, ranged over by T

Lemma VIL.7.1. G C G
Lemma VIL.7.2. I - L

Definition VIL.7.3. Let ivals(r, T') denote the set of all intervals that occur in T with r. Fig. VIL.7.2
defines ivals.

Lemma VIL7.3. ivals : R x (GUL) — 2P



VII.7 PARAMETRISED THEORY (SYNTAX; PARAMETER INSTANTIATION; ...)

GeG == n (1] = ro[Za] :{{; . COJZ-}Z-GI if: self ¢ expri; and self ¢ expr iy
| foreach R[C] do G ; Gy
| rec X G if: X ¢ {end, cont}
| X

Lel rolio] H{{; . ii}ie[

i) ?{L; - [O/i}iel

foreach R[O] do Ly ; Ly

rec X L if: X ¢ {end, cont}
X

Fig. VIL.7.1. Open/closed global types, open/closed local types

v

ivals(r, 7y [z1] = 7o [zo] : {l; « GiYier) = {E .. E | r[E] € {r1[z1],72[z2]}} U U {ivals(r, Gy) |iel}
ivals(r, ro[as] 1{0; . L; }261) —{E..E | r[E] € {rofzs]}} UU{ivals(L;) | i € I}
ivals(r, 71 (1] 2{¢; . Li}ier ={E..E | r[E] € {ri[x1]}} UU{ivals(L;) | i € I}
wals(r, foreach R[C| do Ty ; T5) — {lval C)VU ivals(r, 7' )V ivals(r, ') !f: reR

ivals(r, T'1) Uivals(r, T'3) if: r¢ R
ivals(r,rec X T) — ivals(r, T
ivals(r, X) =)

Fig. VIL.7.2. Intervals (open global types, open local types)

VII.7.2 Parameter Instantiation

41

Definition VIL.7.4. Let T ((¢)) denote the parameter instantiation of T under . Fig. VIL.7.3

defines - ((-)).
Lemma VII.7.4.
1 () (GUL)x (K—A) - GUL

A

(V) =T

~>

2.

VII.7.3 Well-formedness

Definition VIL7.5. Let Wfy(T) and Wf; x(T') denote the well-formedness of T and T Fig. VIL.7.4

defines WH.
Lemma VII.7.5.
1. Wf;x(T) impl. Wfp, +(T)

2. Wf 2 (T) impl. Wf iy (T)
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ri[zi] = rofx] {4 le}zel V) = ri[r <(¢>>]—'>7“2[17g (D] +{li - Gi (V) bier
ralwe] 1 - Litier () = ra[z2 (YD) HE - Li () bier
e : i« Li () Yier

Fig. VIL.7.3. Parameter instantiation (open global types, open local types)

VII.7.4 Unfolding
Definition VII.7.6. Let T {Ty/Y} denote the unfolding of every Y to Ty in T. Fig. VIL.7.5 defines
{/}-
Lemma VII.7.6.
1. -{/}: (GUL)x (GUL)xX - GUL
2. T{Y)Y}=T
Theorem VIL7.1. T () {Ty ()Y} =T {Ty/Y} (¥)
Proof. See Section VIII.35. []
Theorem VIL7.2. |Wf;x(T) and Wf; x(Ty)| impl. Wf;»(T{Ty/Y})

Proof. See Section VIII.36. ]

VII.7.5 Denotation

Definition VII.7.7. Let [[T]] denote the denotation of T, as a basic global or local type. Fig. VIL.7.6
defines [].

Lemma VIIL.7.7.
1. []:GUL - GUL
2. expr G N Gree = 0 impl. expr [[G]] N Grec = 0
Theorem VIL7.3. |Wf;x(T) and img f C 2| impl. Wf; +([T])
Proof. See Section VIII.37. O
Theorem VIL.7.4. Wf; »(T) impl. [T{Ty/Y}] = [T]{[Ty]/Y}
Proof. See Section VIII.38. [
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T (@) € GUL impl. Wy (anay (T ()] for-all ¢ € W

~

Wy (7)

(a) Open global types, open local types

ry € dom f impl. z, € f(r;) 7o €dom f impl. zy € f(ry)  Wfpx(G;) for-all i€ T
Wt s x (ri[z1] = rofza] {4 . éi}ie[)

ry € dom f impl. x5 € f(r2) W x(L;) for-all i€ I
Wiy (rafza] H{i . Li}ier)

ry € dom f impl. x, € f(r1)  Wf;x(L;) for-all i €I
Wi 2 (r1[z] 2{4; . f/i}iel)

A R expr 71 N Grec = 0 A A
f U {f — vars(C) | rE R} ‘R — 2% Cev Wffu{fﬁvars(é)|7:GR}7{cont} (Tl) Wff7)((T2)

W¥; x(foreach R[C] do T} ; Tb)

A

Wff7XU{X}(T) XeX
Wffr(rec X T)  Wffx(X)

(b) Closed global types, closed local types

Fig. VIL.7.4. Well-formedness (open/closed global types, open/closed local types)

VIL.8 Parametrised Theory (Merge; Projection)
VII.8.1 Merge
Definition VIL.8.1. Let L; M Ly denote the merge of Ly and L. Fig. VIL.8.1 defines .
Lemma VII.8.1.
1. n:LxL—=L
2. LNL=1
Theorem VIL8.1. (L, Ly) € dommM impl. (Ly M Ly) () = Ly () 1 Ly (¥
Proof. See Section VIII.39. []
Theorem VII.8.2. (f}l, E2> € domn impl. [[fq M 22]] = [[iﬂ] M [[22]]
Proof. See Section VIII.40. O
Theorem VIL8.3. (L, Ly) € domM and Wfyx(L) and Wf;x(Ly)| impl. Wf; x(Li 11 Ly)
Proof. See Section VIII.41. O
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rifed) = rafwe] {0 . Gitier {Ty )Y} = ri[m] —> ro[wa] : {l; . Gi {Ty /Y }hics

rafxa] H{4; . I}i}iel {ij/Y} = ralza] {4 . 1:—1 {TY/Y}}ZEI
mla) . LiYier {Ty Y} = e 2{t . Li{Ty /Y }ier
foreach R[C] do T ; T, {Ty/Y} = foreach R[C] do T ; (T2 {Ty/Y})
recXT{T Yy = rec X T ift: X=Y
YT T \ree X (T{Ty/YY)) if: X £Y
N

Fig. VIL.7.5. Unfolding (open global types, open local types)

[ri[w1] = rolwa] : {l; - Gi}ier] = rl[aa]] = rol[wa]] s {i - [Gil}ies

[ralza] t{l: . Z:—Ji}iel]] = ro[[aa]] {4 . [[I:/i]]}iel
[r1[z 1]:’{&‘ -ALi}igf]] = 7“1[[[%1]] ?{53- [[Li]]}iff
[foreach R[C]|do T'1; Ts] = iter([T4],[T2], R, [C])

[rec X T] = rec X [T]
[X] =

Fig. VIL.7.6. Denotation (closed global types, closed local types)

VII.8.2 Projection

44

Definition VII.8.2. Let é’v[ D denote the projection of G onto rD (level 1). Let G e r[C] denote
the projection of G onto r[C] (level 2). Let G [ r[z] denote the projection of G onto r|z] under C'

(level 3). Fig. VII.8.2 defines |.
Lemma VIL8.2. | : G x (R x 2P) U (C x (R x 2%)) U (C x (R x Z))) — L
The following theorems pertain to projection (level 3).
Theorem VII.8.4. [(é, R[C],r[z]) € dom | and self ¢ dom w}
impl. (G [riey T12]) (¥) = G () [ Rie gy 717
Proof. See Section VIII.42.
Theorem VII.8.5.

(G, RIC],r[2]) € dom | and W (s sryremy,x(G) and f\ {7+ f(7) | 7 € R} : R — 27|

impl. Wi i sy remy o (G ey r[2]) ({self = a})
Proof. See Section VIII.43.
Theorem VII.8.6.

[(G,R[é},r[zp € dom | and W 7 svars(@)rery v (G) and C € v and r € R and = € vars(é)]
impl. [(G I [2)) ({self = a})] = [CT (R{Z = a +[C](2, 2) | 2 € vars(C)}]) | 7[d]
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rolaa] V{l « Ly M Listies if: L1 = ryfwo) 1{l; . Li1}ies and
Ly = rolza] 1{4; . L; 2 tier
1) 240 « LixYierns, U if: Ly = ri[z1] 2{(; L 1}ier, and
{t; . Lig}iernn U Ly =ri[1)?{; . Li2}ics, and
[inL,= {0; . Ly 1 LisYienn, (i, # b, for-all iy € [\ iy € I\ I
foreach R[C|do L; L,,ML,, if: L, =foreach R[C]do L; L, and
Ly, = foreach R[C] do L ; L,
rec X (Lx; M1 ZVLXQ) if: [, =rec X ZVLXJ and [, =rec X f,X,g
X if: Ly =L,=X

Fig. VIL.8.1. Merge (open local types)

Proof. See Section VIII.44.
The following theorems pertain to projection (level 2).
Theorem VII.8.7. [(foreach R[C'UC) do G ; cont, 7[C]) € dom | and self ¢ dom w]
i (foreach R[C'UC\] do G'; cont | r[C]) <<w))
impl. L v
— foreach R[C'U () do G ; cont (¥)) | [C (¥)]
Proof. See Section VIII.45.
Theorem VII.8.8.
(foreach R[C'UC] do G'; cont,r[C]) € dom | and
WF 7 () [re Ry feont} (G) and f\ {7+ f(7) | 7 € R} : R — 2%
impl. Wf ¢\ (7, (7) 7€ B}, {cont } ((fOT€ACh R[C U é’co] do (3 ; cont [T[C’]) ({self — a}))

Proof. See Section VIII.46.

Theorem VII.8.9.

[(foreach R[C'U (g U] do G ; cont, r[C]) € dom | and
Wf v (foreach R[C' Uy U C| do G ; cont) and

a € [C](2) for-all %€ dom HC’]]] and

o ¢ [Ceo](2) for-all z € dom [Co]| and 7 € R and
,;1:151 = max (', <) and Ué| > 1 impl. 2: Dy = max (C\ {z1: D}, <)| and
1C12) < [Col(gr) for-all = € dom [C], 2, € dom [C]] _

N [(foreach R[C' U C, U () do G'; cont | 7[C]) ({self — a} )]
= iter([G], cont, R, [C' U Cy U ] from z[a]) | 7[a]

impl.
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rolza] Y{l; . G, [riv)}ig if: iy =r+#mryand z,..2; € D
rlzy] = ralxg) {4 . éi}ig LD = ri[z1] 2{¢; . G, [rﬁ}iel if: 11 £r=ry and zy..29 € D
UG | 7D}ics if: 7 A7 # 7y
(foreach R[C] do G, ; cont | r[C'p]) {Gs | rD/cont}

if: € R and éﬁ:{2:5€é|5eb}

foreach R[é] do Gy ; Gy [rf) = . " . . .
foreach R[C]| do (G [rD); (Gs | D)

if: r¢ R
rec X G [rD =rec X (G | rD)
X[rD=X
(a) Level 1

foreach R[C'U (] do G ; cont | r[C] =
cont
if: C =0
(G | ricuc.) T12]) {foreach R[C'UC) do G; cont [ 7[C'\ {z:D}]/cont}
if: C#0 and z:D = max (C, <)

(b) Level 2

T2[SGlf+A(é) (21, 22)] {4 . G ey T[] Yier
if: ri[z1] = r[z] # rofz2] and )
ro € R and {x,x2} C vars(C)
rolwa] 1l . Gi Triey T2 }ier
if: ri[z1] = r[z] # rofz2] and
[7“2 ¢ R or {x,25} £ vars(Cv')}
ri[z] = rafas] t{li . Gitier Ipiey rl2] = { r1[selE+A(C) (w2, 21)] 2{; . Gi [y 2] bier
if: ri[a1] # rlz] = r2f2,] and
r € R and {3, 21} C vars(C)
rilz] 24 . G [ricy T[] e
if: 7[x1] # rz] = ro[zs] and
[rl ¢ R or {z3,21} & vars((:”)}
(UG Ty [l }ier i rifan] # 2] # rafas]
foreach R'[C'] do G ; Gs | rie) 7[2] = foreach R'[C"] do (G4 [riey T[21) 5 (G2 ' riey T[2])
rec X 7 [Riey 2] = rec X (G Ry T12])
X fR[é] rlz] = X

(c) Level 3

Fig. VIIL.8.2. Projection (open global types)
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Ny () . [
G G G

1D () D) 1 Dedy () 1 7[a]

() . - ({self —a})) | []
L L L

<

Fig. VIIL.8.3. Theorem VII.8.10

(foreach R[C'UC] do G; cont,[C]) € dom | and
2. |Wf; x(foreach R[C'UC,,] do G ; cont) and
[a e [C](2) for-all Z € dom HC’]]] and [ ¢ [Co)(2) for-all z € dom [[éco]]] and 7 € R

- [(foreach R[C'UC.,) do G ; cont | 7[C]) ({self — a}))]
impl. A A
P = [foreach R[C'UC,| do G ; cont] [ r[d]
Proof. See Section VIII.47. O

The following theorems pertains to projection (level 1).
Theorem VII.8.10. The diagram in Fig. VIL.8.3 commutes:
1. [{G,rD) € dom | and self ¢ dom | impl. (G [rD) () = G () (D () | D e D}
(G,rD) € dom | and Wf;»(G) and
la € [D] for-all DeD| and [a ¢ [D] for-all D € ivals(r,G) \15]]
impl. [(G'] D) ({self — a})] = [G] | r[d]
Proof. See Section VIII.48. O

Corollary VII.8.1.

(é,rD) dom | and self ¢ dom¢ and Wfy (G) and
[a € [D{w)] for-all D e D| and |a¢ [D(4)] for-all D € ivals(r, é)\ﬁ}]

impl. [(G'] D) (v)) ({self — a})] =[G (¥)] | rld]
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Part VIII
Detailed Proofs
VIII.1 Proof of Theorem VII.2.1

e Al. (A, A)) € domo
e B1l. Conclude:

{a1+ala e A} #0 (Ja)
impl. A, #0 )
impl. min (4;,<)+a=min({a1 +a|a € A1}, <) (Lem. VII.2.1:1)

e B1l. Conclude:

{&14‘@‘&16141}:1427&@ (Ela)
impl {dl +a | a; € Al} = AQ and min <A1, <> + a = min <{C~L1 +a | a; € Al}, <> (Bl)
impl. min (A;, <) +a = min (A, <) (=)
impl. min (A4;, <) + a + (—min (4;, <)) = min (Ay, <) + (—min (4;, <)) (-)
impl. a = min (Ay, <) + (—min (44, <)) (Fig. VIL.2.1:1)
impl. a = §(min (A, <), min (Ay, <)) (p25)
impl. a = §(head Ay, head A,) (Fig. VII.2.2)

Conclude:

(A, Ay) € dom§ (A1)
impl. 6(A;,A)) =a and {a;+a|a € A1} =A #0 (Fig. VI1.2.2, Ja)
impl. §(A;, Ay) = d(head Ay, head A,) (B1)

QED.

VIII.2 Proof of Theorem VII.2.2
e Al. 0<a
o A2. {i1+a|a €A} =4,
By induction on |A;].
e Base. |[A;| =0
e B1. Conclude:

|Ai| =0 (Base)
impl. A, =10 )
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e B2. Conclude:

impl

impl

Conclude:

{CNL1+(1’C~L1€A1}:A2
. {CNL1+CL’&1€®}:A2
. 0= A,

h<0

impl. A,
e Step. |A,]

<A2

>0

e C1. Conclude:

impl

impl

|A1|>0
AL #D
Aaytala € A} #£0

e C2. Conclude:

impl

{EL1+(I’C~L1€A1}$&®
. min({d1+a ’ a, €A1}7<> :min<A1,<>+a

e C3. Conclude:

impl.
impl.
impl.
impl.
impl.
impl.

impl.

{an+ala € A} =Ay # 0

min ({a; +a | @1 € A1}, <) = min (A, <)

min (A, <) + a = min (As, <)

0 < a and min (A, <) + a = min (A, <)

0 +min (A4, <) + a < a+ min (A, <)

o+ min (A}, <) +a+ (—a) < a+min (A, <) + (—a)
min (A;, <) < min (A, <)

head A; < head A,

e C4. Conclude:

impl
impl
impl

impl

{a1 +ala e A=A, #10

. {dl +a ’ a; € Al} \ {mln <{EL1 +a ’ a; € Al}, <>} = A2 \ {mln <A2, <>}

AHar+ala € A\ {min (4, <) +a} = Ay \ {min (A, <)}
. {ELl “+a | a € Al and @, 7é min <A17 <>} = A2 \ {Hlln <A2, <>}
Aar+ala € A\ {min (A1, <)}} = Az \ {min (A3, <)}

e Ch. Conclude:

impl
impl
impl
impl

impl

{ar+alar € A} = [A]
Har+ala e A=A and {a+a|d e A} £0
- Har+afa € A\ {min({a1 +a|a € A}, 9} < [A]
Aartala € A} \ {min (41, <) +a} < |A4]
a1 +ala € Ay and a; # min (A1, <)} < |A4]
A +ala € A\ {min (A, <} <[4

49

(Fig. VI1.2.3)
(B1, B2)

(Lem. VIL.2.1:1)

(A2, C1

(Fig. VI1.2.1:1
(C2

(Al

(Fig. VII.2.1:5
(Fig. VIL.2.1:5
(Fig. VI1.2.1:1

)
)
)
)
)
)
)
(Fig. VI1.2.2)
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QED.

e C6. Conclude:

Ay \ {min (A;, <)} < Ay \ {min (4, <)} (A1, C4, C5 = Induction)

impl. tail 4; < tail Ay (Fig. VII.2.2)
Conclude:

Ar < Ay (C3, C6 = Fig. VIL2.3)

VIII.3 Proof of Theorem VII.2.3

Proof of (1)
e Al. A = min (img®, <)

o A2. A#Y(
Conclude:

A = min (img ¢, <) (A1)
impl. A =min ({®(2) | Z € dom P}, <) (-)
impl. :A # ®(2) impl. A< @(2)} for-all z € dom @ )
impl. [A# ©(Z) impl. [tail A < tail &(2) or A =0]] for-all Z € dom® (Fig. VI1.2.3)
impl. [A # ®(2) impl. tail A < tail &(2)| for-all Z € dom @ (A2)
impl. [A\ {min (4, <)} # ®(2) \ {min (®(2), <)} impl. tail A < tail &()| for-all z € dom® ()
impl. itail A # tail &(2) impl. tail A < tail @(2)} for-all z € dom @ (Fig. VII.2.2)
impl. [tail A # (tail ®)(2) impl. tail A < (tail ®)()] for-all Z € dom @ (Lem. VII.2.7:3)
impl. [tail A # (tail ®)(2) impl. tail A < (tail ®)()] for-all Z € dom (tail @) (Lem. VII1.2.7:2)
impl. tail A = min ({(tail ®)(2) | Z € dom (tail @)}, <) -)
impl. tail A = min (img (tail @), <) (Fig. VIL.2.5)

QED.

Proof of (2)
e Al. A = max (img®, <)

e A2. A£Y)
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Conclude:

A = max (img @, <) (A1)
impl. A = max ({®(2) | 2 € dom @}, <) )
impl. _A;écb( z) impl. ®(2) < A] for-all z € dom® ()
impl. :A # ®(2) impl. [taﬂ@(%) <tailA or A= Q)H for-all z € dom ® (Fig. VIL.2.3)
impl. iA # ®(2) impl. tail ®(2) < taiIA} for-all z € dom @ (A2)
impl. [A\ {min (4, <)} # ®(2) \ {min (®(2), <)} impl. tail (%) < tail A| for-all z € dom® ()
impl. :taiIA # tail ®(2) impl. tail ®(2) < tail A} for-all z € dom® (Fig. VII.2.2)
impl. [tail A # (tail ®)(2) impl. (tail ®)(2) < tail A] for-all Z € dom @ (Lem. VII.2.7:3)
impl. [tail A # (tail ®)(2) impl. (tail ©)(2) < tail A] for-all Z € dom (tail D) (Lem. VII.2.7:2)
impl. tail A = max ({(tail ®)(2) | Z € dom (tail ®)}, <) ()
impl. tail A = max (img (tail ), <) (Fig. VIL.2.5)

QED.
VIII.4 Proof of Theorem VII.2.4

e Al. (z,29) € domé®
Conclude:

5(1)(21,22)
= 0(P(z1), D(22)) (Al = Lem. VII.2.8:3)
= d(head ®(z1), head D(23)) (Thm. VII.2.1)
= 0((head ®)(z1), (head ®)(22)) (Lem. VII.2.6:3)
QED.
VIIL.5 Proof of Theorem VII.2.5

o Al. len® >0

e B1. Conclude:

len® > o (A1)

impl. |®(2)| > o for-all z € dom® (Fig. VIL.2.5)

impl. ®(2) # 0 for-all z € dom® )

impl. |®(2) \ {min (®(2),<)}| = |P(2)| — 1 for-all z € dom P (Fig. VII.2.1:3)
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e B2. Conclude:

len® > o
impl. len® = |®(2)| for-all Z € dom ®
impl. len® — 1 =|®(2)| —1 for-all Z € dom®
impl. len® — 1= |®(2) \ {min (®(2), <)}| for-all z € dom P
impl. len® — 1 = [tail ®(Z)| for-all Z € dom @
impl. len® — 1 = |(tail ®)(Z)| for-all Z € dom ®
impl. len® — 1 = |(tail ®)(Z)| for-all Z € dom (tail ®)
impl. len (tail®) =len® —1

Conclude:

len® —1 <len®
impl. len (tail ®) < len ®

QED.

VIII.6 Proof of Theorem VII.2.6
Proof of (1)

e Al. ¢ € domlen

o A2. ac P(2)

o A3. a +# (head ®)(z)

Conclude:
head ¢
= {Z— head®(2) | Z € Z}
= {Z— min(P(2),<) | Z € Z}
= {2 = min ({min (®(2), <)} U ((2) \ {min (®(2), <)})) | 2 € Z}
= {Z+— min ({head ®(2)} U (tail ®(2))) | Z € Z}
= {Z+— min ({(head ®)(2)} U (tail ®)(2)) | Z € Z}
= {Z +— min ((head ®)-(tail ®))(2) | Z € Z}
= {Z+— min (Ptoz[a])(2) | Z € Z}

= {Z+ head (Ptoz[a])(2) | Z € Z}
= head (P to z[al)

QED.
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(A1)

(Fig. VIL.2.5, 3n)
)

(B1)

(Fig. VIL.2.2)
(Lem. VIL2.7:3)
(Lem. VII.2.7:2)
(Fig. VIL.2.5)

(Fig. VIL.2.5
(Fig. VII.2.2

(-

)

)

)

(Fig. VII.2.2, Fig. VII.2.2)
(Lem. VII.2.6:3, Lem. VII.2.7:3)
)
)
)
)

(Lem. VII.2.10:3

(A1, A2, A3 = Fig. VIL.2.6

(Fig. VII.2.2
(Fig. VIL.2.5
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Proof of (2)
e Al. (tail®,z[a]) € domto

o A2. ® cdomlen

e A3. ac P(2)

e Ad. a +# (head @)(2)
e B1l. Conclude:

tail @, z[a]) € domto
tail @, z[a]) € domto and

{
impl. (
[((tail ) to 2[a])(2) C (tail ®)(2) for-all % € dom @]
((

impl.

e B2. Conclude:

min (®(2'), <) € ((tail ®)to z[a])(z') and 2’ € dom ((tail D) to z[a])
impl. min (®(2), <) € (tail ®)(2’
impl. min (®(2'), <) € tail ®(2')
impl. min (®(2'), <) € ®(2') \ {min (®(2'), <)}
impl. false

e B3. Conclude:

2" € dom ((tail @) to z[a])
impl. 2’ € dom (tail ®)
impl. 2’ € dom ®
impl. ® € domlen and a € ®(z) and 2’ € dom ®
impl. ®(2) # 0

e B4. Conclude:

2" € dom ((tail @) to z[a])
impl. ®(2') #0
impl. {min (®(2'), <)} \ {min (®(2"), <)} =0

e B5. Conclude:

2" € dom ((tail @) to z[a])
impl. ®(2') #0
impl. min (®(2'), <) < a for-all a € ®(2') \ {min (®(2'), <)}
impl. min (®(2'), <) < a for-all a € tail (')
{

impl. min (®(2'), <) < a for-all a € (tail @)(2")

tail @) to z[a])(Z) C (tail ®)(2) for-all z € dom ((tail ®) to z[al)

23

(A1)
(Lem. VII.2.11:3)

(Lem. VII.2.11:2)

(3%')

(B1)

(Lem. VII.2.7:3)
(Fig. VII.2.2)
)

(32
(Lem. VIL.2.11:2

)

)

(Lem. VII.2.7:2)
(A2, A3)

(Lem. VII.2.9:3)

(Fig. VIL.2.1:3)

(32)

(B3)

)

(Fig. VII.2.2)
(Lem. VII.2.7:3)
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e B6. Conclude:

2" € dom ((tail @) to z[a]) (32")
impl. 2’ € dom ((tail ®) to 2[a]) and [min (®(2'), <) < a for-all & € (tail ©)(')] (B5)
impl. min (®(2'), <) < a for-all a € ((tail ) to z[a])(z") (B1)
impl. [mln (®(2'), <) # a impl. min (P(2'), <) < EL} )

for-all @ € {min (®(2'), <)} U ((tail ) to z[a])(2")
impl. min (®(2), <) = min ({min (®(z), <)} U ((tail ®) to z[a])(z), <) )
Conclude:
(tail @) to z[al
= { ((ta|I<I>) toz[a])(2) | Z € Z} (A1)
= ((tail @) to z[a])(2) \ {min (P(2), <)} | Z € Z} (B2)
({min (®(2), <)} \ {min (®(2), <)}) U|
{ ((tail ) to 2a]) (2) \ {min (@(), <)})| * © Z} (B4)

= {mlﬂ< (2), <)} U ((tail @) to z[a])(2)) \ {min (B(2), <)} | Z € Z} )

({min (®(2), <)} U ((tail ®) to z[a])(2)) \ |

£ G i (57 U (s By D 1) 2 .

= {Z  tail {min (P(2), <)} U ((tail ) to z[a])(2)) | zel} (Fig. VII.2.2)
= {Z > tail ({head ®(2)} U ((tail ®) to z[a])(2)) | Z € Z} (Fig. VII.2.2)
= {2+ tail ({(head @)(2)} U ((tail ®) to z[a])(2)) \ z e} (Lem. VII.2.6:3)
= {Z + tail ((head ®)-((tail ®) to z[a]))(Z) | Z € Z} (Lem. VII.2.10:3)
= {Z—tail (Ptoz[a))(2) | Z € Z} (A2, A3, A4 = Fig. VIL.2.6)
= tail (P to z[a]) (Fig. VIL.2.5)

QED.
Proof of (3)
e Al. (¥, z[a]) € domto

By induction on Al (Fig. VII.2.6):

e Base. Ptozja]={2— 0|z € dom P} and
¢ € domlen and a € (z) and a = (head ®)(2)

Conclude:
0] = o for-all Z € dom ® (—
impl. |{zr—>@|z€dom¢>}( )| = o for-all Z € dom® (—

)
)
impl. len{Z— 0]z € dom®} =0 (Fig. VII.2.5)
impl. len (®toz[a]) =0 (Base)



VIII.7 PROOF OF THEOREM VII1.2.7 25

e Step. Ptoz[a] = (head ®)-((tail ®)to z[a]) and
® € domlen and a € (z) and a # (head ®)(2)
Conclude:

(tail @) to z[a] € dom len (Step = Induction)
impl. n = |((tail ®) to z[a])(2)| for-all Z € dom ((tail ®)to z[a]) (Fig. VIL.2.5, 3n)
impl. n = [tail (Ptoz[a])(2)| for-all Z € dom ((tail @) to z[al) (Step = Thm. VIIL.2.6:2)
impl. n=|(®toz[a])(Z) \ {min ((Ptoz[a])(Z), <)} (Fig. VIL.2.2)

for-all z € dom ((tail @) to z[a))
impl. n+ 1 = [{min {(®to z[a])(2), <) } U (P to z[a])(2) \ {min (P to z[a])(2), <)} )
for-all z € dom ((tail @) to z[a))
impl. n+ 1 = |[{head (P to z[a])(Z)} U tail (P to z[a])(Z)| (Fig. VIL.2.2, Fig. VII.2.2)
for-all z € dom ((tail @) to z[a])
impl. n+1 = [{(head (®toz[a]))(2)} U tail (P to z[a])(2)| (Lem. VII.2.6:3)
for-all z € dom ((tail @) to z[a))
impl. n+ 1 = [{(head ®)(2)} U tail (P to z[a])(Z)| (Step = Thm. VIL.2.6:1)
for-all z € dom ((tail @) to z[a))
impl. n+ 1 = [{(head ®)(2)} U ((tail ®) to z[a])(2)| (Step = Thm. VII.2.6:2)
for-all Z € dom ((tail @) to z[a])
impl. n+4 1 = [{(head ®)(2)} U ((tail ®) to z[a])(Z)] ()
for-all z € (dom (head ®)) N (dom ((tail @) to z[a]))
impl. n+ 1 = |((head ®)-((tail @) to z[a]))(2)| (Lem. VII.2.10:3, Lem. VII.2.10:2)
for-all z € dom ((head ®)-((tail @) to z[a]))
impl. n+1 = |(®toz[a])(2)| for-all Z € dom (P toz[a)) (Step)
impl. len (®toz[a]) =n+1 (Fig. VIL.2.5)
QED.
VIII.7 Proof of Theorem VII.2.7
Proof of (1)
e Al. (®,z[a]) € domfrom
By induction on Al (Fig. VII.2.6):
e Base. ®fromz[a| =P and ® € domlen and a € ®(z) and a = (head ®)(z)
Conclude:
= (head ®)(2) (Base)
impl. a = (head (® from z[a]))(2) (Base)
e Step. ®fromz[a] = (tail ®) from z[a] and ® € domlen and @ € ®(z) and a # (head ®)(z)
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Conclude:
a = (head ((tail @) from z[a]))(z) (Step = Induction)
impl. a = (head (¢ from z[a]))(z) (Step)
QED.

Proof of (2)
e Al. (®,z[a]) € domfrom

By induction on Al (Fig. VII.2.6):
e Base. ®fromzja] = ® and ® € domlen and a € ®(z) and a = (head ®)(2)

Conclude:
len® > o (Base = Lem. VIL.2.9:2)
impl. len (® from z[a]) > o (Base)

e Step. ®from z[a] = (tail ®) from z[a] and ¢ € domlen and a € ®(z) and a # (head ®)(z)

Conclude:
len ((tail ®) from z[a]) > o (Step = Induction)
impl. len (® from z[a]) > o (Step)
QED.

Proof of (3)
e Al. (9, z[a]) € domfrom

e A2. 2 cdom®

By induction on Al (Fig. VII.2.6):
e Base. ®fromz[a| =P and ® € domlen and a € ®(z) and a = (head ®)(z)

Conclude:
D) A0 (Base, A2 = Lem. VII.2.9:3)
impl. (@ from z[a])(2") # 0 (Base)

e Step. ¢ from z[a] = (tail @) from z[a] and ® € domlen and a € ®(z) and a # (head ®)(z2)

Conclude:
((tail @) from z[a])(z") # 0 (Step, A2 = Induction)
impl. (@ from z[a])(2') # 0 (Step)

QED.
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Proof of (4)
e Al. (P, z[a]) € dom from

o A2, @(Zl) < q)(ZQ)
By induction on Al (Fig. VII.2.6):
e Base. Pfromz[a| =P and ¢ € domlen and a € ®(z) and a = (head ®)(z)

Conclude:
B(21) < D(2) (A2)
impl. (®from z[a])(z1) < (P from z[a])(22) (Base)

e Step. ®from z[a] = (tail @) from z[a] and & € domlen and a € ®(z) and a # (head ®)(z)

e B1l. Conclude:

P(21) < P(z2) (A2)
impl. tail ®(z;) < tail @(z3) or P(z1) =10 (Fig. VIL.2.3)
impl. tail ®(z;) < tail &(2») (Step = Lem. VIIL.2.9:3)
impl. (tail ®)(z;1) < (tail ®)(z2) (Lem. VII.2.7:3)

Conclude:
((tail @) from z[a])(z1) < ((tail @) from z[a])(z2) (Step, B1 = Induction)
impl. (®from z[a])(z1) < (P from z[a])(22) (Step)

QED.

Proof of (5)
e Al. (P, z[a]) € dom from

o A2. O(2) < P(z)
e A3. ac P(2)
By induction on Al (Fig. VII.2.6):
e Base. ®fromzja] = ® and ® € domlen and a € ®(z) and a = (head ®)(2)

Conclude:
a€ d(2) (A3)
impl. a € (® from z[a])(Z) (Base)

e Step. ®from z[a] = (tail @) from z[a] and ¢ € domlen and a € ®(z) and a # (head ®)(z)
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e B1l. Conclude:

impl.
impl.
impl.

P(2) < O(2)

tail @(2') < tail ®(z) or P(2')
tail (2 < tail ®(z)

(tail @)(2") < (tail ®)(z)

0

e B2. Conclude:

impl.
impl.

impl.

P(2') < P(2)

head ®(z') < head ®(z2) or ®(2') =0
head ®(z') < head ®(z)

min (®(z), <)) < min (®(2), <)

e B3. Conclude:

impl.
impl.

impl.

a = min (®(2'), <)
a < min (®(z), <)

a ¢ o(2)

false

e B4. Conclude:

impl.
impl.
impl.

impl.

Conclude:

a€ d(2)

a=min (®(2'),<) or a € (') \ {min (®(2'), <)}

a€ ®(2')\ {min (®(2'), <)}
a € tail (")
a € (tail ®)(2")

a € ((tail @) from z[a])(2")
impl. a € (@ from z[a])(z)

QED.

Proof of (6)

o Al. (D, z[a)), (P, 25[a]) € dom from

o A2, P(z;) < D(z)

By induction on Al (Fig. VII.2.6):
e Base. ®fromzi[a] =P and & € domlen and a € ®(z;) and a = (head ®)(z;)

Conclude:

® from z5[a]

= (® from z;[a]) from z3[d]

o8

(A2

(Fig. VIL2.3

(Step = Lem. VII.2.9:3
(Lem. VII.2.7:3

~— ~— ~— ~—

(A3)

(Fig. VIL2.1:3
(B3

(Fig. VI1.2.2

)
)
)
(Lem. VII.2.7)

(Step, B1, B4 = Induction)

(Step)

(A2, Base)
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e Step. ®from z[a] = (tail @) from z;[a] and
® € domlen and a € ®(z;) and a # (head ®)(z)

e B1l. Conclude:

(D, z9[a]) € dom from (A2)
impl. a € ®(z9) (Fig. VIIL.2.6)

e B2. Conclude:

P(z2) < P(21) (A2)
impl. head ®(z2) < head ®(z;) or ®(z5) =0 (Fig. VIL.2.3)
impl. head ®(z;) < head ®(z;) (B1)
impl. min ($(23), <)) < min (P(z;), <) (Fig. VII.2.2)

e B3. Conclude:

a = min (P(z2), <)

impl. a < min (®(z), <) (B2)
impl. a ¢ &(z) (-)
impl. false (Step)

B4. Conclude:

a€ P(z) (B1)
impl. a = min ($(23), <) or a € P(z2) \ {min (P(22), <)} (Fig. VII.2.1:3)
impl. a € ®(z;) \ {min (P(z2), <)} (B3)
impl. a # min (®(=2), <) ®
impl. a # head ®(z7) (Fig. VII.2.2)
impl. a # (head ®)(2») (Lem. VII.2.6)

e B5. Conclude:
® from z5[a] = (tail @) from 2z5[a] (Step, B1, B4 = Fig. VIL.2.6)

e B6. Conclude:
P(z5) < P(z) (A2)
impl. tail ®(z) < tail @(z1) or P(z) =10 (Fig. VII.2.3)
impl. tail ®(z) < tail &(z) (Step = Lem. VIIL.2.9:3)
impl. (tail ®)(zq) < (tail ®)(z;) (Lem. VII.2.7:3)

Conclude:
® from z5[a]

= (tail @) from z3[al (B5)
= ((tail @) from z[a]) from z5[a] (Step, B6 = Induction)
= (P from z;]a]) from zy[a] (Step)

QED.
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VIII.8 Proof of Theorem VII.2.8
Proof of (1)

o Al. (B(21), B(2)) € domd

o A2. (D, z[a]) € domto

o A3. a# (head ®)(2)

By induction on A2 (Fig. VII.2.6):

e Base. Ptoz[a]={2— 0|z € dom P} and
® € domlen and a € ®(z) and a = (head ®)(2)

Conclude:

false (A3, Base)

e Step. Ptoz[a] = (head ®)-((tail ®)to z[a]) and
® € domlen and a € (2) and a # (head ®)(2)

e B1l. Conclude:

a€ ®(z) (Step)
impl. a = min (®(z), <) or a € ¢(2) \ {min (P(2), <)} (Fig. VII.2.1:3)
impl. a = head ®(z) or a € tail d(2) (Fig. VIL.2.2, Fig. VII.2.2)
impl. a = (head ®)(2) or a € (tail ®)(z) (Lem. VII.2.6:3, Lem. VII.2.7:3)
impl. a € (tail ®)(2) (Step)

By case distinction:
e Case. a = (headtail ®)(z)
e C1. Conclude:

(O(z1), P(22)) € dom (A1)
impl. 21,2, € dom ® )

e C2. Conclude:

a € (tail®)(z) and a = (head tail ®)(2) (B1, Case)
impl. (tail ®)toz[a] = {2+ 0] 5 € dom ®} (Fig. VIL2.6)
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Conclude:
(P (21), P(22))
= d(head ®(21), head P(25)) (Al = Thm. VIL.2.1)
= 0((head ®)(z1), (head ®)(z3)) (Lem. VI1.2.6:3)
= 0({(head ®)(z1)}, {(head ®)(z2)}) (Lem. VI1.2.4:3)
= §({(head ®)(z;)} U D, {(head ®)(22)} U D) (-)
= 0({(head ®)(21)} U{Z+— 0 | Z € dom ®}(z), (C1)
{(head @)(z2)} U{Z+— 0| Z € dom D}(z2)
= 0({(head @)(z1)} U ((tail ®) to z[a])(z1), {(head ®)(z2) } U ((tail @) to z[a])(22)) (C2)
= §(((head ®@)-((tail @) to z[a]))(z1), ((head ®)-((tail ®) to z[a]))(22)) (Lem. VII.2.10:3)
= 0((®to z[a])(z1), (P to z[a])(22)) (Step)

e Case. a # (headtail ®)(z)
e D1. Conclude:

impl.
impl.
impl.

impl.

impl.

® € domlen (Step)
n=|®(2)| for-all zZ € dom P (Fig. VIL.2.5, 3n)
n=|®(2)] and ®(2) # 0] for-all z € dom® (Step = Lem. VIL.2.9:3)
n—1=|®(2)\ {min (®(2),<)}| for-all Z € dom P (Fig. VII.2.1:3)
n—1 = |tail ®(2)| for-all z € dom P (Fig. VII.2.2)
tail® € domlen (Fig. VII.2.5)

e D2. Conclude:

impl.

impl.

impl.

impl.

impl.
impl.
impl.
impl.

impl.

