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ABSTRACT

This paper explores the challenges posed by modern chiplet-based
CPU architectures in the context of sorting algorithms, a funda-
mental component of many computer science applications. We
highlight how the heterogeneity introduced by chiplet-based pro-
cessors—including varying access times to partitioned L3 caches,
inter-core latencies, and bandwidths—can lead to suboptimal per-
formance when using traditional sorting algorithms that assume
uniform memory access and consistent processor performance.

To address these issues, we propose a set of chiplet-aware opti-
mizations designed to enhance the e�ciency of memory-intensive
sorting algorithms on these modern architectures. Our approach
includes four key strategies: (1) partitioning input data at a chiplet-
level granularity to minimize inter-chiplet communication and
balance the computational load, (2) extending the memory hier-
archy phase to account for distinct L3 cache partitions, (3) sched-
uling tasks based on data size relative to local and combined L3
cache capacities, and (4) avoiding expensive data shu�ing. We pro-
vide a comprehensive analysis of chiplet architectures and detail
chiplet-aware implementations of LSB Radix-Sort and Comparison
Sort. Our evaluation demonstrates that chiplet-conscious sorting
algorithms can enhance performance by up to 4.5× compared to
NUMA-aware approaches.
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1 INTRODUCTION

Sorting algorithms are essential in computer science, supporting
critical operations in many applications. Their e�ciency greatly
a�ects the performance of systems that handle large volumes of
data. Traditionally, these algorithms have been designed with the
assumption of uniformmemory access and consistent processor per-
formance within a single NUMA domain. However, this assumption
is becoming outdated with the widespread deployment of modern
chiplet-based CPUs.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment. ISSN 2150-8097.

1M Tuples 10M Tuples 100M Tuples 1B Tuples

0.0

0.5

1.0

1.5

2.0

S
p
ee
d
u
p
o
v
er

N
U
M
A
-a
w
ar
e

16 Bit 32 Bit 64 Bit

(a) LSB Radix-Sort.
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(b) Comparison-Sort.

Fig. 1: Speedup of chiplet-aware sorting algorithm compared to

NUMA-aware sorting algorithms for varying input array sizes and

integer widths (16-bit, 32-bit, and 64-bit integers).

Chiplet-based architectures present a recent technological ad-
vancement embraced by leading processor manufacturers. They
consist of several smaller chips, known as chiplets, which are in-
terconnected via a high-bandwidth fabric to function cohesively
as a uni�ed multi-core CPU. This modular approach not only al-
lows for easier scaling to more cores in a single package but also
facilitates the integration of di�erent technologies and improves
manufacturing yields.

From a software perspective, one downside is that chiplet-based
processors introduce new heterogeneities. For example, chiplet-
based processors exhibit di�erent (1) access times to partitioned
L3 caches across chiplets, (2) inter-core latencies, and (3) inter-
core bandwidths. Unfortunately, this heterogeneity has not yet
been properly accounted for in the software stack and hardware-
conscious algorithm design. For instance, current parallel sorting
algorithms are generally chiplet-agnostic, which can lead to subop-
timal CPU utilization, particularly when task distribution and data
partitioning do not align with the chiplet topology.

Heterogeneity in data access latencies and interconnect band-
width was �rst addressed in the context of NUMA systems. Prior
work demonstrated the bene�ts of allocating tasks to the core where
the data is located, therebyminimizing the overhead of remotemem-
ory accesses (e.g., shorter latencies, higher local NUMA bandwidth,
less congestion on the interconnect, etc.). In contrast to NUMA,
which o�ers uniform e�ciency within each socket, chiplet-based
CPUs partition the L3 cache at a NUMA level, where each chiplet
(and all associated cores) shares a partition. In this scenario, restrict-
ing tasks to a single chiplet’s cores, as with NUMA, can improve
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Fig. 2: Core-to-core latency and architectural components of an AMD

Ryzen CPU.

cache e�ciency but also limits access to other chiplets’ L3 caches,
reducing total cache size and increasing the time to access data from
main memory when it exceeds local cache capacity. This trade-o�
becomes more signi�cant with multiple chiplets in a single NUMA
node, i.e., with a reduced core count relative to a full NUMA domain.

In this paper, we propose chiplet-aware optimizations that can
signi�cantly enhance the e�ciency of memory-intensive sorting
algorithms:

(1) Partition input data at a chiplet-level granularity:Distribut-
ing data partitions with chiplet awareness can improve sorting
performance for widely used algorithms. This alignment minimizes
inter-chiplet communication and balances the computational load.

(2) Extend memory hierarchy phase:We recommend extending
the memory hierarchy to account for the partitions of the L3 cache
within chiplet-based CPUs. Speci�cally, extending the in-cache sort-
ing phase can enhance cache e�ciency, promote a more balanced
workload distribution, and minimize cache coherence tra�c.

(3) Schedule tasks based on data size: Task-to-core assignment
should be based on the relative data size compared to the local
and combined L3 cache sizes. When the input data size is smaller
than the capacity of the local L3 partition of a single chiplet, the
algorithm should assign the task to the cores within a single chiplet.
When the data size is larger than the "chiplet-local" L3 cache size
but smaller than the combined size of all chiplets’ L3 caches, the
algorithm should distribute the tasks across a selected group of
cores from all the chiplets.

(4) Avoid expensive data shu�ling:.We recommend avoiding
data shu�ing between NUMA nodes, as it can increase inter-chiplet
communication and reduce performance.

Our chiplet-aware approach demonstrates notable improvements
over traditional NUMA-aware algorithms, achieving up to a 2×
increase in Radix-Sort performance and up to a 4.5× enhancement
in Comparison-Sort (see Fig. 1).

The rest of the paper is structured as follows:
• We provide background on chiplet architectures, analyze their

challenges, and o�er insights into their performance traits (§2).
• We propose an expansion of the memory hierarchy to account

for the e�ects of a partitioned L3 cache (§3).
• We outline a series of chiplet-aware optimizations, focusing

on hardware-conscious implementations of LSB Radix-Sort and
Comparison-Sort (§4).

• We evaluate the impact of our optimizations across di�erent data
input sizes and distributions (§5).

2 BACKGROUND

2.1 Hardware-aware sorting

Rapid advancements in modern hardware have always provided
fertile ground for academics and researchers to explore how to ad-
just algorithms and data structures to best leverage the underlying
hardware capabilities [3, 10, 28, 39]. Sorting, as one of the most
relevant and computationally expensive operations, has particu-
larly attracted attention. For instance, prior work has explored the
use of SIMD data parallelism, cache/memory-aware strategies, and
NUMA optimizations [15, 22, 23, 27, 28, 41]. Here, we provide a
brief overview of each category of optimizations.

SIMD data parallelism. Inoue et al.’s AA-Sort combines SIMD
and thread-level parallelism to optimize data alignment on Pow-
erPC and Cell processors[22]. Gedik et al. developed an e�cient
SIMD-based sorting algorithm for the Cell processor using bitonic
sorting[20]. Chhugani et al. extended these techniques to x86 pro-
cessors with a multi-core SIMD implementation, though it was
initially limited by the hardware [15]. Satish et al. found that SIMD
merge sort excels with larger keys and will bene�t from future
hardware improvements[41].

Cache-aware strategies. Cache-conscious approaches also make
a signi�cant di�erence. LaMarca and Ladner analyzed sorting al-
gorithms in terms of cache misses and instructions and proposed
cache-aware variants of Mergesort that better utilize L1 and L2
caches [27]. Their memory-tuned algorithms are often used as
a reference for comparing sorting algorithms. Since then, several
cache-tuned implementations for well-known algorithms have been
developed, such as CC-Radix by Jiménez-González et al.[23]. Bender
et al. studied cache-oblivious algorithms, which are e�cient across
all levels of the memory hierarchy without knowing the cache pa-
rameters, and presented a cache-oblivious sorting algorithm called
Funnelsort[14].