(P(21), P(22)) € dom§ (A1)
{C~L1 +ad | a € (I)(Zl)} = (I)(ZQ) 7A 0 (Flg VII22, Ela’)
{dl +a | a, € (I)(Zl)} 7& ¢ and (Flg V11213)

{a1+d |a; € ®(z)} \{min{{a; +d' | a; € D(z1)}, <)} =

®(22) \ {min (®(z), <)}

{ar+d | a € (z1)} \ {min (®(21),<) +d'} = (Lem. VII.2.1:1)
®(22) \ {min (®(2), <)}

{ay+d | a € (z1) and a; # min (P(z1), <)} = D(22) \ {min (P(2), <>}( |
{a1 +a' [ a1 € B(z1) \ {min (D(21), <)}} = D(22) \ {min (D(22), <)} )
{ay +d' | a € tail ®(21)} = tail D(z3) (Fig. VIL.2.2)
{a1 +d' | a; € (tail ®)(21)} = (tail D)(22) (Lem. VII.2.7:3)
{a1 +d' | a; € (tail ®)(21)} = (tail ®)(29) # 0 (D1, B1 = Lem. VII.2.9:3)
((tail ®)(21), (tail ®)(22)) € dom (Fig. VIL.2.2)
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e D3. Conclude:

(®(21), ®(22)) € dom d (A1)
impl. §(P(21), P(z2)) = d(head ®(21), head P(2,)) (Thm. VIL.2.1)
impl. 0(®(21),P(22)) = d((head ®)(21), (head P)(23)) (Lem. VII.2.6:3)
impl. 0(®(21), P(22)) = (head ®)(z2) + (—(head ®)(z1)) (p25)
impl. (head ®)(z1) 4 0(®(21), P(22)) = )
(head ®)(z1) + (head ®)(z2) + (—(head ®)(z1))
impl. (head ®)(z1) 4+ 6(P(z1), P(22)) = (head P)(22) (Fig. VII.2.1:1)

e D4. Conclude:

§(P(21),P(22)) = a (Ja’)
impl. §(®(z1),®(22)) =da’ and (head ®)(z1) + §(P(z1), P(22)) = (head D)(25) (D3)

impl. (head ®)(z;) + (head ®)(25) (=)
e D5. Conclude:
5(®(21),P(22)) =d and (Fa")
{a1 4+ d' | a1 € ((tail @) to z[a])(21)} = ((tail @) to z[a])(z2) # 0
impl. (head ®)(2;) + ¢’ = (head ®)(2;) and (D4)
{a1 +d' | a1 € ((tail @) to z[a])(z1)} = ((tail @) to z[a])(z2) # 0
impl. {(head ®)(21) + '} U{a1 +d' | a; € ((tail @) toz[a))(z1)} = )
{(head ®)(z2)} U ((tail @) to z[a])(z2) # 0
impl. {a; +d’' | a, = (head ®)(21) or a; € ((tail ®)toz[a])(z1)} = )
{(head ®)(22)} U ((tail ®) to z[a])(z2) #
impl. {a; +d | @ € {(head ®)(21)} U ((tail @) to z[a])(21)} = ()
{(head ®)(22)} U ((tail @) to z[a])(z2) # 0
impl. {a; +d' | a; € ((head ®)-((tail ®)to z[a]))(z1)} = (Lem. VII.2.10:3)
((head @)-((tail ®) to z[a]))(z2) # 0
impl. {a;+d | € (Ptozla])(z1)} = (<I> to z[a])(z2) # 0 (Step)
impl. §((®toz[a])(21), (Ptoz[a])(z2)) = (Fig. VIL.2.2)
Conclude:
(P(21), P(22)) = (D2, Step, Case = Induction)
d(((tail @) to z[a])(z1), ((tail @) to z[a])(22))
impl. §(®(z1),®(22)) =d’ and (Fig. VII1.2.2, Ja’)
{a1 4+ d' | a1 € ((tail @) to z[a])(z1)} = ((tail @) to z[a])(z2) # 0
impl. 6(®(z1), P(z2)) = d((Ptoz[a])(z1), (Ptoz[a])(z2)) (D5)

QED.
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Proof of (2)
o Al. (P(z),P(z)) € dom?
e A2. (¥, z[a]) € domfrom

By induction on A2 (Fig. VII.2.6):
e Base. ®fromzja] =® and ® € domlen and a € ®(z) and a = (head ®)(2)

Conclude:

0(®(z1), P(22))
= §((P from z[a])(z1), (P from z[a])(22)) (A2, Base)

e Step. ®from z[a] = (tail ®) from z[a] and & € domlen and a € ®(z) and a # (head ®)(z)

e B1l. Conclude:

® € domlen (Step)
impl. n=|®(2)| for-all Z € dom® (Fig. VIL.2.5, 3n)
impl. [n=[®(2)| and ®(2) £ 0] for-all Z € dom ® (Step = Lem. VIL.2.9:3)
impl. n—1=|®(2) \ {min (P(2),<)}| for-all zZ € dom P (Fig. VII.2.1:3)
impl. n—1 = |tail ()| for-all Z € dom ® (Fig. VII.2.2)
impl. tail® € dom len (Fig. VIL.2.5)

e B2. Conclude:

a€ d(z) (Step)
impl. ¢ = min (®(z),<) or a € (2) \ {min (®(2), <)} (Fig. VII1.2.1:3)
impl. a = head ®(z) or a € tail d(z2) (Fig. VII.2.2, Fig. VII1.2.2)
impl. a = (head ®)(z) or a € (tail ®)(z) (Lem. VII.2.6:3, Lem. VII.2.7:3)
impl. a € (tail ®)(z) (Step)

e B3. Conclude:

(P(z1), P(29)) € dom o (A1)
impl. {a, +d' | @ € B(z1)} = Bz) £ 0 (Fig. VIL2.2, 3d')
impl. {a;+d' |a, € P(z)} #0 and (Fig. VII1.2.1:3)

{ar+a' | @ € @(z)} \ {min ({a1 +d' [ @1 € D(21)}, <)} = D(22) \ {min (D(22), <)}
impl. {a; +d' |a; € ®(21)} \ {min (P(z),<) +d'} = (Lem. VII1.2.1:1)

O(22) \ {min (®(2,), <)}

impl. {a; +d' |a; € ®(z1) and G; # min (P(z1), <)} = P(22) \ {min (P(22), <)} ()
impl. {a; +d'|a; € D(z1) \ {min (P(z1), <)}} = P(22) \ {min (P(22), <)} -)
impl. {a; +d' | a; € tail ®(z;)} = tail &(2) (Fig. VIL.2.2)
impl. {a; +d' | a; € (tail ®)(21)} = (tail D)(29) (Lem. VII.2.7:3)
impl. {a; +d' | a; € (tail ®)(21)} = (tail ) (zq) # 0 (B1, B2 = Lem. VII.2.9:3)
impl. ((tail ®)(z1), (tail ®)(z2)) € domd (Fig. VII.2.2)
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Conclude:

0(®(21), B(22))

( —
d(((tail @) from z[a])(z1), ((tail @) from z[a])(22))
impl. 6(D(21), ®(22)) = 5((® from z[a]) (=1), (@ from 2[a])(22)) (Step)

(B3, Step = Induction)

QED.

VIIL.9 Proof of Theorem VII.2.9
Proof of (1)

e Al. (®U D, 2[a]) € domto

o A2. ®(z) = max (img d, <)

e A3. a ¢ O, (%) for-all € dom d,
By induction on Al (Fig. VIL2.6):

e Base. (PU®P,)tozla]={2— 0|2 € dom(®UP,)} and
d U P, € domlen and a € (PUD,)(z) and a = (head (P U Pg,))(2)

Conclude:

a ¢ for-all zZ € dom (®U D) )
impl. a ¢ J{0 |z € dom (®U D)} ()
impl. a ¢ Uimg{Z+— 0]z € dom (P U )} -)
impl. a ¢ Uimg ((® U O,) to z[a]) (Base)

e Step. (P U D) toz[a] = (head (P U D,))-((tail (P U P,)) to z[a]) and
®U P, € domlen and a € (P U P,)(2) and a # (head (P U P,))(2)

e B1l. Conclude:

¢ (z) = max (img ¢, <) (A2)
impl. z € dom ® (=)

e B2. Conclude:

a€ (PUP,)(2) and z € dom P (Step, B1)
impl. a € O(2) )
impl. ®(2) # 0 )

e B3. Conclude:

D(2) # 0 (B2)
impl. min (®(2), <) < a for-all @ € ®(z) \ {min (P(z), <)} (Fig. VII.2.1:3)
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e B4. Conclude:

a # (head (P U @,))(2) (Step)
impl. a # head (P U ®,)(2) (Lem. VII.2.6:3)
impl. a # min ((® U ) (2), <) (Fig. VII.2.2)
impl. a # min ((PU P,)(2),<) and a € (P U D) (2) (Step)
impl. a € (DU P)(2) \ {min ((¢ U P,)(2), <)} )
impl. min ((® U D) (2),<) <a (B3)
impl. head (P U D) (2) < a (Fig. VII.2.2)
impl. head (P U P,)(z) < a and z € dom ® (B1)
impl. head ®(z) < a -)

e B5. Conclude:

head ®(2) < a (B4)
impl. head ®(2) # a (Fig. VII.2.1:3)
impl. [ (z) = ®(2) impl. head ®(2) # a} for-all z € dom ® (-)

e B6. Conclude:

P (z) = max (img P, <) (A2)
impl. ®(z) = max ({®(2) | Z € dom D}, <) ()
impl. |®(z) # ©(2) impl. ®(2) < &(2)] for-all z € dom® (-)
impl. (IJ(z) # ®(2) impl. [head ®(2) < head ®(z) or P(z) = Q)” (Fig. VII.2.3)

for-all z € dom ®
impl. CD(Z) # ®(Z) impl. head ®(2) < head ®(z )] for-all z € dom ® (B2)
impl. [®(2) # (%) impl. head ®(%) < head ®(2) < a| for-all % € dom & (B4)
impl. |®(z) # ©(2) impl. head ®(2) < a| for-all z € dom ® (Fig. VIL.2.1:3)
impl. [®(z) # ©(2) impl. head ®(2) # a| for-all z € dom ® (Fig. VIL.2.1:3)
e B7. Conclude:

[[®(2) = ®(2) impl. head d(2) # a| for-all z € dom ®| and (B5, B6)

[[®(2) # @(2) impl. head B(2) # a| for-all z € dom @]
impl. head ®(2) # a for-all z € dom ® (-)

e B8. Conclude:
(DU P,)(2) # 0 for-all z € dom (P U D) (Step = Lem. VII.2.9:3)

impl. ®,(2) # 0 for-all Z € dom ®, )
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e B9. Conclude:

(U D) (2) # 0 for-all z € dom (P U D) (Step = Lem. VII.2.9:3)
impl. dom (¢ U ®,) C dom (tail (P U ®,)) and (Lem. VII.2.7:2)
dom (tail (P U ®¢,)) € dom (P U D)
impl. dom (¢ U &) = dom (tail (¢ U D)) -)

e B10. Conclude:

|0 ¢ Dco(2) and Do(2) # 0] for-all 2 € dom b, (A3, B8)
impl. [ # min (®,(2), <) for-all zZ € dom O, (Fig. VII.2.1:3)
impl. [ # head (%) for-all Z € dom &, (Fig. VII.2.2)

e B11l. Conclude:

(P U D, 2[a]) € domto (A1)
impl. ® U &, € fam (Z,2%) (Lem. VII.2.11:1)

e B12. Conclude:

|a # head ®(2) for-all Z € dom | and (B7, B10, B11)
|0 # head o(2) for-all Z € dom d,| and & U b, € fam (Z,2%)
impl. a # head (P U ®,)(2) for-all z € dom (¢ U D) (-)
impl. a # (head (P U ®,))(Z) for-all Z € dom (¢ U D) (Lem. VII.2.6:3)

e B13. Conclude:

tail (& U @)
= (tail ®) U (tail Do) (Step = Lem. VII.2.7:4)

e B14. Conclude:

(tail (P U D), 2[a]) € domto (Step)
impl. ((tail ®) U (tail ), z[a]) € domto (Lem. VIL.2.7:4)

e B15. Conclude:

P(z) = max (img P, <) and P(z) # 0 (A2, B2)
impl. tail ®(z) = max (img (tail @), <) (Thm. VII.2.3:2)
impl. (tail ®)(z) = max (img (tail ®), <) (Lem. VII.2.7:3)

e B16. Conclude:

|0 ¢ Dco(2) and Do(2) # 0] for-all 2 € dom b, (A3, BS)
impl. a ¢ ®,(2) \ {min (P,(2), <)} for-all Z € dom P, (Fig. VII.2.1:3)
impl. a ¢ tail (%) for-all z € dom ®, (Fig. VII.2.2)
impl. a ¢ (tail ®,)(2) for-all z € dom ®, (Lem. VII1.2.7:3)
impl. a ¢ (tail ®.,)(2) for-all Z € dom (tail D) (Lem. VII.2.7:2)
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e B17. Conclude:

a ¢ UJimg ((tail (P U @g,)) to z[al) (B14, B15, B16 = Induction+B13)
impl. a ¢ U{((tail (® U @,))toz[a])(2) | Z € dom ((tail (¢ U P,)) to z[a])} (-)
impl. a ¢ ((tail (P U D)) toz[a])(Z) for-all Z € dom ((tail (P U Pg,)) to z[a]) )
impl. a ¢ ((tail (P U ®,)) toz[a])(Z) for-all Z € dom (tail (P U P,)) (Lem. VIL.2.11:2)
impl. a ¢ ((tail (¢ U Pg,))toz[a])(2) for-all Z € dom (¢ U P,) (B9)

Conclude:

|a # (head (B U ®,))(2) for-all 2 € dom (U Pc,)| and (B12, B17)
[0 ¢ ((tail (B U ®c,)) to 2[a])(2) for-all 2 € dom (B U )]
(

impl. a ¢ {(head (® U ®,))(2)} U ((tail (¢ U D)) to z[a))(2) for-all z € dom (P U Py,) ()
impl. a ¢ (head (® U ®,)-((tail (P U P,)) to z[a]))(2) for-all Z € dom (P U P,)

(Lem. VII.2.10:2)
impl. a ¢ ((® U ®,)toz[a])(2) for-all Z € dom (¢ U P,) (Step)
impl. a ¢ ((® U Pg,)toz[a])(2) for-all zZ € dom ((® U Pg,) to z[al) (Lem. VII.2.11:2)
impl. a ¢ U{((®U D) toz[a])(Z) | Z € dom ((P U D) to z[a])} (-)
impl. a ¢ Uimg ((P U g,) to z[a]) (-)

QED.

Proof of (2)
e Al. (®U ®,,2[a]) € dom from

o A2. P(2) = min (img P, <)
e A3. a ¢ P (2) for-all Z € dom D,

e B1. Conclude:
®(z) = min (img P, <) (A2)
impl. z € dom® (=)
e B2. Conclude:
(@ U deo)(2) # 0 for-all 2 € dom (@ U de,) (Step = Lem. VII.2.9:3)
impl. @, (2) # 0 for-all Z € dom P, ()
By induction on Al (Fig. VII.2.6):

e Base. (P U P,)fromz[a] = ¢ U D, and
® U P, € domlen and a € (PUD,)(z) and a = (head (¢ U Pg,))(2)
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e C1. Conclude:

a = (head (P U @,))(2) (Base)
impl. a = head (P U @,)(2) (Lem. VII.2.6:3)
impl. a = head (® U ®,,)(z) and z € dom ® (B1)
impl. a = head ®(z) -)

e C2. Conclude:

a = head ®(z) (C1)
impl. a = min ($(2), <) (Fig. VII.2.2)
impl. a ¢ ®(z) \ {min (®(z), <)} )
impl. a ¢ tail &(z) (Fig. VII.2.2)
impl. [®(z) = ©(2) impl. a ¢ tail &(2)| for-all 2 € dom ® (-)

e C3. Conclude:

®(z) = min (img P, <) (A2)
impl. ®(z) = min {®(2) | 2 € dom d}, <) ()
impl. |®(z) # ©(2) impl. ®(z) < &(2)] for-all z € dom ® (-)
impl. [©(2) # ®(2) impl. [head ®(2) < head @(2) or ®(z) = 0] (Fig. VIL2.3)

for-all Z € dom ¢
impl. CI)(Z) # ®(Z) impl. head ®(z) < head ®(Z )] for-all z € dom ® (B1)
impl. [®(2) # ®(2) impl. head B(2) < min (d(2),<)| for-all z € dom® (Fig. VIL.2.2)
impl. c1>(z) # ®(2) impl. [head ®(2) ¢ (2) and (2) # 0|| for-all Z€dom® ()
impl. [®(z) # ©(2) impl. head ®(z) ¢ ®(2) \ {min (B(2), <)}] (Fig. VIL.2.1:3)
for-aII € dom @
impl. [®(z) # ©(2) impl. head ®(z) ¢ tail &(2)| for-all z € dom & (Fig. VII.2.2)
impl. [ (2) # ®(2) impl. a ¢ taiI(I)(é)} for-all z € dom @ (C1)
e C4. Conclude:

H(I)(z) = ®(2) impl. a ¢ tail @(2)} for-all z € dom CD} and (C2, C3)

|[®(2) # ®(2) impl. a ¢ tail &(2)| for-all 2 € dom D]
impl. a ¢ tail ®(2) for-all z € dom ® (-)

e C5. Conclude:

|0 ¢ co(2) and Do(2) # 0] for-all 2 € dom b, (A3, B2)

impl. a ¢ O (2) \ {min (P (2), <)} for-all z € dom D, (Fig. VII1.2.1:3)

impl. a ¢ tail ®,,(2) for-all Z € dom @, (Fig. VIL.2.2)
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e C6. Conclude:

impl.

Conclude:

(P U D, 2[a]) € domto
dU P, € fam (Z,2%)

[a ¢ tail ®(2) for-all z € dom @} and

[0 ¢ tail Beo(2) for-all z € dom Beo| and & U b, € fam (Z, 2)
impl. a ¢ tail (& U ®,)(2) for-all z € dom (¢ U P,)
impl. a ¢ (tail (P U D)) (2) for-all z € dom (U P,)
impl. a ¢ (tail (P U P,))(2) for-all z € dom (tail (P U P,))

impl. a ¢ UJimg (tail (d U P,))
impl. a ¢ Jimg (tail ((® U g,) from z[a]))

e Step. (P U P,) from z[a] = (tail (¢ U P,)) from z[a] and
dU P, € domlen and a € (P U P,)(2) and a # (head (P U P,))(2)

e D1. Conclude:

tail ((I) @) (I)CO)
= (tail ®) U (tail )

e D2. Conclude:

impl.

impl.
impl.

impl.
impl.

impl.

a € (PUD,)(2)
a=min ((P U D) (2),<) or

a € (PUP,)(2)\ {min ((PU D) (2), <)}
a=head (P U Py, )(z) or a € tail (P U D) (2)

a = (head (P U P,))(2) or a € (tail (P U D)) (2)
(Lem. VII.2.6:3, Lem. VIL.2.7:3

a € (tail (¢ U D)) (2)
(tail (P U @), 2[a]) € dom from
((tail @) U (tail @), z[a]) € dom from

e D3. Conclude:

impl.
impl.
impl.
impl.
impl.
impl.

impl.

(® U P, z[a]) € dom from

a€ (PUDL)(2)

a€ (PUP,)(2) and z € dom P

a€ ®(z)

P(z) # 0

®(z) = min (img P, <) and P(z) # 0
tail ®(z) = min (img (tail @), <)

(tail ©)(2) = min (img (tail @), <)

69

(A1)
(Lem. VIL.2.11:1)

(C4, C5, C6)

(-
(Lem. VII.2.7:3
2

(Lem. VIL.2.7:

(

)
)
)
)
(Base)

(Step = Lem. VIL.2.7:4)

(Step)
(Fig. VIL2.1:3)

(Fig. VIL2.2, Fig. VII1.2.2)

(Fig. VI1.2.6

)
(Step)
)
(Lem. VII.2.7:4)
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QED.

e D4. Conclude:

Concl

impl

|0 ¢ co(2) and Do(2) # 0] for-all 2 € dom B, (A3, B2)

impl. a ¢ O, (2) \ {min (P, (2), <)} for-all z € dom P, (Fig. VII.2.1:3)

impl. a ¢ tail ®,,(2) for-all Z € dom P, (Fig. VII.2.2)

impl. a ¢ (tail ®.,)(2) for-all Z € dom ¢, (Lem. VII.2.7:3)

impl. a ¢ (tail ®.,)(2) for-all Z € dom (tail D) (Lem. VII.2.7:2)
ude:

a ¢ Jimg (tail ((tail (& U D)) from z[a])) (D2, D3, D4 = Induction+D1)

. a ¢ Jimg (tail ((® U Dg,) from z[a])) (Step)

Proof of (3)

Al.
A2.
A3.
A4,
A5.
Bl.

impl

B2.

impl

B3.

impl.
impl.
impl.

impl.

((Q U Dy U Do) from z1[al, 22]a]) € domto

®(z1) = max (img @, <)

B(25) = max {img (@ {21 B(=1)}), <)

Q(Z) < Oge(Zg) for-all z € dom @, Z;, € dom Py,

a ¢ O(2) for-all z € dom P,

Conclude:
((® U Pgr U Dg,) from 2q[al, 22]a]) € domto (A1)
. (DU D U D, 21[a]) € dom from )
Conclude:
®(21) = max (img ®, <) and P(z9) = max (img (P \ {z1 — P(z1)}), <) (A2, A3)
. 21,2 € dom @ -)
Conclude:
(DU Py U Do, 21[a]) € dom from and (B1, A1)
(® U Dy U Do) from z1[al, 22]a]) € domto
a€ (PUD, UP,)(21) and a € ((P U Py U D) from 21 [al)(22) (Fig. VII.2.6)
a€(PUD, UD,)(21) and a € (U Dy U D) (22) (Base)
a € (PUD, UP,)(21) and a € (P U D, U D) (22) and 2y, 2o € dom ® (B2)
a € P(z) and a € P(z7) (-)

e B4. Conclude:

impl

a € P(z;) and a € D(29) (B3)
. D(z1) #0 and P(z) # 0 )
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e B5. Conclude:

(@ U Dy UD,)(2) # 0 for-all z € dom (P U Py U D) (Step = Lem. VII.2.9:3)
impl. @, (2) # 0 for-all z € dom P, )

By induction on Bl (Fig. VII.2.6):

e Base. (®U @y U D) from 2 [a] =

U P, U P, and

U Py U P, € domlen and
a€ (PUD, UP,)(21) and a = (head (P U Py U D)) (21)

e C1. Conclude:

a = (head (P U @y U D)) (21) (Base)
impl. a = head (P U O U D, )(21) (Lem. VII.2.6:3)
impl. a = head (¢ U @, U P,)(21) and z; € dom ® (B2)
impl. a = head ®(z;) -)

e C2. Conclude:

P (27) = max (img (P \ {z1 — P(21)}), <) (A3)
impl. ®(z) € img (P \ {21 — P(21)}) )
impl. ®(z;) ¢ img{z; — ®(z1)} )
impl. ®(z3) # P(2) )
impl. ®(z3) # ®(21) and 2, # 2, (-)

e C3. Conclude:

®(21) = max (img P, <) (A2)
impl. ®(z1) = max ({®(2) | Z € dom d}, <) ()
impl. [®(z1) # (2) impl. ®(2) < B(z))] for-all z € dom @ (-)
impl. [®(z1) # ®(2) impl. [head ®(2) < head ®(z) or ®(z) = 0]] (Fig. VII.2.3)

for-all z € dom ®
impl. [®(z)) # ©(2) impl. head ®() < head ®(z)| for-all z € dom & (B4)
impl. [®(z1) # ®(2) impl. head ®(%) < a| for-all z € dom @ (C1)
impl. ®(z;) # ®(22) impl. head ®(z3) < a (B2)
impl. head ®(2;) < a (C2)
impl. head ®(23) # a (Fig. VII.2.1:3)

e C4. Conclude:

a = (head (P U @, U D)) (22)

impl. a = head (P U O U O, )(22) (Lem. VII.2.6:3
impl. a = head (® U @, U P,)(22) and 2z, € dom & (B2

impl. a = head ®(z,)
impl. false

)
)

)
(C3)
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e C5h. Conclude:

impl.
impl.
impl.

impl.

impl.

impl.
impl.
impl.
impl.

impl.

(P U Dy U D,) from z;[a], 22]a]) € domto (A1)
(P U Dy U D, 20]al) € domto (Base)
a€(PUD, UD,)(22) (Fig. VIL.2.6)
a =min (& U Py U Pey)(22), <) oF (Fig. VII.2.1:3)

a € (PUD, UD,)(22) \ {min (O U Py U Do) (22), <)}

a =head (P U @, U D) (22) or a € tail (P U Dy U D) (22)
(Fig. VIL.2.2, Fig. VIL.2.2)

a = (head (P U @, U @,))(22) or (Lem. VII.2.6:3, Lem. VII.2.7:3)
a € (tail (P U g U Dgy))(22)

a € (tail (& U @g U D)) (22) (C4)
(tail (P U @g U Do), 22[al) € dom to (Fig. VIIL.2.6)
(tail (P U g U D), 20]a]) € domto and z; € dom P (B2)
(tail (@ \ {z1 = @(21)}) U{z1 — D(21)} U Dy U D), 22[a]) € domto (-)
((tail (& \ {z1 — ®(z1)})) U (tail ({z1 = P(21)} U Py U D)), 22[a]) € domto

(Lem. VII.2.7:4)

e C6. Conclude:

impl.

e C7. Conclude:

impl.

impl.

impl.

impl.

P(z2) £ 0 and 23 # 2 (B4, C2)
(@\{z1 = P(21)})(22) # 0 ()
P (22) = max (img (P \ {z1 — P(21)}), <) and 2z # 2 (A3, C2)
(@A {21 = B(21)})(22) = max (img (¢ \ {21 = &(21)}), <) ()
(®\ {z1 = D(21)})(22) = max (img (P \ {z; — P(21)}),<) and (C6)
(@\ {21 = @(21)})(22) # 0

tail (¢ \ {z1 — D(21)})(22) = max (img (tail ( \ {z1 — P(21)})), <)
(Thm. VII.2.3:2)

(tail (@ \ {z1 — ®(21)}))(22) = max (img (tail (D \ {21 — P(z1)})), <)
(Lem. VII.2.7:3)

e C8. Conclude:

impl.
impl.
impl.
impl.

impl.

a = head ®(z;) (C1)
a = min (P(z), <) (Fig. VII.2.2)
@ g B()\ {min (D(z), <)} )
a ¢ tail (z;) (Fig. VII.2.2)
a ¢ tail {z; — ®(21)}(21) -)
a ¢ tail {z; — ®(21)}(2) for-all z € dom{z — P(z)} )
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e C9. Conclude:

P(2) < Pgr(Zg) for-all zZ € dom P, Z,, € dom Py, (A4)
impl. ®(21) < g (Z,) for-all Z,, € dom Py, (B2)
impl. {head P(z1) < head Py (Zg) o P(21) = @} for-all Z, € dom @, (Fig. VII.2.3)
impl. head ®(z1) < head @, (Z,) for-all Z; € dom Dy, (B4)
impl. a < head g (%) for-all Z, € dom ®g, (C1)
impl. a < min (P, (Z,), <) for-all Z; € dom D (Fig. VII.2.2)
impl. a ¢ &g (%) \ {min (Pg(Z), <)} for-all Z,, € dom Py, )
impl. a ¢ tail ©,(Z,) for-all Z;, € dom O (Fig. VII.2.2)

e C10. Conclude:

|0 ¢ Dco(2) and Do(2) # 0] for-all 2 € dom b, (A5, B5)
impl. a ¢ ®,(2) \ {min (P,(2), <)} for-all Z € dom P, (Fig. VII.2.1:3)
impl. a ¢ tail &,,(2) for-all z € dom P, (Fig. VII.2.2)

e C11. Conclude:

¢ U Py U P, € domlen (Step)

impl. ® U &, U O, € fam (Z,2%) (Lem. VIL.2.9)
impl. ® U, U, € fam (Z,2*) and 2z, € dom @ (B2)
impl. (®\ {z; — ®(2))}) U{z1 = ®(21)} U Dy U D, € fam (Z,2") ()
impl. {z; = ®(2))} U &g U O, € fam (Z,2%) )

e C12. Conclude:
tail 0 z
a ¢ tail {z = (21)}(2) and (C8, C9, C10, C11)
for-all z € dom {z; — ®(21)}

|0 ¢ tail §g (%) for-all % € dom dg,| and
|0 ¢ tail ©o(2) for-all z € dom @] and {21 > B(21)} U Dy U D € fam (Z, 2%)

impl. a ¢ tail ({z; — ®(21)} U Py U D) (2) (-)
for-all Z € dom ({z — @(21)} U Pg U D)

impl. a ¢ (tail ({z1 = ®(21)} U Py U D)) (Z) (Lem. VII.2.7:3)
for-all Z € dom ({z; — @(21)} U @g U Py)

impl. a ¢ (tail ({z1 — ®(21)} U Py U D)) (2) (Lem. VII.2.7:2)

for-all Z € dom (tail ({z1 — ®(21)} U @gr U D))
e C13. Conclude:

aé (QUD, UP)(22)
impl. a ¢ (U @, UP,)(22) and 2, € dom P (B2)
impl. a ¢ ®(2;) )
impl. false (B3)
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Conclude:

a ¢ Uimg (((tail (@ \ {z1 — ®(21)})) U (tail ({21 — ®(21)} U By U Bey))) to 22]a))
(C5, C7, C12 = Thm. VI1.2.9:1)

impl. a ¢ Uimg ((tail (¢ \ {z1 — ®(21)}) U {z1 = P(21)} U Py U D)) to 22[al)

(Lem. VI1.2.7:4)
impl. a ¢ Uimg ((tail (P U $g U D)) to 22[al) (-)
impl. a ¢ Uimg (tail ((® U $g U Pc,) to 22[al)) (Step, C13, C4 = Thm. VII.2.6:2)
impl. a ¢ Uimg (tail (& U &g U P,) from 2 [a] to 22[a))) (Base)

e Step. (P U P, U D) from zq]a] = (tail (P U @g U D)) from 21 [a] and
O U Py U, € domlen and
a € (PUD, UD,)(21) and a # (head (P U Py U P,))(21)

e D1. Conclude:

tail (B U By U Do)
= (tail ®) U (tail @4 ) U (tail D) (Step = Lem. VII.2.7:4)

e D2. Conclude:

(P U Qg U D) from 24 [a], 22]a]) € domto (A1)
impl. ((tail (& U &g U D)) from 21 [a], 22[a]) € domto (Step)
impl. ((tail ®) U (tail @4 ) U (tail ) from z1]al, 22[a]) € dom to (Lem. VII.2.7:4)

e D3. Conclude:

®(z1) = max (img @, <) and P(z1) # 0 (A2, B4)
impl. tail ®(z;) = max (img (tail ®), <) (Thm. VII.2.3:2)
impl. (tail ®)(z;) = max (img (tail @), <) (Lem. VII.2.7:3)

D4. Conclude:

P (z2) = max (img (P \ {z1 — P(21)}), <) and P(z5) # 0 (A3, B4)
impl. tail ®(z2) = max (img (tail (¢ \ {z1 — D(21)})), <) (Thm. VII.2.3:2)
impl. tail ®(z2) = max (img ((tail @) \ (tail {z; — ®(21)})), <) (Lem. VII.2.7:5)
impl. tail ®(z2) = max (img ((tail @) \ {z1 — tail ®(z1)}), <) (Fig. VIL.2.5)
impl. (tail ®)(z ) max (img ((tail @) \ {z1 — (tail ®)(21)}), <) (Lem. VIIL.2.7:3)

e D5. Conclude:

(P U Py UD,)(2) # 0 for-all Z € dom (P U D, U D) (Step = Lem. VII.2.9:3)
impl. ®(2) # 0 for-all Z € dom® ()
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e D6. Conclude:

[B(2) < Dgi(Z) for-all 2 € dom ®, %, € dom Dy | (A4)
impl. [tail O(2) < tail Oy (Zg) or P(2) = Q)} for-all z € dom @, Z,, € dom Dy,

(Fig. VI1.2.3)
impl. tail ®(2) < tail @y (Z,) for-all Z € dom ®, Z,, € dom Dy, (D5)
impl. (tail ®)(2) < (tail ©,,)(Z,) for-all Z € dom @, Z, € dom Dy, (Lem. VIL.2.7:3)

)

z
impl. (tail ®)(2) < (tail @ )(Z,) for-all Z € dom (tail @), Z,, € dom (tail dy)
(Lem. VIIL.2.7:2)

e D7. Conclude:

|0 ¢ co(2) and Do(2) # 0] for-all 2 € dom b, (A5, B5)
impl. a ¢ O (2) \ {min (P, (2), <)} for-all z € dom D, (Fig. VII.2.1:3)
impl. a ¢ tail ®,,(2) for-all Z € dom P, (Fig. VII.2.2)
impl. a ¢ (tail ®,,)(2) for-all z € dom &, (Lem. VII.2.7:3)
impl. a ¢ (tail ®,)(2) for-all Z € dom (tail D) (Lem. VII1.2.7:2)

Conclude:

a ¢ UJimg (tail (((tail @) U (tail @4 ) U (tail ,)) from z;[a] to z2[al))
(D2, D3, D4, D6, D7 = Induction+D1)

impl. o ¢ Jimg (tail ((tail (& U @, U @,)) from z[a] to 25[al)) (Lem. VII.2.7:4)
impl. a ¢ Uimg (tail ((® U $g U O,) from z[a] to 25]al)) (Step)

QED.

VIII.10 Proof of Theorem VII.3.1

By case distinction (Fig. VIL.3.1):
e Case. (' = {Zi3Di}i€I

Conclude:

dom [C]
= dom [{2:D;}iei] (Case)
= dom{z — [D;] |iel} (Fig. VII.3.4)
={zliel} ()
= vars({z: D, }ier) (Fig. VII.3.2)
= vars(C) (Case)

QED.
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VIII.11 Proof of Theorem VII.3.2

Proof of (1)

Conclude:

Proof of (2)
Conclude:
INCW:A)
= [E2-E4]
= [B2] + (- LE])
= O([£4]. [E-])

QED.

VIII.12 Proof of Theorem VII.3.3

Proof of (1)
By case distinction (Fig. VIL.3.1):

e Case. D; = E°. . E" and D, = E¥. EN

Conclude:

A(Dy, Dy) ()
= A BN B ES) (W)
= A(EY, EY) (v)

(
(
(
= ALY (), EY ()
( lo
(
(D

o
o

EI
EI
EI

A(B® () -~ (B (), (B (D) (B ()
B EY (u), B BY ()
(D, Ds ()

l>l>

QED.

76

(Fig. VIL3.5)
(Fig. VIL.3.3)
(Fig. VIL3.5)

(Fig. VIL3.5)
(Fig. VIL3.4)

(p25)

(Case)

(Fig. VIL3.5)
(Thm. VIIL.3.2:1)
(Fig. VIL3.5)
(Fig. VIL3.3)
(Case)
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Proof of (2)
« AL [V(D)] =[V(Ds)] =10
By case distinction (Fig. VIL.3.1):
e Case. D; = E%. . E" and D, = EY. Eb

QED.

Co

e B1l. Conclude:

[[V(Dl)]] = [[V(ﬁzﬂ] <10

[V(EY..EY)] = [V(ES .. E§)] < 0
[A(EY, EY)] = [AES, ES)] <0

O(IEY], IEYT) = o(1E3], E5T) =7 0

{ar + 6([EYL [E5D) | [EY] = an < [EV]) =

impl.
impl.
impl.

impl.

{az | [E5] < az < [E5]} #0

nclude:
[A(Dy, Ds)]

= [AEY.. BV EY . EY)]

= [A(EY, E9)]

S(IETT, [£51)

o({ar | [EF] = @ =< [EV} {a: | [E5] < @ < [EST))

(
S([E.. BN, 15
(

=0 [[Dlﬂa[[DZ]])

E5)

VIII.13 Proof of Theorem VII1.3.4

v

o Al. (z,29) € domA(C)
By case distinction (Fig. VIL.3.1):
e Case. é = {ZZ‘IELO ..E?i}ie[

QED.

Co

nclude:

v

A(C) (21, 22) (¥

A({zi: EY .. EMYier) (21, 22) (1)
= {(zi,, zip) — A(E'f;
= A(E°. EM E9° EMY () and 1,2 €]
A(E"S . EN (o), E® . EY (4) and 1,2 € T
{(zir, 200) = A(ES . ER (), B
A({zz-:f??--E:?‘ () tier)(
A({vzi:ELo"E?i}iGI ()) (21, 22)
= A(C (YD) (21, 22)

BN Elo

717 12

21, 22)

CENY iy iy € THz, 2) (00)

B () |y is € T}z, 2)

7

(A1

(Case

(Fig. VIL3.5
(Thm. VIL3.2:2
(Lem. VII.2.1:2

~— — — ~— ~—

(Fig. VIL.3.5

(Thm. VIL3.2:2
(B1 = Fig. VIL.2.2
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VIII.14 Proof of Theorem VII.3.5
e Al. 2:D :max<é,<)

By case distinction (Fig. VIL.3.1):
e Case. C'={z:EP..E"},;

e B1l. Conclude:

2:D = z: EP . EN (F)
impl. z:E2°.. EM = max (C, <) (A1)
impl. z;: E°. EM = max ({z: E°.. EM}ie/, <) (Case)
impl. z:E°. EM < z:E° . E" for-all i € I\ {i}
impl. |EP (), EP (@) € B impl. [EP (9)] < [EP ($)]] (Fig. VIL.3.8)

for-all ) € ¥ ic I\ {i}
([ (), B2 () € B impl. [E2 ($)] < [B2 ()]
| for-all ) € W,ic I\ {7}

E (W) (), ¥ (w) (&) € E impl.

EP (U @\ {k = d(k) | k € (dom¢) N (dom¢)}))),
EP (U @\ {k = $(k) | k € (dome) N (dome)})) € E
forall YpeW,icl)\{i}

ER (W) (), P (w) (&) € E impl. )
impl. |[EY (¢ U (& \ {k = (k) | k € (domw) N (dom¢)}))] <
| IER (U @\ {k = d(k) | k € (dom¢) N (dom ) }))]
for-all ) € ¥, ic I\ {i}
impl. [ () (), B () (¥) € B impl. [E2 () ()] < [E2 () (2))]] ()
for-all ) € ¥ ic T\ {i}
impl. 2 (B2 (V) (B () < 220 (B2 () - (B (@) (Fig. VIL.3.8)
impl. z:E° EM(0) < z:EP . EM () for-all i e I\ {7} (Fig. VIL3.3)

impl. ] and  (Lem. VIL.3.6:3)

)

e B2. Conclude:

2:D=2z:E°. EM and 7€ (F)
impl. z: E° . EM (¢) <« z:EP. EM () for-all i eI\ {i} and 7¢I (B1)
impl. 2 B BN () = ma ({2 BBV () }ier, <) )
impl. z;: E° . EM () = max ({z: E° .. EM}icp (W), <) (Fig. VIL.3.3)
impl. z;: E° . EM (¢) = max (C (¥), <) (Case)
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Conclude:
z:D = max (C, <) (A1)
impl. z:D = max ({z:E°.. EM}icr, <) (Case)
impl. z:D = 2:E° . EM and 7¢I (F)
impl. z:D (1) = max (C (¥), <) (B2)
QED.
VIII.15 Proof of Theorem VII.3.6

e Al. Cev

By case distinction (Fig. VIL.3.1):
e Case. C'={z:El..EN},c;

Conclude:

Cev (A1)
impl. {z:E°. E"},c, e v (Case)
impl. [V(EY..EM)] = [V(ES..EM] <0 for-all iy,iy € 1 (Fig. VIL3.9)
impl. [A(E?, EM)] = [A(ES, EX)] <" 0 for-all iy,ip € T (Fig. VIL3.5)
impl. §([E°], [EN]) = 6([ER], [EX]) <1 0 for-all iy,iy € T (Thm. VIL3.2:2)
impl. {a, + 0([EX], [E2]) | [EX] = a1 < [EN]} = {a2 | [ER] < a> < [EN]} #0

impl.

impl.

impl.
impl.

impl.

impl.

impl.
impl.
impl.
impl.
impl.

QED.

(Lem. VII.2.1:2)
for-all 71,15 € 1
{a +0([ESD TESD | [BS] = an = [ERIY = Hae | [FR] < as < [ER]} > o ()
for-all 11,19 € I

{a, | [[E“]] <a = [[E T = {aq | [[E | <as =< [[E 1} > o for-all iy,iy € [
(Fig. VIL.2.1:1)

1B EN]| = [[ES..EP]| > o for-all iy,iy € [ (Fig. VIL.3.4:1)
{z = [EY BN i€ I} (z)| = {z = [EY BT i € 1}(5)| > o (=)
for-all 51,22 € {22 ‘ 1€ [}

IH{zi: B BV 1G] = |[{z: B EMYiei](22)] > o (Fig. VIL.3.4:1)
for-all z,,2, € {z; | i € I}

[{z:: EY - EYYier) ()] = {20 BY - BT Ve (2)] > 0 ()
for-all 2,2 € {#|2:D € {z:E° .. EM}ier}

IIC1()| = |[C](%2)] > o for-all 3,5, € {2|2:D e C} (Case)
IIC1(z)| = [[C](%2)] > o for-all %, % € {Z] % € dom [C]} (Lem. VIL3.7:2)
IICT(z1)| = |[[C](Z2)] > o for-all %, Z, € dom [C] ()

n=|[C](3)| > o for-all z e dom [C] (In)
len [C] > o (Fig. VIL.2.5)
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VIII.16 Proof of Theorem VII.3.7

Proof of (1)

e Al. Cev

By case distinction (Fig. VIL.3.1):
e Case. (' = {z:EP. . F";

e B1l. Conclude:

impl.
impl.
impl.
impl.
impl.

impl.

e B2. Conclude:

impl.

impl.

e B3. Conclude:

impl.
impl.
impl.
impl.

impl.

impl.

(z1,22) € {{21, 22) | ([C](21), [C](%)) € dom 6} (F21, 322)
(IC1(21), [C](22)) € dom ()
21, 25 € dom [C] ()
21,725 € dom [{z: EP .. EM}ie/] (Case)
21,72 € dom {z — [EP°..EM] |ie I} (Fig. VII.3.4)
21,20 €{z; |1 €I} -)
(21, 22) € {(2iy, 2ip) | 01,42 € I} )
Cev (A1)
{zi:E® . EM}icr e v (Case)
[V(EP .. EMN] = [V(ER..EMN] <0 for-all iy,ip € T (Fig. VII.3.9)
1,2¢€1 )
[A(EY, ED] = [A(EY, £5)] < 0 (B2)
S([E], [EN]) = 6([EST, [E5]) <70 (Thm. VII.3.2:2)
{a1 + 0([E®], [ER]) | [EP] = a1 < [EN]} = (Lem. VIL.2.1:2)
{a | [EX] < as < [ES]} # 0

{a+ S([EV] IES]) | @ e {a | [EY] = a < [EY]}} = )

(a2 | a2 € {a | [£5] 2 a < [E]}) #0 -
{ar + O(IBE IE5D) | v € (B 51 = {a | @ € [£5 . B5]} #0
(Fig. VIL.3.4)

e B4. Conclude:

impl.
impl.
impl.
impl.
impl.

impl.

([E'.. EM],[EY.. EAT) € dom 6 (Fig. VII1.2.2)
(z1,22) € {{zi), 2i,) | 11,72 € I} (Fz1, J29)
1,2¢€1 )
1,2€ I and ([E'°..EN], [EY.. EN]) € dom & (B3)
({z HAHELOL'E?E]] | i€ [}(21)1{21 = [E°. EM] |ie I}(2)) € domé (-)
([[{Azi EPR.. F?f}ie]]] (21),[{zi: E® .. E"Yici](2)) € dom & (Fig. VIL.3.4)
([C](21). [€](22)) € domd (Case)
(21, 22) € {(Z1, 22) | {[C](21), [C] (%)) € dom &} )
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Conclude:

dom 6[C]
= dom {(2;, ) — 5(&(51](51), [C1(2) | 21, %2 € Z}
= {(21, 22) [ {[C](21), [C](%)) € dom b}

= {<Zi1azi2> |i17i2€[}
= dOIIl{<ZZ'1, Zi2> = A<EIO
= dom A({zl : EAIiO .. E?i}iej)

= dom A(C)

QED.

Proof of (2)

e Al. Cev
By case distinction (Fig. VIL.3.1):
e Case. é = {zi:ﬁi}ief

Conclude:

dom 6[C]
= dom A(C)

= domA({Ziiﬁi}iel)

= dom {(z;,, 2;,) = A(Dy,,
= {(zi,, zi,) | 11,12 € I}
={zliel}x{z]iel}

Ehl Elo

21

D) |iy,is eI}

= vars({zi : ﬁi}ie[) X vars({zz- : ﬁi}ie[)

= vars(C) x vars(C)

QED.

Proof of (3)

e Al. (z,2) € domd[C]
e A2. Ccv

By case distinction (Fig. VIL.3.1):
e Case. (' = {zi:D;}ier

e B1l. Conclude:

impl.
impl.
impl.

impl.

(21, 25) € dom A(C)
(21, 22) € dom A({2;: Di}ier)

(21, 29) € dom {(z;,, zi,) — A(f)il,

(21, 22) € {(2i), 2i) | 11,92 € T}

1,2¢€1

BN in,io € T}

D) i, iz e I}

(Al = Thm. VIL3.7:1

81

(Fig. VIL2.
(-

(B1, B4
(-

(Fig. VIL3.

5)
)
)
)
5)
(Case)

)
(Case)

(Fig. VIL3.5)
)

)

(Fig. VIL3.2)
(Case)

(A
(Case

1)

)

(Fig. VIL3.5)
)

)
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e B2. Conclude:

Ce 4
impl. [V(D,;)] = [V ( )] =<0 for-all iy,i € 1
impl. [V(D1)] = [V(D,)] =

Conclude:

S[C1(z1, 22) A A

{(z1, 22) = 0([CT(21), [CT(22)) | %1, 22 € Z} (21, 22)
3([C1(=1), [C](22))

S([{z: Dz‘}jel]] (z1), [{zi: Di}ier] (ZzA))

0({zi = [Di] [ i € I}(z1), {zi = [Di] | i € 1}(22))
o([Dn], [D=])

[A(D1, Dy)] o

[{{zi1, 2in) = A(Diy, Dy ) | ia,42 € T} (21, 22)]
[A ({Z Di}ier)(z1, 22)]

[A(C) (21, 22)]

QED.

Proof of (4)
o Al. (21, 2) € dom§[C]

o A2, 21 = k9
e A3. é ev
Conclude:

(21, 2) € dom 0[C]
impl. (z1, z0) € dom {(Z, EQ)AH 5([[@1](21), [C1(2) | 21, %2 € Z}
impl. (21, 22) € {(Z1, 22) | ([C](%1), [C](%2)) € dom 6}
impl. ([C](z), [[C]](%Q» € dom¢
impl. zy, 2, € dom [C]
impl. [C](z1) = [C](z) A )
impl. (21, 22) € domd[C] and [C](z1) = [C](z2)
impl. 6[C](21,2) =0

QED.

Proof of (5)
o Al. (z,2) e domd[C]
o A2, 21 7é 29

82

(A1)
(Fig. VIL3.9)
(B1)

(A1, Fig. VII.2.5)

()

(Case)

(Fig. VIL.3.4)

()

(B2 = Thm. VIL3.3:2)
(B1)

(Fig. VIL3.5)

(Case)

(Lem. VIIL.2.
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e A3. (ev

By case distinction (Fig. VIL.3.1):

e Case. C' = {z:D;}ic;

QED.

e B1l. Conclude:

Cev
impl {Zi:Di}iEI ev
impl. [[V(D;,)] = [V(D
[Zh 7é Zig impl [[A(ﬁzu

e B2. Conclude:

1,2€1

impl. [V(D))] = [V(Dy)] <10 and [zl ;é z impl. [A(D;,,
Ai2)]] 3& 0

impl. [V(D1)] = [V(D2)] =" 0 and [A(D;
impl (A[[Du]] [[l?w]]) 7é 0
impl. [D;,] # [Ds,]

Conclude:

impl.
impl.
impl.
impl.
impl.
impl.
impl.
impl.
impl.
impl.
impl.
impl.
impl.
impl.

(21, 2) € dom6[C]

(21, 29) € dom {(Z1, Z3) — O([C ]](

(21,22) € {(21, ) [ {[C](21), [C](%2)) € dom 6}
(IC1(=1). [C1(22)) € domd

21, 29 € dom [C]

21, 2o € dom [[{zi:f)i}f-e[]]

21,20 € dom{z; — [D;] | i € I}

21,29 € {2z |i € I}

1,2¢1

1,2 €1 and [D;,] # [Ds,]

{zi = [Di] |i € I}(z1) # {zi = [Dil | i € [}(2)
[{zi: Ditier] (1) # [{zi: Dibier] (22)
1) #[C1)

(21, 22) € domd[C] and [C](z1) =
O[CT (21, 22) # 0

[C1(2)

»)] <10 for-all iy,i, € I] and
Dy,)] # 0} for-all iy,i, € I

), [C1(22)) | 21,22 € Z}

83

(Case)
(Fig. VIL3.9)

(A2
(Thm. VIIL.3.3:2
(Lem. VII.2.4:2

V\/\_/\_/\_/
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VIII.17 Proof of Theorem VII.3.8

Proof of (1)
e Al. Cev
o A2. zlzf)l,zg:f?g e
e A3. zl:f)l < Zg:f)g
By case distinction (Fig. VIL.3.1):
e Case. D; = £ F" and D, = E%. EY

e B1l. Conclude:

Z1 2D1 < ZQ:ﬁQ (A3)
impl. 2z :E° . EN <z Bl EY (Case)
impl. |EY (0), B (v) € B impl. [EY (¥)] < [E% (¢)]] for-all ¢ (Fig. VIL3.8)
impl. |E¢, B € B impl. [EY] < [E¥]] for-all ¢ (Lem. VIL3.6:2)
impl. [E7] < [£5] ()
impl. [E°] + (—[E*]) < [ES] + (—[£Y]) (Fig. VII.2.1:5)
impl. 0 < [E¥] + (—[EY]) (Fig. VII.2.1:1)
impl. 0 < 6([EY], [£5]) (p25)

e B2. Conclude:

[V(D))] = [V(Dy)] =0 (A1, A2 = Lem. VIL3.10:2)
impl. [V(E". EM)] = [V(ES..E] =0 (Case)
impl. [A(E", EM)] = [A(E"S, )] < 0 (Fig. VIL.3.5)
impl. §([E°], [EM]) = 6([ES], [ER]) <0 (Thm. VIL3.2:2)

impl. {a + 6([EV], [ES]) | [EY] = a1 < [EY]} = {a | [EX] = a» < [E5T}
(Lem. VII.2.1:2)

Conclude:
{an [ [EY] = an < [EV]} < {ae | [E5] < a» < [E5T} (B1, B2 = Thm. VI1.2.2)
impl. [E°..E"] < [EY.. EY] (Fig. VIL.3.4)
impl. [Dy] < [Ds] (Case)
impl. [C](21) < [C](22) (A2 = Lem. VIL3.7:3)

QED.
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Proof of (2)
e Al. Cev
e A2. z:D =min(C, <)
e B1l. Conclude:
z:D =min (C, <) (A2)
impl. z:D e )
Conclude:
z:D =min (C, <) (A1)
impl. 2D # 2:D impl. 2:D < z: D] for-all Z:D e C )
impl. [[.:p#z:D impl. 2:D < 2:D| for-all z:D e (] and z:DeC and C€v (Bl Al)
impl. [2:D # 2:D impl. [C](2) < [C](2)] for-all 2:D e C (Thm. VIL3.8:1)
impl. [z # z impl. [C](2) < [C](2)] for-all 2:D e C )
impl. |2 # Z impl. [C](2) < [C](2)] for-all %€ dom [C] (Lem. VIL.3.7:2)
impl. [[C](2) # [C](2) impl. [C](2) < [C](2)] for-all z € dom [C] (-)
impl. [C](2) = min ({[C](2) | 2 € dom [CT}, <) )
impl. [C](2) = min (img [CT, <) ()
QED.
Proof of (3)
e Al. Cev
e A2. ::D = max <é, <)
¢ Bl. Conclude:
z:D = max (C, <) (A2)

impl. z:DeC
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Conclude:

impl. |2:D ~:lg) impl. lg) L z: D} for-all z:D e C

A

A A

impl. [2:D £ 2:D impl. [C](3) < [C](2)] for-all z:D e C
impl. [z # 2 impl. [C](2) < [C](2)] for-all :Del
2 # % impl. [C1(3) < [[CA']](Z)} for-all z € dom [(]
impl. [[C](2) # [C](2) impl. [C](2) < [C](2)] for-all 2 € dom [C]

]1
impl. [C](2) = max ({[C](2) | £ € dom [C]}, <)
impl. [C](2) = max (img [C], <)

impl. -

QED.

VIII.18 Proof of Theorem VII1.4.1

Proof of (1)
o Al. Wf; »(T)
o A2, Wff,X(Ty)

By induction on Al (Fig. VI1.4.2):

e Base. 7=X and X ¢ X

By case distinction:

e Case. X =Y
Conclude:

Wff’X(Ty)

e Case. X #Y
Conclude:

Wiy x(T)
impl. Wf; »(X)

£
impl. [Z D+ 5:D impl. g;f)<<zzf)} for-all 3:DcC| and z:DeC and C v (Bl Al
7£

86

(Al
(,

(Thm. VIL.3.8:1

(Lem. VIL.3.7:2
(-
(_

)
)
)
)
)
)
)
)
)

(A2)
(Case = Fig. VII.4.3)
(Base)

(A1)

(Base)

(Case = Fig. VIL.4.3)
(Base)
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e Step.

T = 7”1[1’1} —97”2[1’2] 2{62 . Gi}ie] and

87

[rl € dom f impl. z; € f(rl)} and [7’2 € dom f impl. 2, € f(ﬁ)} and

(W x(G;) for-all i € I|

Conclude:

impl.
impl.
impl.

impl.

e Step.

\Wf; x(G;) for-all i € I| and Wfy (T)
Wi x(Gi {Ty/Y)) for-all i€ I

Wi v (r1[z1] = rafze] :{li . Gi {Tv/Y } }ier)
W x(ri[z1] = rofza] :{l; . Gitier {Tv/Y'})
Wiy x(T{Ty/Y})

T= 7"2[1’2} '{Ez . Li}ie[ and
[r2 € dom f impl. x5 € f(r2)| and [Wf;x(L;) for-all i €[]

Conclude:

impl.
impl.
impl.

impl.

e Step.

\Wf; x(L;) for-all i € I| and Wf;(T)
Wf; v (L {Ty/Y}) for-all i € I

WF v (ra[a) 1{l; . Li {Ty /Y } }ic1)

Wi x(ra[za] H{li . Litier {1y /Y'})

Wf, (T {Ty/Y})

T = 7’1[1’1} ?{& . Li}ie[ and
[r1 € dom f impl. z; € f(r1)] and [Wf;x(L;) for-all i €[]

Conclude:

impl.
impl.
impl.

impl.

e Step.

\Wfy x(L;) for-all i € I| and Wfy(T)
WF; x(Li {Ty/Y}) for-all i € I
WEpx(rifed 240 « Li{Ty /Y } bier)

Wi x(rifed 240 « Litier {Ty/Y'})
Wisx(T{Ty/Y})

T =rec X TX and Wff,XU{X}(TX>

By case distinction:

e Case. X =Y

Conclude:

Wi x
Wi, x
Wr x
Wt x

T)
rec X Tx)
rec X Tx {Iy/Y})
T{Iy/Y})

impl.

impl.

A~~~ /—~ —~

impl.

(Step, A2)
(Induction)

(Step = Fig. VI1.4.2)
(Fig. VIL.4.3)

(Step)

(Step, A2)
(Induction)

(Step = Fig. VII.4.2)
(Fig. VIL4.3)

(Step)

(Step, A2

)

(Induction)

(Step = Fig. VI.4.2)
(Fig. VIL.4.3)

(Step)

(Al

(Step

(Case = Fig. VIL.4.3
(Step

)
)
)
)
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e Case. X £Y
Conclude:

impl. Wff,XU{X}
impl. Wf; xuix)(7'x) and Wff,XU{X}(Ty)
impl. Wf; xurxy(Tx {Tv/Y'})

impl. Wf; yv(rec X (Tx {Tyv/Y}))

impl. Wf; y(rec X Tx {Ty/Y})

impl. Wf, »(T{Ty/Y})

QED.

Proof of (2)
o Al. Wff,XU{cont}(T)

[ J A2. Wff,X<Tcont>

By induction on Al (Fig. VI1.4.2):
e Base. 7= X and X € X U {cont}

By case distinction:

e Case. X = cont
Conclude:

Wff,X (Tcont)
impl. Wf; x(X {Tcont/cont})
impl. Wf ¢ x (T {Tcont/cont})

e Case. X # cont
Conclude:

X € XU {cont} and X # cont
impl. X e X
impl. Wf; »(X)
impl. Wf; (X {Tcont/cont})
impl. Wf; x (7 {T¢ont/cont})

e Step. T = ry[x1]—=»rafxe] : {l;. G;}icr and

88

(A2)
(Lem. VII.4.1:2)
(Step)

(Induction)

(Fig. VIL4.2)

(Case = Fig. VII.4.3)
(Step)

(A2)
(Case = Fig. VII.4.3)
(Base)

(Step, Case)

)

(Fig. VIL4.2)

(Case = Fig. VIL.4.3)
(Base)

[rl € dom f impl. z; € f(rl)} and [7‘2 € dom f impl. 2, € f(w)} and

\WF 1 xgcont) (Gi) for-all i € T|
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Conclude:

impl.
impl.
impl.

impl.

e Step.

[WF§ vU(cont) (Gi) For-all i € T| and Wf v (Teons)

W 1 (G {Teont/cont}) for-all i € ]

WH ¢ x(r1[z1] = ra[wo] : {l; . Gi {Tcont/cont}}icr)

Wt x(r1[z1] = rof[za] :{l; . Gi}icr {Ttont/cont})

Wf ¢ 4 (T {Tcont/cont })

T = rolxs) Y{¥; . L;}ie; and

[r2 € dom f impl. x5 € f(r2)| and [Wfp v (coney (L) for-all i € I|

Conclude:

impl.
impl.
impl.

impl.

e Step.

(W vUfconty (Li) for-all i € I| and Wfp x(Teons)

WS x(L; {Ttont/cont}) for-all i € I

W s (rofa] 1{l; . Li {Teons /cont} }ics)

Wiy x(ro[z2] 1{l; . Li}icr {Tcont/cont})

Wf ¢ x (T {Tcont /cont })

T =r]z1]?{¢; . L;}ic; and

71 € dom f impl. z1 € f(r1)] and [Wfp v (coney (L) for-all i € I]

Conclude:

impl.
impl.
impl.

impl.

e Step.

[Wff,Xu{cont}<Li) for-all i [} and Wf; v (Teont)
WA ;v (Li {Teont /cont}) for-all i c [

WH ¢ x(r1[z1] 2{l; - Li {Teont/cont } }icr)

Wty x(ri[z1] ?{4; . Li}ier {Tcons/cont})

Wf s 2 (T {Teont /cont })

T =rec X Tx and Wf yvifcontiugx}(Tx)

By case distinction:

e Case. X = cont

Conclude:

T =rec X Tx and X = cont
impl. false

e Case. X # cont

Conclude:

Wff,XU{cont}u{X}(TX) and Wff,X(Tcont) (Step, A2)
impl. Wff,XU{cont}U{X}(TX) and Wff,Xu{X}(Tcont) (Lem. VH.4.1:2)
impl. Wf; xurx) (T'x {Tcont/cont }) (Induction)
impl. Wf; yv(rec X (Tx {Tcont/cont})) (Fig. VIL.4.2)
impl. Wf; y(rec X T'x {Tcont/cont}) (Case = Fig. VII.4.3)
impl. Wf; x (T {T¢ont/cont}) (Step)
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(Step, A2)
(Induction)
(Fig. VIL.4.2)
(Fig. VIL4.3)
(Step)

(Step, A2

)
(Induction)
(Fig. VIL4.2)
(Fig. VIL.4.3)

(Step)

(Step, A2

)
(Induction)
(Fig. VIL4.2)
(Fig. VIL4.3)

(Step)

(Step, Case)
(Fig. VIL4.1)
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QED.

VIII.19 Proof of Theorem VII1.4.2

L] Al Wfﬁx\{y}(T)
By induction on Al (Fig. VII.4.2):
e Base. T=X and X € X\ {V}

By case distinction:

e Case. X =Y

Conclude:

X eX\{V} (Base)
impl. Y e X\ {YV} (Base)
impl. false -)

e Case. X #VY
Conclude:
T
=X (Base)
= X{Ty/Y} (Case = Fig. VII.4.3)
= T{Iy/Y} (Base)

L] Step T = 1 [I’ﬂ —DTQ[I'Q] 2{& . Gi}ie[ and
|71 € dom f impl. 1 € f(r))] and |r; € dom f impl. 25 € f(ry)| and
(W x(G;) for-all i € I|

Conclude:
T
= rifz] = rafzo] :{{; . Gitier (Step)
= iz = refws] H{l . Gi{Ty /Y }ier (Step = Induction)
= rifvi] = rafwo] :{l; . Gitier {Tv/Y'} (Fig. VIL.4.3)
= T{Iy/Y} (Step)

e Step. T = ryfxo) M{¢; . L;}ie; and
|72 € dom f impl. 2 € f(ry)| and [WFy (v} (L;) for-all i€ 1]

Conclude:
T
= rafa] H{li . Li}ier (Step)
= rofwa] H{li . Li{Ty /Y } }ier (Step = Induction)
= ro[] Wli - Li}ier {Tv/Y} (Fig. VI1.4.3)
= T{Ty/Y} (Step)
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L] Step T = 7”1[1’1} 7{& . Li}ie[ and
[r1 € dom f impl. 1 € f(r1)| and [Wfp v (vy(L;) for-all i € I|

Conclude:
T
= ri[r1] ?{li . Li}ier (Step)
= ri[z1] 2l - Li{Ty /Y } bier (Step = Induction)
= ri|x1] ?2{l; . Li}ier {Ty/Y'} (Fig. VI1.4.3)
= T{Iy/Y} (Step)

o Step. T'=rec X Tx and Wf; x\ vuixy(Tx)

By case distinction:

e Case. X =Y

Conclude:
T
=rec X Ty (Step)
=rec X Tx {Iy/Y} (Fig. VII.4.3)
= T'{Iy/Y} (Step)
e Case. X #Y

e B1l. Conclude:

Wfﬁ(;{\{y})u{x} (TX) and X 75 Y (Step, Case)
impl. Wf ¢ o\ puaon vy (Tx) )
impl. Wf xopx oy (Tx) ()

Conclude:
T
= rec X Tx (Step)
=rec X (Tx{Ty/Y}) (B1 = Induction)
=rec X Tx {Iy/Y} (Case = Fig. VIL.4.3)
= T{Iy/Y} (Step)

QED.

VIII.20 Proof of Theorem VII.5.1

Proof of (1)
o Al. <L1,L2> € dom I

By induction on Al (Fig. VIL.5.1):
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eBase. Li=I,=X and LT Ly =X

By case distinction:

e Case. X =Y

Conclude:

(L1 M Ly){L/Y}

= X{L/Y} (Base)
=L (Case = Fig. VIL.4.3)
— LML (Lem. VIL5.1:2)
— X{L/YINX{L/Y} (Case = Fig. VIL4.3)
= Li{L/Y}N L {L/Y} (Base)
e Case. X #Y
Conclude:

(L1 M L) { L)Y}

= X{L/Y} (Base)
=X (Case = Fig. VIL.4.3)
= XnNX (Lem. VIL.5.1:2)
= X{L/Y}NnX{L/Y} (Case = Fig. VIL.4.3)
= Li{L/Y}N L {L/Y} (Base)

L] Step L1 = TQ[I‘Q] '{61 . Li,l}ie[ and L2 = 7’2[(1]2] '{gz . Li,2}i€[ and
Ly Ly = ro[xe) Y{l; . Lix M Lis}tier

Conclude:

(LM Ly) {L/Y}

= rolwo) Wl - Lin M Listier {L/Y'} (Step)
= ryfwa] 1l . (Lia M Lin) {L/Y } hics (Fig. VIL4.3)
= ro[wo| W{l; . Lit {L/Y} N Lis{L/Y }}icr (Induction)
= ralwe) Y{l; . Lin {L/Y }}ier Mrafwa]) Y{l; . Lis{L/Y }}icr (Fig. VIL.5.1)
= ro[wa] Y{l; . Li1bier {L)Y } Mrg[aa] Y{l; . Lio}ier {L/Y} (Fig. VII.4.3)
= L {L/Y}N L L)Y} (Step)

o Step. Ly = ri[z1]?{li. Li1}ier, and Ly = ri[21] ?{l; . Li2}ier, and
Ly Ly = rif21] ?{4; . Lig Yiernn, U {4 - Ligtiern, U{li - Lix N Lia}ier,nr, and
V“ 7é &2 for-all 7, € I, \ Ir, 19 € I \ Il}
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Conclude:
(LyMLy){L/Y}
= (@] ?{l « LipYierng, Ul - Ligticrnn U - Lia NV Ligtier,nr, {L/Y'} (Step)

= 7"1[1’1]?

(Fig. VIL4.3)

{6« Lian {L/Y } ez, UAli - Lin{L/Y } Yictn Ui « (Lin M Li) {L/Y } Yiennr,

= ri[x]?

{6 Lia{L/)Y } Yierng, Ul - Lipg{L/Y }}icrnn, U

{€; . Lin {L/Y} NV Lio{L/Y }}icninm,

= ri[z1]?{l; . Lia {L/Y }Vier, Mra[2a [ {L/Y }2{; . Li2{L/Y } }icp,
= 7’1[1’1] ?{& . Li,l}ieh {L/Y} M 1 [5(71] 7{& . Li72}2‘€[2 {L/Y}

— L{L/Y}N L ALY}

(Induction)

(Step = Fig. VIL.5.1)
(Fig. VIL4.3)

(Step)

o Step Ll =rec X LX,l and L2 =rec X LX,2 and Ll 1 L2 =rec X (LX,l 1 LX,Q)

By case distinction:

e Case. X =Y
Conclude:

(L1 Lo) {L/Y}
=rec X (Lx1MLx2){L/Y}
=rec X (Lx1MLxy)
=rec X Ly lrec X Lx;s
=rec X Ly {L/Y}MNrec X Lx,{L/Y}
= Li{L/Y}N L {L/Y}

e Case. X #Y
Conclude:

(LM Ly){L/Y}
=rec X (Lx M Lxs){L/Y}
=rec X ((Lx1MLx2){L/Y})
=rec X (Lx 1 {L/Y} N Lxs{L/Y})
— rec X (Lx1{L/Y})Nrec X (Lx2{L/Y})
=rec X Lx 1 {L/Y}MNrec X Lx,{L/Y}
= L1{L/Y}N L {L/Y}

QED.

Proof of (2)
o Al. (L,,L,) € domnl

By induction on L (Fig. VIL.4.1):

(Step)

(Case = Fig. VIL.4.3)
(Fig. VIL5.1)

(Case = Fig. VIL.4.3)
(Step)

(Step)

(Case = Fig. VIL.4.3)
(Induction)

(Fig. VIL5.1)

(Case = Fig. VII.4.3)
(Step)
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e Base. L =X

By case distinction:

e Case. X =Y

Conclude:

L{L MLy Y}
= X{LiNLy/Y}
LM Ly
XA{L/Y} N X {Ly/Y}
= L{L/Y} N L{L/Y}

e Case. X £Y
Conclude:

L{LiMLy/Y)}
= X{LiNLy/Y}
=X
= XNX
= X{L/Y} N X{L/Y}
= L{L/Y} N L{L,/Y}

e Step. L =rofzo] 1{l; . Li}icr

Conclude:

L{Li N Ly/Y}
= 1o Ui« Li}tier {1 1 Lo/ Y}
= ro[a] Wi« Li{L1 M La/Y } }ier
= rolae]) Wl . Li{L1/Y} N Li {La/Y }}icr
= rolwo] Wi« Li{L1/Y }}ier Mrafwa] Yl - Li{La/Y } tier
= rafza] W{li . Li}ier {L1/Y} Mrofwo] 1{l; . Litier {L2/Y'}
= L{L/Y} N L{Ly/Y}

o Step. L =ri[z1]?{l;. Li}icr
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(A1, Base
(Case = Fig. VII.4.3
(Case = Fig. VIL.4.3

)
)
)
(Base)

(A1, Base)

(Case = Fig. VIL.4.3)
(Lem. VIL.5.1:2)
(Case = Fig. VII.4.3)
(Base)

(A1, Step)
(Fig. VIL4.3)
(Induction)
(Fig. VIL5.1)
(Fig. VIL4.3)
(Step)
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Conclude:

L{LiNLy/Y}

=1 [l’l] 7{& . Li}ie[ {Ll M LZ/Y} (Al, Step)
rila] 2{li o Li{Li M La/Y } bier (Fig. VIL.4.3)
= rifx ?{ . Li{Ll1/Y} M Li{La/Y } }ier (Induction)
ri[zy]? ()
{; o Li{L1/Y}}ico ULl o Li{Lo/Y }bicoU{li . Li{L1/Y} M Li {La/Y }}icr
ri[zy]? ()
i« Li{Ll1/Y }riens Ul « Li{Lo/Y }Yieng U {li « Li{L1/Y} T Li {La/Y } }icrnr
=7 [Il] ?{& . Lz {LI/Y}}zel [l Tl[xl] ?{E, . Lz {LQ/Y}}Zej (Flg VII51)
= ri[e1] ?{l; - Li}tier {L1/Y } O[] 24l . Litier {L2/Y'} (Fig. VI1.4.3)
— L{Ly/Y YT L{La/Y) (Step)

e Step. L =rec X Ly

QED.

By case distinction:

e Case. X =Y
Conclude:

L{LiNLy/Y}

=rec X Lx{L,MLy/Y} (A1, Step)
=rec X Ly (Case = Fig. VII.4.3)
=rec X LylMrec X Ly (Lem. VIL.5.1:2)
=rec X Lx{L,/Y}Mrec X Lx{Ly/Y} (Case = Fig. VIL.4.3)
= L{L/Y}NL{Ly/Y} (Step)
e Case. X #£Y
Conclude:

L{L N LyY}

=rec X Ly {LiMLy/Y} (A1, Step)
=rec X (Lx{LiNLy/Y}) (Case = Fig. VII.4.3)
=rec X (Lx{L,/Y} N Lx{Ls/Y}) (Induction)
— rec X (Ly{L/Y})MNrec X (Lx{Ls/Y}) (Fig. VIL5.1)
=rec X Lx{L,/Y}Nrec X Lx{Ly/Y} (Case = Fig. VII.4.3)
= L{L/Y} N L{L,/Y} (Step)
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Proof of (3), vl

Conclude:

(M[5]? foo(int) . cont MM[5|?bar () . cont)
{M[6] ? foo(int) . cont M M[6] ?bar() . cont/cont}
= M[5]?{foo(int) . cont ,bar() . cont}
{M[6] ?{foo(int) . cont ,bar() . cont}/cont}

_ ufs|? {foo(int) . M[6] ?{foo(int) . cont ,bar() . cont} ,}
’ bar () . M[6] ?{foo(int) . cont ,bar() . cont}
foo(int) . M[6]? foo(int) . cont,

M[5]?

{ bar () . M[6] ?bar() . cont }
= M[5]? foo(int) . M[6]? foo(int) MM[5]?bar() . M[6]? bar ()
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(Fig. VIL5.1)

(Fig. VIL.4.3)

()
(Fig. VIL5.1)

= M[5]? foo(int) . cont {M[6]? foo(int) /cont} MM[5]?bar() . cont {M[6] ? bar() /cont}

QED.

Proof of (3), v2

Conclude:

(M[5] ? foo(int) . XM M[5]?bar() . X)
{rec X M[5] ? foo(int) . XMrec X M[5] ?bar() . X/X}
= M[5]?{foo(int) . X,bar() . X} {rec X M[5] ?{foo(int) . X,bar() . X}/X}
_ 5|2 {foo(int) .rec X M[5|?{foo(int) . X,bar() . X} ,}
bar () . rec X M[5] ?{foo(int) . X,bar() . X}
M[s] 7 {foo(int) .rec X M[5]? foo(int) . X,}
bar() . rec X M[5/?bar() . X
= M[5]?foo(int) . rec X M[5]|? foo(int) MM[5|?bar() . rec X M[5|? bar ()
= M[5]? foo(int) . X {rec X M[5]? foo(int) /X} I
M[5]? bar () . X {rec X M[5] ?bar () /X}

QED.

VIII.21 Proof of Theorem VII.5.2
e Al. (G,rla]) € dom]|
o A2. (Gy,rla)) € dom |

By induction on Al (Fig. VIL.5.2):
e Base. G=X and G |r]a] = X

By case distinction:

(Fig. VIL.4.3)

(Fig. VIL5.1)

(Fig. VIL.4.3)

()
(Fig. VIL5.1)
(Fig. VIL.4.3)
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e Case. X =Y

Conclude:

(G Irla){Gy
= X{Gy Ir[a]/Y}
= Gy [ rld]
= X{Gy/Y} [ rld]
= G{Gy/Y} Irld]

e Case. X #Y

Conclude:

(G [rla]) {Gy
= XA{Gy [r[al/Y}
=X
= X [rlq]
= X{Gy/Y} I'r]d]
= G{Gy/Y} [r]d]

[ rla]/Y}

[ rla]/Y}

e Step. G = ri[x1] = rafxs] :{l; . G;}ier and

G [T‘[CL] = T‘Q[ZEQ] '{Ez . Gz

[ rlal}ier and ry[z1] = rla] # rafzs]

Conclude:
(G fT[a]){Gy rla]/Y}
ro[xa] 1{l; . Gi [ r[al}bier {Gy [ rla]/Y}
rafwa] 1{l; . (G [ rla]) {Gy [ r[a]/Y }}ier
ralzo] H{li . Gi{Gy/Y} [ rla]}ier
[21]

(
G
1|21 —‘>7‘2[$2]
r1[z1] = ra]2s)

G{Gy/Y} Tr[a]

{l; . Gi{Gy /Y }}icr [ [d]
H{l . Gitier {Gy/Y} [ r[a]

e Step. G = ri[z1] = rafxs] :{l; . G;}ier and

G | rla] = rlz1] ?2{l; . G;

Conclude:

(G I rla)) {Gy
rilz1] ?2{4; . G;

[1]

iz ?{6 - (G
(1]
[1]

<

1|1

?2{l;. G;{Gy/Y}

[ r[a]/Y}

[ rla]}tier {Gy
[ r[a]) {Gy

[ rlaltier

I rla]}ier and ri[zq] # rla] = rofzs]

[ ra]/Y}
[ rlal/Y }hier

ri[z1] = rofxo] :{li . Gi{Gy /Y }}icr I 7]d]
ri[z1] = rofxo] :{li . Giticr {Gy /Y } [ 7]d]

G{Gy/Y} I r[d]
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(Case = Fig. VII 4.3
(Case = Fig. VI1.4.3

)
)
)
(Base)

)
(Case = Fig. VH 4.3)
(Fig. VIL5.2)

(Case = Fig. VIL.4.3)
(Base)

(A2, Step)

(Fig. VII.4.3)
(Induction)

(Step = Fig. VIL.5.2)
(Fig. VI1.4.3)

(Step)

(A2, Step

(Fig. VIL4.3
(Induction

(Step = Fig. VII.5.2
(Fig. VIL4.3

(Step

)
)
)
)
)
)
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[ ] Step G = 7”1[1’1]—97”2[1’2] Z{gl . Gi}ié] and
G Irla] =[HGi [ rlal}ier and rifz] # rla] # rof2s]

Conclude:

(G I'r[a]){Gy Irlal/Y}
= (TKGi I rlal}ier) {Gy [ r[al/Y}
= [H(Gi [ r[a]) {Gy Ir[a]/Y} }ier
[HGi{Gy/Y} I rlal}ier
ri[z1] = ralxe] :{l; . Gi{Gy /Y }}ier | rla)
riz1] = ralxs] :{l; . Giticr {Gy /Y } | r[a]
G{Gy/Y} [ r[d]

e Step. G =rec X Gx and G [r[a] =rec X (Gx [r[a])

By case distinction:

e Case. X =Y

Conclude:
(G [ r[a]){Gy [r[a]/Y}

=rec X (Gx [r[a]){Gy [ r]a]/Y}
rec X (Gx [r]al])

rec X Gy [ r[d]
= rec X Gx {Gy/Y} | r[d]
= G{Gy/Y} Ir[d

e Case. X #Y
Conclude:
(G I r[a)){Gy [r[al/Y}
= rec X (G X[ [a]) {Gy [ r[a]/Y}
= rec X ((Gx [r[a]){Gy | rla]/Y})
=rec X (Gx{Gy/Y} | r[d])

rec X (Gx{Gy/Y})|r
= rec X GX {Gy/Y} [a
= G{Gy/Y} I rld]

al

[
]
QED.

VIII.22 Proof of Theorem VII.6.1
([ ] A]. Wffg((T)

By induction on Al (Fig. VII.4.2):
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(A2, Step

(Thm. VIL5.1:1
(Induction

(Step = Fig. VIL.5.2
(Fig. VIL4.3

(Step

)
)
)
)
)
)

(A2, Step)

(Case = Fig. VIL.4.3)
(Step = Fig. VII.5.2)
(Case = Fig. VII.4.3)
(Step)

(A2, Step)

(Case = Fig. VIL.4.3)
(Induction)

(Fig. VIL5.2)

(Case = Fig. VII.4.3)
(Step)
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e Base. =X and X ¢ X

Conclude:

impl.
impl.
impl.

e Step.

T = ™ [1’1} —D’I’Q[I’Q] Z{gl . Gi}ie[ and

[7“1 € dom f impl. z; € f(rl)} and [7“2 € dom f impl. x5 € f(m)} and

[Wfﬁ;((Gi) for-all i € I}

Conclude:
Wf; x(G;) for-all i € 1
impl. Wf; +(G; (R[¢])) for-all i €I
impl. Wt x(ri[z1] (R[9]) = ra[z2] (R[9])) :{¢; - Gi (R[¢]) }ier)
impl. Wt x(ri[z1] = rofao] :{l; . Gitier (R[9)))
impl. Wf;v(T (R[6))

L] Step T = T’Q[LUQ} '{gz . Li}ie[ and

V2edmnfnnm.x2efwg}and[MHﬁﬂL)lbrmlzeJ}

Conclude:

Wty x(L;) for-all i € I
impl. Wf; x(L; (R[¢])) for-all i €]
impl.

impl.
impl.

Wy x(ra[wo] 1« Litier (R[9)))

(L
(
Wy x(ra[zo] (R[¢]) {6 - Li (R[¢]) }ier)
(
Wi (T (R[9])

e Step. T =r[x1|?{¢; . L;}ic; and

[r1 € dom f impl. z; € f(r1)| and [Wf;(L;) for-all i €[]

Conclude:

impl.
impl.
impl.
impl.

Wty x(L;) for-all i € I

Wt x(L; (R[¢]) for-all i e I

Wy x(ri[] (R[¢]) 246 - Li (R[9]) }ier)
Wi x(ri[ed) 2{li - Gi}ier (R[¢])

Wi (T (R[9])

o Step. T'=rec X Tx and Wf; vyx1(Tx)

99

(Step)
(Induction)
(Fig. VI1.4.2)
(Fig. VIL6.1)
(Step)

(Step)
(Induction)
(Fig. VIL.4.2)
(Fig. VIL6.1)
(Step)

(Step)
(Induction)
(Fig. VIL.4.2)
(Fig. VIL6.1)
(Step)
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Conclude:

impl.
impl.
impl.
impl.

QED.

VIII.23 Proof of Theorem VII.6.2

Wy xuxy (Tx)

Wi xuixy (Tx (R[9])
W x(rec X (Tx (R[¢])))
W x(rec X Tx (R[¢]))

Wi (T (B[9])

By induction on 7" (Fig. VIL.4.1):

e Base.

T=X

By case distinction:

e Case. X =Y
Conclude:

T (Rlo)A{Ty (R2])/Y}
= X (R A{Ty (R[¢])/Y}
= X{Tv (R[9])/Y}
= Ty (R[¢)
= X{Tv/Y} (R[¢])
= T{Ty Y} (Rl¢])

e Case. X #£Y
Conclude:

e Step.