NUMA optimizations. Several research e�orts have explored
NUMA-aware algorithms for operations such as sorting, joins, and
data shu�ing. Albutiu et al. presented a NUMA-aware design for
sort-merge join algorithms on multi-core NUMA systems, which
avoids cross-tra�c between NUMA nodes during the sorting and
merging phases, thereby improving performance [7]. They also
advocate for sequential accesses to remote memory, as hardware
prefetching can hide latency. Li et al. studied the data shu�ing
problem on NUMA architectures [28], demonstrating that a naïve
shu�ing implementation can be up to three times slower than a
NUMA-aware approach that exploits thread binding, NUMA-aware
memory allocation, and thread coordination. To prevent imbalanced
use of the NUMA layer, where all transfers are directed to a subset
of CPUs, they propose pre-scheduling the transfers and supervising
them through synchronization to ensure load balancing.

2.2 Chiplets

Chiplet-based processors di�er from monolithic integrated circuits
by using a modular approach, integrating multiple smaller semi-
conductor dies, known as chiplets, onto a single package or sub-
strate to form a functional unit. This innovative design has been
adopted by all major hardware vendors, including AMD, Intel, and
ARM [1, 30, 32, 34].

2



3200153676838419296482412631.50.8
Data Size [MB] - Log Scale

0

50

100

150

200

250

300

350

400

B
an
d
w
id
th

[G
B
/s
]

Chiplet_Local
Chiplet_Mixed
Chiplet L3 cache size
Total L3 cache size

Fig. 3: STREAM Benchmark with a single process running 8 threads

on an 8-chiplet AMD EPYC Milan 7713.

A key architectural feature of these chiplet processors, partic-
ularly from a database perspective, is the shift from a uni�ed L3
cache to a partitioned L3 cache, where each chiplet has its own
dedicated L3 cache segment. We argue that this partitioning of the
L3 cache can have signi�cant implications for the performance and
e�ciency of memory-intensive workloads such as sorting, which
is the core focus of this work.

Chiplet-based CPUs introduce new types of heterogeneity: (1)
they exhibit varying access times to partitioned L3 caches across
chiplets, (2) they have diverse inter-core latencies, and (3) they
possess di�erent inter-core bandwidths. For instance, Fig. 2 shows
the core-to-core latency of a dual-socket processor (with each socket
enclosed in a blue box). In this case, inter-core latency can vary by
up to 6× within the same CPU socket. This heterogeneity a�ects
the performance of parallel processing tasks, extending beyond the
challenges posed by traditional NUMA architectures [5, 19, 24, 39].

2.3 Challenges: NUMA vs. Chiplets

Workloads running on NUMA architectures can su�er from per-
formance issues when non-local memory is frequently accessed.
NUMA-agnostic programs can experience higher latency and incur
bottlenecks on a particular NUMA node or the shared interconnect.
These problems are often mitigated through advanced software
and operating system support that optimizes memory allocation
and access patterns [3, 11, 13, 26, 35], or through techniques like
memory replication and migration. Note that for many of these
techniques, the emphasis is on memory allocation (or migration),
which can either be triggered and controlled by the user (i.e., via a
user space library like libnuma [6]) or done transparently by the
operating system.

Unfortunately, standard NUMA optimizations cannot address
the heterogeneity introduced by chiplet architectures. This limita-
tion is particularly evident when dealing with the partitioned L3
cache. While Intel has introduced Cache Allocation Technology
(CAT) for cache partitioning and isolation, this functionality has
speci�c constraints [4]. Intel’s CAT allows the partitioning of the
last-level cache into di�erent regions, which can then be allocated
to speci�c cores or groups of cores, known as Classes of Service
(COS). This partitioning helps isolate cache usage between di�erent
applications or processes running on the same processor, thereby
reducing cache contention and improving performance determin-
ism. However, CAT does not provide a mechanism to allocate data
directly to a speci�c chiplet’s cache. CAT can be bene�cial if the

working set size is known and the appropriate number of cache
ways needed for a chiplet can be determined in advance. If this is
not the case, access to multiple chiplet caches may be required, but
data allocation to these caches is managed by the hardware’s cache
coherence protocols rather than by CAT, potentially leading to im-
balance and high inter-chiplet communication. Therefore, while
CAT can partition the cache to improve isolation and performance
within a single chiplet, it cannot be used to direct data to a speci�c
chiplet’s L3 cache.