T (RIo ATy (R[#])/Y'}
= X (R {Ty (R[¢])/Y}
= X{Tv (R[9])/Y}
= X
= X (R[¢])
= X{Tv/Y} (R[¢])
= T{Ty Y} (Rl¢])

T = Ty [1’1} — TQ[J?Q] 2{62 . Gi}ie]
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(Step)
(Induction)
(Fig. VIL4.2)
(Fig. VIL6.1)
(Step)

(Base)

(Fig. VIL6.1)

(Case = Fig. VIL.4.3)
(Case = Fig. VIL.4.3)
(Base)

(Base)

(Fig. VIL6.1)

(Case = Fig. VIL.4.3)
(Fig. VIL6.1)

(Case = Fig. VIL.4.3)
(Base)
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Conclude:
T (Rl {Ty (R[#])/Y }
= rifz] = rofwo] :{l; . Gitier (R[9)) {Tv (R[¢])/Y}
= 11[z1] (R[¢)) = ra[zo] (R[B])) : {li - Gi (R[9]) }ier {Tv (R[¢])/Y}
= ri[z1] (R[¢]) = rofx2] (R[¢])) : {€; - Gi (R[o]) {Ty (R[¢])/Y }}ier
= ri[z1] (R[¢]) = rofz2] (R[¢])) :{li . Gi {Ty /Y } (R[0]) }ier
= ri[z1] = rofwo] :{li . Gi{Tv /Y } bier (R[¢]))
= rifz1] = rofwo] :{li . Gitier {Tv /Y } (R[¢]))

[
T{Ty/Y} (Rle))

o Step. T = ryfwo] V{l; . L;}ier

Conclude:

T (RO ATy (R[S])/Y}
' Lidier (RO {Ty (RI[9])/Y}
olxa] (R[Q) 1{0i - Li (R[9]) bier {Ty (RI¢])/Y'}

]
| (Rl
[22] (R[9]) {4 . Li (R[¢]) {T (R[¢])/Y }}ier
| (Rl
]
2] !

8

7’2[ 2

<
8

<
v
]

22| (R[O)) i - Li{Ty/Y} (RI[P]) bier
owa] 1{li . Li{Ty /Y }ier (R[9])
rafwe] Yl - Litier {Ty/Y} (R[¢])
T{Ty/Y} (Rle])

8

<

H || 1 | | I (|
<

o Step. T =ry[x1]?{l;. L;}ies

Conclude:

T (RIo ATy (RIo])/Y}

(2] 2{6i - Litier (RIGD) {Ty (R[0])/Y}

(2] (R[¢]) 2{: - Li (RIS Jier {Ty (R[¢])/Y'}
[2a] (R[O]) 24 - Li (Rl@D) {Tv (RIS])/Y } tier
iz (RQD) 246« Li{Ty /Y} (RIO]) }ier
(1]
(1]

r1|T1

<
—
8

1

=
8

8

¢
(
(
(

i) 2l - Li{Ty /Y }ier (R[9]))
w1 ?{li - Litier {Tv /Y} (R[¢]))
T{Ty/Y} (R[¢))

<3
=

| |
<

e Step. T'=rec X Tx

By case distinction:

e Case. X =Y
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)
(Fig. VIL6.1)
(Fig. VIL4.3)
(Induction)
(Fig. VIL6.1)
(Fig. VIL.4.3)
(Step)

(Step)

(Fig. VIL6.1)
(Fig. VIL4.3)
(Induction)
(Fig. VIL6.1)
(Fig. VIL4.3)
(Step)

(Step)

(Fig. VIL6.1)
(Fig. VIL4.3)
(Induction)
(Fig. VIL6.1)
(Fig. VIL4.3)
(Step)
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Conclude:

T (RIO ATy (RI4])/Y'}
= rec X Tx (R[o]) {Tv (R[9])/Y}
= rec X (Tx (R[o]) {Tv (R[9])/Y}
= rec X (Tx (R[¢])
= rec X Tx ((R[¢])
= rec X Tx {Ty/Y} (R[¢])
= T{Ty Y} (R[¢])

e Case. X #Y
Conclude:

T (R[¢]) {Tv (R[¢])/Y}
= rec X Tx (R[¢]) {Ty (R[9])/Y}
= rec X (Tx (R[o) {Tv (R[9])/Y}
= rec X (Tx (R[¢]) {Ty (R[¢])/Y})
= rec X (Tx {Tyv/Y} (R[¢]))
= rec X (Tx {Ty/Y}) (R[¢])
=rec X Tx {Tv/Y} (R[¢])
= T{Tyv/Y} (R[¢])

QED.

VII1.24 Proof of Theorem VII.6.3
o Al. <L1,L2> € dom 1

By induction on Al (Fig. VIL.5.1):
e Base. L1 LQ X and L1 (N L2 =X

Conclude:

(L1 1 Ly) (R[9]))

X (R[o])
X

XX

X (Rlol) N X (Rle))
(RIg]) M L (R[))

° Step L1 = 7’2[5172] '{& . Li,l}iel and LQ = 7’2[1’2] '{gz . Li,2}i€[ and
Ly M Ly = ra[xe) 1{l; . Lix M Lio}tier

I
by

102

(Fig. VIL6.1

(Case = Fig. VIL.4.3
(Fig. VIL6.1

(Case = Fig. VI1.4.3
(Step

)
)
)
)
)
)

(Step)

(Fig. VIL6.1)

(Case = Fig. VII.4.3)
(Induction)

(Fig. VIL6.1)

(Case = Fig. VIL.4.3)
(Step)

(Base)

(Fig. VIL6.1)
(Lem. VIL.5.1:2)
(Fig. VIL6.1)
(Base)
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Conclude:

(L1 M Lo) (R[¢]))
o] Y{li Lia M Lin}ier (R[9]))

3 3
[\

<

o] (R[¢]) {4 -

(L

rolz
[
oa] (R[O]) i - Linx (Rl¢
[
[

i1 1Ly,

ol o] (R[G]) 1{0i - Lin (B9

T2 1'2]

|
]

2)
)n
)

(R [ I)}ier

i2 (R[¢]) tier
Vier . ra[za] (R[¢]) !
H{li o Linbier (R[#) Mrafzg] {4 - Ligtier (R
Ly (R[¢]) M L (R[9])

0
6

(2

1)

Lis (R[#]) }ier

® Step L1 =T [.’131] ?{61 . Li,l}ieh and L2 =7 [.Tl] 7{& . Li72}i€]2 and
Ly TV Ly = ri[2] 2{4; « LinYierng, Ui - Ligticr g, Y {l - Lix N Lis}ier,n, and

V“ 7é 6,‘2 for-all iy € I3 \ Iy, 19 € I \ ]1}

Conclude:

(L1 1M Ly) (R[9]))

r(x1] {0 « LinYierng, Ul Ligticrnn Ul - Lia M Lig}iennr, (R[4]))

rifzi] ?{l; . Liatier, (R[O]) Nrifxi] ?{4i . Liatier, (R[4]))
= Ly (R[¢])) 1 Ly (R[¢]))

. Lio (R[9]) Yier\n, U {4 -

< M2 ((R[¢])>}ielz\ll U {gi . L
i1 (R[]) Yien, TTrifza] (R[9]) ?{li - Liz
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(Fig. VIL6.1
(Induction
(Fig. VIL5.1
(Fig. VIL6.1
(Step

)
)
)
)
)
)

(Step)
(Fig. VIL6.1)

(Lia M Li2) (R[9]) Yiennm

1 (R[g]) M

(RIoD)}ier,

(Induction)

((R[¢] )>}i611ﬁf2

(Step = Fig. VIL.5.1)

(Fig. VIL6.1)
(Step)

e Step. Ly =rec X Lx; and Ly =rec X Lx, and LM Ly =rec X (Lx;M Lxys)

Conclude:

(L1 1 Ly) (R[9]))

QED.

rec X (Lx1MLx2) (R[¢])
rec X ((Lx1 M Lxp) (R[9]))
rec X (Lx1 ((R[¢]) M Lx (R[¢]))
rec X (Lxi1 ((R[¢]) Mrec X (Lx (R[4]))
rec X Lx:(R[¢]) Nrec X Lx (R[4])

Ly (R[¢)) ™ La (R[9]))

VIII1.25 Proof of Theorem VII1.6.4

o Al.

(G,rla]) € dom |

(Step

(Fig. VIL6.1
(Induction
(Fig. VIL5.1
(Fig. VIL6.1
(Step

)
)
)
)
)
)



VII1.25 PROOF OF THEOREM VII.6.4

e A2. r¢ R

By induction on Al (Fig. VII.5.2):

e Base. G=X and G [rla] =X

Conclude:

ﬁ
2,

| | | I
Q e e e
==

o

=

=

=
=
S
=
=
=8

e Step. G = ri[z1] = rafxs] 1 {l; . G;}ier and

G | rla] = rolza] Y{l; . G; [ rla]}ier and ri[zq] = r[a] # rofzs]

e B1l. Conclude:

ri[z1] = rlal
impl. r, =r

impl. =7 and r ¢ R

impl. 1 ¢ R
impl. 7ri[z1] (R[¢])) = 71[21]
impl. ri[z1] (R[¢])) = r[a]

B2. Conclude:

9 =T

impl. o, =7 and r ¢ R

impl. o ¢ R

impl. ra[za] (R[9]) = ra[z2]

impl. 75[za] (R[6)) = ra[rs] and r{a] # r[ws)
impl. 7y[zs] (R[])) # r[al

e B3. Conclude:

ry # 1 and rafro] (R[¢]) = r2(d(22)]

impl. 73[@(x2)] # rla] and ry[zo] (R[¢])

impl. r2[zo] (R[4]) # r(a]
B4. Conclude:

ro # 1 and rafzo] (R[¢]) = ro[zs]

= 7”2[1’2}

impl. 75[z5] # rla] and ry[zs] (R[¢)])
impl. 73[zs] (R[)])) # r[a]

= 1a[p(22)]

104

(Base
(Fig. VIL6.1
(Fig. VIL5.2
(Fig. VIL6.1

~— ~— ~— ~— “—
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e B5. Conclude:
ro £T (Step)
impl. 75 # 1 and |ro[wo] (R[g]) = ra[d(22)] or rafzs] (R[4]) = rafwa]]  (Fig. VIL6.1)
impl. |1y # 1 and ra[xy] (R[g]) = ra[¢(z2)]| or [ # 1 and rafws] (R[@]) = rafws]

)
impl. r[es] (R6)) # rla] (B3, BY)
e B6. Conclude:
r=7"y OF T #£ 7y (-)
impl. r2[zo] (R[4)]) # r(a] (B2, B5)
Conclude:
(G I rla]) (R[¢])
= ralza] 1{{; . G; [ r[al}ier (R[9])) (Step)
— rafoa) (RIS 16 - (G 1 7la)) (RIS bier (Fig. VIL6.1)
= rafzo] (R[¢]) H{li . Gi (R[¢]) I r[a]}tier (A2 = Induction)
= ri[z1] (R[@]) = r2[zo] (R[Q]) :{; . Gi (R[9]) }ier [ 7[a] (B1, B6 = Fig. VIL.5.2)
= ri[z1] = ro[xs] {l; . Gitier (R[9))) | ra (Fig. VIL.6.1)
= G((R[¢]) I'r|d] (Step)
o Step. G = ri[z1] = 7yfzo] :{l;i . Gi}icr and
G | rla] = rlz1]?{l; . G; | rla]}ier and ri[zq] # r[a] = rofzs]
e C1. Conclude:
ro=r (Step)
impl. r; =7 and r ¢ R (A2)
impl. r; ¢ R (=)
impl. r[z1] (R[4])) = r1[z1] (Fig. VIL.6.1)
impl. r[z1] (R[#])) = r1[z1] and r[a] # ri[x1] (Step)
impl. 71[z1] (R[¢])) # rla (=)
e C2. Conclude:
ri#r and rifzq] (R[9]) = r¢(z1)]
impl. r1[¢(x1)] # rla] and ri[z1] (R[¢]) = ri[o(z1)] )
impl. ri[z1] (R[4]) # r[a] (=)

e C3. Conclude:

r# 1 and ri[z1] (R[¢)) = r1[z1]
impl. r[z1] # rla] and ri[x1] (R[9]) = ri[x1] )
impl. r1[21] (R[9]) # rla] (=)
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e C4. Conclude:
. (Step)
impl. 71 # 7 and [ri[z] (R[g]) = ri[¢(z1)] or ri[z1] (R[@]) = rifa]]  (Fig. VIL6.1)
impl. [r1 #r and ri[e)] (R[9]) = ri[é(x1)]] or [ri # 7 and ri[zi] (RI9]) = ri[z]

()
impl. i [21] (R[¢])) # rla] (C2, C3)

e C5. Conclude:
r=r; orr#nr -)
impl. i [xo] (R[¢])) # rla] (C1, C4)

e C6. Conclude:
ro[rs] = rla] (Step)
impl. 7, =7 )
impl. o, =7 and r ¢ R (A2)
impl. o ¢ R (=)
impl. 7r[z2] (R[])) = rafz2] (Fig. VIL.6.1)
impl. 7[zo] (R[¢])) = r[d] (Step)

Conclude:

(G I'rla]) (R[9]))
= nfwn) {6 - G I rlal}ier (R[9) (Step)
= rifzd] (R[¢]) 2{C; . (Gi | rla]) (R[¢]) }ies (Fig. VIL6.1)
= iz (R[9]) 2{C; . Gi (R[9])) | rlal}ties (A2 = Induction)
= rifz] (R[@]) —» r2[z2] (R[])) {6 - Gi (R[¢]) }ier [ 7[a] (C5, C6 = Fig. VIL5.2)
= ri[z1] = ra[o] :{li . Gi}ier (R[9))) | 7[a] (Fig. VIL6.1)
= G (R[¢]) | r[d] (Step)

e Step. G = ri[x1] = rofzs] :{l; . G;}icr and
G [rla) = [Gi I rla]}tier and ri[z,] # rla] # ra|x]

e D1. Conclude:
r=r (Step)
impl. r, =7 and r ¢ R (A2)
impl. 1 ¢ R (=)
impl. 7[z1] (R[¢])) = r1[z1] (Fig. VIL.6.1)
impl. ri[z1] (R[¢]) = ri[z1] and rla] # ri[z] (Step)
impl. i [21] (R[¢]) # rla (=)
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e D2. Conclude:

ri #r and ri[z1] (R[¢]) = ri[p(z1)]
impl. r1[¢(x1)] # rla] and ri[z1] (R[¢]) = r1[p(z1)]
impl. ri[z1] (R[¢]) # r[a]

e D3. Conclude:

ri#r and ri[z,] (R[¢]) = r1[z1]
impl. ri[z1] # rla] and ri[2:1] (R[¢]) = ri[z1]
impl. 7i[z1] (R[¢]) # 7[a]

e D4. Conclude:

T1 7£ r
impl. 71 7 and [ri[a:] (R[6)
impl. [ % and ry[n] (R[6)

impl. ri[z1] (R[g)]) # r[a]
e D5. Conclude:

r=ry or T #£1r

impl. ri[zo] (R[4)]) # r[a]
e D6. Conclude:

To =T

impl. ro=r and r ¢ R

impl. o ¢ R

impl. ra[zo] (R[¢]) = rafa:]

impl. r[z2] (R[])) = ra]z2] and rla] # roxs]
impl. ry[zo] (R[¢]) # rla]

e D7. Conclude:

ry #r and rofxo] (R[¢]) = ra[o(z2)]
impl. 75[@(z2)] # rla] and ry[zs] (R[¢]) = r2[é(z2)]
impl. ra[2] (R[¢]) # r[a]

e D8. Conclude:

ry 7 and ralro] (R[¢]) = rafzs]
impl. ro[zy] # rla] and ry[xs] (R[]) = rofzs]
impl. 3[2,] (R[¢]) # rla]

ri[g(z1)] or rifzi] (R[9]) = ri[z1]
r[g(x1)]] or [r1 #r and rifa] (

107

(Step)

(Fig. VIL.6.1)
) =r1 [3?1]]

)

(D2, D3)
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e DI9. Conclude:
ro #E T
impl. v, 7 and [rs[e] (R[9])
impl. [rz #r and ry[zo] (R[¢])

impl. r2[zo] (R[4]) # r[a]
e D10. Conclude:

r=7Ty OF T % T

impl. 3[2,] (R[¢]) # rla]

Conclude:

E
3 03—

— —

A/\

:I

—_
R
E
N4

G

sy

(Rl¢])

) }ier

a]

al) (

—_— —
—
-
~—

]

11

—

QA
EE =

AT

E:u:/

8,

:;—’

=

~

1171

8

—
02
—~

;
N
=

1

G

[9]) I r]al

=

e Step. G =rec X Gx and G | r[a] =rec X (Gx [ r[al)

Conclude:

T T T T
In]
(0]
(9]
S

QED.

VII1I.26 Proof of Theorem VII.6.5

Proof of (1)
e Al. RNR =10

By case distinction (Fig. VIL.6.1):

108

(Step)

ra[@(x2)] oF rafra] (R[9]) = ralzs]]  (Fig. VILG.1)
rald(22)]] of [ra # 7 and rofwa] (R[9]) = rafws]]

(-)
(D7, D8)

(-)
(D6, DI)

(Step)
(Thm. VIL6.3)
(A2 = Induction)
(D5, D10 = Fig. VIL5.2)
(Fig. VIL6.1)
(Step)

(Base

(Fig. VIL6.1
(Induction
(Fig. VIL5.2
(Fig. VIL6.1

)
)
)
)
)
(Base)
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e Case. r[z] (R[¢]) =r[¢(z)] and r € R and x € dom ¢ and
rlz] (R'[¢]) = r[¢'(x)] and r € R and z € dom ¢’

Conclude:

reR and r € R/
impl. re RNR
impl. false

e Case. r[z] (R[¢]) =r[¢(z)] and r € R and x € dom ¢ and
rle] (R'[¢]) = r[z] and [r ¢ R’ or x ¢ dom ¢/

e B1l. Conclude:

reR
impl. r ¢ R’

Conclude:

o Case. r[z] (R[g]) =r[z] and [r ¢ R or x ¢ dom¢| and
rlz] (R'[¢]) = r[¢'(x)] and r € R' and z € dom ¢’

e C1. Conclude:

renR
impl. ¢ R

Conclude:

=
—_— o o

109

(Case)

(Case)
(A1)

(Case)
(Case)
(C1 = Fig. VIL6.1)
(Case)
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Conclude:

-
=

3
8

-
8

<

ﬁ
T T D T

8

QED.

Proof of (2)
e Al. RNR =10
By induction on T' (Fig. VIL.4.1):

e Base. T'=X

Conclude:

| L ||
<

o Step. T = ri[z1] —>rafxa] : {l; . Gi}icr

Conclude:

T (Rl9]) (R'[¢T)

x1] = ro[za] :{l; . Giticr (R]9)) (
D))= rafzs (R[¢])] : {4 -
D) (R'[@)] = ra[ze (R[0]) (R'[¢]))

R'[¢])

Gi (R9]) Yier (R']9)
J:

li - Gi (Rl (

[

5

>

8

5
=3
=
=
=
\_/E
5=

S

M

)

8

[\
=
=
=
=
=

I
=
X
S
X
/—\'5\
=
=
&
3
)
8
(V]
=y
S
=
=
S

= rlz1 (R [¢] ]—'>7“2[ (( [ DIRUE
= rifay] = rolwg] :{li . Giticr (R'[¢]) (R W))
= T (R (R[])

o Step. T = rofx] 1 {l; . Li}ics

110

(Base)
(Fig. VIL6.1)
(Fig. VIL6.1)
(Fig. VIL6.1)
(Base)

(Step)
(Fig. VIL6.1)

R }ier

(Fig. VIL6.1)
(Al = Induction)

(A1 = Thm. VIL6.5:1)

(Fig. VIL6.1)
(Fig. VIL6.1)

(Step)
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Conclude:
T (Rle)) (R¢])
= rafzo] H{l; . Li}ier (R[9])) (R'¢]) (Step)
= o[22 (R[])] {€; . Li (R[9]) }ier (R'#])) (Fig. VIL6.1)
= ra[za (R[]) (R'[@)] {6 - Li (R[] (R'[¢]) }ier (Fig. VIL6.1)
= o[z (R[]) (R'[@)] 146 - Li (R[¢]) (R[D]) Yier (Al = Induction)
= raof22 (R'[¢]) (R[] H{l - Li (R[S])) (R[]) }ier (Al = Thm. VIL6.5:1)
= o[z (R[] . Li (R[¢) }ier (R[S])) (Fig. VIL6.1)
= rafwa] 1{l; . Li}ier (R[¢])) (R[¢)) (Fig. VIL6.1)
= T (R'[#]) (R[e) (Step)
e Step. T =r[x1|?{l; . Li}ier
Conclude:
T (Rle)) (R[¢])
= rifz1] ?{li . Li}ier (R[9)) (R'¢]) (Step)
= rfz1 (R[@])] ?{€: . Li (R[9]) tier (R'¢])) (Fig. VIL6.1)
= rifzy (RO]) (R[] 246 - Li (R[] (R'[¢]) Yier (Fig. VIL6.1)
= rfz: (R[e]) (R'[&])]2{li - Li (R[¢]) (R[P])}ier (Al = Induction)
= iz (R'[¢]) (Rlo)]?{l - Li (R'[¢])) (R[]) }ier (Al = Thm. VIL6.5:1)
= rifz (R[] 26 - Li (R[¢) ier (R[]) (Fig. VIL6.1)
= rifz1] ?{li . Li}ier (R'[¢]) (R[]) (Fig. VIL6.1)
= T (R (Rle)) (Step)
e Step. T'=rec X T
Conclude:
T (Rle)) (R[¢])
= rec X Tx (R[¢]) (R'[¢]) (Step)
= rec X (Tx (R[¢])) (R[¢]) (Fig. VIL6.1)
= rec X (Tx (R[¢]) (R'[#]) (Fig. VIL6.1)
= rec X (Tx (R'[¢']) (R[¢])) (A1 = Induction)
= rec X (Tx (R'[¢])) (R[¢]) (Fig. VIL6.1)
= rec X Tx (R'[¢]) (R[¢]) (Fig. VILG.1)
= T(R[¢) (R[g]) (Step)

QED.

VII1.27 Proof of Theorem VII.6.6

o Al. Wfo{FHdoquVeR},{cont}(G)
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o A2. (exprG) N Gyec =)
e A3. "€ R
o Ad. o ¢ imgo
By induction on Al (Fig. VII.4.2):
e Base. G =X and X € {cont}
e B1. Conclude:

X € {cont}
impl. X = cont

e B2. Conclude:

112

(Base)

cont
= cont | r[a (Fig. VIL.5.2)
= X |rla (B1)
= G [ r|a (Base)
e B3. Conclude:
cont
= cont | r[al (Fig. VIL.5.2)
= cont (R[¢])) | r[al (Fig. VIL.6.1)
= X (R[¢]) I r[a (B1)
= G (R[9])) [ r]a] (Base)
Conclude:
cont = G [ r[a] and cont = G (R[¢])) | r[al (B2, B3)

e Step. G = ri[z1] = rofxs] : {l; . Gi}ier and
|71 € dom (f U {7~ dom¢ | 7 € R}) impl. z1 € (fU {7+~ dom¢ | 7 € R})(r1)| and
|:T2 edom (fU{F—dome¢ |7 € R}) impl. 2o € (fU{F— dom¢ |7 € R})(rg)] and
[Wff,{com;}(G,-) for-all i I}

e C1. Conclude:

(expr G) N Gree = 0 (A2)
impl. (exprr[xi] = ro[za] 1 {l; . Gi}icr) N Gree = 0 (Step)
impl. (expr G;) N Gyec = 0 for-all i € 1 )
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e C2. Conclude:

r=r
impl. » =r; and (Step)
|71 € dom (f U {7+ dom ¢ | 7 € R}) impl. 2, € (f U {7+ dom o | 7 € R})(r)]
impl. » € dom (fU {7 +— dom¢ |7 € R}) impl. (=)
x1 € (fU{r—dome |7 € R})(r)
impl. » € dom {7 — dom¢ | 7 € R} impl. z; € (fU{r— dome¢ |7 € R})(r) ()
impl. € {7 |7 € R} impl. z; € (fU{F— dom¢ |7 e R})(r) )
impl. 7€ R impl. z; € (fU{F—dom¢ |7 € R})(r) )
impl. z; € (fU{r+— dom¢ |7 € R})(r) (A3)
impl. z; € dom¢ (A3)
impl. z, € Z )

e C3. Conclude:

r(a] = r1[z1]

impl. »=r; and a = -)
impl. z; € Z and a = 14 (C2)
impl. a € Z (=)
impl. false (ANZ=10)

e C4. Conclude:

impl. » =ry and (Step)
|72 € dom (f U {7+ dom ¢ | 7 € R}) impl. 2 € (f U{F > dom ¢ | 7 € R})(r)]
impl. » € dom (f U{r +— dome¢ |7 € R}) impl. (=)
o € (fU{r+— dome | 7 € R})(r)
impl. » € dom {7 +— dom¢ | 7 € R} impl. x5 € (fU{F+— dome¢ |7 € R})(r) )
impl. € {7 |7 € R} impl. 2 € (fU{F— dom¢ |7 € R})(r) ()
impl. 7 € R impl. 2, € (fU{F— domo¢ |7 € R})(r) (-)
impl. 2, € (fU{F—dom¢ |7 € R})(r) (A3)
impl. 25 € dom ¢ (A3)
impl. x5 €7Z )

e CH. Conclude:

r[a] = ro[zs]

impl. r =7, and a = 2, (-)
impl. 2, € Z and a = 2 (C4)
impl. a € Z (=)
impl. false (ANZ=10)
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e C6. Conclude:

cont
= [{cont | i e I}
= [{Gilrla|iel}
= ri[x1] > ro[zs] :{l; . Gi}icr [ 7[d]
= G [ rld]

e C7. Conclude:

a = ¢()
impl. a € img ¢
impl. false

C8. Conclude:

rla] = m[z] (Rl¢])
impl. a = ¢(z1) or rla] = r[z4]

impl. false

e C9. Conclude:

rla] = rafzo] (R[])

impl. a = ¢(z3) or rla] = rofzy]

Conclude:

Conclude:

impl.
impl.
impl.
impl.

impl.
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(Lem. VIL.5.1:2

(Step, C1, A3, A4 = Induction
(C3, C5 = Fig. VIL5.2

(Step

)
)
)
)

(Fig. VIL.6.1)
(C7, C3)

(Fig. VIL6.1)

impl. false (C7, Ch)
e C10. Conclude:
cont
= [{cont | i e I} (Lem. VIL.5.1:2)
= [HGi (R[¢)) [r[a] | i € I} (Step, C1, A3, A4 = Induction)
= rifa1] (R[Q]) = rafza] (R[P) :{li - Gi (R[¢]) }ier [ rla] (C8, C9 = Fig. VIL5.2)
= ri[z1] = ro[za] :{l; . Giticr (R[@])) | r[a] (Fig. VIL.6.1)
= G ((R[9])) I r[a] (Step)
cont = G [ r[a] and cont = G (R[¢])) | r[a] (Ce6, C10)
e Step. G =rec X Gx and Wfo{FHdom¢|F€R},{cont}U{X}(GX)
(expr G) N Gree = 1) (A2)
(exprrec X Gx) N Gyrec =0 (Step)
({rec X Gx} U (exprGx)) N Gyree =0 (-)
{rec X Gx} NGrec =0 )
rec X Gy ¢ Gyec )
recXGX¢{recXé|X€X and GGG} (Grec)
false -)

QED.

impl.
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VIII.28 Proof of Theorem VII.6.7

e Al. (®,z[a]) € dom to

o A2. (D,z[a]) € dom from

By induction on Al (Fig. VII.2.6):

e Base. Ptoz[a] ={z2— 0|z € dom®} and
¢ € domlen and a € (z) and a = (head ®)(z)

e B1l. Conclude:

impl.
impl.

impl.

Conclude:

0] = o for-all zZ € dom ® )
{Z+— 0] %€ dom®}(2)| = o for-all z € dom® )
len{Z+— 0|z € dom®} = o (Fig. VIL.2.5)
len (P to z[a]) = o (Base)

iter(7, cont, R, ® to z[al) {iter(T, cont, R, P from z[a]) /cont}

= cont {iter(7, cont, R,  from z[a])/cont } (Bl = A2, Fig. VIL.6.2)
= iter(T, cont, R, ® from z[a]) (Fig. VII.4.3)
= iter(T, cont, R, ®) (Base)

e Step. ®toz[a] = (head ®)-((tail @) to z[a]) and
® € domlen and o € ®(z) and a # (head ®)(z)

e C1. Conclude:

impl.
impl.
impl.

impl.
impl.
impl.

impl.

impl.

len (P to z[a]) = o

|(Ptoz[a])(Z)| = o for-all z € dom (P toz[a)) (Fig. VIL.2.5)
(®toz[a])(2) =0 for-all z € dom (P to z[a)) )
((head @)-((tail @) to z[a]))(2) = 0 for-all Z € dom (P to z[a]) (Step)

{(head @)(2)} U ((tail @) to z[a])(2) = (@ for-all Z € dom (P to z[a])
(Lem. VII.2.10:3)

{(head ®)()} U ((tail @) to z[a])(3) = O for-all Z € dom (P to z[a))

e C2. Conclude:

impl.

impl.

(Lem. VII.2.11:2)
{(head @)(z)} U ((tail @) to z[a])(z) = 0 (Step)
{(head @)(2)} =0 (Step)
false (-)
® to z[a] € dom len (Al = Thm. VII.2.6:3)
len (®toz[a]) =0 or len(Ptoz[a]) > o (Lem. VII.2.9:1)

len (®to z[a]) > o (C1)
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QED.

e C3. Conclude:

len® > o (Step = Lem. VII.2.9:2)

Conclude:

iter(7, cont, R, ® to z[al) {iter(T, cont, R, P from z[a])/cont}
T (R[head (® to z[a])])) {iter(T, cont, R, tail (P to z[a]))/cont} (C2 = A2, Fig. VIL.6.2)
{iter(T', cont, R, ® from z[a])/cont }

T (R[head (® to z[a])])) {iter(T, cont, R, (tail ®) to z[a])/cont }
(A1, Step = Thm. VIIL.2.6:2)

{iter(T, cont, R, ® from z[a])/cont}

T (R[head (® to z[a])])) {iter(T, cont, R, (tail ®) to z[a])/cont } (Step = Fig. VII.2.6)
{iter(7T', cont, R, (tail ®) from z[a])/cont }
T (R[head (® to z[a])])) (Lem. VII.4.2:3)
{iter(T, cont, R, (tail @) to z[a]) {iter(T, cont, R, (tail @) from z[a])/cont} /cont}
= T (R]head (P to z[a])]) {iter(T, cont, R, tail )/cont} (Induction)
T ((R[head ®))) {iter(T', cont, R, tail ®)/cont } (Step = Thm. VIL.2.6:1)
= iter(7,cont, R, ¥) (C3 = Fig. VIL.6.2)

VIII.29 Proof of Theorem VII.6.8

Proof of (1)
e Al. ¢ c domlen

([ ] A2 Wff,x(Tl)

o A3. Wi, ()

By induction on Al (Fig. VII.2.5):

e Base. len® =0

Conclude:
Wi x (1) (A3)
impl. Wf; y(iter(T1, T3, R, ®)) (Base = Fig. VIL.6.2)

e Step. len® > o

e B1l. Conclude:

Wt 2 (Th) (A2)
impl. Wf; (T} (R[head ®])) (Thm. VIL6.1)
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e B2. Conclude:
len (tail @) < len @

e B3. Conclude:
Wt x(iter(11, T3, R, tail @))
Conclude:

Wt (T (R[head ®))) {iter(1}, T, R, tail ©)/cont })
impl Wff,X(iter(Tl, TQ, R, (I)))

QED.

Proof of (2)
e Al. ¢ € domlen

[ ] A2. Wff,{cont} (T]_)
(] A3 W'Ff,X(TQ)
By induction on Al (Fig. VII.2.5):

e Base. len® =0

Conclude:

Wi v (T3)
impl. Wf; y(iter(T7,Ts, R, D))

e Step. len® > o

e B1l. Conclude:

W feont} (11 (12[head @)
impl. Wff,XU{cont} (Tl ((R[head (I)])))

e B2. Conclude:
len (tail @) < len ®
e B3. Conclude:
W y(iter(T7, T3, R, tail @))
Conclude:

Wt x (T (R[head @))) {iter(11, T, R, tail @) /cont })
impl. Wf; y(iter(T}, Ty, R, D))

QED.
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(Step = Thm. VIL.2.5)

(A2, A3, B2 = Induction)

(B1, B3 = Thm. VII.4.1:1)
(Step = Fig. VIL.6.2)

(A3)
(Base = Fig. VII.6.2)

(A2 = Thm. VIL6.1)
(Lem. VII.4.1:2)

(Step = Thm. VIL.2.5)

(A2, A3, B2 = Induction)

(B2, B3 = Thm. VIL4.1:2)
(Step = Fig. VII.6.2)
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VIII.30 Proof of Theorem VII.6.9

Assume:
e Al. ¢ c domlen
o A2. Wy cone} (T1)
By induction on Al (Fig. VII.2.5).

e Base. len® =0

Conclude:

iter(Tl, TQ, R, @) {Ty/Y}
= LATy/Y}
— iter(Ty, T {Tyy/Y}, R, ®)

e Step. len® > o

By case distinction:

e Case. Y = cont

e B1l. Conclude:

len® > o
impl. len (tail®) < len ®

Conclude:

iter(T1, Ty, R, ®) {Ty/ Y}
= T\ (R[head ®))) {iter(T}, T», R, tail ®)/cont} {1y /Y}
= T, (R[head ®))) {iter(1}, T», R, tail ®) {Ty /Y } /cont}
= T\ (R[head ®))) {iter(T, T {Ty /Y }, R, tail ®)/cont }
— iter(T}, To {Ty/Y}, R, ®)

e Case. Y # cont

e C1. Conclude:

len® > o
impl. ® € domhead and len (tail ®) < len ®

e C2. Conclude:

Wff,{cont}(Tl)
impl. Wf; cconep (v (T1)
impl. Wi tcont (v} (T1 (RR[head ®])))
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(Base = Fig. VII.6.2)
(Base = Fig. VIL.6.2)

(Step)
(Thm. VII.2.5)

(Step = Fig. VII.6.2
(Case = Lem. VII1.4.2:3
(B1, A2 = Induction

)
)
)
(Step = Fig. VIL.6.2)

(Step)
(Thm. VIL2.5)

(A2)
(Case)
(C1, Thm. VILG.1)
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Conclude:

iter(Tl, TQ, R, (I)> {Ty/Y}
= T, (R[head ®))) {iter(T}, T», R, tail ®)/cont} {1y /Y'} (Step = Fig. VIL.6.2)

= T (R[head ®))) {Ty /Y } {iter(T1, T3, R, tail ®) {Ty /Y } /cont }
(Case = Lem. VII.4.2:4)

= T, (R[head @) {Ty/Y} (C1, A2 = Induction)
{iter(T1, T5 {Ty /Y }, R, tail &) /cont }

— T, (R[head ®]) {iter (T}, T5 {Ty/Y'}, R, tail &) /cont } (C2 = Thm. VIL.4.2)

— iter(T1, Tb {Ty/Y}, R, ®) (Step = Fig. VIL6.2)

QED.

VII1I.31 Proof of Theorem VII.6.10

Proof of (1)
e B1l. Conclude:

iter(M[i] ? foo(int) . cont MM[i] ?bar() . cont,end, {M}, {i — {5,6}})
= (M[i]? foo(int) . cont MM[i]?bar() . cont) ({M}[head {i — {5,6}}]) (Fig. VIL.6.2)
{iter(M[i] ? foo(int) . cont MM[i]? bar() . cont,end, {M}, tail {i — {5,6}})/cont}
= (M[i]? foo(int) . cont MM[i]?bar() . cont) ({M}[{i — head {5,6}}]) (Fig. VII.2.5)
{iter(M[i] ? foo(int) . cont MM[i] ?bar() . cont,end, {M}, {i ~— tail {5,6}})/cont}
= (M[i]? foo(int) . cont MM[i] ?bar() . cont) ({M}[{i — 5}]) (Fig. VII.2.2)
{iter(M[i] ? foo(int) . cont MM[i] ?bar() . cont,end, {M}, {i — {6}})/cont}

= (M[i]? foo(int) . cont ({M}[{i — 5}]) MM[i]?bar() . cont ({M}[{i — 5}]))
(Thm. VIL6.3)

{iter(M[i] ? foo(int) . cont MM[i] ?bar() . cont,end, {M}, {i — {6}})/cont}
= (M[5]? foo(int) . cont MM[5] ?bar() . cont) (Fig. VIL.6.1)
{iter(M[i] ? foo(int) . cont MM[i] ?bar() . cont,end, {M}, {i — {6}})/cont}



VIII.31 PROOF OF THEOREM VII.6.10 120

e B2.

=M

e B3.

Conclude:

iter(M[i] ? foo(int) . cont MM[i] ?bar() . cont,end, {M}, {i — {6}})

(M[i] ? foo(int) . cont MM[i] ?bar() . cont) ({M}[head {i — {6}}]) (Fig. VIL.6.2)
{iter(M[i] ? foo(int) . cont MM[i] ?bar() . cont,end, {M}, tail {i — {6}})/cont}

(M[i] ? foo(int) . cont MM[i] ? bar() . cont) ({M}[{i — head {6}}]) (Fig. VIL.2.5)
{iter(M[1] ? foo(int) . cont MM[i]? bar() . cont,end, {M}, {i — tail {6}})/cont}

(M[i] ? foo(int) . cont MM[i]? bar() . cont) ({M}[{i — 6}]) (Fig. VII.2.2)
{iter(M[i] ? foo(int) . cont MM[i]?bar() . cont,end, {M},{i — 0})/cont}

(M[i] ? foo(int) . cont ({M}[{i — 6}])) MM[i]?bar() . cont ({M}[{i — 6}]))

(Thm. VIL6.3)

{iter(M[i] ? foo(int) . cont MM[i]?bar() . cont,end, {M}, {i — 0})/cont}

(M[6] ? foo(int) . cont MM[6]? bar() . cont) (Fig. VIL.6.1)
{iter(M[i] ? foo(int) . cont M M[i] ? bar () . cont,end, {M}, {i — 0})/cont}
(M[6]? foo(int) . cont MM[6]?bar() . cont) {cont /cont} (Fig. VIL.6.2)
M[6] ? foo(int) . cont {cont/cont} MM[6] ?bar() . cont {cont/cont} (Thm. VIL.5.1:1)
[6] ? foo(int) . cont MM[6] ? bar() . cont (Fig. VII.4.3)
Conclude:
M[6]? foo(int) . cont
= M[6]? foo(int) . cont {cont/cont} (Fig. VII.4.3)

— M[6]? £oo(int)

M[i]? foo(int)

. cont {iter(M[i] ? foo(int) . cont,end, {M},{i — (})/cont}
(Fig. VIL6.2)

. cont ({M}[{1 > 6}]) (Fig. VIL6.1)

{iter(M[i] ? foo(int) . cont,end, {M}, {i — 0})/cont}

M[i] ? foo(int)

. cont ({M}[{i — head {6}}]) (Fig. VIL.2.2)

{iter(M[i] ? foo(int) . cont,end, {M}, {i + tail {6}})/cont}

M[i] ? foo(int)

. cont (({M}[head {1 — {6}}]) (Fig. VIL.2.5)

{iter(M[i] ? foo(int) . cont,end, {M}, tail {i — {6}})/cont}
iter(M[1] ? foo(int) . cont,end, {M}, {i — {6}}) (Fig. VIL.6.2)
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e B4.

e B5.

e BO.