This means that the options are either to adapt the structure of
the algorithm and its read/write access patterns or to assign tasks
speci�cally to a core within the chiplet with the desired cache. If we
resort to the latter option, we must be careful of the trade-o�s when
working with the partitioned L3 cache. Assigning tasks that share a
chiplet-local portion of the L3 may bene�t from higher bandwidth
and lower latency, but the data needs to �t into a smaller cache area.
Alternatively, leveraging the full L3 capacity requires more careful
access management, as it incurs inter-chiplet communication and
potential overhead. Furthermore, if tasks are allowed to span across
multiple chiplets, data can be fetched from one chiplet to another;
however, if tasks are restricted to a single chiplet, they cannot access
data from other remote chiplets.

Fig. 3 shows the bandwidth achieved during the STREAM bench-
mark for various data sizes. It compares the performance of using 8
cores from a single chiplet (Chiplet_Local) with using 8 cores from
8 di�erent chiplets (Chiplet_Mixed). We observe that Chiplet_Local
achieves higher bandwidth than Chiplet_Mixed until the array size
reaches 32 MB, which is the single chiplet’s L3 capacity. This is
because Chiplet_Local avoids inter-chiplet communication. How-
ever, for larger array sizes, Chiplet_Local’s bandwidth suddenly
drops, as it needs to fetch data from the main memory. In contrast,
Chiplet_Mixed shows more stable bandwidth due to its ability to
leverage the total capacity of the L3 caches from all chiplets. Be-
yond this point, Chiplet_Mixed’s bandwidth also declines. Based
on these results, directing tasks to speci�c core subsets presents a
trade-o� in chiplet-based architectures. On one hand, it reduces the
available L3 cache; on the other hand, this approach can increase
the aggregate bandwidth.

3 CACHE CONSCIOUS SORT

3.1 Sorting and the memory hierarchy

Modern hardware memory hierarchies necessitate dividing the
sorting algorithm into distinct phases to enhance cache e�ciency:

(i) in-register handles runs that �t within the (SIMD) CPU reg-
isters;

(ii) in-cache includes runs that are con�ned to the CPU’s L3
cache;

(iii) out-of-cache is for runs that exceed cache capacities.

With thewidespread adoption of chiplet-based processors, where
the L3 cache is partitioned, we argue that phase (ii) should be di-
vided into two new phases: in-local-chiplet-cache and in-remote-

chiplet-cache.
The in-local-chiplet-cache phase includes sorting runs that �t

within the cache of a single chiplet, thereby leveraging both the
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low access latency and high bandwidth of local caches to provide
superior performance.

The in-remote-chiplet-cache phase handles sorting when the data
size exceeds a single chiplet’s cache capacity but remains smaller
than the total combined L3 cache across all chiplets. This phasemust
account for the higher latencies and potential slowdown associated
with inter-chiplet data transfers. E�ective strategies for this phase
include optimizing data distribution and access patterns to ensure
balanced workload distribution across the chiplets and to minimize
inter-core tra�c.

3.2 Aggregate bandwidth on chiplet CPUs

In traditional NUMA architectures, sorting algorithms typically
divide the data into equal partitions, with each partition allocated
to a distinct NUMA node. Threads responsible for sorting these
partitions are then assigned to cores within the same NUMA node,
thereby maximizing memory locality and minimizing latency.

With chiplet CPUs, the strategy of dividing the dataset into equal
partitions still holds; however, data needs to be divided into parti-
tions corresponding to the number of chiplets to provide su�cient
cache for the sorting bu�ers. The associated sorting threads are
then assigned to speci�c cores within the chiplet responsible for the
corresponding partition. This ensures that the sorting algorithm
fully utilizes the chiplet’s local cache and minimizes the need for
data transfers between chiplets.