Conclude:

M|6] ?bar() . cont
?bar () . cont {cont/cont}
?bar () . cont {iter(M[i] ?bar() . cont,end, {M}, {i — (})/cont}
i|?bar() . cont ({M}[{i — 6}])
{iter(M[i] ? bar () . cont,end, {M},{i — 0})/cont}
M[i]?bar () . cont ({M}[{i +— head {6}}]))
{iter(M[i] ? bar () . cont,end, {M}, {i + tail {6}})/cont}
M[i]? bar() . cont ({M} head {i — {6}}])
{iter(M[i] ? bar () . cont, end, {M}, tail {i — {6}})/cont}
iter(M[i] ? bar () . cont,end, {M}, {i — {6}})

Conclude:

M[5]? foo(int) . cont {iter(M[i] ? foo(int) . cont,end, {M},{i — {6}})/cont}

M[i]? foo(int) . cont ({M}[{i — 5}])

{iter(M[i] ? foo(int) . cont,end, {M}, {i — {6}})/cont}
M[i]? foo(int) . cont ({M}[{i — head {5,6}}])

{iter(M[i] ? foo(int) . cont,end, {M}, {i + tail {5,6}})/cont}
M[i]? foo(int) . cont (({M}[head {i — {5,6}}])

{iter(M[i] ? foo(int) . cont,end, {M}, tail {i — {5,6}})/cont}
iter(M[i] ? foo(int) . cont,end, {M}, {i — {5,6}})

Conclude:

M[5] ? bar () . cont {iter(M[i] ? bar () . cont,end, {M}, {i — {6}})/cont}
M[i]?bar() . cont ({M}[{i — 5}])
{iter(M[i] ? bar () . cont,end, {M}, {i — {6}})/cont}
M[i]?bar () . cont ({M}[{i — head {5,6}}])
{iter(M[i] ? bar () . cont, end, {M}, {i — tail {5,6}})/cont}
M[i]? bar() . cont ({M}[head {i — {5,6}}])
{iter(M[i] ? bar () . cont, end, {M}, tail {i — {5,6}})/cont}
iter(M[i] ? bar () . cont,end, {M}, {i — {5,6}})

(Fig.
(Fig.
(Fig.

(Fig.
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ig. VII.4.3)
ig. VIL.6.2)
ig. VIL.6.1)
ig. VI1.2.2)

ig. VII.2.5)

ig. VIL6.2)

VIL6.1)
VII.2.2)
VII.2.5)

VIL6.2)

ig. VIL.6.1)
ig. VI1.2.2)
ig. VI1.2.5)

ig. VIL.6.2)



VIII.31 PROOF OF THEOREM VII.6.10 122

Conclude:

iter(M[i] ? foo(int) . cont MM[i] ?bar() . cont,end, {M}, {i — {5,6}})

= (M[5]? foo(int) . cont MM[5] ?bar() . cont) (B1)
{iter(M[i] ? foo(int) . cont MM[i] ?bar() . cont,end, {M}, {i — {6}})/cont}
= (M[5]? foo(int) . cont MM[5] ?bar() . cont) (B2)
{M[6] ? foo(int) . cont MM[6] ? bar() . cont/cont}
# M[5]? foo(int) . cont {M[6]? foo(int) . cont/cont} I (Proof of Thm. VIL.5.1:3)
M[5]?bar () . cont {M[6] ? bar() . cont/cont}
= M[5]? foo(int) . cont {iter(M[i]? foo(int) . cont,end, {M},{i — {6}})/cont} I (B3, B4)
M[5] ? bar () . cont {iter(M[i] ?bar () . cont,end, {M}, {i — {6}})/cont}
= iter(M[i] ? foo(int) . cont,end, {M}, {i — {5,6}}) M (B5, B6)
iter(M[1] ? bar () . cont,end, {M}, {i — {5,6}})
QED.

Proof of (2)
o Al. (L, L,) € domnml
o A2. ® cdomlen
By induction on A2 (Fig. VII.2.5):

e Base. len® =0

Conclude:

iter(L, L, M Lo, R, ®)
= LMLy (Base = Al, Fig. VIL.6.2)
— iter(L, L1, R, ®) Miter(L, Lo, R, ®) (Base = Fig. VIL6.2)

e Step. len® > o

e B1l. Conclude:

len® > o (Step)
impl. len (tail ®) < len ® (Thm. VIL.2.5)

Conclude:

iter(L, L1 M LQ, R, (I))

= L ((R[head ®))) {iter(L, Ly M Lo, R, tail ®)/cont} (Step = Al, Fig. VIL.6.2)

= L ((R[head ®))) {iter(L, L1, R, tail ®) Miter(L, Lo, R, tail ®)/cont} (B1 = Induction)

= L ((R[head ®))) {iter(L, L1, R, tail ®)/cont} I (Thm. VIL.5.1:2)
L ((R[head ®])) {iter(L, Lo, R, tail ®)/cont}

— iter(L, L, R, ®) Miter(L, Ly, R, ®) (Step = Fig. VIL6.2)

QED.
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VIII.32 Proof of Theorem VII.6.11

e Al. (Gy,r[a]) € dom |
e A2. (Gsq,r[a]) € dom |
e A3. ® cdomlen

e Ad. r¢ R

By induction on A3 (Fig. VII.2.5):

e Base. len® =0

Conclude:

iter(Gy | rlal, G | r]a], R, )
= Gy [ r[d]
= iter(G, Go, R, ®) [ r[d]

e Step. len® > o
e B1l. Conclude:

len® > o
impl. len (tail ®) < len ®

Conclude:

iter(G | r[a], G2 | 7[a], R, ®)
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(Base = Al, A2, Fig. VIL.6.2)
(Base = Fig. VIL.6.2)

(Step)
(Thm. VIL.2.5)

= (G4 | rla]) (R[head ®))) {iter(G; | r[a], G5 | r[a], R, tail ®)/cont}

= (G (R[head @

]
(G4 ((R[head @]

= iter(Gl, G2> R, (I)) r T[a]

QED.

VII1.33 Proof of Theorem VII.6.12

e Al. ® € domlen
e A2. RNR =10

By induction on Al (Fig. VII.2.5):

) 1 rla]) {iter(Gh T 7
) 1l ter(Gs G, ta|I<I>)

G1 (R[head @) {iter(G1, G2, R, tail @) /cont } |

(Step = A1, A2, Fig. VIL.6.2)

I rla], R, tail ®)/cont } (A4 = Thm. VIL.6.4)
rla]/cont} (B1, A4 = Induction)
r[a] (Thm. VIL5.2)
(Step = Fig. VIL.6.2)
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e Base. len® =o

Conclude:
iter (T (R'[¢]), T2 (R'[#]), R, ®)
= Ty (R'[¢) (Base = Fig. VIL.6.2)
= iter(Ty, Ty, R, ®) (R'[¢])) (Base = Fig. VIL.6.2)

e Step. len® > o
e B1l. Conclude:

len® > o (Step)
impl. len (tail ®) < len ® (Thm. VII.2.5)

Conclude:

iter (71 (R'[¢'])), T2 (R'[¢'])), R, @)

= T (R'[¢]) (R[head @])) {iter(T1 (R'[¢])), T2 (R'[¢])), R, tail @) /cont }
(Step = Fig. VIL6.2

)
= T1 (R'[¢']) (R[head ®))) {iter(Ty, T», R, tail ®) (R'[¢']))/cont} (B1, A2 = Induction)
Ty (R[head ®))) (R'[¢']) {iter(T}, T3, R, tail @) (R'[¢']))/cont } (A2 = Thm. VIL.6.5:2)

)

)

T: (R[head ®))) {iter(T1, Ty, R, tail ®)/cont} (R'[¢']) (Thm. VIL.6.2
= iter(T1, Ty, R, @) (R'[¢'])) (Step = Fig. VIL.6.2

QED.

VIIL.34 Proof of Theorem VII.6.13
e Al. & € domlen
o A2. Wfo{FHdomq)lFER},{cont}(G)
o A3. exprG N Gree =0
e Ad. re R
e A5. a ¢ Uimg®
By induction on Al (Fig. VII.2.5):

e Base. len® =0

Conclude:

cont
= cont | r[al (Fig. VIL.5.2)
= iter(G,cont, R, ®) | r[a] (Base = Fig. VII.6.2)
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e Step. len® > o

e B1l. Conclude:

len® > o (Step)
impl. |®(Z)| > o for-all z € dom ® (Fig. VIL.2.5)
impl. ®(2) #( for-all Z € dom ® )

e B2. Conclude:

a ¢ Uimg ® (A5)
impl. a ¢ ®(2) for-all Z € dom ® )
impl. [a ¢ ®(2) for-all z€ dom®| and [®(2) # 0 for-all z € dom )| (B1)
impl. a # min ®(2) for-all zZ € dom ® )
impl. a # head (%) for-all z € dom ® (Fig. VII.2.2)
impl. a ¢ {head ®(2) | Z € dom ¥} )
impl. a ¢ img {Z — head ®(2) | Z € dom ®} )
impl. a ¢ head ® (Fig. VII.2.5)

e B3. Conclude:

dom ® C dom (head ®) and dom (head ) C dom ¢ (B2 = Lem. VII.2.6:2)
impl. dom ® = dom (head ) -)
impl. dom ® = dom (head ®) and Wf ;7 sdom o|7c R} {cont} (G) (A2)
impl. Wf (7 sdom (head @) [7e R} {cont } (G) (=)

e B4. Conclude:

len® > o (Step)

impl. len (tail ®) < len ® (Thm. VIL.2.5)
Conclude:
cont

= cont {cont/cont} (Fig. VII.4.3)

= (G (R[head ®))) | r[a]) {cont/cont} (B3, A3, A4, B2 = Thm. VIL.6.6)

= (G ((R[head ®])) | r[a]) (B4, A2, A3, A4, A5 = Induction)

{iter(G, cont, R, tail ®) [ r[a|/cont}
= (G ((R[head ®))) {iter(G, cont, R, tail ®)/cont}) | r[a (Thm. VIL.5.2)
= iter(G,cont, R, ®) | r[a] (Step = Fig. VIL.6.2)

QED.
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VIII.35 Proof of Theorem VII.7.1

By induction on 7' (Fig. VIL.7.1):

e Base. T = X

By case distinction:

e Case. X =Y

Conclude:
T () {j:Y () /Y}
= X (o) {Ty (v)/Y} (Base)
= X{Ty (¥)/Y} (Fig. VIL7.3)
= Ty (¥)) (Case = Fig. VIL7.5)
= X{Ty/Y}(¥) (Case = Fig. VIL7.5)
= T{Ty/Y} () (Base)
e Case. X #£Y
Conclude:
7 () (T (/)
= X (o) {Ty (v)/Y} (Base)
= X{Ty (v)/Y} (Fig. VIL7.3)
=X (Case = Fig. VIL.7.5)
= X {(¥) (Fig. VIL.7.3)
= X{Ty/Y}{¥) (Case = Fig. VIL7.5)
= T{Ty/Y} (¥) (Base)
o Step. T = rifzy] = rafwa] : {li . Gi}ies
Conclude:
T {Ty (¥)/Y} )
= mfo] = rofes] {6 Giier () {Ty (w)/Y} (Step)
= ey ()] = rafes (U] {6« Go () Yier {Ty (0)/Y} (Fig. VIL7.3)
= rifey ()] = rafza (V)] {4 . C} () {Ty (W)Y }ier (Fig. VILT.5)
= iz (V)] = ralz2 <<1/JV>>] :v{& CGiH{Ty Y} () bier (Induction)
= rifea] = rafzo] {4 . C}z {TY/}/}}Z‘GI () (Fig. VIL.7.3)
= ri[zi] = rofas] :{l . Gitier {Tv/Y} () (Fig. VIL.7.5)
=TTy /Y () (Step)

o Step. T = rofwo] 1{l; . Li}icr
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Conclude:

T Ty (/YT
rala] 1t Likier () {Ty (0)/Y)
ol (0] 18 - L) hiet {Ty ()Y
ol (D] 16 - L) {Ty ()Y Hier
|
|
rala

<

=
[\ [\ [\

222 (V)] 14 -sz' {Ty )Y} () }ier
o[wo] 1{{; . L; {TY/}/}}ief ()

o] Wli . Litier {Tv /Y '} (¢)
T{Ty/Y} (V)

<

|| || 1 | | I (|
<

e Step. T =1, [x1] 2{¥; . Ei}ie[

Conclude:

T () {Fy )/ Y}
o) 240 - Livier (@) {Ty (0)/Y)
o (@246 L (@ b {Fy ()Y
oy (N 2{8 - L () {Fy ()Y Phier
&
|
il

303
8

<

[z (] 2{6 -sz' {Ty/Y} () }ies
ile] 2l LidTy /Y }ier (0)
J?{l . Litier {Tv /Y } (V)
T{Ty/Y} ()

<

H || 1 | | I (|
<

e Step. T = foreach R[C] do T ; T

Conclude:

T () {Ty ()/V}
= foreach R[C] do T ; T (W) {Ty (v)/Y}
— foreach R[C ()] do (T (w) 5 (T5 (v ))){?Y () /Y}
— foreach R[C ()] do (T (v)) ; (T (W A{Ty (o)/Y})
— foreach R[C <<¢)>] do (T1 () 5 (To{Tv/Y} (w)
— foreach R[C s (To{Ty /YY) ()

| do
foreach R[C] d
= T{Ty/Y} (¥)

T1 To{Ty Y} (V)

e Step. T =rec X Ty

By case distinction:

e Case. X =Y
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)
(Fig. VIL7.3)
(Fig. VIL7.5)
(Induction)
(Fig. VIL7.3)
(Fig. VIL7.5)
(Step)

(Step)

(Fig. VIL7.3)
(Fig. VIL7.5)
(Induction)
(Fig. VIL7.3)
(Fig. VIL7.5)
(Step)

(Step)

(Fig. VIL7.3)

(Case = Fig. VIL.7.5)
(Induction)

(Fig. VIL7.3)

(Case = Fig. VIL.7.5)
(Step)
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Conclude:

T () {VTY <1/J>>/3f}
= rec X T'x (V) {Ty (¥)/Y}

rec X @X (M ATy (¥)/ Y}
rec X (Tx ()

rec X T:X ()
rvech Tx{Ty/Y} ()
T{Ty/Y} ()

e Case. X #Y
Conclude:

T () {VTY (N /Y}
= rec X Tx (v) {TYV (n/Y}
rec X (I'x () Ty (v)/Y}
rec X (T'x () {Ty (/)
rec X (7:)( {T:Y/Y} {(v))
rec X (I'x {Ty/Y}) (¥)
x:ech Tx{Ty/Y} ()
= T{Ty/Y}(¥)

I~

QED.

VII1.36 Proof of Theorem VII.7.2

Assume:

A

o Al. Wf;»(T)
o A2. Wif; 1 (Ty)

By induction on Al (Fig. VIL.7.4):
e Base. =X and X € X

By case distinction:

e Case. X =Y
Conclude:

W2 (Ty)

impl. Wf; (X {fy/y})

128

(Fig. VIL7.3

(Case = Fig. VIL.7.5
(Fig. VILT.3

(Case = Fig. VIL.7.5
(Step

)
)
)
)
)
)

(Step)

(Fig. VIL7.3)

(Case = Fig. VIL.7.5)
(Induction)

(Fig. VIL7.3)

(Case = Fig. VIL.7.5)
(Step)

(A2)
(Case = Fig. VIL.7.5)
(Base)
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e Case. X #£Y
Conclude:
Wiy 2(T)
impl. Wf; +(X)
impl. Wf; v (X {TY/Y})

e Step. T = ry[a1]— rafas) :{l; . G;}ie; and
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(A
(Base

(Case = Fig. VIL.7.5

1)
)
)
(Base)

r1 € dom f impl. x; € f(rl)} and {7’2 € dom f impl. x5 € f(rg)} and

-
(W x(G;) for-all i€ I|
Conclude:

[Wffx(é) for-all i € I| and Wf; x(TY)
impl. Wf; (G {Ty/Y?}) for-all i eI
impl. Wf; x(r1[z1] = rafxe] 1 {4; . (A;Z {Ty/}/}}ig)
impl. Wff,X(r} [m}] —rolzo] t{l; . Gi}icr {Ty/Y})
impl. Wf; »(T'{Ty/Y})

A

o Step. T = ry[zo] 1 {l; . L;}ie; and

ro € dom f impl. x5 € f(?"g)} and [Wff,x(fji) for-all : ¢ I}

Conclude:

(Wfg x(L;) for-all i € I| and Wfjx(Ty)
impl. Wf; (L {Ty/Y?}) for-all i € I
fea) V- (T /Y Phier)
[wo] H{li . Li}ier {Tv/Y})
{Tv/Y})

impl. Wf; x (7,
impl Wff)((T‘Q
impl Wff/'y<

L] Step T = 7”1[1’1} ?{& . f/i}iel and

[r1 € dom f impl. z; € f(r1)| and [Wf;x(L;) for-all i€ I]

Conclude:

\Wfgx(L;) for-all i € I]| and Wfy(Ty)
impl. Wfx(L; {Ty/Y?}) for-all i€ I
impl. Wf s x(ri[z1]) 2{0 - Li {Ty /Y }}ic1)
impl. Wf v (r[21]) 2{0 - LiYier {Ty/Y})
impl. Wi, (T {Ty/Y})

e Step. T = foreach R[C] do T, ; T, and

(Step, A2

)

(Induction)

(Step = Fig. VILT.4)
(Fig. VILT.5)

(Step)

(Step, A2

)

(Induction)

(Step = Fig. VII.7.4)
(Fig. VIL7.5)

(Step)

(Step, A2)
(Induction)

(Step = Fig. VILT.4)
(Fig. VIL7.5)

(Step)

fU{f|—>vars(A)|f€R} R —2% and C € v and exprT; NGy = 0 and

Wffu{ﬁ—wars( C)|FeRY, {cont}( 1) and WffX(TQ)
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Conclude:
WffX TQ) and Wff,/\/(,f’y)
impl. W, (T2 {Ty/Y})

impl. Wf; » foreach R[C]do T ; T {Ty/Y})
{Tv/Y})

e Step. 7' =rec X 7'y and Wff,XU{X}(TX)

By case distinction:

impl. Wf; »

e Case. X =Y

Conclude:
Wf (1)
impl. Wf; y(rec X Tx)
impl. Wff;((rec X Tx{Ty/Y})
(T

e Case. X #VY
Conclude:

impl. WffXU{X}
impl. Wf; vuxy(T'x) and Wy xoix (Ty)
impl. Wf; iy (T'x {Ty/Y})

impl. W, v(rec X (T'x {Ty/Y}))

impl. Wf; v(rec X T'x {Ty/Y})

impl. Wf, »(T{Ty/Y})

QED.

VIII.37 Proof of Theorem VII.7.3
o Al. Wf,(T)
e A2. img [ C 2%
e B1l. Conclude:

v e f(r)
impl. x € f(r) € 2%
impl. x €Z
impl. [z] =z

By induction on Al (Fig. VII.7.4):

(
(
impl. Wf; y(foreach R[C] do T ; (T2 {Ty/Y}))
( C
(7
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(Step, A2)
(Induction)

(Step = Fig. VILT.4)
(Fig. VILT.5)

(Step)

(Fig. VIL7.4

)
)
)
(Induction)
)
(Case = Fig. VIL.7.5)

)
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e Base. =X and X ¢ X

Conclude:

XeX (Base)
impl. Wf; »(X) (Fig. VI1.4.2)
impl. Wf;+([X]) (Fig. VILT.6)
impl. W, +([T]) (Base)

o Step. T = ri[zi] = rofwa) s {4 . éi}ie[ and
[7“1 € dom f impl. z; € f(rl)} and [7“2 € dom f impl. x5 € f(rg)} and
(W x(G;) for-all i € I|
e C1. Conclude:
[7"1 € dom f impl. x; € f(rl)} and [7‘2 € dom f impl. z; € f(rz)} (Step)
impl. [7’1 € dom f impl. [z1] € f(rl)} and [7"2 € dom f impl. [z5] € f(rg)} (B1)
Conclude:

W 2 (G;) for-all i€ I (Step)

impl. Wf; ([G,]) for-all i e I (A2 = Induction)

impl. {7“1 € dom f impl. [z] € f(rl)} and [7’2 € dom f impl. [z] € f(rz)] and (C1)
(W x([Gi]) for-all i € 1]

impl. WEp (1 [[]] = 7 []] + {2 - 1G] }ier) (Fig. VII.4.2)
impl. Wff,X([[r} (1] = rofza] t{l; . Gi}icr]) (Fig. VIL.7.6)
impl. Wf ;4 ([T7]) (Step)

L] Step T = 7”2[1’2} l{& . f/i}iel and
[r2 € dom f impl. 5 € f(r2)| and [Wf;x(L;) for-all i€ []

e D1. Conclude:

ro € dom f impl. xo € f(1r2) (Step)
impl. 7, € dom f impl. [z5] € f(rs) (B1)
Conclude:

Wi v (L;) for-all i eI (Step)
impl. Wf; x([L;]) for-all i € I (A2 = Induction)
impl. [r; € dom f impl. [z2] € f(r2)| and [Wf;x([Li]) for-all i€ I] (C1)
impl Wffp;y([[?“g [.TQ] '{& . El}lej]]) (Flg VIIL.7. 6)
impl. Wf x([77) (Step)
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L] Step T = 7”1[1’1} 7{& . [A/Z'}Z'ej and

[r1 € dom f impl. z; € f(r1)| and [Wf;x(L;) for-all i€ 1]

e E1. Conclude:

ry € dom f impl. z; € f(r) (Step)
impl. r; € dom f impl. [z1] € f(r1) (B1)
Conclude:

Wi v (L;) for-all i eI (Step)
impl. Wf;x([L;]) for-all i € I (A2 = Induction)
impl. [ry € dom f impl. [z1] € f(r1)| and [Wf;x([Li]) for-all i€ I] (E1)
impl. W, v ([r1[z1] 2{4 . Li}icr]) (Flg VI 76)
impl. Wf; x([77) (Step)

e Step. T = foreach R[C] do T, ; T, and

fU{Fvars(C)|7e R} :R—2% and C € v and exprT; N Gyee = 0 and
WF 1 rsvars(@) e R} feont} (T1) and W ()

e F1. Conclude:

len [C] > o (Step = Thm. VIL.3.6)
Conclude:

Wfo{FHvars(C’)\feR},{cont} (Tl) and Wff,X(TQ) (Step)
impl. Wf (coney (T1) and W 4 (T7) (Lem. VIL7.5:1)
impl. Wf; rone) ([71]) and W 4 ([T5]) (A2 = Induction)
impl. Wf; x(iter([T1], [T2], R, [C])) (F1 = Thm. VIL6.8:2)
impl. Wf; y([foreach R[C] do T ; T]) (Fig. VIL.7.6)
impl. Wf, x([77) (Step)

e Step. 7' =rec X 7'y and WfﬁXU{X}(TAX)

QED.

Conclude:

Wff,Xu{X}(TA’gc) (Step)
impl. Wf; xupxy ([7'x]) (A2 = Induction)
impl. Wf; yv(rec X [T'x]) (Fig. VII.4.2)
impl. Wf; x([rec X T'x]) (Fig. VIL7.6)
impl. Wf; +([T]) (Step)
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VIII.38 Proof of Theorem VII.7.4

Assume:

A

® Al W'ny)((T)
By induction on Al (Fig. VIL.7.4):
e Base. T=X and X ¢ X

By case distinction:

e Case. X =Y
Conclude:

[T {jiy/ Y}
[XA{Ty/Y}]
[Tv]

X {[[TYA]]/ Y}
[XTH{ITY]/Y}
[TT{[7v]/Y}

e Case. X #VY

Conclude:

[7 Ty /Y]
[X {y/Y)]
[X]

X
X{[Ty]/7}
[XI{I7v]/7}
= [TH{IT¥]/Y)

L] Step T = rl[:cﬂ —DTQ[xg] :{ﬁz . éi}ie[ and

(Case = Fig.
(Base = Fig.

(Fig.

(Case = Fig.
(Fig.
(Base = Fig.
(Fig.

{rl € dom f impl. z; € f(rl)} and [7“2 € dom f impl. x5 € f(ﬁ)} and

(W x(Gi) for-all i€ I|

Conclude:

[T{Ty/Y}] A A

[r1[21] = rafs] 14 - Gitier {Ty /Y }]
[rilz1] = rafze] : 44 . GidTy /Y }hied]
ri[[zd]] = ro[[a]] : {4 . [[(fz' {TYA/Y}]]}z’eI
izl = rellaal] 46 - [GIHITY]/Y ier
ri[[z1]] = ro[[22]] 3%‘; [[Gi]]}ie{{[[TY]]/Y}
[[7:1[131];"7“2[132] {0 Gilier] {[Tv]/Y}
[TT{[Tv]/Y}

)

(Fig. )
(Fig. )
(Step = Induction)
(Fig. )
(Fig. )
)
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(Base
VIL.7.5
VIL.7.5
VIIL.7.6

(Base

~— — — ~— —

(Base
VIL.7.5
VIIL.7.6
VIL.7.5
VIIL.7.6

(Base

~— — — — ~— —

(Step
VIL.7.5
VIIL.7.6

VIL.7.5
VIIL.7.6
(Step
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L] Step T = 7”2[1’2} l{& . Z;i}iel and
[r2 € dom f impl. 5 € f(r2)| and [Wf;x(L;) for-all i €[]

Conclude:
i) I
= [ralwo] H{li . Litier {Tv/Y}] (Step)
= [rafwa) 1{0; . Li{Ty /Y }}icd] (Fig. VIL.7.5)
= rallwal) H{ - [Li {Ty /Y }}ier (Fig. VILT.6)
= rof[zo]] 1{4; . [[{/z]] {HTY]]/AY}}Z'EI (Step = Induction)
= ra[z2]] H{¢; -A[[Li]]}iel {A[[TY]]/Y} (Fig. VIL.7.5)
= Irafws] i - Lidie I {[TV1/Y3 (Fig. VIL7.6)
= [TT{[7v]/Y} (Step)

L] Step T = rl[:cﬂ ?{gz . f/i}iel and
[r1 € dom f impl. z; € f(r1)| and [Wf; (L) for-all i€ 1]

Conclude:
i) I
= [rilz?2{6; . Litiesr {Tv/Y}] (Step)
= [riled 2{6; . Li{Ty /Y }}ied] (Fig. VIL.7.5)
= nlload) 2 - [Li{Ty /Y }ier (Fig. VIL.7.6)
= ri[[z]] 2{¢; . [[{/z]] {HTY]]/AY}}ieI (Step = Induction)
= ri[[z]] {4 -A[[Li]]}iel {A[[TY]]/Y} (Fig. VIL.7.5)
= [nlw]?{6. Lt {[TV1/Y3 (Fig. VIL.7.6)
= [TT{[7v]/Y} (Step)

e Step. T = foreach R[C] do T, ; T, and
fu{Fvars(C)|7e R} :R—2% and C € v and exprT; N Grec = 0 and
WF U grsvars(€) re Ry feont} (T'1) and WE; x(T)

e B1. Conclude:

len [C] > o (Step = Thm. VIL.3.6)

e B2. Conclude:

WF U rsvars(C) re Ry feont} (T1) and f U {7+ vars(C) | 7 € R} : R — 2% (Step)
impl. Wfo{FHvars(CA')|FER},{cont} (Tl) and img (f U {f — vars(C) | T E R}) g QZ (*)
impl. Wffu{f,_ﬂlars(é)|f€R}’{C°n~t}([[Tl]]) (Thm. VH.7.3)
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Conclude:
[T{Tv/Y}] S
= [foreach R[C]do T ; T2 {Ty/Y}] (Step)
— [foreach R[C] do T ; (T2 {Ty/Y})] (Fig. VIL7.5)
= iter([T4], [T {Ty/Y}], R, [C]) (Fig. VIL.7.6)
= iter([T1], [T2] {[Ty]/Y}, R, [C]) (Step = Induction)
= iter([T4], [T2], R, [C]) {[T+]/Y} (B1, B2 = Thm. VIL6.9)
— [foreach R[C] do T ; 1] {[Ty]/Y} (Fig. VIL7.6)
= [TI{[Tv]/Y} (Step)

e Step. T =rec X Tx and WfﬁXU{X}(TAX)

By case distinction:

e Case. X =Y
Conclude:
[T{Ty /Y]
= [rec X T'x{Ty/Y}] (Step)
= [rec X Tx] (Fig. VIL.7.5)
= rec X [Tx] (Fig. VIL.7.6)
— rec X [Tx]{[Tv]/Y} (Step = Fig. VIL.7.5)
= [rec X Tx]{[Ty]/Y} (Fig. VIL.7.6)
= [T1{[Tv]/Y?} (Step)
e Case. X #Y
Conclude:
[T {Tv/Y}]
= [rec X Tx {Ty/Y}] (Step)
= [rec X (Tx {Iv/Y})] (Fig. VIL.7.5)
=rec X [Tx{Ty/Y}] (Fig. VIL.7.6)
=rec X ([Tx]{[7v]/Y}) (Step = Induction)
=rec X [Ix]{[Tv]/Y} (Step = Fig. VIL.7.5)
= [rec X Tx]{[1v]/Y} (Fig. VIL.7.6)
— [F){Iy]/ Y} (Step)

QED.

VIII.39 Proof of Theorem VII.8.1
o Al. <L1,L2> € dom 1

By induction on Al (Fig. VII.8.1):
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eBase. [, =l,=X and [, MNl,=X

Conclude:

® Step Ll = 7"2[1‘2] '{&J . Li,l}ie[ and EQ = 7’2[.3(32] '{gz . ii’g}igj and
Ly Ly = ro[xe) Y{l; . Lix M Lis}tier

(L1 1 Ly) ()

= X (¥)
=X

XX

X () N X (o)
Ly ()1 L ()

Conclude:

<

rolz
[
= 1]
[
[

(L1 1 Ly) ()

s (W] 16 - (L

<

<

2

] {E E11HE12}ZEI << »

i1 1 Lig) () bier

w2 ()] 1L - L1 () 1 Lo () Yier
Ty (D]« Liy () Fier M rafzs (O)] HE -

Lia () bier

= rafea] 1l - Liakier () Mrafwa] 16 . Lin}ier ()

o Step. El = 7"1[$1] 7{& . Li,l}iell and zz =" [l’l] 7{& . Ei72}i€[2 and

= Ly (¥) 1 Ly (@)
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(Base)

(Fig. VIL7.3)
(Lem. VILS.1:2)
(Fig. VIL7.3)
(Base)

(Step)

(Fig. VIL7.3)
(Induction)
(Fig. VIL8.1)
(Fig. VIL7.3)
(Step)

fq M fzz = r[x1] ?{4; . [v/z’,l}ieh\b U{t. Izi,Q}ieIQ\Il u{t . Em M Ei,2}ieflm12 and

[&‘1 7é giz for-all iy € I; \ Ig7i2 el \ Il}

Conclude:

= rifzy ()] ?{l: -

(L1 11 L) ()

2] ?{4; . Ei,l}iell\b Ut . [v/i,2}i612\11 Ut . z/i,l M Li,Q}iellﬁlz ()

il ()17

{€; - Lig (W) Yiernz, ULl « Lia () Yierna, U {0 -

iz ()] ?

(Step)
(Fig. VIL7.3)

( 3,1 M Ll 2) «w»}iehﬂh

(Induction)

{€ « Lin (W) Yierns, U {6+ Lio () Yiern U {6 - Lix () N Liz () e,

Liy () Yier, Nrifas ()] 246 -« Liz () bier,

rifed 2{0 . Lintier, () Mri[w] 246 . Lio}ier, (¥)

Ly () 1 La ()

(Step = Fig. VII.8.1)

(Fig. VIL.7.3)
(Step)

e Step. [, = foreach R[C‘] do ; Z;,l and [, = foreach R[C‘] do ; Z;,g and

L, Ly, = foreach R[C’] do L ; E;,l M Iv/;,g
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Conclude:
(Ly M Ly) <<¢V>> - )
= foreach R[C]do L; L, ML, (¥) (Step)
= foreach R[C ()] do (L (v); ((Lia M L;o) () (Fig. VIL7.3)
= foreach RIC ()] do (L (w) 5 (Lx () 11 Loz () (Induction)
= foreach R[C (¢)] do (L {(¥)); (L;1 (&) M (Fig. VIL8.1)
foreach R[C ()] do (L (¥) ; (L;2 (¥)
— foreach R[C]do L; L, (1)) Mforeach R[C] do L ; L, (1)) (Fig. VIL.7.3)
= Ly (@) 1 Ly () (Step)
e Step. [, =rec X EXJ and [, =rec X f/Xg and [, ML, =rec X (iXJ M EXVQ)
Conclude:
(L1 1 La) ()
= rec X (IV/VXJ M .Z-/3(72) () (Step)
= rec X ((L x1 M Lxs) (¥)) (Fig. VIL.7.3)
= rec X (Lx, () M Lxa (1)) (Induction )
— rec X (Lx; () Mrec X (Lx., (¥) (Fig. VIL8.1)
— rec X Ly, (@) Mrec X Ly, (¥ (Fig. VIL.7.3)
= Ly (@) 1 Ly () (Step)

QED.

VII1.40 Proof of Theorem VII.8.2
e Al. (L;,L,) € domm

By induction on Al (Fig. VII.8.1):

o Base. ﬁlzf@:X and ﬁlﬂﬁQZX

Conclude:

(2111 Ls]
= [X] (Base)
- X (Fig. VIL7.6)
= XnX (Lem. VIIL.8.1:2)
= [X] N [X] (Fig. VILT.6)
= [L] N [Ls] (Base)

o Step. Ly = a[zo] 1{l;. Li1}iesr and Lo = ro[xo] 1{; . Lin}ics and
LiM Ly =1y [xo] 144 . fii,l r ii,?}ie[
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Conclude:
[Ly 1 Ly]
= [rafxs] {4 . zi,l M Ei,2}ie]]] (Step)
= ro[[wa]] 1{€; - [Lin M Lin]}ies (Fig. VILT.6)
= rol[aa]] {0 . [Lin] N [Li2] Yier (Induction)
= rof[z2]] {4 . [[f/i,l]]}iel Mrg[[z2]] {4 [[fzw]] Yier (Fig. VIL.8.1)
= [ralwa] €+ LiaYier] 1 [rafaa] {6 « Lio}ied] (Fig. VIL7.6)
= [La] N [Ls] (Step)
e Step. L= rilr] ?{4; Ei,l}ieh and L, =1, [z1] ?2{4; . ii,?}ielg and
Lin Ly =ri[e] 24« LixYiernn U{li - Lio}icrnn Ui« Lis N Listienns, and
(i, # U, for-all iy € [\ iy € I\ I
Conclude:
[Ly 1 Ly]
= [rilzd) 246 . Lintierns, ULl - Listiennn U{l - Lix N Lis}iennn] (Step

)
= ri[[z]] {4 - [[f/i,l]]}iell\lg U {¢; . [[ﬁu]] Ve U {4 ﬂﬁ“ M ﬁivgﬂ}iehmb (Fig. VIL.7.6)
= r[[z]] ?2{4: . [[ffi,l]]}iell\lg U{l . [Lis] Ve U {4 [Lia] M [Li2] Yiennt (Induction)
= [z ]) 246 - [Lia]Yier, T [[21]) 246 - [Ls2] Yiers (Step = Fig. VIL.8.1)

[riz1] 2{; - LisYier, ] 1 [ra[za) 246 « Listien] (Fig. VIL.7.6)
= [L] 1 [Le] (Step)

e Step. [, = foreach R[C’] do L ; ZAL;,l and L, = foreach R[C‘] do L ; Z/\—J;,Q and
L, Ly, = foreach R[(j] do L ; fz;,1 M ﬁ;’Q

e B1l. Conclude:

(IL], [L; ], R, [C]) € dom iter

impl. [C] € domlen (Fig. VIL6.2)
Conclude:
[Ly M Ly]

— [foreach R[C]do L; L, ML, (Step)
= iter([L],[L; 1M L, 5], R, [C]) (Fig. VIL.7.6)
— iter([L], [L; 1] N [L; 2], R, [C]) (Step)
— iter([L], [L; 1], R, [C]) Miter([L], [L; 2], R, [C]) (B1 = Thm. VIIL.6.10:2)
— [foreach R[C] do L ; L, ] N [foreach R[C]do L; L, ] (Fig. VIL.7.6)
= [La] N [Ls] (Step)

L] Step [Aq =rec X [A/XJ and [:2 =rec X _EX72 and [Aq M EQ =rec X (f/XJ M [A/XVQ)
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Conclude:

[Ly 1 Lo]
= [rec X @X’l ﬂfzx,z)]]
=rec X [Lx;M Lxs]
= rec X ([Lx1] M [Lx2])
= rec X [Lx.]Mrec X [Ly.]
= [rec X Lx,]M[rec X Ly,
= [L N [L]

QED.

VIII.41 Proof of Theorem VII.8.3
e Al. (L;,L,) € domm
o A2. Wf;y(Ly)
o A3. Wf;y(Lo)
By induction on Al (Fig. VII.8.1):
e Base. ﬁlzf/Q:X and ﬁlﬂﬁQZX
Conclude:

Wi v (Ly)
impl. Wf; »(X)
impl Wfﬁ){(f/l M IA/Q)

o Step f/l =T9 [ZEQ] '{fz . ii}l}ie[ and f/2 = T2[I2] '{gz . f4',2}1'61' and
Ly Ly =1y (o] Y{l; . Li1 M Lia}ier
e B1. Conclude:

Wff’/y(zl) and Wfﬂx(ﬁg)
impl W'Fﬂ)((’/“g[il?g] '{& . Li,l}ie[) and Wfﬁ){(’f’g[ﬂfz] |{€Z . Li,Q}iEI)
impl. [7“2 € dom f impl. 2, € f(’l”g)} and

[Wff,x(f}i,l) for-all i € I} and [Wff,x(f}i,l) for-all i € I}

Conclude:

Wff’X<z\—Ji,1 (I Z/\—Ji72) for-all i €

impl. Wf; v (rafzo) 1{0; - Lin M LigYicr)
impl Wff,X<[A/1 [ Eg)

139

(Step

(Fig. VIL7.6
(Induction
(Fig. VIL8.1
(Fig. VIL7.6
(Step

)
)
)
)
)
)

(A2)
(Base)
(Base)

(A2, A3)
(Step)
(Fig. VIL7.4)

(Step, B1 = Induction)
impl. [7’2 € dom f impl. x5 € f<T2>] and {Wff,x(f/i,l M IA/i,Q) for-all ; ¢ I}

(B1

)
(Fig. VIL7.4)
(Step)
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o Step. Ly =ri[w]?{li. Lir}ier, and Ly = ri[21]?{(; . Lis}icr, and
Ly Ly =i ?{l; « Liatierns, U« Ligticrnn, YL « Lin T Lia}icrnr, and
[ﬁil # (;, for-all iy € I) \ Iy,iy € I\ [1}

e C1. Conclude:

Wi, x(Ly) and Wf; x (L, (A2, A3)
impl. Wfg x(ri[z1] ?{l; . Li1}ier) and Wfg x(ri[z1] 2{l; . Li2}ier) (Step)
impl. [ry € dom f impl. , € f(r;)| and (Fig. VIL7.4)

\Wfsx(Li1) for-all i € 1] and |Wf;x(Li,) for-all i € I

Conclude:
W x(Liy M L) for-all i€ I, N1, (Step, C1 = Induction)
impl. [ry € dom f impl. 2, € f(r1)| and (C1)

(Wfpx(Liy) for-all i € [\ L] and |Wf;x(Liy) for-all i € I\ I,| and
|:Wff7/y<[/;i71 M [A/LQ) for-all ¢ € Il N [2}
impl Wfﬂx(T’l [351] 7{& . Ei,l}ieh\b U {gz . Ei,?}ielg\h U {gz . ZA;Z'J M ii,Q}ieImb) (Flg VII74)
impl Wff,X(Ll [ Lg) (Step)
e Step. L, = foreach R[C]do L; L,, and L, = foreach R[C]do L; L,, and
L, N Ly = foreach R[C’] do L; ﬁ;,l M f,;,z

e D1. Conclude:

W x(Ly) and Wfjx (L) (A2, A3)
impl. Wf; y(foreach R[C]do L; L,,) and Wf; x(foreach R[C]do L; L,5) (Step)
impl. fU{F~vars(C)|7€ R} :R—2% and C' € v and (Fig. VIL7.4)

eprf/ N Grec =0 and Wfo{F»—)vars(C‘)|f€R},{con1:}(i)

Wfﬁ){(L 71) and Wf.ﬂX(L;’Q)

Conclude:
Wiy (L, 1 ML, 5) (Step, D1 = Induction)
impl. fU{F+—vars(C)|7e R}:R—2% and C € v and (D1)
expr L 1 Gree = 0 and WFy(rvsuars(yfren) feone) (L) and Wy x(L; 1ML )
impl. Wf; y(foreach R[C]do L; L; 1M L;>) (Fig. VIL.7.4)
impl. Wf; x(Ly M Ly) (Step)

e Step. ﬁl =rec X ﬁXJ and ﬁg =rec X ﬁx,g and ﬁl M ﬁg =rec X ([A/X,l M I:XQ)
e E1. Conclude:

W x(Ly) and Wfjx(Ly) (A2, A3)
impl. Wf; v(rec X Ly,) and Wf;y(rec X Lyx.) (Step)
impl. Wf; vuixy(Lx1) and Wffvux (Dxs) (Fig. VIL7.4)
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Conclude:

Wff,XU{X}(iX,l M EX,2)
impl Wff,;((rec X (IA/XJ 1 [A/XQ))
impl. Wff,X(lA)l M ﬁz)

QED.

VI1II.42 Proof of Theorem VII.8.4
e Al. (G,R[C],r[2]) € dom |
e A2. self ¢ domy)

By induction on Al (Fig. VIL.8.2¢):
o Base. G =X and G [per[e] = X

Conclude:

(G ey D) ()

e Step. G = r[xy] =[x : {l; . Gi}icr and
G I giey rl2] = r2[self+A(C) (21, 22)] H{l; . Gi [giey (2] }ier and

v

ri[x1] = r[z] # rafxs] and r, € R and {x, 22} C vars(C)
e B1. Conclude:

ri[z1] = rlz]

impl. r, =7 and z; =z
e B2. Conclude:

z2{(Y) ==
impl. z, (V) = 4

e B3. Conclude:

{a1, 25} C vars(C)
impl. z, € vars(C)
impl. x5 €7

impl. z; (V) = 29
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(Step, E1 = Induction)

(Fig. VIL7.4)
(Step)

(Step)
(Fig. VIL7.3)
(Fig. VII.8.2¢)
(Fig. VIL7.3)
(Step)

(Step)
()

(Fig. VII.3.3)
(B1)

(Step)

)

(Lem. VIL3.4)
(Fig. VIL3.3)
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Conclude:

(G Taiey rl2]) ()

= ro[self+A(C) (w1, 22)] H{U: - Gy Ty 2] }ier (¥) (Step)
= ra[self+A(C) (w1, w2) ()] 1l - (Gi Triey 712]) (D Yier (Fig. VIL7.3)
= 1y[8elf+A(C) (w1, 22) (PN] {4 . Gy (W) | R[C Wy " [z]},ﬂ (A2 = Induction)
= 1[(self () +(A(C ) (w1, w2) (NI HE - Gi ) Trie gy (2] ier (Fig. VIL3.3)
= 12[self+(A(C)(x1, 22) (VD] 1l - Gi (VD Tric r[z]},el (A2 = Fig. VIL.3.3)
= aofself+(A(C (V) (@1, 22))] HE - G (V) Trie quy) (2] ier (Thm. VIL.3.4)
= 1] = rofxe] {l; . Gi (V) Yier TR RIC ()] T r(z] (Step = Fig. VII.8.2¢)
= ri[zy ()] = ralws ()] : {l - G () Yier Trie oy T12) (B2, B3)
= rifed] = rafea] {6 - Gikier (U Tmie [zJ (Fig. VH73)
= G () Trie: quy 712] (Step)

L] Step é = 7”1[1’1] —97’2[1’2] Z{gl . éi}ié] and
G ey rl2) = rofza] 1{li . Gi [giey (2] }ier and
rifz1] = r[e] # rafzs] and |rs & R or {u1,25} Z vars(C)]

e C1. Conclude:

rlz] = rals (V)]

impl. » =7y and z = x5 (V) -)
impl. =7y and z = 2, (Fig. VII.3.3)
impl. 7[z] = rofz,] (-)
impl. false (Step)

e C2. Conclude:

r2 @ R or {z1,72} € vars(C))| (Step)
impl. [ ¢ R or {z1,75 ()} Z vars(C)] (Fig. VIL3.3)

e C3. Conclude:

rifz] = rlz] (Step)
impl. r, =7 and x| =z ()

e C4. Conclude:

() =2 (Fig. VIL3.3)
impl. 2, (V) = 2, (C3)
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Conclude:
(G Triey [2]) (@)

= rofza] H{l; . Gy | [riey T rlz]bier (V) (Step)
= rafze (V)] Yl - (Gi Trey [ ])((@/)»} er (Fig. VIL7.3)
= 7oz (YN 1l -« Gi () Tre gy (2] Yier (A2 = Induction)
= ri[z1] = ro[ze (V)] {4 . << W Yier Trie gy T12] (Step, C1, C2 = Fig. VII.8.2¢)
= iy ()] = rafes (O] {6 - G () Yier Tric oy 712] (C4)
= ri[z] = ro[ws] : {0 . Gitier (V) [RIC ()] T[Z] (Fig. VIL7.3)
= G () Trie: oy 717) (Step)

L4 Step é = 7“1[1'1]—97"2[1'2] 2{& . éi}iej and
G [giey T[] = 118 E+A(C) (w2, 21)] 7{li - Gi [ ey 7[2]}ier and
rlz1] # rlz] = ro[zo] and 7, € R and {zy, 21} C vars(C)

e D1. Conclude:

rlz] = rafxs] (Step)
impl. » =75 and 2z =z, )

e D2. Conclude:

z () =2 (Fig. VIL3.3)
impl. 5 (V) = 25 (D1)

e D3. Conclude:

{1, 25} C vars(C) (Step)
impl. z; € vars(C) ()
impl. z; €Z (Lem. VIL.3.4)
impl. z, (V) =2, (Fig. VIL.3.3)

Conclude:

(G Triey =) (00

= rulseLE+A(C) (e, 2] 20 - & gyl beer () (Step)
= 11[selE+A(C)(z2,21) (V)] 2l - (Gi Triey 7)) (W) bier (Fig. VIL.7.3)
= ri[self+A(C) (s, x )<< W 2Ll . G () 1 RIC ()] r(z]}i (A2 = Induction)
— r(se2 () HA(C) o m1) (D)) 2L - O () T oy (= b (Fig. VIT3.3)
= ri[self+(A (C)(:cg x1) ()] 2l - G (V) fR[C((w r[z]} cl (A2 = Fig. VIL.3.3)
= ri[self+(A(C (V) (22, 21))] 2{l; . G; (¥ [ Ric @y T2 Yier (Thm. VII.3.4)
= ryfay] = rofza] {l . Gy () Vies [ Ric gy TI2] (Step = Fig. VIL.8.2¢)
= iz ()]~ ralrs (U] {6 - Gi D Yier Trie oy 712] (D2, D3)
= rifz1] = rafwe] {0 . Gitier (V) Tric quy 7 [z] (Fig. VIL7.3)
= G () [ Rie gy 717 (Step)
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L] Step é = 7”1[1’1]—97”2[1’2] Z{gl . éi}ié] and
G Ty rlz) = 2] 2{ - Gi Tgieg (2] }ier and
rifz1] # rle] = rafrs] and |ry ¢ R or {us,21} Z vars(C)]

e E1. Conclude:

impl.
impl.
impl.

impl.

r[z] = rifz1 (V)]

e E2. Conclude:

impl.

impl.

E3. Conclude:

r=ry and z =z (V) (-)
r=r; and z =1 (Fig. VIL.3.3)
rlz] = ] ()
false (Step)
[7"1 ¢ R or {x,25} £ vars(Cv’)} (Step)
11 ¢ R or {z1 (), 22} £ vars(C)] (Fig. VIL3.3)
r[z] = rofzs] (Step)
r=ry and z = 1, ()

e E4. Conclude:

impl.

Conclude:

() =2 (Fig. VIL3.3)
T2 () = @2 (E3)

(G Taiey rl2]) ()

= mfe] ?2{6 . Gi ] [riey T2l bier (W) (Step)
= iz (W) ?{li . (Gi TRy 7 [ 1) (¥ bier (Fig. VIL.7.3)
= rilxy ()] ?2{¢; . G; (V) T & () ]7‘[ 2| Vier (A2 = Induction)
= ri[zy ()] = rofza] : {4 . G () Yier Trie gy 712 (Step, E1, E2 = Fig. VII.8.2¢)
= rifey ()] = rafes (U] {6 - Gi () Yier Trie oy 712 (E4)
= ri|xy] = ro[xs] : {¥; . G i Yier (U) 1 RIC ()] r(z] (Fig. VIIL.7.3)
= G () Trie: oy 712] (Step)

L] Step é = Tl[ZL'l]—DTQ[I'Q] :{EZ . éi}ie[ and
G Iote rlz] = ﬂ{éi Itte r(z]}bier and 1i[x] # (2] # ro[s]
e F1. Conclude:

impl.
impl.
impl.

impl.

rlz] = rifz (¥)]

r=r; and z =z (V) (-)

r=r and z =1 (Fig. VIL.3.3)

rlz] = rifa] ()
)

false (Step
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e F2. Conclude:
rlz] = rofxs (¥))]

impl. 7 =7y and z = 5 (V) ()
impl. =7y and z = 2, (Fig. VII.3.3)
impl. r[z] = ry[xs] )
impl. false (Step)
Conclude:
(G Triey l=]) (00
= |_|{G R[C] (2] }ier () (Step)
= |_|{(v i ey 712]) €0 Yiex (Thm. VIL.8.1)
= [ WG () Trie quy) T2 ier ) (A2 = Induction)
= iz (V)] - rafze ()] :{l - Gi (V) }ier Trie quy) 2] (F1, F2 = Fig. VIL.8.2¢)
= rilza] = rofao] {L; . G iYier () Trie gy T17] (Fig. VIL.7.3)
= G () Trie: oy 712] (Step)

e Step. G = foreach R'[C'] do G, ; G2 and
G iy 7[2] = foreach R'[C"] do (G4 "Ry 712]) 5 (G2 Triey r(2])

Conclude:

(G Triey =) (00
= foreach R'[C'] do (G, [rer 12l s (G2 Iy l2]) (00) (Step)
= foreach R/[C" ()] do (G Igep r[=]) () 5 (G Triey 12]) (w)) (Fig. VIL7.3)
= foreach R'[C" ()] do (A2 = Induction)

( 1 (¥) Tr [c<<w>>] rz]) s ( 2 (V) rR[C (W)l rlz])
= foreach R'[C '<<¢>>] do (G1 (N 5 (G2 {ON) Trie gy 2] (Fig. VIL8.2¢)
— foreach R'[C"] do G ; Go (¥)) [ RiC quy) TL2] (Fig. VIL.7.3)
= G () Ig RIC ()] T[Z] (Step)
e Step. G =rec X Gx and G 'Ry (2] = rec X (Gx [rien 7[2])

Conclude:

(G Taiey rl]) ()
= rec X (G gy rl]) () (Step)
= rec X ((Gx gy rl2)) (¥) (Fig. VIL7.3)
= rec X (Gx (¥) | RiC (o TIZ]) (A2 = Induction)
= rec X (Gx (v) ] RIC (wy T[Z] (Fig. VII.8.2¢)
= rec X Gy () | RIC (4 [z] (Fig. VIL.7.3)
= G () Ige RIC () T (7] (Step)

QED.
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VIII.43 Proof of Theorem VII.8.5

e Al. (G, R[C),r[2]) € dom |
o A2. Wfp s pmreny v (G)
e A3. f\{Ff— f(F)|7F€R}:R—2Z
e B1l. Conclude:
f\{F f(7)|7€ R} : R — 2" (A3)
impl. (f\ {7 f(7)|7 € R})(F) € 2% for-all 7€ dom (f\ {7+ f(7)|7 € R} )
By induction on Al (Fig. VIIL.8.2¢):
e Base. G =X and G [riey izl = X

Conclude:

WE g s ey 2 (G) (A2)
impl. Wff\{f-,_}f(f)‘feR},X(X> (Base)
impl. Wff\{ﬁ_)f(f)‘fieR},X(X (({self — a})}) (Fig. VH73)
impl. Wi oo s (G Ty rl2)) {({self = a}) (Base)

L] Step G = 7’1[1’1]—97”2[272] Z{gl . éi}ié] and
G [giey rlz] = ro[self+A(C)(x1, x2)] H{{; . G; [RIe) r[2]}ier and

A

riz1] = rlz] # ralxs) and o € R and {x, 25} C vars(C)

e C1. Conclude:

WF f s p ey 0 (G) A (A2)
impl. Wf i\ i, pmyrery,x (11 [21] = ro[@2] {0 - Gitier) (Step)
impl Wff\{f,_)f(f)lfeR}7X(Gi) for-all 1 € I (Flg VII74)

e C2. Conclude:

ro € dom (f\ {7+~ f(7) |7 € R})

impl. 7, € (dom f) \ (dom {7 — f(F) | 7 € R}) (=)
impl. ry, ¢ dom {7 — f(7) | 7 € R} ()
impl. o ¢ {¥|7€ R and 7 € dom f} (-)
impl. o ¢ R )
impl. false (Step)
impl. self+A(C) (21, 22) ({self — a}) € (f\{r+— f(7) |7 € R})(r2) (=)
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Conclude:

W p\ s pey ey, ((Gi Trieg 712]) ({self — a}))) for-all i € I (Step, C1 = Induction)
ro € dom (f \ {7 +— f(7) |7 € R}) impl.
self+A(C) (1, 22) ({self — al) € (f \ {F — f(7) |7 € R})(rs)

(W p g5 e ey, 2 (G Tiey [2]) ({self = a})) for-all i € 1]
impl. Wf (7 (e rp (Fig. VIL.7.4)
ro[self+A(C)(z1, 72) ({self > a})] 1{li . (G; [ ey 7[2]) ({self — a}) }ier)

impl. W o) ey (ralseLE+A(C) (1, 2)) 1 - Gy Ty vl ier {({self > a})
(Fig. VIL7.3)

impl. Wfp s prirery.x (G Trieg 712)) ({self — a})) (Step)

impl. [ 1 and (C2)

L4 Step é = Tl[Il]—DTQ[l’Q] 2{& . éi}iej and
G [riey (2] = rafza] H{L: . G; 'Rjey (2] }ier and
rifz1] = r[e] # rafrs] and [rs ¢ R or {125} Z vars(C)]

e D1. Conclude:

WE (s s ey e (G) ) (A2)
impl. Wf i\ i, pmyrery,x (11 [21] = ro[@a] {0 « Gitier) (Step)
. ro € dom (f\ {7+~ f(7) |7 € R}) .
impl. [ impl. 7 € (F\ {7 > f(F) | 7 € R})(Tg)] and (Fig. VIL.7.4)

[Wff\{FHf(f)\FeR},X(Gi) for-all i € I}
e D2. Conclude:

ro € dom (f\ {7+~ f(7) |7 € R})

impl. x5 € (f\ {7~ f(7) |7 € R})(r2) (D1)
impl. 2y € (f\ {7 — f(7) |7 € R})(ry) € 2% (B1)
impl. o € (f\ {7~ f(F) |7 € R})(r2) and 25 € Z ()
impl. z; ({self — a}) € (f\{F— f(7) |7 € R})(r2) (Fig. VIL.3.3)

Conclude:

Wff\{;Hf(f)‘FeR},X((éi [rieg 712]) ({self — a}))) for-all i € I (Step, D1 = Induction)
[ ro € dom (f\ {7 — f(7) |7 € R}) impl.
zy ({self — a})) € (f\{7 — f(7) |7 € R})(r2)
(WE p g5 sy, 2 (G iy 712]) ({self — a}>>) for-all i € I|
[

({self > a})] 1{t; . (Gi Ige =) ({self = a}) }ier)
(Fig. VIL7.4)

impl. W\ piirery 2 (rafz2] HE - Gi Triey rl21Yier ({self — a}) (Fig. VIL7.3)
impl. Wi g\ s pyrery.x (G Triey 7 [})<<{se1fHa}>>) (Step)

impl. ] and (D2)

impl. Wf (s (7 frery, 2 (T2 [ 72



VII1.43 PROOF OF THEOREM VIIL.8.5 148

e Step. G = i@ ] = rofzo] {4 . éi}ie] and
G Trie rlz] = r1[self+A(C)(xq, z1)] ?2{l; . G; [ Rie r[z]}ier and
(1] # 7[z] = ro[zo]) and ;€ R and {5, 2} C vars(C)

e E1. Conclude:

WE 5o s rery 2 (G) A (A2)
impl. Wf g\ s pojrery 2 (T[] = mofxa] : {4 . Gitier) (Step)
lmpl Wff\{ﬁ_)f (#)|FER}, X(G ) for-all 1 € (Flg VII74)

e E2. Conclude:

ry € dom (f\ {7+~ f(7) |7 € R})

impl. 7, € (dom f) \ (dom {7 — f(F) | 7 € R}) (-)

impl. r; ¢ dom {7 — f(F) |7 € R} -)

impl. r, ¢ {¥|7€ R and 7 € dom f} (-)

impl. 1 ¢ R )

impl. false (Step)

impl. self+A(C)(xy, 1) ({self — a}) € (f\ {F — f(F) | 7€ R})(r) )
Conclude:

Wff\{fo(f)‘feR}yx((éi [rier 7[2]) ({self — a}))) for-all i € I (Step, E1 = Induction)
M€ dom (f \ {7 — f(F) | 7 € R}) impl.
self+A(C)(xg, 1) ({self — a})) € (f\{F— f(7) |7 € R})(r)
(W s popreny 2 (G Triey 12]) ({sel€ > a}) for-all i € 1]
impl. Wf (s (e ry 2 ( (Fig. VIL.7.4)

impl. [ ] and (E2)

ri[self+A(C)(wy, 1) (1self — a})] ?{¢; . (C}Y 1 72]) ({self — a})) bier)

impl. Wi g\ s sy irery 2 (11[8€LE+A(C) (w2, 21)] 2{l; . Gi [ ey T[] }ier ({s€lf — a}))
(Fig. VIL7.3)
impl. Wf g (s sy ey v (G ey 7[2]) ({self — a}) (Step)

L4 Step é = T1[$1]—>T2[l’2] 1{& . éi}ie[ and
G Igiey rlz] = milz] ?{l; . Gi [ ey (2] }ier and

rilz1] # rlz] = ralxe] and [7‘1 ¢ R or {z3,21} & vars(é)}

e F1. Conclude:

WF p s p ey e (G) A (A2)
impl. Wf i\ i, pmyrery,x (11 [21] = ro[@2] {0 - Gitier) (Step)
. ry € dom (f\ {7 — f(7) | T € R}) .
impl. [ impl. 7 € (F\ {7 > f(7) | F € R})(ﬁ)] and (Fig. VIL.7.4)

[Wff\{FHf(F)\FeR},X(éZ’) for-all ; ¢ I}
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e F2. Conclude:
ry € dom (f\ {7+~ f(7) |7 € R})

impl. 7, € (f\ {7 > () | 7 € R})(m) (F1)
impl. z, € (f\ {F— f(7)|7€ R})(r) € 2% (B1)
impl. z, € (f\{r— f(F)| 7€ R})(r1) and 25 € Z ()
impl. x; ({self — a})) € (f\{F— f(F)| 7€ R})(r) (Fig. VII.3.3)
Conclude:

WF s sy ey, ((Gi Trieg 712]) ({self — a}))) for-all i € I (Step, F1 = Induction)

impl. [ ry € dom (f\ {7 — f(7) |7 € R}) impl.
vy ({self — a})) € (f\{F— f(F) [T € R})(r1)
(WEn o srrem (G Triey 1) {({se1t > a})) for-all i € 1

impl. WF g5 psyireny 2 (rifon ({self = a})] 2{6 . (Gi Iy rl2]) ({self — a})}ier)
(Fig. VIL7.4)

impl. Wff\{rf,_}f(f)‘rfeR}’X( A[ ]7{€ . él rR[C‘] T[Z]}iel (({self — a}>>) (Fig. VH73)
impl. Wfp\ o po ey 2 (G TRy 7(2]) ({self = a})) (Step)

] and (F2)

o Step. G = ri[zi] = rofwo] s {4 . éi}ie[ and
G ey rl2] =[G ey rl2] ier and ri[z1] # r[2] # rofxs]
e G1. Conclude:

WF p\ (s () ey v (G) A (A2)
impl. Wf i\ i p(myrery,x (71 [21] = ro[@2] {0 - Gitier) (Step)
impl Wff\{fo(F)|feR}7X(Gi) for-all 1 € (Flg VII74)

Conclude:

WF p s py ey e (G [R[C] rlz]) ({self — a}))) for-all i € I (Step, G1 = Induction)
impl. Wi s ) ey (TG R[C] rlz]) ({self — a}) }ier) (Thm. VIL8.3)
impl. Wff\{ﬁ,_)f(f)‘FeR}7X<<|t|{ i R[C] [Z]}Zej) <<{se1f — a}))) (Thm VH81)
impl. Wi g\ s e ry,x (G Triep r12]) ({self — a})) (Step)

e Step. (G = foreach R’[(:”’} do Gy ; Gy and
G Ry 7[2] = foreach R'[C'] do (Gl [riey 712]) 5 (G‘g [rier 7[2])
e H1. Conclude:

WE p\ (s sy ey e (G) ) o (A2)
impl. WS 7y (7 7ery,x (foreach R/[C'] do G ;5 G)) (Step)
impl. (f\{F— f(7)|7Fe R})U{F—vars(C") |Fe R} :R—2% and (Fig. VIL7.4)

C'e v and exprTl N Grec = 0 and

WE(p\(7s (e R UFvars(C) e R} feont} (1) @and WE (g s po e ry), 2 (172)
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e H2. Conclude:

C'ev (H1)
impl. (' ({self —a}) € v (Lem. VII.3.6:4)

Conclude:

impl.

WE (f\ (s £ (7) Fe RY ) Uvars(C7) e R} feont} (G Triey T(2]) ({self — a}))) and
WE (5 s sy rery) e (G Triey 712]) ({self — a}) (Step, H1 = Induction)

(f\{r— f(r) |7 € R})U{r|—>vars(é”) |7 € R’} : R — 2% and (H1, H2)
C" ({self — a}) € v and exprT; N Grec = 0 and

WE(f\ (5s 17 e ) Ufrvars( @) e ') feont) (G Triey 7[2]) ({s€1f = a}))) and

Wf(f\{er yrerp.x(Ga e r2]) ({self — a})

foreach R’[C’ ({self — a}))] do
((Gh Trey 7[2)) ({self = a}) 5 ((Ga Ty rl2]) ({self = a}))))
impl. Wff\{r._”c \reR}X( (Fig. VII.7.3)
foreach R'[C'] do (G [rier T12]) 5 (G [rie) T12]) ({self — a})))
impl. WEp oo o ey (G Ty 7l2) ({861 5 a}) (Step)
e Step. G =rec X Gx and G [Riey 7[2] = rec X (Gx [riey 7[2])
e I1. Conclude:

WEp (s premna (G) (A2)
impl. Wf 1\ i (7 jre Ry, v (T€C )A( Gx) (Step)
impl. Wff\{fﬁf(,:)WeR}’XU{X}(GX) (Fig. VH74)

Conclude:
Wff\{r,_mc( )|FER}, XU{X}((GX R[C] 7’[ ]) (({self — a}))) (Step, 1= Induction)
impl. Wfp\ i o) jrery v (ree X ((Gx ey rl2]) ({self — a})))) (Fig. VIL.7.4)
impl. Wf g\ 7y () re ), x (Tec X (Gx | rie) 712]) ({self — a})) (Fig. VIL.7.3)
impl. Wf g (s sy ey x (G ey 7[2]) ({self — a}) (Step)
QED.
VI1II.44 Proof of Theorem VII.8.6
e Al. (G, R[C),r[z]) € dom |

o A2. Wfo{FHvars(é)\FeR},X<é)
e A3. Cev
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e Ad. re R
e A5. zcvars(C)
e B1. Conclude:
Cev
impl. dom §[C] = dom A(C)

e B2. Conclude:

(21,7) € dom 6[CT}(xo)

(x 7)€ vars(C) x vars(C) }xs)
e vars(C) }(z2)

e vars(C) }(x)

A B
l\zz gl

e B3. Conclude:

[self+A(C)(x1, 22) ({self — a}))]

= [(self (({self — a})+(A(C)(x1,22) ({self — a})]
= [a+(A(C)(z1, 72) ({self > a})]

[[a+A(C”)<ail, 2)]

[a] + [A(C) (21, z2)]

= a+ [AC)(x1,22)]

a+ 6[[6']](1:1,@) A

{Z— a+[C)(x1,2) | 21,7 € vars(C) }(a2)

e B4. Conclude:

z € vars(C)
impl. (z,z) € vars(C) x vars(C)
impl. (z,2z) € dom[C]

e B5. Conclude:

" € dom (f U {7 — vars(C) | 7 € R}) impl.
e (fU{r— vars(é’) | 7 € R})(r)

impl. ' € dom {7 — vars(C) | 7 € R} impl. = € {r — vars(C
impl. ' € dom {7 | 7 € R} impl. z € {7 — vars(C) | 7 € R}(+'

impl. ' € R impl. z € {7 — vars(C) | 7 € R}(r)
impl. ' € R impl. 2 € vars(C)

By induction on Al (Fig. VII.8.2¢):

(Lem. VIL.3.8 = Lem. VII.3.6:2

(B1, A3 = Thm. VIL.3.7:3

151

(A3)
(Thm. VIL.3.7:1)

(3371 3332

)

)

(Thm. VIL3.1)
)

1)

(-
(Lem. VIL.3.4:1

(Fig. VII 3.3
(Fig. VIIL.3.3

(Fig. VIL.3.4

)
)
)
)
)
(Fig. VIL.3.4)
)
)

(B2

(A5)
)

(A3 = Thm. VIL.3.7:2)
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e Base. G =X and G [riey Tl = X

Conclude:

[(C I rl2]) ({self — a})]

impl. [X ({self — a})]

impl. [X]

impl. X

impl. X | r[d]

impl. X (R[{zZ— a+d[C](z,2) | Z € vars(C)}])) | 7[a]

impl. [X] (R{z = a+6[C](z,2) | 2 € vars(C)}]) | r[a]

impl. [G](RI{Z > a + 3[C](=, ) | 2 € vars(€)}]) I rla]

e Step. G = rilz1] = ralx) {4 . Gi}ig and

G Ty rlz] = rolsel£+A(C) (21, 22)] 11 - G Ty rlz]}ier and
ri|z1] = rlz] # rafzs] and ro € R and {xl,xz} C vars(C)

e C1. Conclude:

(N

Wffu{vaars(C')WGR},X( )
impl. Wffu{rf—wars(C)lreR} X(Tl [331] —> T2 [352] !{&' . Gi}ie[)
impl. Wf sUgisvars(@)rery,x (Gi) for-all i € I

e C2. Conclude:
7[z] = 71]71]
impl. » =7, and z =1,
impl. =7, and z=2z; and r, € R
e C3. Conclude:

ro[[self+A(C) (Axl, To) ({self — a}})]]A]

rol{Z — a+ [C](x1, 2) | 21, 2 € vars(C) }(x2)]
ra[{Z = a+0[C)(2,2) | 2,2 € vars(C) }(z2)]
rolzs) (R{Z+— a+ 5[0]]A(z, Z2)| 2z € vars(q)}]))
rol[z2]] (R{Z = a + 0[C](2,2) | Z € vars(C')}]))

e C4. Conclude:

=r (C2)
impl. [a] = ri[a] (-)
impl. r[a] = ri[a + 0] (Fig. VII.2.1:1)
impl. r[a] = r[a + 6[C](z, 2)] (B4, A3 = Thm. VIL.3.7:4)
impl. r[a] = r[{Z— a+[C](z,2) | 2z, % € vars(C)}(2)] (B2)
impl. r[a] = r[{Z— a+d[C](z,2) | 2 % € vars(C) } (= 1)1 (C2)
impl. r[a] = r[21] (R[{Z = a +6[C](2,2) | 2, % € vars ((})}])) (C2 = Fig. VIL.6.1)
impl. r[a] = r[[z1]] (RI{Z — a + 6[C](2, %) | Z € vars(C)}]) (Fig. VIL.3.4, A5)

152

(Base
(Fig. VIL7.3
(Fig. VIL7.6
(Fig. VIL5.2
(Fig. VIL6.1
(Fig. VILT.6

(Base

~— — — ~—— ~— ~— —

(A2)

(Step)
(Fig. VIL7.4)

(Step)

(A4)

(B3
(C2
(Step = Fig. VIL.6.1

)
)
)
(Fig. VIL.3.4, A5)
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e Ch. Conclude:

{1, 25} C vars(C) (Step)
impl. 21,2, € vars(C) (-)
impl. (zy,z,) € vars(C) x vars(C) ()
impl. (z1,z,) € domd[C] (A3 = Thm. VIL3.7:2)

e C6. Conclude:

r#£ T
impl. © # 7, and (x1,2,) € dom [ (C5)
impl. 7[a] # rofa + 6[C] (21, 22)] ()

C7. Conclude:

{1, 25} C vars(C) (Step)
impl. 21,2, € vars(C) (-)
impl. z1, 2, € dom [C] (Thm. VIL.3.1)

C8. Conclude:

2 # X9
impl. 21 # x, (C2)
impl. (z1,z,) € domd[C] and z; # 2, and C € v (C7, A3)
impl. 0% 6[C](z1, x2) (Thm. VIL3.7:5)
impl. o # a + 6[C] (1, z) (Fig. VIL.2.1:1)
impl. r[a] # roa + 6[C] (1, x5)] (-)

e C9. Conclude:

rlz] # rafx] (Step)
impl. » #1715 or z # x4 )
impl. 7[a] # ryfa + 6[CT (21, 22)] (C6, C8)
impl. r[a] # r[{Z— a+ 5[[C:'H(m1, 2) | a1, 2 € vars(C) } ()] (B2)
impl. 7[a] # 7[{Z — a +0[C](2,2) | 2,2 € vars(C)}(z,)] (C2)
impl. 7[a] # ry[zo] (R[{Z — a+6[C](2,2) | 2,2 € vars(C)}]) (Step = Fig. VIL.6.1)
impl. r[a] # ro[[z2]] (R[{Z — a + 6[C](2, 2) | Z € vars(C)}]) (Fig. VII.3.4, A5)
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Conclude:

(G Iy rl2]) ({self — a})]

[
[r2lse1e+A(C) (a1, 22)] 16 - G Ly 2] bier ({se1e - a})] (Step)
[ro[se2E+A(C) (a1, 22) (({selt > a})] 1L . (G Iy rl2)) ({sele s a}) }ie]

(Fig. VIL7.3)

= ro[[self+A(C)(21, 75) ({self > a})]] 1{li . [(Gi Iy [2]) ({self = a})]}ies
(Fig. VIL7.6)

= TQ[[se1f+A(é)(x1,x2) ({self — a})]]! (C1, A3, A4, A5 = Induction)
{6 . [GI(R{z = a+6[C](z,2) | 2 € VarS(é)}])) [ rlal}ier
= ro[[w]] (R{Z = a+[C](z,2) | 2 € vars(C )}D) (C3)

?)
{t; . [Gi] (R{z — aﬁ5[[0]](2 2) | z € vars(O)}) I rlal}ies
= ri[[z1]] (R[{Z — a + d[C] (Az 2) | z e vars(C)}])
rol[z2]] ((AR[{Z a4 (5[[0]](2}) | Z € vars(C)}])A) :
(- GT (A - a+ 0101 (=.2) | 2 € vars(C)) D her [rla]
= ri[[z1]] = ro[[z]] {4 . [Gi]}ier (R{Z = a +6[C](z,2) | 2 € vars(C)}])) [ r[q]
(Fig. VIL6.1)
[aa] = rofwe] :{l . GiYier] (RI{Z = a + 6[C](2,2) | 2 € vars(C)}]) [ rla] (Fig. VIL7.6)
A (RH{Z = a+06[C](z,2) | 2 € vars(C)}]) | r[al (Step)

{

(C4, C9 = Fig. VIL5.2)

[
[G
e Step. G=nr [21] = 7o[o] :{4; . éi}ief and

G iy rl2] = rafawa] Yl .« G Ty rl2]}ies and
rifz1] = (2] # rafzs] and [ry ¢ R or {125} Z vars(C)]

e D1. Conclude:

WF U gvars(@)lrery.x (G) (A2)
impl. Wt rvars(C) e Ry 2 (71 [21] = 7o) 2 {£i « Giticr) (Step)
ry € dom (f U {F — vars(C) | 7 € R})
impl. z, € (fU{F—vars(C) | 7 € R})(r1)
ry € dom (f U {F — vars( A) | 7 € R})
Limpl. 25 € (f U {7 — vars(C) | 7 € R})(ry)
W fUgrars(@yjrery 2 (Gi) for-all i € 1]

impl. ] and (Fig. VIL.7.4)

] and

impl. rE€R impl. z; € vars(é)} and [7”2 € R impl. 2, € vars(é)} and (B5)

:Wffu{mvars(é)\feR},x(@) for-all i € I}
e D2. Conclude:

rlz] = rifz] (Step)
impl. =7, and z =1, )

impl. r=7, and z2=2; and r, € R (A4)
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e D3. Conclude:

impl.
impl.
impl.

r €ER

r,1m2 € R (D2)
ro € R and zq, 29 € vars(é) (D1)
false (Step)

e D4. Conclude:

ro[[2 ({self — a})]]

ro[[x2]] (Lem. VIIL.3.6:5)
ra[[x2]] (R{Z — a + 6[C] (2, 2) | Z € vars(C)})) (D3 = Fig. VIL6.1)

e D5. Conclude:

impl.
impl.
impl.
impl.
impl.
impl.

impl.

e D6. Conclude:

impl.
impl.

impl.

r=r (D2)

rla] = r1[a] )
rla] = ri[a + 0] (Fig. VII.2.1:1)
rla] = rfa + 6[C](z, 2)] (B4, A3 = Thm. VIL.3.7:4)
rlal = r[{Z — a+ (5[[0]](2 Z2) |z z€ vars(C’)}( )] (B2)
rla) = r[{Z — a+0[C](z,2) | 2, % € vars(C)} (= 1)1 (D2)
rla] = r[z1] (R{Z — a+ 0[C](2, 2) | 2, % € vars(C)}])) (D2 = Fig. VIL.6.1)

rla] = ri[[1]] (RI{Z = a + 6[C](2,2) | Z € vars(C)}]) (Fig. VIL3.4, A5)
reR and ro ¢ R (B2, D3)
r % To (-)
rla] # rall] A A ()
rla] # rof[xo]]] (RI{Z — a+ [C](z, 2) | Z € vars(C)}])) (D3 = Fig. VIL.6.1)
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Conclude:
[(G Triey rl2]) ({self = a})]
= [ralwa) {li . Gi Iy rlel}ier ({sel — a})] (Step)
= [ro[zs ({self — a})]| 1{(; . (GiA[R[C] rlz]) ({self — a}))}icr] (Fig. VIL.7.3)
= 1a[[zs ({self — a})]] {4 . [(Gi [riey rl2]) ({self — a})]}ier (Fig. VIL.7.6)
= ry[[ze ({self — a})]]|! (D1, A3, A4, A5 = Induction)
{6 LG (RIE = a+0101=.2) | 2 € vars(@))]) | rlalier
= ro[[z2]] ((A {Z—a+0[C](2,2) |z € vars(C’)}D) ! (D4)
{6 [GI(BIZ = a+6[C](=.2) | 2 € vars(C)}) I rlal}ies
= r[[z1]] (R{Z = a+ 6[C](2, %) | Z € vars(C)}]) — (D5, D6 = Fig. VIL.5.2)

ro[z2]] (R[{Z — a + 6[C](z,2) | 2 € vars(C)}] ) :

{t: - [GI(RIZ = a+0[C](,2) | 2 € vars(C)}]) }ier | rla]

= rif[ea]] = ral[wa]] : {6 - [Gilbier (RI{Z = a +6[C](=, 2) | 2 € vars(C)}]) | r[a]
(Fig. VIL6.1)

1[z1] = ralxa] {4 .ACAJZ-}Z-GI]] (R[{z— Cf—f— S[C](z,2) | Z € vars(C)}]) I rla] (Fig. VILT.6)
A (RH{Z = a+0[C](2.2) | Z € vars(C)}]) I 7a] (Step)

[
[¢

o Step. G = ri[xy] = rafws] : {{; . Gi}icr and
G [Riey (2] = r1[self+A(C)(x2, 21)] 2{(; . G [Rie7 T[2]}ier and
1] # rlz] = ra[zo] and 7, € R and {zy, 21} C vars(O)

e E1. Conclude:

WF U grvars()rery 2 (G) (A2)
impl. Wffu{fevars(é)weR},x(?”l [z1] = 7o[zo] {4 . Gi}ier) (Step)
impl. Wf sUgisvars(¢)rery,x (Gi) for-all i€ I (Fig. VII.7.4)

e E2. Conclude:

r[z] = rofzs] (Step)
impl. » =ry and z =z, -)
impl. =7, and z=12, and 7, € R (A4)

e E3. Conclude:

r1[[self+A(C) (xq, 21) ({self — a})]]

[
= {2~ a+0[C)(x2, %) | 22, Z € vars(C)}(z1)] (B3)
= rn[{zZ— a+[C](2,2) | 2,2 € vars(C) Hay)] (E2)
= r[z1] (R{Z = a+6[C](2, %) | 2, % € vars(C)}])) (Step = Fig. VIL.6.1)
= r[[z1]] (RI{Z = a+ 0[C] (2, 2) | Z € vars(C)}])) (Fig. VIL.3.4, A5)
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e E4. Conclude:

="y (E2)
impl. r[a] = ry[a] -)
impl. r[a] = rs[a + 0] (Fig. VII.2.1:1)
impl. 7[a] = rofa + 6[C](z, 2)] (B4, A3 = Thm. VIL3.7:4)
impl. r[a] = r5[{Z — a+8[C](2,2) | z,Z € vars(C)}(2)] (B2)
impl. r[a] = r[{Z — a+0[C](2,2) | 2,2 € vars(C) }(z,)] (E2)
impl. r[a] = rof2s] (R[{Z = a+ 6[C](2,%) | 2,2 € vars(C)}]) (E2 = Fig. VIL6.1)
impl. r[a] = ro[[z2]] (R[{Z — a + [C](2, 2) | Z € vars(C)}]) (Fig. VII.3.4, A5)

e E5. Conclude:

{2, 21} C varf(é’) (Step)
impl. x5, 2, € vars(C) (-)
impl. (25, 2;) € vars(C) x vars(C) (-)
impl. (25, 71) € dom§[C] (A3 = Thm. VIL3.7:2)

e E6. Conclude:

r#r )
impl. » #r; and (xs,21) € dom §[C] (E5)
impl. 7[a] # ri[a + 6[C] (22, 21)] (-)

e E7. Conclude:

{2, 21} C vars(C) (Step)
impl. 5,21 € vars(C) (-)
impl. 5,2, € dom [C] (Thm. VIL.3.1)

e E8. Conclude:

z # 11
impl. xy # 14 (E2)
impl. (25, 21) € domd[C] and x5 # 21 and C € v (E7, A3)
impl. 0 # 6[C](z2, x1) (Thm. VIL3.7:5)
impl. o # a + 6[C] (2, 1) (Fig. VIL.2.1:1)
impl. r[a] # r1[a + 6[C] (2, x1)] ()

e E9. Conclude:

rlz] # rif@] (Step)
impl. r#r; or 2z # 1 (-)
impl. r[a] # r1[a + 6[C] (2, x1)] (E6, E8)
impl. r[a] # r[{Z— a+0[C](x2,2) | 22,2 € vars( VM) (B2)
impl. r[a] # r[{Z— a+0[C](2,2) | z, % € vars(C) }(z1)] (E2)
impl. r[a] # r[2z1] (R[{Z = a + 6[C](2,%) | 2, % € vars(C)}]) (Step = Fig. VIL.6.1)
impl. r[a] # r[[z1]] (R{Z — a + [C](z, %) | Z € vars(C)}]) (Fig. VIL.3.4, A5)
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Conclude:

(G Iy rl2]) ({self — a})]