Operating sorting threads in a shared-nothing mode also results
in improved aggregate bandwidth. To verify this, we measured the
aggregatememory bandwidth of an AMDEPYCMilan chiplet-based
processor. We use the STREAM benchmark [31] to measure sus-
tainable memory bandwidth by performing simple operations on
stored arrays of data. Speci�cally, we focus on the COPY function,
which copies the contents of one array to another, using a direct
memory-to-memory data transfer implemented via a loop-based
copy operation. We vary the number of processes used, ranging
from a single process that uses all available resources to multiple
processes bound to speci�c chiplets or NUMA domains. Each pro-
cess runs the STREAM benchmark and spawns multiple threads,
which are restricted to the resources allocated to that process. For
each con�guration, all processes are initiated simultaneously, en-
suring that the total data array size is consistently and evenly
distributed among the processes.

The measured aggregate memory bandwidth for a dual-socket
AMD EPYC Milan processor system, featuring 16 chiplets with 8
cores and 32 MB of L3 cache each, is illustrated in Fig. 4. It shows
how aggregate bandwidth varies with increasing array sizes across
di�erent process con�gurations. The system achieves peak perfor-
mance of approximately 7 TB/s when the data for each process �ts
within the L2 cache, using a con�guration of one shared-nothing
process per chiplet. This observed peak closely aligns with the
theoretical maximum L2 bandwidth of around 8 TB/s, calculated
from the measured per-core L2 cache bandwidth of 63.7 GB/s mul-
tiplied by 128 cores [44]. As the data size increases beyond L2 cache
capacity, there is a transition to L3 cache utilization. Here, the one-
process-per-chiplet con�guration maintains superior performance,
reaching 4.8 TB/s for data sizes approaching the total L3 cache
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Fig. 4: STREAM Benchmark for aggregate memory bandwidth of an

dual-socket 16-chiplet AMD EPYC Milan 7713.

size. This outperforms the NUMA-aware con�guration (one pro-
cess per NUMA node), which achieves 3.6 TB/s in the same range.
The theoretical maximum L3 bandwidth is approximately 5.8 TB/s,
based on a single-core L3 read speed of 46 GB/s [44]. Notably, the
shared-nothing approach with one process per chiplet consistently
outperforms the NUMA-aware con�guration across various data
sizes. Additionally, the eight-process per NUMA con�guration uses
the same number of processes as the one-process per chiplet con�g-
uration (16 processes). However, unlike the chiplet-based approach,
each process in the NUMA con�guration can access all resources
(chiplets, caches, and main memory) within its assigned NUMA
node. This shared access leads to signi�cant resource contention,
substantially reducing the achievable bandwidth despite having the
same number of processes. This performance di�erence highlights
the bene�ts of distributing workloads among chiplets and maxi-
mizing cache locality, resulting in signi�cantly improved aggregate
bandwidth.

4 IMPLEMENTATION

In this section, we present two chiplet-aware implementations
of hardware-conscious sorting algorithms. Speci�cally, we imple-
mented a stable least-signi�cant-bit (LSB) Radix-Sort and a Comparison-
Sort based on range partitioning, building on the implementations
from Polychroniou et al.[2, 38]. Additionally, we discuss our chiplet-
aware scheduling strategy and the optimizations we applied.

Following common practices, we operate on �xed-length keys
and payloads. In read-only workloads typical of data analytics, more
complex data types can be encoded into compact integer types that
maintain key order. Keys and payloads are stored in separate arrays,
as is typical in column-store analytical databases.

In our implementations, we adopt a shared-nothing, load-balanced
partitioning strategy that disregards NUMA boundaries. This elim-
inates the need for separate sampling and histogram generation
for each NUMA node, as well as the subsequent aggregation of
these histograms. Our NUMA-oblivious (chiplet-aware) partition-
ing method performs better than the conventional two-step process,
which involves shared-nothing NUMA-aware partitioning followed
by NUMA shu�ing.

4.1 LSB Radix-Sort

We propose a stable, chiplet-aware least-signi�cant-bit (LSB) radix
sort that utilizes multiple threads. As in prior work, we leverage
SIMD instructions during histogram creation and partitioning to
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enable parallel processing of multiple data elements with a single
instruction. The algorithm generally consists of six steps:

Step 1. Previous methods e�ciently partition data by sampling a
subset of keys to determine partition delimiters. This step is impor-
tant for creating balanced partitions in radix sort and aids in data
shu�ing.
Our optimization:We eliminate the need for sampling by parti-

tioning the input data based on the level of parallelism.