[
[11[s1£+A(C) (2, 2] {6 - G Ly 2] s ({se1€ - a})] (Step)
[r1[se2E+A(C) (w5, 1) (({selt > a})] (i . (G e rl2]) ({seLe - a}) }ie]

(Fig. VIL7.3)

= r[[self+A(C)(ws, 71) ({self > a})]] 2{ti . [(Gi Iy [2]) ({s€2E = a})]}ies
(Fig. VIL7.6)

= rl[[se1f+A(é)(x2,x1) ({self — a})]]? (E1, A3, A4, A5 = Induction)
{6 . [GI(R{z = a+6[C](z2) | 2 € VarS(é)}])) [ rlal}ier

= nlla]] (B{Z = a+ O[C](=,2) | 2 € vars(C)}]) 7 (E3)
{ti . [Gi](B{z— @ Ji5[[0]](2 Z)|ze VarS(C) 1) I'rlaltier

= r[[z1]] (R{Z = a + 6[C](z,2) | Z € vars(C)}]) — (E4, E9 = Fig. VIL.5.2)

rol[z2]] ((AR[{Z — a+ (5[[@]](2}) | Z € vars(C)}])A) :
{4 (G (RI{Z = a+0[C](2,2) | 2 € vars(C)}]) }ier [ 7la]

= rif[ea]] = ro[[wa]] : {i - [Gilbier (RI{Z = a +6[C](=,2) | £ € vars(C)}]) | r[a]
(Fig. VIL6.1)

1[1] = rofaa] {4 'Aéi}id]] (R[{z— Cf—l— S[C](z,2) | Z € vars(C)}]) | rla] (Fig. VIL7.6)
N (RH{z = a+6[C1(2,2) | 2 € vars(C)}]) | 7d] (Step)

[
[G
e Step. G=nr [21] = 7o[0] :{4; . éi}ief and

G "Ry (2] = iz 2{4: Gi 'Ry (2] }ier and
rifz1] # rle] = rafzs] and [ry ¢ R or {us,21} L vars(C)]

e F1. Conclude:

WF U gvars(@)lrery.x (G) (A2)
impl. Wt rvars(C) e Ry, (71 [21] = o [w9]) 2 {i « Giticr) (Step)
r € dom (f U {F — vars(C)) | 7 € R})
impl. z, € (fU{F—vars(C) | 7 € R})(r)
ry € dom (f U {F — vars( A) | 7 € R})
L impl. 25 € (f U {7 — vars(C) | 7 € R})(ry)
W fUrars(@yjrery 2 (Gi) for-all i € 1]

impl. ] and (Fig. VIL.7.4)

] and

impl. rEeR impl. 7, € vars(é)} and [7”2 € R impl. 2, € vars(é)} and (B5)

:Wffu{mvars(é)\feR},x(@) for-all i € I}
e F2. Conclude:

rlz] = rafws] (Step)
impl. =7, and z = x5 )
impl. r=17, and 2 =2, and r, € R (A4)



VIII.44 PROOF OF THEOREM VII.8.6 159

e F3. Conclude:

impl.
impl.
impl.

r e€R

r,T2 € R (F2)
rr€ R and zq,25 € vars(é) (F1)
false (Step)

e F4. Conclude:

ro[[2 ({self — a})]]

ro[[x2]] (Lem. VII.3.6:5)
ro[z2]] (R{Z — a + 6[C](2,2) | 2 € vars(C)}])) (F3 = Fig. VIL6.1)

e F5. Conclude:

=Ty (F2)
impl. r[a] = ry[a] (-)
impl. r[a] = rafa + 0] (Fig. VIL.2.1:1)
impl. r[a] = rofa + 6[C](z, 2)] (B4, A3 = Thm. VIL.3.7:4)
impl. r[a] = r[{Z — a+[C](2,2) | 2z, % € vars(C)}(2)] (B2)
impl. r[a] = r[{Z — a+0[C](2,2) | 2, Z € vars(C) }(z2)] (F2)
impl. r[a] = rozs] (R[{Z = a+ 6[C](2,%) | 2,2 € vars(C)}])) (F2 = Fig. VIL6.1)
impl. r[a] = r[[x2]] (RI{Z — a + 6[C](2, %) | Z € vars(C)})) (Fig. VIL.3.4, A5)

e F6. Conclude:

reR and r ¢ R (B2, F3)
impl. » #r; (-)
impl. 7[a) # r([1] )
impl. r[a] # 1 [[z1]] (R[{Z — a + [C](2, 2) | Z € vars(C)}]) (F3 = Fig. VIL.6.1)
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Conclude:

(G Iy rl2]) ({self — a})]

160

[
= [ri[e] 2{i - Gi Ty rl2lbien <<{Self = a}))] (Step)
= [ri]z1 ({self — a})] ?2{¢; . (G; [C] rz]) ({self — a})) }ies] (Fig. VIIL.7.3)
= r1[[z1 ({self = a}N[] 2{: - [(Gs Igiey rl2]) ({self — a})]}ics (Fig. VILT.6)
= ri[[z; ({self — a})]|? (F1, A3, A4, A5 = Induction)
{¢; . [Gi] (RI{z — GJ(5[[C]](Z 2) | 2 € vars(C)}]) I rlalties
= 7y [[x1]] ((A {Z—a+0[C)(2,2) |z € vars(C’)}D) ? (F4)
{€: . [G) (RI{Z = a+0[C](2,2) | 2 € vars(C)}) | rlal}ies
= r[[=1]] (R{Z = a + 6[C](z,2) | Z € vars(C)}]) — (F5, F6 = Fig. VIL.5.2)

raf[a]] (RI{Z = a + S[C](2, 2) | Z € vars(C)}]) :
{t; - [GI(RI{Z = a +3[C](=.2) | 2 € vars(C)}]) }ies I 7lal

= ri[[aa]] = rolfz2]) : {6 - [Gilbier (RI{Z = a +8[C](2,2) | Z € vars(C)}]) | r[a]

] = ralea] 46 - Gihierl (RIE = 0+ 8[C)(=.2) | 2 € vars(O)}]) [ 7la
A (RIE > a+6[C)(=, ) | 2 € vars(C)) Tl

[r
[G
o Step. G = ri[zi] = rofwo] s {4 . éi}ie] and

G Triey 2] = THG: Triey Tl ier and rifa1] # r[2] # rofo]

e G1. Conclude:

Wffu{fwvars(é)lfeR},X(é)
impl. WEfugrovars(©)lrery.x (1] = 1afa] 114 - Gitier)
[ edom (fU{F~ vars(C) | 7 € R})

. and
impl. 2y € (fU {7 = vars(C) | 7 € R})(r1)
ry € dom (f U {F — vars(C) | 7 € R})
| impl. 2y € (fU {7 = vars(C) | 7 € RY)(r)
_Wfo{rH vars(C)|F eR}7X(Gi) for-all 7 € ]}

impl.

] and

(Fig. VIL6.1)
(Fig. VILT7.6)
(Step)

(A2)
(Step)

(Fig. VIL7.4)

impl. [r, € R impl. 2, € vars(é)} and [7”2 € R impl. 25 € vars(é)} and (B5)
:Wfo{FHvars(C’)\FGR},X(éi) for-all 7 € I]
e G2. Conclude:
a={z a+0[C](z %) | Z € vars(C)}([z]) (Fz)
impl. a =a+ 3[C] (2, [2]) ()
impl. 5[C](z, [z]) =0 (Fig. VIL.2.1:1)
impl. §[C](z,[z]) =0 and C € v (A3)
impl. z = [z] (Thm. VIL.3.7:5)
impl. z =1z (Fig. VIL.3.4)



VIII.44 PROOF OF THEOREM VII.8.6

e G3. Conclude:

impl.
impl.
impl.

impl.

e G4. Conclude:

impl.
impl.

impl.

e G5. Conclude:

impl.
impl.
impl.

e G6. Conclude:

impl.
impl.
impl.
impl.

161
rla) =n[{z = a+3[C](z,2) | 2 € vars(C)}([a])]
r=r; and a={Z— a+0[C](z2) |z € vars(C) }([x1]) -)
r=r; and z =1 (G2)
rlz] =] ()
false (Step)
rla] = ri[[=]] and 7 ¢ R (Jz)
r=r; and r ¢ R -)
r¢ R (=)
false (A4)
2 e vars(C) (32)
z, 72 € vars(C) (A5)
(z,7') € vars(C) x vars(C) -)
(2,7} € dom §[C] (A3 = Thm. VIL3.7:2)
r €R
zy € vars(C) (G1)
r,e{z|z¢ vars@)} ) ()
x1 € dom{Z — O[C](z,2) | Z € vars(C)} (Gb)
[21] € dom {Z = a+ 6[C](2,2) | Z € vars(C)} (Fig. VIL3.4)

e G7. Conclude:

impl.

impl.

[a] = mi{[ea]] (B2 = a + 3[CT(=2) | 7€ vars(C)}]))
rla] = ri[{Z = a + 0[C](z, 3) | % € vars(C)}([z1])] or
[7la) = r[[1]] and 7, ¢ R] or
1€ R and [a1] ¢ dom {2 a+0[C](2, 2) | 2 € vars(C)}]

false

r[a]

al

e G8. Conclude:

impl.
impl.
impl.

impl.

rla] = 5 [{Z —~ a + 0[C](z, E)J Ze vars(é’)}([[xg]l)]
r=ry and a = {Z — a+0[C](z, 2) | Z € vars(C) }([z2])
r=ry and z = 2,

rlz] = rafxs]

false

(Fig. VIL6.1)

(G3, G4, G6)



VIII.44 PROOF OF THEOREM VII.8.6 162

e G9. Conclude:

re € R
impl. z, € vars(C) (G1)
impl. =, € {Z| Z € vars(()} (-)
impl. z, € dom {z — §[C](z, EA) | Z € vars(C)} A (Gb)
impl. [z2] € dom{Z — a+d[C](z,2) | Z € vars(C)} (Fig. VIL.3.4)

e G10. Conclude:
rla) = ra[[w]] (RI{Z = a+6[C](2.2) | 2 € vars(C)}])
impl. r[a] = r5[{Z — a+6[C](z,2) | Z € vars(C)}([x2])] or (Fig. VIL.6.1)
[7la] = ra[[x2]] and 75 ¢ R] or
[7’2 € R and [25] ¢ dom{Z — a+6[C](z,2) | % € vars(é)}}

impl. false (G8, G4, G9)
Conclude:
[(C TRy [ ]) ({self — a}))]

= [[l_I{G jrlz]}ier ({self = a}))] (Step)
= M@ 5 R[C 7‘[ ]) ({self — a}))}ic/] (Thm. VIL8.1)
= [HI(G: Triey 712]) ({sedf = a})]ies (Thm. VIL.8.2)
= [HIG (R{zZ — a+6[C] (2, 2) | Z € vars(C)}]) | 7[a]}ier (G1, A3, A4, A5 = Induction)
= r[[z1]] (R{Z = a + 6[C](2,2) | Z € vars(C )}D) — (G7, G10 = Fig. VIL.5.2)

rall2]] (BI{Z = a +6[C] (2. 2) | Z € vars(C)}]) -
{6 - [G(RI{z = a +6[C](=,2) | 2 € vars(C) ) }ier | 7[a]

rif[ea]] = ro[[wo]] : {4 - [Gil}ier (RI{Z = a +6[C](2,2) | 2 € vars(C)}]) | 7[d]
(Fig. VIL6.1)

[o1] = rafan] {0 Gitierl (BIZ = a+6[C(2,2) | 2 € vars(C)}]) [ vla) (Fig. VILT.6)
N(R{Z = a+0[C1(z,2) | 2 € vars(C)}]) | r]a] (Step)

[r
[
e Step. G = foreach R'[C'] do G ; G and

G Ry 7[2] = foreach R[C"] do (G4 [rier T[21) 5 (G2 Triey Tl2])
e H1. Conclude:

WF U grvars(@)rery 2 (G) (A2)
impl. Wf ;g5 svars(@))7e r), v (foreach R’[C] do G ; Gg) (Step)

impl. fU{F— vars(C) | 7€ R} U {7 — vars(C") | 7 € R'} : R — 2% and
(Fig. VIL7.4)

CA” €v and Wfo{Fb—)vars(C’)|FER}U{FHvars(CA”)|FER’},X(él) and Wfo{FHvars(C’)\feR},X<62)
e H2. Conclude:
len [C'] > o (H1 = Thm. VIL.3.6)
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Co

e Step. G =rec X Gy and G ' Ric

e H3. Conclude:

fU{F—vars(C) | 7 € R} U {7 > vars(C') | 7 € R’} R — 2% (H1)
impl. (dom {7 — vars(C) | 7 € R}) N (dom {7 — vars(C") | 7 € R'}) = 0 )
impl. {7 |FcR}N{F|7eR}=10 )
impl. RNR' =10 )
e H4. Conclude:
RNR =10 (H3)
impl. r ¢ R’ (Ad)
nclude:

[(C Ty =) ({self > a}))]
= [foreach R/|
[

= [foreach R’

iter(

C' do (G Igey 7l2]) 5 (G Ty 712]) ({melf = a}))] (Step)
C" ({self — a}))] do
)3

(G Trey =) ({self = a}))

(Fig. VIL7.3)

((Ga ey rl2]) ({self = a}))]
(Fig. VIL7.6)

[(C1 Triey rl2]) ({medt = al)]. [(Ga Trey 7[2]) ({self v a})], B [C” ({self — a})])

iter(
[G] (RI(z > a -+ 81N
[Ga2] (R[{Z = a+6[C](=,
iter(
[Gr] (RI{z - a+ 9TC)C=
[Ga2] (R[{Z = a+6[C](=,
iter(
[[6:11]] (BR{z—a+ 5[[6:*]](2,
[Ga] (RI{z > a+ S[CI
iter([G1], [G-], R, [[AC’]])
(R{z— a+0[C](z,2)] 2

[£
G

e I1. Conclude:

Wi 2 (G)
impl. Wf; y(rec X Gx)
impl W'Ff,XU{X}(CArYx)

(H1, A3, A4, A5 = Induction)

9lzevas(ON) 7).
2) | 2 € vars(O)}]) 1 rla), 7, [C” {({se1f > a})])

(Lem. VII.3.6:4)

2| ze VarS(C:*)}])) [rlal,
2) | 2 e vars(C)}]) [ rla], B, [C'])

(H2, H4 = Thm. VIL.6.11)

flzevas@),
2)| 2 € vars(C)})), R, [C) 1 vla)

(H2, H3 = Thm. VIL.6.12)
€ vars(C)}]) I rlal

oreach R'[C'] do c:a s Go] (R[{z — a+ S[C](2,2) | Z € vars(C)}]) [ rla] (Fig. VIL7.6)
A (REZE = a+0[C](=,2) | 2 € vars(C)}]) | r[al (Step)

] 7[z] =rec X (GX TR[O] rlz])

(A2)
(Step)
(Fig. VIL7.4)
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Conclude:

[(G Trey rl2]) ({self — a})]
= [rec X (Gx | R[C] r[z]) ({self — a})] (Step)
= [rec X ((G [Riey T r[z]) ({self — a}))] (Fig. VIL.7.3)
= rec X [[((G’ [Rie) T r[z]) ({self — a})))] (Fig. VIL.7.6)

= rec X ([Gx] (R[{z~ a+0[C](z,2) | Z € vars(C)}])) | r[a])

(I1, A3, A4, A5 = Induction)
= rec X ([[ACAJX]] (R{z— a+6[C](z,2) | z € vars( V) 1 rfa) (Fig. VIL.5.2)
= rec X HCA}X]] (R[{z — a+d][C](2,2) | Z € vars(C)}]) | 7] (Fig. VIL.6.1)
= [[rAec X Gx](R[{z — a+0[C](2,2) | Z € vars(C)}]) | r[a] (Fig. VIL.7.6)
= [GI(RI{Z = a+0[C](2,2) | 2 € vars(C)}]) | 7[a] (Step)

QED.

VIII.45 Proof of Theorem VII.8.7
e Al. (foreach R[C'UC] do G ; cont,r[C]) € dom |
e A2. self ¢ dom

By induction on Al (Fig. VII.8.2b)
e Base. foreach R[é U (Z‘CO} do G ; cont [r[é] = cont and C =)

Conclude:

(foreach R[C'U Cy,) do G ; cont | 7[C]) (¥)

= cont ((¢)) (Step)
= cont (Fig. VIL.7.3)
= foreach R[C’ U (Ceo ()] do (G (b)) ; cont [ 7[C] (Base = Fig. VII.8.2¢)
— foreach R[(C (¢) U (Ceo (¥)] do (G (1) ; cont [ r[C (1)] (Base = Lem. VIL3.6:6)
— foreach R[(C'UC) (¢)] do (G () ; cont | r[C (1)] (Base = Lem. VIIL.3.6:8)
= foreach R[(fj Ceo) ()] do (G () 3 (cont () [ 7[C ()] (Fig. VIL7.3)
— foreach R[C'UC] do G ; cont () | 7[C (¢)] (Fig. VIIL.7.3)

e Step. foreach R[C'UC] do G ; cont | r[C] =
(G | riey 7[2]) {foreach R[CUC) do G ; cont | r[C'\ {z:D}]/cont} and
6’7&@ and 2:D = max(C <)

e B1l. Conclude:

z:D = max (C, <) (Step)
impl. z:DeC (-)
impl. ¢ = (C\ {z:D})U{z:D} ) (-)
impl. CUC, = (C\{z:D})U({z:D}UCy) ()
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e B2. Conclude:

C () #0 (Step = Lem. VIL.3.6:7)

e B3. Conclude:

z:D () = max (C (1)), <) (Step = Thm. VIL3.5)

Conclude:

(foreach R[C' U] do G ; cont | r[C]) (1))
= (G gy 7l2]) {foreach R[C'U C] do G'; cont [ 7[C'\ {z: D}]/cont} () (Step)
= (G [riey 7[2]) (¥) { (foreach R[C'UC) do G ; cont [ r[C'\ {z:D}]) (1)) /cont}
(Thm. VIL7.1)
= (G Ty rl2]) () (A2 = Induction+B1)
V{foreach R[C'UC) do G5 cont (1) [ r[(C'\ {z:D}) ()] /cont}
= (G ey rlz]) () (Lem. VII.3.6:9)
{toreach R[C' U () do G ;5 cont (1) [ r[(C () \ ({z: D} (¥))]/cont}
= (G Iriey rl2]) (¥ (Fig. VIL.3.3)
_{foreach R[C'U Ce) do G 5 cont (0) [ r[(C () \ ({z: D (¥)})]/cont}
= (G () Trie uy T12]) (A2 = Thm. VIL.8.4)
{foreach R[C'U Cy) do G ; cont (v)) | [(C (¥) \ ({z: D (¥)})]/cont}
= (C{) Trie gy 712D (Fig. VILT.3)
_{foreach R[(C'U Ceo) ()] do (G () 5 (cont () T r[(C (o)) \ ({z: D (¥)})]/cont}
= (G () Tric uy ™ [ ] (Lem. VIL3.6:8)

)
{foreach R[(C (¥) U (Ceo (¥))] do (G (¥)) 5 (cont () I 7[(C (¥)) \ ({z: D ()})]/cont}
— foreach R[(C (¥)) U (Ce ()] do (B2, B3 = Fig. VII.8.2b)
()]

(G () 5 (comt () 1 r[C () V
— foreach R[(C'U (o) ()] do (C () ; (cont () [ r[C: ()] (Lem. VIL3.6:8)
= foreach R[C'UC\] do G ; cont () [ r[C ()] (Fig. VIL.7.3)

QED.

VII1.46 Proof of Theorem VII.8.8
e Al. (foreach R[C'UC] do G ; cont,r[C]) € dom |

o A2, Wff\{ﬁHf(f«)WeR},{cont}(é)
« A3. f\{F f(7) |7 € R}:R— 2"

By induction on Al (Fig. VII.8.2b)
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N

e Base. foreach R[C'UC\] do G ; cont | 7[C] = cont and C' = 0)

Conclude:
cont € {cont} (-)
impl. Wff\{ﬁ_)f(f)‘feR},{cont} (cont) (Flg VIL.7. 4)
impl. Wff\{f,_)f(f)‘feR}7{cont} (cont (({self — a}}}) (Flg VIL.7. 3)
impl. W f\ (s () 7e R} {cont} ((Foreach R[C'U ('] do G ; cont [ 7[C]) ({self — a})) (Base)

e Step. foreach R[C'U (., do G ; cont | r[C] =
(G Ry 7[2]) {foreach R[C'UC) do G5 cont [ r[C'\ {z:D}]/cont} and
C#0 and z:D = max (C, <)

e B1l. Conclude:

WE (s p e ) feont (G iy 7[2]) ({self = a})
(Step, A2, A3 = Thm. VIL8.5)

e B2. Conclude:

Wff\{f,_}f(f)'feR}7{cont}< (Step, AQ, A3 = IIldUCtiOIl)
(foreach R[C' U] do G ; cont | [C'\ {z:D}]) ({self — al}))

Conclude:

Wff\{FHf(f)‘FeR}y{cont}( (Bl, B2 = Thm. VH?Q)
(G Triey rl2]) ({self > a}))
{(foreach R[C'U () do G; cont | r[C \ {z:D}]) ({self — a}))/cont})
|mp| Wff\{r,_>f (F)|F€R}, {cont}( (Thm VH?l)
(G [ Rie r[z]) {(foreach R[C’ ] do G ; cont [r[é’ \ {z:f)}})/cont} ({self — a})))

impl. W f\ (s () 7e R} {cont} ((Foreach R[C'U ('] do G ; cont [ 7[C]) ({self ~ a})) (Step)

QED.

VII1.47 Proof of Theorem VII.8.9
Proof of (1)
e Al. (foreach R[C'UCy UC,] do G ; cont,7[C]) € dom |
e A2. Wf; y(foreach R[C’ U ég, U éco] do (3 ; cont)
e A3. ac [C](3) for-all z e dom[C]
e Ad. o ¢ [C.](%) for-all z e dom [Co]
e Ab. re R
e A6. 2:D, =max (C’, <)
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e A7. |C|> 1 impl. z:Dy = max (C\ {z:D1}, <)
e A8. [C](2) < [Cy](Zy) for-all z € dom [C], Zg € dom [C]
e B1. Conclude:

A

z:Dy = max (€, <) (A6)
impl. zlzﬁl el )

By induction on Al (Fig. VII.8.2b)
e Base. foreach R[C'UCy UC,) do G ; cont | r[C] = cont and C = 0)
Conclude:

false (Base, B1)

A

e Step. foreach R[é’ U C’gr U C’CO] do G ; cont Fr[C] =
(@ | RICUCHUC] r[z]) {foreach R[C’ U C’g, U C’CO] do G ; cont fr[é \ {z:f)}]/cont}
and C # () and 2D = max(é’,<<>

C1l. Conclude:

21Dy = max (C’, <) (A6)
impl. z,:Dy =2:D (Step)

C2. Conclude:

W¥; x(foreach R[C'UC, UCy] do G ; cont) (A2)
impl. fU{F—vars(CUC, UC) | 7€ R}: R — 2% and (Fig. VIL7.4)
CUCuUCy, e v and exprG N Gree = 0 and

Wffu{i»—)vars(é'ué'grué’co) |FeR},{cont} (G>

e C3. Conclude:

21 Zﬁl € CA' (Bl)
impl. z, € vars(C) (Lem. VIL.3.4:2)
impl. z € dom [C] (Thm. VIL.3.1)

e C4. Conclude:

len [C'U g UCo] > 0 (C2 = Thm. VIL3.6)

e C5h. Conclude:

(foreach R[C'U (g U] do G ; cont, 7[C]) € dom | (A1)
impl. foreach R[C' Uy U, do G ; cont € G (Lem. VII.8.2)
impl. éuégruéco eC (

-)
impl. CUCg UC,, € dom[] (Lem. VIL3.7:1)
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e C6. Conclude:

z € dom [C] (C3)
impl. a € [C](z) (A3)
impl. a € [CUC,UCL](21) (C5 = Lem. VIL3.7:5)

e C7. Conclude:
([C U Cy U Co, 21]a]) € dom from (C4, C6 = Fig. VIL.2.6)

e C8. Conclude:
a+0[CUCy UC)(21,7) ({z1,2") € dom §[C' U Oy U Cop], 32')
= a+6([CUCHUCL] (1), [CUCHUCL](Z)) (Lem. VIL.2.8:3)

= a4 0(([C U Cg U O] from z1[a]) (z1), (JC U Cgr U Co] from z[a])(2'))
(C7 = Thm. VIIL.2.8:2)

= a+ (Thm. VII.2.1)
d(head ([C' U Cy U Co] from z1[a])(21), head ([C' U Cy, U Co] from 24 [a])(2))
= a+ (Lem. VII.2.6:3)
5((head ([C' U Cy U Coo] from 21 [a))) (z1), (head ([C' U Cyp U C'o] from z[a]))(2))
= (head ([C' U Cy U O] from z[a])) (1) + (C7 = Thm. VIL2.7:1)
5((head ([C' U Cy U Co] from 21 [a))) (z1), (head ([C' U Cyp U C'o] from z[a]))(2))
e C9. Conclude:
dom [C'U Cy U Cro] = vars(C' U Cyr U Co) (Thm. VIL.3.1)
impl. dom ([C' U Cy U Cco] from 2 [a]) = vars(C U Cy U C)  (C7 = Lem. VII.2.12:2)
impl. dom (head ([C' U Cy, U Co] from z;[a])) C vars(C'U Cy U C'o) (Lem. VII.2.6:2)
impl. dom (head ([C' U Cg U Co] from z[a])) € vars(C'U Cyq U C) C Z
(Lem. VII.3.4:1)
e C10. Conclude:
[(G Tricucyuce rl2]) ({self = a})] (G, RICUCu Ul r[a]) € 1)
= [GI(R{z— a+[CUCq UCu](21,2) | 7 € vars(C U Cq U Co)}))) | 7la]
(C2, A5, C3 = Thm. VILS.6)
Z
(head ([C' U Cyq U Cop] from 24 [a))) (z1) +

= [CVEBL 5 head ([C L Oy U C] rom mfa)) (z0),| - € S(C U e U Cea) () Tl
(head ([C' U Cy U Cop] from 2 [a)))(2))
(C8)
Z
R (head ([[é U C’g, U C’CO]] from z1[a]))(z1) + | _
= C1RY 5 (head (¢ U &y U o] from s [a])) (), - € Z (VD 171 (C9)

) (=1
) (headA([[CA'AU C'grAU C'oo] from z[a]))(2))
= [[CA?]] (R[(head ([[AC UAC'gr UAC'CO]] from z1[a)))/z1])) | r]al (Fig. VII.2.4)
= [G] (R[head ([C' U Cg U Cco] from z1[a])])) | r[al (Lem. VII.2.5:2)
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e C11. Conclude:

expr [G] N Gree = 0 (C2 = Lem. VIL7.7:2)

e C12. Conclude:

CUCuuUlepev (C2)
impl. C € v (Lem. VIL3.10:4)

By case distinction:

e Case. |C|=o0

Conclude:
ICl=o (Case)
impl. =0 )
impl. false (B1)

e Case. |C]| =1
e D1. Conclude:

A A

z:D = max (C, <) (Step)
impl. z:D e (-)
impl. z:DeC and |C| =1 (Case)
impl. '\ {z:D} =0 ()

e D2. Conclude:

([C U Cy U Coo] from zy[a])(2) # 0 (C7 = Thm. VIL.2.7:3)
for-all z € dom ([C' U Cy, U Coo] from z;[a))
impl. dom ([C' U Cg U Coo] from z;[a]) € dom (tail ([C'U Cy U O] from 24[a])) and
dom (tail (€' U Cg U Co] from z[a])) € dom ([C'U Cyr U Co] from z[a])
(Lem. VII.2.7:2)
impl. dom ([C' U Cyg U O] from 2 [a]) = dom (tail (O U Cyr U Coo] from z[a])) ()

e D3. Conclude:

Wfo{FHvars(éUégrUéco)|776R},{cont}([[é]]> (CQ = Thm. VH-7-3)
impI. Wffu{ﬁ_}dom [[C*U(:*grué‘co]]WeR},{cont}([[é]]) (Thm. VH.3.1)
impl. WF 1 (s sdom ([0UC g UC ] from =1 [a)) e R} {eont) ([G]) (C7 = Lem. VII.2.12:2)
iMpl. W 107 dom (tail ([0UCUCeo] from 21 [a])) 7€ B} {cont} ([G]) (D2)

e D4. Conclude:

([CUCqUCe], 21a]) € dom from (C7)
impl. ([CUC4]U[Co), 21]a]) € dom from (Lem. VII.3.7:4)
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e D5. Conclude:

IC| =1 and z:D; = max (C, <) (Case, A6)
impl. z;:D; = min (C, <) ()

e D6. Conclude:

CUCy U € dom[] (C5)
impl. C'UCy € dom [] (Fig. VIL.3.4)

e D7. Conclude:

A

[C](z1) = min (img [C], <) (C12, D5 = Thm. VII.3.8:2)
impl. [C](z1) = min ({[C](2) | Z € dom [CT}, <) )
impl. [[C](z1) # [C](2) impl. [C](21) < [C[(2)] for-all z € dom [C] (-)
. [CUCgl(z1) # [CUCLI(2) impl. i A
impl. [ [CUC]() < [CUC) 1 for-all z € dom [C]

(D6 = Lem. VIIL.3.7:5)

e D8. Conclude:
z € dom [C] (C3)

impl. [C](z1) < [Cgl(2) for-all 2z € dom [Cy] (A8)
impl. [[C](z1) # [Cel(2) impl. [C(21) < [Cal(2)] for-all 2z € dom[Cy] ()
[CUCgl(21) # [CUCg](2) impl.

[CUC](5) < [CUCLE) ] for-all z € dom [Cy]

impl. [
(D6 = Lem. VIIL.3.7:5)

D9. Conclude:

16U CLI(=) # [0 U CLIE) impl. [CU () < [CUCL]()]
(D7, D8)
for-all z € (dom [C]) U (dom [Cg])
impl. [[CUCy](z1) # [CUCyl(2) impl. [CUCu] (1) < [CUCLI(E)] ()
for-all z € dom ([C] U [Cy])

impl. [[[O - ?g ]](AZI) 7 lov ACg ng) Itj‘lp for-all Z € dom [C'U Cy]
[CUCg](z1) <[CUC](2)
(D6 = Lem. VIIL.3.7:4)

impl. [CUCg](2) = min ([CUCy], <) )
e D10. Conclude:

a ¢ Uimg (tail ([C' U Cg] U [Ceo]) from 2 [a]))
(D4, D9, A4 = Thm. VII.2.9:2)

impl. a ¢ Uimg (tail ([C' U Cy, U Co] from 24 [a))) (C5 = Lem. VIL3.7:4)
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e D11. Conclude:

([CUCqUCe], 21]a]) € from (D10)
impl. len ([C' U Cy U O] from z[a]) > o (Thm. VII.2.7:2)
impl. len (tail ([C'U Cy U Co] from 2 ]a])) < len ([C U Cy U Coo] from 24 [a))

(Thm. VIIL.2.5)

Conclude:

[(foreach R[C'UC, UC] do G ; cont | 7[C]) ({self — a}))]

= [(& [ RicUGgU.) T12]) (Step)
{foreach R[C'UCy UC] do G;cont | 7[C'\ {z:D}]/cont} (({self — a}))]

[[(@ [RiCUCEUC] T r[z] {cont /cont}) ({self — a}))] (D1 = Fig. VIL.8.2b)
= [(G Trieue e Tl2]) ({self = a})] (Lem. VIL.7.6:2)
= [(G Thicue e rl=1]) ({self = a})] (C1)
= [G] (Rlhead ([C U Cg U Coo] from 21 [a))]) | 7[a] (C10)
= ([G] (Rlhead ([C' U Cg U O] from z[a])]) | r[a]) {cont /cont } (Lem. VII.4.2:2)
= ([G] (RIhead ([C'U Cgr U C] from z1[a])])) | {al)

{iter([G], cont, R, tail ([C' U Cy U Co] from z[a])) | r[a] /cont }
(D11, D3, C11, A5, D10 = Thm. VIL6.13)

— [G] (R[head ([C' U Cyq U Cop] from 24 [a))])) (Thm. VIL.5.2)
{iter([G], cont, R, tail ([C' U Cy U C'o] from z[a])) /cont} | r[a]
— iter([G], cont, R, [C'U Cy U Coo] from z[a]) [ 7[a]  (Thm. VII.2.7:2 = Fig. VIL.6.2)

e Case. |C]| >1
e E1. Conclude:

Wffu{FHvarSEC'UC'grUC'co)|FER},{cont}(é) (C2)
impl. W/ (cone) (G) (Lem. VIL.7.5:1)
impl. WF 5 pore i) geont) (G) (Lem. VIL7.5:1)

e E2. Conclude:

fU{F—vars(CUC, UCy) |7 e R} R — 2% (C2)
impl. f:R — 2% (=)
impl. f\ {7+ f(7)| 7€ R}:R— 2" )

e E3. Conclude:
Wff\{f,_)f(F)|feR}7{cont}( (Step, El, E2 = Thm. VH85)
(G Tricueguee T12]) ({self — a}))
e E4. Conclude:
zlzﬁl c C’ (Bl)
impl. ' = (C\{z:D})U
impl. Cu Cgr UC, = (C’\

~—
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e E5. Conclude:

impl.

W x(foreach R[C'UC, UCy] do G'; cont) (A2)
Wi x(foreach R[(C'\ {z1:D1}) U ({z1: D1} UCy)UC) do G ; cont) (E4)

e E6. Conclude:

impl.

21: Dy = max <C’, <) (A6)
Zl:ﬁl = Z:lA) (Step)

e E7. Conclude:

impl.

¢ > 1 (Case)
2:Dy = max (C'\ {z:D,}, <) (A7)

e E8. Conclude:

[C](z1) = max (img [C], <) (C12, A6 = Thm. VIL.3.8:3)

e E9. Conclude:

impl.

impl.

impl.

e E10.

impl.

impl.

e E11.

impl

impl.
impl.

impl.

impl.

impl.

impl.

impl.

[[Q”]](zl) ax (img [C1], <) ) (E8)
[CT(z1) = max ({[C](2) | £ € dom [C]}, <) )
[[CT (1) # [[C]]( ) impl. [C](2) < [C](z1)] for-all % € dom [C] (-)
[C1(2) < [C](z1) for-all % € (dom [C]) \ {z} (-)
Conclude:
CUCyUC e € dom[] (C5)
(C\{z1:D1})U({z1: D1} U ) UCeo € dom [[] (E4)
{z1:D}UCy € dom [] (Fig. VIL.3.4)
Conclude:
[C1(2) < [C](z1) for-all z € (dom [C]) \ {z1} (D9)
[C1(2) < [D4] for-all z € (dom [C]) \ {z} (B1 = Lem. VIL.3.7:3)
[C1(2) < {z1 — [D1]} (1) for-all Z € (dom [C]) \ {21} (-)
[C1(2) < [{z1: D1 }](z1) for-all % € (dom [C]) \ {1} (Fig. VIL3.4)
[C1(2) < [{z1: D1} U Cy](21) for-all z € (dom [C]) \ {z}
(E10 = Lem. VIL3.7:5)
[[Q]](@ < [[{zl:l?l}U?gr]](ng for-all z € (dom [C])\{=1}, % € {z1} ()
[€1(2) < [{z1: D1} U Cygr] (20) ) )
for-all z € (dom [C]) \ {z1}, Zr € dom {z1 = [Du]}
[€1(2) < [{z1: D1} U Cel () ) (Fig. VIL.3.4)
for-all z € (dom [C]) \ {z1}, Zgr € dom [{z1 — D1 }]
[C1(Z) < [{z1: D1} U Co](2e) (B1 = Lem. VIL3.7:3)

for-all z € (dom [C]) \ {21}, Zg € dom [{z: Dy }]



VIII.47 PROOF OF THEOREM VII.8.9 173

e E12. Conclude:

[C1(Z) < [Cal(Zg) for-all z € dom [C], Z € dom [Cf] (AS)
impl. [C](2) < [Cgl(Zy) for-all Z € (dom [C])\ {21}, Zer € dom [C] (-)

e E13. Conclude:

[CT(2) < [{z1: D1} U O]l (Z)
[ onr—aII Fe (doirn [[C*]])A\ {21}, Zgr € dom [[{21:151}]]] and (E11, E12)
[HC]]@) <[{z1: D1} U Cgl]l (Zer) ]
for-all z € (dom [C])\ {21}, Zg € dom [C]

impl. [C](2) < [{z1: D1} U Cy](%) )
for-all z € (dom [C])\ {21}, Zgr € (dom [Cr]) U (dom [C])

impl. ([C]\ {z — [[C”]](z{)})(i) <[{= :D1} U Cy](Z) ) - (©G3)
for-all zZ € dom ([C] \ {z1 — [C](21)}), Zgr € (dom [Cg]) U (dom [Cl])

impl. ([CT\ {z1 — D1})(Z) < [{z1: D1} U Cy](Zer) (B1 = Lem. VIL3.7:3)
for-all z € dom ([C] \ {z1 — D1}), Zg € (dom [Cg]) U (dom [Cr])

impl. [C\ {z1:D1}](2) < [{z1: D1} UCy](Ze) (Lem. VIL3.7:6)
for-all z € dom [C'\ {21:D1}], Zg € (dom [Cy]) U (dom [Cy])

impl. [C\ {z::D1}](2) < [{z1: D1} UCyl(Ze) (E10 = Lem. VIL3.7:4)

for-all z € dom [C'\ {z1:D1}], % € dom [{z: D1} UCyl]

e E14. Conclude:

a € [C](2) for-all z € dom [C] (A3)
impl. a € [C](%) for-all Z € dom [C]\ {=1} ) -)
impl. a € ([[(;’]] \ {z1 — [[?]](2’1)})(5) for-all z € dom ([C] \ {z — [C](1)}) (C3)
impl. a € ([C] \ {z1 — D1})(%) (B1 = Lem. VIL.3.7:3)

for-all z € dom ([C] \ {z1 — D1})
impl. a € [C\ {z:D;}](2) for-all z € dom[C\ {z:D:}] (Lem. VIL.3.7:6)

e E15. Conclude:
len ([C' U Cyr U Co] from zy[a]) > o (C7 = Thm. VIL.2.7:2)

e E16. Conclude:

2:Dy = max (C'\ {z:D,},<) (E7)
impl. 2:D, € C'\ {z:D;} -)
impl. z, € dom [C'\ {z:D1}] (Lem. VII.3.7:2)
impl. z € dom ([C]\ {z1 — [D1]}) (Lem. VIIL.3.7:6)
impl. z € (dom [C]) \ dom {z — [D1]} -)
impl. 2 € (dom [C]) \ {1} (-)
impl. [0](z) < [C] (=) (E9)



VIII.47 PROOF OF THEOREM VII.8.9 174

e E17. Conclude:

2:Dy = max (C'\ {z:D,},<) (ET7)
impl. 2z:D, € C\ {z:D;} )

e E18. Conclude:

291Dy € C \ {zlzf)l} (E17)
|mp| 2251\)2 € é (7)

e E19. Conclude:

2:DyeC (E18)
impl. z, € vars(C) (Lem. VIL.3.4:2)
impl. z, € dom [C] (Thm. VIL.3.1)
impl. a € [C](z) (A3)
impl. a € [CUC, UC](2) (C5 = Lem. VIL3.7:5

e E20. Conclude:
a € ([C Uy U] from 2 [a])(z) (C7, E16, E19 = Thm. VIL.2.7:5)

e E21. Conclude:

21: Dy = max (C’, <) (A6)
impl. 2D < z:D; for-all :Del \ {z1: Dy} -)
impl. 20: Dy < 21: D4 (E17)
impl. C € v and 23:Ds,2,:D; € C and 29:Dy < 2,: D (C12, E18, B1)
impl. [C](z) < [C](z) (Thm. VIL3.8:1)

e E22. Conclude:

[C1(22) < [C1(=1) (E21)
impl. [CUC, UC,](22) < [CUCUCL](21) (C5 = Lem. VIL3.7:5)
impl. ([CUC, UC), z1[a]) € domfrom and (C7)

[CUC,UCL](2) < [CUCHUCo](21)
impl. ([CUCy U Co] from zi[a))(z2) < ([C U Cg U Coo] from 21 [a]) (1)
(Thm. VII.2.7:4)
impl. head ([C'U Cy U Coo] from 21 [a])(2,) < head ([C' U Cyr U O] from zy[a])(z1) or
([C U Cy U Coo] from zy[a])(21) = (Fig. VII1.2.2)
impl. head ([C U Cy, U Coo] from 21 [a])(22) < head ([C' U Cy, U C'o] from 2y [a]) (1)
(C6 = Thm. VIIL.2.7:3)
impl. (head ([C' U Cy U Cop] from 2 [a]))(22) < (head (JC' U Cyr U C'o] from z1[a])) (1)
(Lem. VII.2.6:3)
impl. (head ([C' U Cy U Co] from 2 [a]))(22) < a (Thm. VII.2.7:1)
impl. (head ([C' U Cy U Coo] from 2 [a)))(22) # a (Fig. VII.2.1:3)
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e E23. Conclude:

impl.

impl.

o E24.

impl.

impl.

e E25.

impl.
impl.
impl.
impl.

impl.

impl.

e E26.

impl.

impl.

o E27.

impl.

impl.

head ([C' U Cy, U Co] from 2y [a]) = (E15, E20, E22 = Thm. VII.2.6:1)
head ([C' U Cy U C,] from 2y [a] to z;[a))

([C U Cyq U Coo] from z[a), 23]a]) € dom to ()
dom ([C' U Cy U Coo] from 2y [a]) = (Lem. VII.2.11:2)
dom ([C' U Cy U Co] from 2y [a] to z5[a))
Conclude:

([C U Cy U Coo] from 2 [a])(2) # 0 (C7 = Thm. VIL2.7:3)

for-all z € dom ([C' U Cy, U Coo] from 2, [a))
dom ([C' U Cy U Coo] from 2 [a]) € dom (head ([C' U Cy, U C'o] from z[a])) and
dom (head ([C' U g U Cp] from 2 [a])) € dom ([C' U Cgr U Co] from 24 [a])
(Lem. VII.2.6:2)
dom ([C U Cy U Coo] from 2y [a]) = dom (head ([C' U Cr U C'o] from z[a]))

()

Conclude:
q@” CE, U éfo]] from 21 [a] to z5[a]) (') = 0 (32)
(IC U Cg U Co] from z[a] to z]a))(2'), <) ¢ dom min -)
([C U Cy U Coo] from z;[a] to 25[a])(2') ¢ dom head (Fig. VII.2.2)
2" ¢ dom {Z — head ([C' U Cy, U Coo] from 2y [a] to 25[a])(2) | Z € Z} ()
2 ¢ dom (head ([C' U Cg U O] from zy[a] to 25[a))) (Fig. VIL.2.5)

2" ¢ dom (head ([C' U Cy U Co] from 2y [a]))
(E15, E20, E22 = Thm. VIL2.6:1)

2" ¢ dom ([C' U Cy U Coo] from z;[a)]) (E24)
Conclude:

([C U Cg U Coo] from zy[a] to z[a]) (") = O and (32)
2 € dom ([C' U Cy U Co] from z[a] to zo[a])

([C U Cy U Coo] from 2y [a] to 25[a])(2') = O and (Lem. VIL.2.11:2)
2 € dom ([C' U Cy U Cco] from z[a])

false (E25)
Conclude:

([C U Cg U Cop] from 2 [a] to z5[a))(2) # 0 (E26)

for-all z € dom ([C' U Cy, U C'o] from z;[a] to zo[a])
dom ([C' U Cy U Co] from 2y [a] to 25[a]) C
[dom (tail ([C' U Cyy U Co] from 2, [a] to zo[a]))
dom (tail ([C' U Cy U C'o] from z;[a] to 25[a])) C
[ dom ([C' U Cy U C] from 2y [a] to z[a)) 1
dom ([C U Cy U Co] from z;[a] to zo[a]) = (-)
dom (tail ([C' U Cg U Co] from zy[a] to 25[al))

and (Lem. VIIL.2.7:2)
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e E28.

impl.
impl.
impl.

impl.

e E29.

impl

impl

impl

e E30.

impl.

e E31.

impl
impl
impl

e E32.

impl

impl

impl

e E33.

impl

Conclude:
Wfo{FHvars(CA’UCA’grUC’CO)|F6R},{cont}([[é]]) (C2 = Thm. VII73)
WH ¢ fisdom [CUCHUC][7e R}, {cont} ([G]) (Thm. VIL.3.1)
WH 1 (7 dom ([CUC U] from 21 [a])[Fe R}, {cont} ([G]) (C7 = Lem. VIL.2.12:2)
WH ¢ (7 dom ([CUCHUC ] from 21[a] to z2[a])|Fe R} {cont} ([G]]) (E23)
WH £ fisdom (tail ([CUC g UC o] from 21 [a] to za[a]))|7e R} {cont} ([G]) (E27)
Conclude:

[[é \ {z :151}]](22) = max (img [[C’ \ {z1: ﬁl}]], <)
(C12, E7 = Thm. VIIL.3.8:3)

. ([CT\ {21 = [D1]})(22) = max (img ([C] \ {z1 — [D1]}), <)
(Lem. VIIL.3.7:6)
. ([C\ {= - [[é]](zl)})(zg) = (B1 = Lem. VIL3.7:3)
max (img (IC]\ {1 = [C1(1)}), <)
. [C](22) = max (img ([C] \ {z1 = [C(21)}), <) )
Conclude:

a ¢ Uimg (tail ([C] U [Cg] U [Co]) from 2 [a] to z,]a]))
(E23, ES, E29, A8, A4 = Thm. VIL.2.9:3)

a ¢ Uimg (tail ([C U Cy U Co] from 24 [a] to z;[a])) (C5 = Lem. VIIL.3.7:4)
Conclude:

len ([C' U Cgr U Co] from 2 [a] to z5[a]) = o

. |[([C' U Cg U O] from 2 [a] to z5[a)) (2)] = o (Fig. VIL.2.5)
for-all z € dom ([C' U Cy, U Co] from z;[a] to zo[a])
. ([C U Cyq U Coo] from z[a] to zo[a]) () = 0 (Fig. VIL2.5)
for-all z € dom ([C U Cy, U Co] from z;[a] to zo[a])
. false (E26)
Conclude:
([C U Cg U Coo] from z[a), 23]a]) € dom to (E30)
. [CUCy U Coo] from 2 [a] to 2,]a] € dom len (Thm. VII.2.6:3)
. len ([C' U Cg U O] from 2 [a] to z5]a]) = o or (Lem. VIL.2.9:1)
len (JC' U Cr U Co] from z[a] to z5[a]) > o
. len ([C' U Cg U O] from 2 [a] to z5[a)) > o (E31)
Conclude:
len ([C' U Cgr U Co] from z[a] to z5[a]) > o (E32)
. len (tail ([C'U Cgr U O] from 2 [a] to 25[a))) < (Thm. VIIL.2.5)

len ([C'U Cyy U Co] from 24 [a] to 25[a))
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e E34. Conclude:

[[( [ RICUC U] rz]) ({self — a}))] (<é, R[é UCg U éco], rlz]) € 1)
= [(G Tricue uc T11]) ({self — a})] (E6)
= [G] (Rlhead ([C U Cg U Coo] from 2y [a])]) | 7[a] (C10)
= [G] (R[head ([C U Cyg U Cop] from 2

a]to z[a))])) | rla]
(E15, E20, E22 = Thm. VIL.2.6:1)

= ([G] (Rlhead ([C' U Cg U o] from z1[a] to 2,]a])])) | 7[a]) {cont /cont}
(Lem. VIL.4.2:2)

= ([[é]] (R[head ([[CAY U C’g, U C’co]] from z;[a] to zs[a])])) | r[al)
{iter([G], cont, R, tail ([C' U Cy U Co] from z[a] to 2,]a])) | r[a] /cont}
(E33, E28, C11, A5, E30 = Thm. VIL6.13)
— [G] (R[head ([C U Oy U Coy] from 24 [a] to z5[a))])) (Thm. VIL5.2)
{iter([G], cont, R, tail ([C' U Cy U C'o] from 2 [a] to 2,]a]))/cont} | r[a]
= iter([G], cont, R, [C'U Cg U Coo] from 2z [a] to z[a)) [ ra]  (E32 = Fig. VIL.6.2)

Conclude:

[[(foreach R[CUCy U] do G ; cont | 7[C]) ({self — a}))]

= (G [RicuC uce) TIZ]) (Step)
{foreach R[C'UCy UC] do G;cont | 7[C'\ {z:D}]/cont} (({self — a}))]

= [(G Tneuoguew Tl2]) ({self — al}) (Thm. VIL7.1)

{(foreach R[C' U, U] do G ; cont [ r[C'\ {z:D}]) ({self — a}))/cont}]

= [(G Treue,uew T12]) ({self — a})] (E3 = Thm. VII.7.4)

QED.

Proof of (2)

{[(foreach R[C'U g U] do G cont | r[C'\ {z: D}]) ({self — a})]/cont}
[(G Tricoe, o TI2]) ({self = a})]  (E5, A5, E7, E13, E14, A4 = Induction+E4)
{iter([G], cont, R, [C' U Cy U Co] from z3[a]) | 7[a]/cont}

iter([G], cont, R, [C'U Cg U O] from 24 [a] to za)) | r[a] (E34)
{iter([G], cont, R, [C' U Cy U Co] from z5[a]) | 7[a]/cont}
iter([G], cont, R, [C'U Cy, U Co] from 24 [a] to z5[a)) (Thm. VIL5.2)

{iter([G], cont, R, [C' U Cy U C'o] from z5[a]) /cont} | ra]

iter([G], cont, R, [C'U Cg U O] from 2 [a] to 2,[a]) (C7, E21 = Thm. VIL2.7:6)
{iter([G], cont, R, ([C' U Cg U Coo] from z[a]) from 2z,]a]) /cont} | 7[a]

iter([G], cont, R, [C'U Cg U (o] from 2 [a]) | r[a] (Thm. VIL.6.7)

e Al. (foreach R[C' UC] do G ; cont,r[C]) € dom |

e A2. Wf; y(foreach R[C'U ()] do G ; cont)

e A3. ac [C](3) for-all z e dom[C]
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A4, o ¢ [C](2) for-all z € dom [Co,]
Ab. reR

e B1l. Conclude:

Wf; v (foreach R[C'UC\] do G ; cont) (A2)
impl. fU{7 — vars(CUCy) |7 € R} : R — 2% and (Fig. VIL7.4)
é U CA’co € v and eXpré N Grec = 0 and Wfo{FHvars(C’UC’co)|F€R},{cont}(é)

B2. Conclude:

len [C' U Co] > 0 (B1 = Thm. VIL3.6)

e B3. Conclude:

Wfo{FHvars(C’UC’co) |FeR},{cont} ( [[é]]) (Bl = Thm. VII. 73)
impl. Wffu{;,_ﬂjom [[C‘UC‘CO]] |FER},{cont} ( [[G]] ) (Thm. VIIL.3. 1)

By case distinction on Al (Fig. VII.8.2b)
e Case. foreach R[C'U (] do (; cont | r[C] = cont and C = ()

e C1. Conclude:

a ¢ [Coo](2) for-all 2 € dom [C] (A4)
impl. a ¢ U{[C:](2) | Z € dom [Cco]} )
impl. ¢ Uimg [Co,] )
impl. a ¢ Uimg [0 U Cc] )
impl. a ¢ Jimg [[é U C’co]] (Case)

Conclude:

[(foreach R[C'UCy U] do G ; cont | 7[C]) ({self — a}))]

= [cont (({self — a}))] (Case)
= [cont] (Fig. VIL.7.3)
= cont (Fig. VIL.7.6)
= iter([G], cont, R, [C' U Cc]) | rla] (B2, B3, B1, A5, C1 = Thm. VII.6.13)
— iter([G], [cont], R, [C U Cy,]) | 7[a] (Fig. VIL7.6)
— [foreach R[C'U (] do G ; cont] | r[d] (Fig. VIL.7.6)

e Case. foreach R[C' U] do G; cont | [C] =
(G [Rieuc..) T[2]) {foreach R[C'UC) do G ;cont | r[C'\ {z:D}]/cont} and
C#0 and z:D = max (C, <)

e D1. Conclude:

CUCwev (B1)
impl. C €V (Lem. VII.3.10:4)
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e D2. Conclude:

Cev (D1)
impl. C\{z:D} e v (Lem. VIL.3.10:5)
impl. (C'\ {z:D}, <) is a strictly totally ordered set (Fig. VIL.3.9)

e D3. Conclude:

IO > 1
impl. [C\{z:D}|>1 ()
impl. C'\ {z:D} # 0 ()
impl. (C'\ {z:D}, <) € dom max (D2)
impl. 2z':D' = max (C'\ {z: D}, <) (32', 3D")

e D4. Conclude:

7 € dom [C] and z,, € dom ) (37, 32,)
impl. false -)
impl. [C](z") < [0](z) )

e D5. Conclude:

len [C'U Ceo] > 0 (B1 = Thm. VIL.3.6)

impl. len ([CJU [Ceo]) > 0 (Lem. VIL3.7:4)
e D6. Conclude:

(foreach R[C'U (] do G ; cont,r[C]) € dom | (A1)
impl. foreach R[C'U () do G ; cont € G (Lem. VII.8.2)
impl. CU C’CO cC )
impl. C'UC, € dom [] (Lem. VIL3.7:1)

e D7. Conclude:

z:D = max (C, <) (Case)
impl. z:D e (-)
impl. z € vars(C) (Lem. VII.3.4:2)
impl. z € dom [C] (Thm. VIL.3.1)
impl. a € [C](2) (A3)
impl. a € [CUCu](2) (D6 = Lem. VIL3.7:5)
impl. a € ([CTU[Cu])(2) (Lem. VIL3.7:4)

e D8. Conclude:

(ICT U [Cw], z[a]) € dom to (D5, D7 = Fig. VIL.2.6)
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e D9. Conclude:
[C](2) = max (img [C], <) (D1, Case = Thm. VIIL.3.8:3)
e D10. Conclude:

a ¢ Uimg (([C] U [Ceo]) to z[a]) (D8, D9, A4 = Thm. VIL.2.9:1)
impl. a ¢ Uimg (([C U Cy,]) to z[a)) (D6 = Lem. VIL.3.7:4)

Conclude:

[(foreach R[C’ U C’co] do G ; cont [r[é}) {({self — a})]

— iter([G], cont, R, [C' U C'] from z[a]) | 7[a]
(A1, A2, A3, Ad, A5, Case, D3, D4 = Thm. VIL8.9:1)

— cont {iter([G], cont, R, [C' U C¢,] from z[a]) | r[a] /cont} (Fig. VII.4.3)

— (iter([G], cont, R, [C' U Co] to z[a]) | 7[a]) (B2, B3, B1, A5, D10 = Thm. VIL.6.13)
{iter([G], cont, R, [C' U C¢,] from z[a]) | r[a] /cont}

= iter([G], cont, R, [C' U C¢,] to z[a]) (Thm. VIL.5.2)
{iter([G], cont, R, [C' U C,] from z[a])/cont} | r[a]

= iter([G], cont, R, [C' U Cq]) | rla] (Thm. VIL6.7)

= iter([G], [cont], R, [C' U Cs]) | 7[a] (Fig. VIL.7.6)

— [foreach R[C'UC\] do G ; cont] | r[a] (Fig. VIL.7.6)

QED.

VIII.48 Proof of Theorem VII.8.10
Proof of (1)

e Al. (G,rD) € dom |

o A2. self ¢ dom1

By induction on Al (Fig. VII.8.2a):
e Base. G = X and CV?[TIVD:X

Conclude:

(G 1 D) (&)

X {(¥) (Step)

X i (Fig. VIL.7.3)
= X [r{D ()| DeD} (Fig. VII.8.2a)
= X () [ r{D{v) | D €D} (Fig. VIL7.3)
= G{) I r{D(w) | DeD} (Step)
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e B1l. Conclude:

Ty.0, €D . . (Step)
impl. 1.y (V) € {D () | 1;3 € D} . ()
impl. (21 (V). (z1 (¥) € {D () | D € D} (Fig. VIL.3.3)
Conclude:
(G D) ()
rofas] 16 . Gy | TD} er (V) (Step)

(w2 ()] 1 - (Gi 17D) (@ Whiet (Fig. VIL7.3)
rafws ()] 14l - Gi (W) Tr{D () | D € D}}ies i (A2 = Induction)
[

rifey ()] = ralra ()] :{t - Gi () }ier 1 7{D (W) | D € D}
(Step, B1 = Fig. VII.8.2a)

= 7”}[1'1] —>r2[ﬂgz] H{l; . gi}ief () [r{l:? () | D e D} (Fig. VIL.7.3)
= G{) I{D ) | D eD} (Step)
L] Step é = 7’1[1’1] —97”2[1’2] :{gz . éi}ie] and
é[?"f?:rl[xl]?{&.éi[rlv)}ig and 711#7':7"2 and .ﬁEQ..J?QEb

e C1. Conclude:

Ty.. .y €D . . (Step)
impl. z5..25 (¥) € {D (¥) | 1;? € D} . ()
impl. (25 (V). (z2 (¥) € {D () | D € D} (Fig. VIL3.3)

Conclude:
(G'1rD) ()
rlz] 26 . Gi | TD} er (V) (Step)

[y ()] 2{: - (G 17D) (¥ Whiet (Fig. VIL7.3)
rifer ()] 246 - G (W) Tr{D () | D € D}}ies i (A2 = Induction)
[

rifey ()] = ralra ()] :{l - Gi () }ier 1 7{D (W) | D € D}
(Step, C1 = Fig. VIL.8.2a)

= ni[t1] = rafrs] 114 gz‘}z‘ef () 1 {D (¥) | D € D} (Fig. VIL.7.3)
= G{¥) I{D () | D € D} (Step)
o Step. G = ri[zi] = rofwo] s {4 . éi}ie] and G fﬂﬁ = H{éz frb}iel and r # 1 # 1y
Conclude:
(G 17D) (w)
= [{Gi [ D}ier () (Step)
= [H(Gi D) () bier (Thm. VIL8.1)
= THG: (@) 1r{D () | D € D}ties ) o (A2 = Induction)
= niler ()] = rales (D) {6 - G () bier 1D (W) | DEDY  (Step = Fig. VIL8.20)
= nift]—=mfes] {4 - Gitier (V) 17{D (V) | D € D} (Fig. VIL.7.3)
= G{w) I7{D(¥) | DeD} (Step)
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e Step. G = foreach R[C] do Gy ; G, and

G | D = (foreach R[C] do G; ; cont

re R

e D1. Conclude:

182

r[{z:D € & | D e DY) {Co | 1D /cont) and

{(#:DeC|DeD}cC ) i ()
impl. C ={2:DeC|DeD}U(C\{3:DeC|DeD} )
Conclude:
(G 17D) (¥ CUBE .
— (foreach R[C] do (3 ; cont | r{Z:D € C| D € D}]){G2 [ 7D/cont} (1)) (Step)
(foreach R[é] do Gy ;cont [r[{z:D e C| D e D}]) () (Thm. VIL7.1)
{(G> I'rD) (¥)) /cont} i i
= (foreach R[C’] do Gy ;cont [r[{2:D € C| D € DY) (¥)) (A2 = Induction)
{Go (W) I7{D(v) | D € D}/cont} .
= (foreach R[{z2:D e C|DeD}U(C\{2:DeC|DeD})doG;cont | (D1)
r[{z:D € C | D € DY]) () {Ga (W) I

r{
= foreachNR[{,%:[?ﬁ C|DeDyu(C\{z: l?
r[{z:D € C'| D € D} (¥){G2 () 1 r{D

= foreach R[C] do Gy ; cont: {(4)) | r[{Z: De
{G2 (W) {D (V) | D € D}/cont}

D € D} ()]

D (@ () | D € D}/cont}

€ C'| D € D})] do G ; cont () |

) | D € D}/cont} (A2 = Thm. VIL.8.7)
|

(D1)

— foreach R[C| do G 5 cont: () [ [{2: D () € C () | D () (D () | D e DY)

{Ga () 17{D () | D € D} /cont}

= foreach R[C' ()] do (G (¥)) ; (cont ()

r{Z:D () € C () | D{wh € {D{w) |
[

= foreach:R[é ((¢))] do (G,

¢ I
= foreach R[é] do CVJL Go (W) 1 7{D (¥) | D €

= G(W) I r{D{¥) | DeD}

e Step. GG = foreach R[C] do Gy ; G5 and

G | D = foreach R[C] do (G; [ D) ;

(G2 17D) and r ¢ R

(Lem. VII.3.6:10)
(Fig. VIL7.3)

1 .
D € D} {C: () 17{D () | D € D}/cont}

(Fig. VIL7.3)

= DY G2 () [ r{D () | D € D} /cont)

(Step = Fig. VIIL.8.2a)
(Fig. VIL7.3)

(Step)
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Conclude:
(G D) ()
— foreach R[C] do (G4 | rD); (G | rD) (1) (Step)
— foreach R[C (¥)] do (G [ rD) {(¥); ((Ga [ D) (¥) (Fig. VILT7.3)
— foreach R[C ()] do . 3 (A2 = Induction)
(G ) 1r{D (w) | D € D} (G2 (@) Im{D () | D € D})
= foreach R[C ()] do (G1 (V) ; (G2 (v) [r{D () | D € D}  (Step = Fig. VIL.8.2a)
= foreach R[C] do Gy ; Go (¥) [ r{D () | D € D} (Fig. VIL.7.3)
= G ) I7{D ()| D eD} (Step)

e Step. G =rec X Gx and G | rD =rec X (Gx | rD)

Conclude:
(G 1+D) (w)
= rec X (Gyx [ rD) {(v) (Step)
= rec X ((Gx [ D) (¥)) i (Fig. VIL7.3)
= rec X ((?X () Tr D:<<¢>> | D:e 15}) (A2 = Induction)
= rec X (VGX (¥N) [rQ{D () | D EVD} (Fig. VIL.8.2a)
=rec X Gy <§¢>> [r{l:) <<w>v> | D € D} (Fig. VIL.7.3)
= G() I{D(¥) | D € D} (Step)
QED.
Proof of (2)
e Al. (G.rD) e dom|
o A2, W'Ffﬂ%é)
e A3. ac [D] for-all DeD
e A4, o ¢ [D] for-all D € ivals(r,G)\ D
By induction on Al (Fig. VII.8.2a):
e Base. G = X and G‘[rf):X
Conclude:
[(G11D) ({self = a})]
= [X {({self — a}))] (Base)
= [X] (Fig. VIL7.3)
_x (Fig. VIL7.6)
= X | rlal (Fig. VIL.5.2)
= [[)f']] [ r]al (Fig. VIL.7.6)
= [G] Ir[d] (Base)
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e Step. G = i@ ] = rofzo] {4 . éi}ie] and

Co

G [7"15:7’2[:162] '{gz.él

e B1. Conclude:

Wi 2 (G)

impl. Wf ¢ y(r1[z1] = rafzs] < {4; . éi}iel)

impl.

W1 (G;) for-all i€ [

e B2. Conclude:
a ¢ [D] for-all D € ivals(r,G) \ D

impl. o ¢ [D] for-all D € ivals(r[z] = ro[zs] : {l; . Gi}ics) \ D

impl.
impl.

impl.
impl.
impl.

impl.

a ¢ [D]

for-all D e ({E..E | r[E]

a ¢ [D]

184

[Tﬁ}ie[ and 7y =7 #7ry and x..14 D

(A1)
(Step)
(Fig. VIL7.4)

(A4)

(Step)
(Fig. VIL7.2)

€ {ri[z1], rafz2]} } U U {ivals(r, CA?Z) |iel}) \15

for-all D € ({E..E | r[E] € {r[z1], ma[x2]}} \ D) U

e B3. Conclude:

impl.
impl.
impl.
impl.

impl.

a € [D] for-all D e D
a€ [zy..71]

a € falfn] 2a=[nl}
a € {[:]}

a =[]

rla] = m{[=]

e B4. Conclude:

impl.

nclude:
[(G

[ra[z]

[rales ({self — a})] 1{C; .
{

r £ T
rla] # ro[[x2]]

D) <<{Self = ap)l
i 1 7DYicr ({self — a}))

(@-

ra([z2 ({self = a})]) {4 . [(Gi
ro[[w2 ({self — a})]] 1H{¢: . [[G]]

raf[wa]] 1 {6 . [Gi] T r <
ri[[z1]] = ro[[22]] 3%‘; [Gill bier
[[7”1[$1]—°7”2[$2] :{gi . Gi}iel]]
[ 7a]

[T

[al}ier
[ rla]

a ¢ [D] for-all D e (Uf{ivals(r,G;) | i e I})\ D

a ¢ [D] for-all D e U({ivals(r,G;) | i € I} \ D)

a ¢ [D] for-all D e U{ivals(r,G;)\ D |i € I}

[a ¢ [D] for-all D € ivals(r, G;) \15} for-all i ¢ [

]
) ({{self > a})) bier]
rD) ({self = a})]}ier
[ [Yier

| r[a]

)

((U{ivals(r, G;) | i € I}) \ D)

)
)
)
)

(A3)

(Step)

(Fig. VIL.3.4)
(Fig. VIL.2.1:2)
)

)

(Step

(Step)
(-)

(Step

(Fig. VIL7.3

(Fig. VIL7.6

(B1, A3, B2 = Induction
(Lem. VIL.3.6:11

(B3, B4 = Fig. VIL.5.2
(Fig. VIL.7.6

(Step

)
)
)
)
)
)
)
)
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e Step. G = i@ ] = rofzo] {4 . éi}ie] and

Co

G r?"f) = 7’1[1’1]?{&' . éz

e C1. Conclude:

Wi 2 (G)

impl. Wf ¢ y(r1[z1] = rafze] < {4; . éi}iel)

impl.

W x(G;) for-all i€ [

e C2. Conclude:
a ¢ [D] for-all D € ivals(r,G) \ D

impl. o ¢ [D] for-all D € ivals(r[z] = ro[zs] : {l; . Gi}ics) \ D

impl.
impl.

impl.
impl.
impl.

impl.

a ¢ [D]

for-all D e ({E..E | r[E]

a ¢ [D]

185

[Tﬁ}ie[ and 7y #7r =1y and 5..x9 D

(A1)
(Step)
(Fig. VIL7.4)

(A4)

(Step)
(Fig. VIL7.2)

€ {ri[z1], rafz2]} } U U {ivals(r, él) |iel}) \15

for-all D € ({E..E | r[E] € {r[z1], m2[x2]}} \ D) U

e C3. Conclude:

impl.
impl.
impl.
impl.

impl.

a € [D] for-all D e D
a € [za..25]

a € f{al ] 2 a =[]}
a € {[x2]}

a = [xo]

rla] = rof[z]]

e C4. Conclude:

impl.

nclude:

(G

r#r
rla] # r[[x1]]

D) ({self — a})]
[[7’1[(131] 7{& . G

[r1]z1 ({self — a} )] 2{¢; .
{

(G i

riffzr ({self = a})]] ?{4; - [[(
ri[fr ({self — a})]]?{¢; . [[G]]

rif[za]) 2 {6 . [Gi] T r <
ri[[z1]] = ro[[22]] 3%‘; [Gill bier
[[7”1[$1]—°7”2[$2] :{gi . Gi}iel]]
[ 7a]

[CT

[al}ier
[ rla]

a ¢ [D] for-all D e (U{ivals(r,G;) | i e I})\ D

a ¢ [D] for-all D e U({ivals(r,G;) | i € I} \ D)

a ¢ [D] for-all D e U{ivals(r,G;)\ D |i € I}

[a ¢ [D] for-all D € ivals(r, G;) \15} for-all i ¢ [

| rD}ier <<{Self = a}))

]
) ({{self > a})) bier]
rD) ({self — a})]}ies
[ [Yier

| r[a]

)

((U{ivals(r, G;) | i € I}) \ D)

)
)
)
)

(A3)

(Step)

(Fig. VIL.3.4)
(Fig. VIL.2.1:2)
)

)

(Step

(Step)
(-)

(Step

(Fig. VIL7.3

(Fig. VIL7.6

(C1, A3, C2 = Induction
(Lem. VIL.3.6:11

(C3, C4 = Fig. VIL5.2
(Fig. VILT.6

(Step

)
)
)
)
)
)
)
)
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® Step G = 7’1[1’1]—97”2[272] Z{gl . éi}ié] and G [rﬁ = I_l{él rrﬁ}ief and (&1 ?é r 7A T2

e D1. Conclude:

Wf; 2(G) (A1)
impl Wfﬁ){(?”l [l’ ]—>T‘2 [I‘Q] {61 . Gi}ie[) (Step)
impl. Wf; v(G,) for-all i € [ (Fig. VIL.7.4)

e D2. Conclude:

a ¢ [D] for-all D € ivals(r,G) \ D (A4)
impl. a ¢ [D] for-all D € ivals(ry[xy] = ro[zo] :{l; . Gi}icr) \ D (Step)
impl. o ¢ [D] (Fig. VIL.7.2)

for-all D € ({E..E | r[E] € {ri[z1], ra[z2]}} UU {ivals(r,G;) | i € I})\ D
impl. a ¢ [D] ()

for-all D e ({E..E | r[E] € {ri[z1],r]xs]}} \ D) U (U {ivals(r, G;) | i € I}) \ D)
impl. o ¢ [D] for-all D e (U{ivals(r,G;) |i e I})\ D (
impl. a ¢ [D] for-all D e U({ivals(r,G;) | i € I} \ D) (-)
impl. o ¢ [D] for-all D e {ivals(r,G;)\ D |i eI} (-)
impl. [a ¢ [D] for-all D e ivals(r, G;) \15} for-all i €1 -)

e D3. Conclude:

rLFET T (Step)

impl. 7y [[1]] # rla] # ra[[]] ()
Conclude:

[(G 11D) ({selt — a})]

= [(MHG: 1 mD}ier) ({self = a})] (Step)

= [[H{(G: I rD) ({serf — a})}ic/] (Thm. VIL8.1)

= [HI(G: 1 D) ({self = a})}ier (Thm. VIL8.2)

= H{[[G]] [ rlal}ier (D1, A3, D2 = Induction)

= 11[[z1]] = ra[[x2]] : {&A- [Gil}ier I 7]al (D3 = Fig. VIL5.2)

= [rizi] = rofza] : {li . Gi}ier] | ld] (Fig. VIL.7.6)

= [G] 1 r[al (Step)

e Step. GG = foreach R[C] do G; ; G, and . )
G | D = (foreach R[C] do Gy ; cont | r[{Z:D € C'| D € D}]){G, | rD/cont} and
recR

e E1. Conclude:

(z:DeC|DeD}cC ~ i (-)
impl. C ={3:DeC|DeD}u(C\{2:DeC|DeD}) )
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e E2. Conclude:

A

(foreach R[C] do (' ; cont,r[{z:D € C'| D € D}]) € dom | (Step)
impl. (foreach R[{? Nf) eC|DeDyu(C\{2:DeC|DecD})do G ;cont, (El)
r[{z:D e C'| D € D}]) € dom |
e E3. Conclude:
Wi () (A1)
impl. Wf; y(foreach R[C] do G, ; Gs) (Step)
impl. fU{7 —vars(C) |7 € R}:R—2% and C' € v and (Fig. VIL.7.4)

expr Gy N Grec = 0 and WI fUisvars(c )|F€R},{cont}(Gl> and Wf; v (G>)
E4. Conclude:

Wfo{FHvarSSC’)|F6R},{cont}(é) (E3)
impl. Wff,{cont}(G) (Lem. VH.7.5:1)
impI. Wff\{fo(f)|f€R}7{cont}(G) (Lem. VH751)

e E5. Conclude:

fU{F—vars(C) |7 e R} : R — 2% (E3)
impl. f:R — 2% )
impl. f\{F— f(F)|FeR}:R—2" -)

e E6. Conclude:
Wff\{f,_)f(f”feR}’{cont}( ~ ~ (EQ, E4, E5 = Thm. VHSS)
(foreach R[C] do Gy ;cont [ r[{z:D e C'| D € DY]) ({self — a})
e E7. Conclude:
a ¢ [D] for-all D € ivals(r,G) \ D (A4)
impl. o ¢ [D] for-all D € ivals(r, foreach R[C] do G ; G5)\ D (Step)
impl. o ¢ [D] (Step = Fig. VIL.7.2)
for-all D € (ivals(r, C) U ivals(r, Gy) Uivals(r, G3)) \ D

impl. a ¢ [D] )
for-all D € (ivals(r,C') \ D) U (ivals(r, G1) \ D) U (ivals(r, G5) \ D)

impl. [a ¢ [D] for-all D € ivals(r, )\D] and -)

[a ¢ [D] for-all D ¢ ivals(r,G1) \ D] and [a ¢ [D] for-all D € ivals(r, Go) \ D]
e E8. Conclude:

cont € {cont} )
impl. Wf; (cont) (cont) (Fig. VIL.7.4)
impl. Wf (cont) (foreach R[C] do G ; cont) (E3 = Fig. VIL.7.4)
impl. Wff,{cont}( (El)

A

eDYU(C\{3:De | DeD})do G ; cont)

-l

foreach R[{é:l:? eC|
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e E9. Conclude:

zedom[{z:D e (| DeD} (32)
impl. z:De{:2:De(|DeD} (Lem. VIL3.7:2, 3D)
impl. z2:DecC and DeD -)
impl. z:D e C and a € [D] (A3)
impl. [C](z) =[D] and « € [D] (Lem. VIL3.7:3)
impl. a € [C](2) . ) ) (=)
impl. ac [{z:DeC|DeD}u(C\{z:DeC|DeD}]z) (E1)

e E10. Conclude:

zedom[{z:D e C|DeD} (3z)
impl. z € dom[{:D e C|DeD}] and _ ) (E9)

ac[{2:DeC|DeDyuU(C\{2:DeC|DeD}()
impl. a € [{2:D e C| D e D}](z) (Lem. VIL3.7:5)

e E11. Conclude:

z:DeC and z2:D ¢ {3:DeC|DeD} (3z, 3D)
impl. z:De( and |2:D ¢ C orf)%f)] )
impl. 2:DecC and D¢ D (-)
impl. D e ivals(é) and D¢ D (Lem. VIL3.5:2)
impl. D € ivals(C) \ D )
impl. D € (ivals(C)) Uivals(r, Gy) U ivals(r, G )\ ()
impl. D € ivals(r, foreach R[C] do Gy ; G3) \ D (Step = Fig. VIL.7.2)
impl. D € ivals(r,G) \ D (Step)
impl. a ¢ [D] (A4)

e E12. Conclude:

zedom[C\{z:DeC|DeD (32)
impl. z:DeC\{2:DeC|DeD} (Lem. VIL3.7:2, 3D)
impl. z:DeC and 2:D ¢ {3:DeC|DeD} (-)
impl. z:D e C and a ¢ [D] (E11)
impl. [C](z) =[D] and a ¢ [D] (Lem. VIL3.7:3)
impl. a ¢ [[C*]](z:) L A L (=)
impl. a ¢ [{2:DeC|DeD}uU(C\{z:DeC|DeD}]z) (E1)

e E13. Conclude:

z€dom[C\{z:DeC|DeD} (32)
impl. z € dom[C'\{2:DeC|DeD}] and ) (E12)

a¢[{2:DeC|DeDyuU(C\{2:DeC|DeD}()

impl. a ¢ [C\{z:D e C|DeD}z) (Lem. VIL3.7:5)
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e E14. Conclude:
len [C] > o (E3 = Thm. VIIL.3.6)

Conclude:

[(G171D) ({self v a})]
[[((foreach R[C] do Gy ;cont | r[{z:D e C

{({self — a})] ~
= [(foreach R[C’] do Gy ;cont [ r[{z:D e C | D € D}]) ({self — a}) (Thm. VIL.7.1)

{(G2 11D) ({self ~ a}))/cont}]
— [(foreach R[C] do G ; cont [ r[{z:D e (|

D e DY) {Gs | D/cont)) (Step)

»

@n

D}]) ({self — a})]
(E6 = Thm. VIL7.4)

{[(Go I D) ({self > a}))]/cont} )
— [(foreach R[C] do G ; cont [ r[{z:D € C'| D € D}]) ({self — a})]

{[G5] I r[a]/cont} (E3, A3, E7 = Induction)
— ([foreach R[C] do G, ; cont] | r[a]) (E2, E8, E10, E13, Step = Thm. VIL.8.9:2)

{[G>] I r[a]/cont}
— [foreach R[C] do G, ; cont] {[G.]/cont} [ r[d] (Thm. VIL.5.2)
— iter([G1], [eont], R, [C]) {[G2] /cont} | 7[a] (Fig. VIL.7.6)
— iter([G4], cont, R, [C]) {[G2] /cont} | r[a] (Fig. VIL7.6)
= iter([G4], [Ga], R, [C]) | 7[a] (E14 = Lem. VIL6.2:2)
— [foreach R[C] do Gy ; Gy | r[a] (Fig. VIL.7.6)
= [G] 1 r[al (Step)

e Step. (G = foreach R[C] do G; ; G2 and
G | rD = foreach R[C] do (Gy [ rD); (G 1 +D) and r ¢ R

e F1. Conclude:

Wi x(G) (A1)
impl. Wf; y(foreach R[C] do G ; G) (Step)
impl. C e v and Wffu{vaars(@)‘;GR}’{CO,“}(él) and Wfﬁx(ég) (Fig. VIL.7.4)

e F2. Conclude:

a ¢ [D] for-all D € ivals(r,G) \ D (A4)
impl. o ¢ [D] for-all D € ivals(r, foreach R[C] do G ; G2) \ D (Step)
impl. o ¢ [D] for-all D € (ivals(r, G;) Uivals(r, G3)) \ D (Step = Fig. VIL.7.2)
impl. a ¢ [D] for-all D e (ivals(r, Gl) \ D) U (ivals(r, G) \ D) (-)
impl. {a ¢ [D] for-all D e ivals(r, G )\ZA)} and -)

a ¢ [D] for-all D € ivals(r, Go) \ D]



VIII.48 PROOF OF THEOREM VII.8.10 190

e F3. Conclude:

len [C] > o (F1 = Thm. VIL3.6)

Conclude:

[(G1+D) ({self — a})]
= [foreach R[C’] do (G [rD); (Gy | rD) ({self — a}))] (Step)

= [foreach R[ ({self — a}))] do (Fig. VIL.7.3)
((G117D) ({self = a})); ((Go 11D) ({self — a}))]

= iter( (Fig. VIL.7.6)
[(G1 TrD) ({self — a}D], [(Ga I D) ({self s a})], R, [C ({self — a})])

= iter([G4] | r[a], [G2] | r[a), R, [C ( elf — al)]) (F1, A3, F2 = Induction)

= iter([G4] | 7[a], [G2] | 7[a], R, [C]) (Lem. VIIL.3.6:4)

= iter([G4], [Ga], R, [C]) | r[a] (F3, Step = Thm. VIL.6.11)

— [foreach R[C] do Gy ; Gy | 7[a] (Fig. VIL.7.6)

= [G] 1 r[al (Step)

e Step. G =rec X Gx and G |rD =rec X (Gx | rD)

e G1. Conclude:

Wi x(G) (A1)
impl. Wf; x(rec X Gx) (Step)
impl. Wf; vuixy (Gx) (Fig. VIL7.4)

e G2. Conclude:

a ¢ [D] for-all D € ivals(r,G) \ D (A4)
impl. o ¢ [D] for-all D € ivals(r,rec X Gx)\ D (Step)
impl. a ¢ [D] for-all D € ivals(r,Gx)\ D (Fig. VIL7.2)

Conclude:
[(G1rD) <<{Self = a})]
= [rec X (Gx ) ({self — a})] (Step)
= [rec X ((Gx | rD) (({self — a}))] (Fig. VIL.7.3)
= rec X [(Gx | rD) ({self — a})] (Fig. VIL.7.6)
= rec X ([Gx] | rla]) (G1, A3, G2 = Induction)
= rec X [Gx] | r[a] (Fig. VIL5.2)
= [rec X Gx] | rla] (Fig. VIL7.6)
= [C] 170 (Ste)

QED.
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