Step 2. Prior work splits the input data into large segments bound
to NUMA regions [38].
Our optimization:We bind each thread to a speci�c core within

a chiplet, enabling access to local chiplet caches. Our thread sched-
uling strategy considers input data size, chiplet’s L3 share size,
required parallelism, and the number of chiplets. We provide more
details in §4.4.

Step 3. Each thread creates a histogram for its chunk of data. A
histogram is an array where each index corresponds to a range of
keys, and the value at each index is the count of keys that fall into
that range.

Step 4. Based on the local histograms, each thread partitions its
data into bu�ers allocated within the local NUMA node.
Our optimization: We keep the bu�ers primarily within the local
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Fig. 6: Chiplet-aware LSB Radix-Sort step by step execution.

chiplet cache.

Step 5. After the partitioning phase, previous methods may shu�e
data to balance the load among the NUMA domains.
Our optimization: We avoid data shu�ing, thereby preventing

the overhead associated with frequent data transfers, including
those between chiplets.

Step 6. The histogram creation and partitioning steps are repeated
as necessary based on the number of sorting bits. This is done in
multiple passes if the number of sorting bits requires it.
Our optimization:We dynamically adjust the number of passes

based on the input array size.

Finally, by executing a pre�x sum of all individual histograms,
we ensure that each partition output is written to a distinct location.
The �nal output is then a concatenation of segments of sorted data.

4.2 Comparison-Sort

The algorithmwe propose is comparison-based and resembles radix-
sort but, instead of using radix, it employs range partitioning [38].
As with the Radix-Sort, we leverage SIMD instructions during the
histogram creation phase and the sorting phase. The algorithm
determines how many range partitioning passes are needed to split
the data into smaller parts that can �t in the cache. To calculate the
range function, prior work uses a specialized index in the cache.
Alongside building the histogram, the range partition for each
tuple is then stored in this index to avoid recalculating it later.
We maintain the same approach to improve the cache usage. The
algorithm consists of six steps:

Step 1. Previous methods randomly sample a subset of keys from
the dataset to estimate the distribution of keys. They use these
samples to determine partition boundaries, which are then used to
divide the dataset into smaller chunks that �t better in cache and
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Tab. 1: Data shu�ling times of NUMA-aware LSB Radix-Sort

Radix Bit 16 32 64 16 32 64

# Cores Data Shu�ing Time (ms) Sorting Time Percentage (%)

8 39 47 37 20 16 7
16 38 35 40 29 19 12
32 23 28 36 31 24 14
64 19 22 20 32 27 15

can be processed in parallel.
Our optimization:We eliminate the need for sampling by parti-

tioning the input data based on the level of parallelism.

Step 2. Schedule threads to ensure they are located within the same
NUMA node as the chunks they process.
Our optimization: As with the Radix-Sort, we initialize a thread

scheduling strategy that considers chiplet boundaries to enable
access to the local chiplet caches.

Step 3. Each thread generates a local histogram of the keys in its
assigned partition. These histograms help determine the number
of keys falling into each range.

Step 4.Calculate partition o�sets using the histograms to determine
where each bucket of keys starts in the �nal sorted array.

Step 5. After the partitioning phase, previous methods may shu�e
data to balance the number of keys among the NUMA domains.
Our optimization:We avoid data shu�ing. The data load is bal-

anced during Steps 1 and 2.

Step 6. Use a SIMD-optimized comb sort algorithm to sort keys in
parallel within each partition. The sorting is done in-place within
each partition to maintain cache locality.

After each partition is individually sorted, merge the sorted
partitions to form the �nal sorted array.

4.3 Data shu�ling vs. core a�nity

Data shu�ing and thread-to-core binding are two techniques used
in parallel computing to optimize performance. On the one hand,
data shu�ing redistributes data across di�erent processing units
to balance the workload’s data and task distribution, thereby im-
proving e�ciency.

On the other hand, using core a�nity binds threads to speci�c
CPU cores. This enables tasks to take advantage of the bene�ts
of locality and the reduced latency of the local (chiplet) cache.
While data shu�ing enhances �exibility and adaptability in dy-
namic environments, core binding o�ers stability and improved
cache performance in scenarios where tasks have predictable and
consistent workloads.

Traditional NUMA-aware algorithms often shu�e data to bal-
ance the load. Partitions are generated from the unordered input
and allocated to di�erent NUMA nodes. After creating histograms
and calculating o�sets, each partition is sorted locally within its
respective NUMA node. Finally, data is shu�ed between NUMA
nodes to achieve further balancing. Some methods attempt to en-
sure that each data item crosses NUMA boundaries only once per
pass, even if it requires reorganizing the entire array [38]. Our
approach omits the shu�ing and solely relies on binding tasks
to CPUs and chiplets from the start. This keeps processing local,
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Fig. 7: Accesses to remote chiplet cache in local and remote NUMA

nodes during 32-bit Radix-Sort with 1 billion tuples.

avoids the overhead of frequent data movement (including between
chiplets), and enhances e�ciency.

Tab. 1 shows the data shu�ing times and the percentage of time
the sorting algorithm spends on data shu�ing, categorized by the
number of cores used and di�erent radix bit sizes. The table reveals
that a signi�cant percentage of the total sorting time is devoted
to data shu�ing, with this percentage increasing as the number
of cores rises. For example, with 8 cores, data shu�ing accounts
for up to 20% of the total sorting time, while with 64 cores, this
percentage increases to 32%.

4.4 Chiplet-aware scheduling

To the best of our knowledge, no sorting algorithm accounts for the
partitioned L3 cache in modern chiplet processors. As explained
in §2.3, each chiplet is equipped with its own local partition of the
L3 cache, and fetching data from other chiplets incurs inter-chiplet
communication overhead.

Therefore, when deciding on a placement policy, the task sched-
uler must consider the available cache size, the chiplet’s share of
the L3 cache, and the working set size. If the required degree of
parallelism exceeds the number of cores in a single chiplet or if the
data size surpasses a single L3 cache but �ts within the combined
L3 caches, tasks are distributed across di�erent chiplets to opti-
mize cache usage. When the data size exceeds the total L3 cache
capacity, we ensure that cores use only local main memory to avoid
expensive remote NUMA accesses.

Fig. 7 shows the number of accesses to remote chiplet caches in
both local and remote NUMA nodes during the Radix-Sort. We mea-
sured cache and memory accesses using the libpfm library, which
allows us to monitor speci�c hardware performance events. We
tracked the ANY_DATA_CACHE_FILLS_FROM_SYSTEM event,
which captures data cache �lls from various levels of the memory
hierarchy. We further speci�ed the source of these �lls to distin-
guish between �lls from a remote chiplet in the same NUMA node
and �lls from a remote chiplet in a di�erent NUMA node. We cap-
tured all cache �lls, regardless of whether they were triggered by
demand loads or prefetch requests. Notably, the chiplet-aware ap-
proach that shu�es the data shows the highest number of accesses,
with 630 K in local NUMA and 562 K in remote NUMA. In con-
trast, the approach without data shu�ing signi�cantly reduces
these accesses to 162 K and 111 K, respectively. The NUMA-aware
strategies display intermediate results, with the variant that does
not employ data shu�ing showing an increase in remote accesses,
reaching 521 K. These �ndings suggest that data shu�ing, while
potentially bene�cial in NUMA-aware con�gurations, negatively
impacts cache usage in chiplet-aware con�gurations due to the
high number of chiplets.
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Fig. 8: LSB Radix-Sort Scalability

8 28 48 68 88 108 128

Number of cores

0.0

0.3

0.6

0.9

1.2

1.5

L
o
ca
l
M
em

o
ry

A
cc
es
se
s
[1
0
7
]

(a) 16 Bit Radix

8 28 48 68 88 108 128

Number of cores

0.0

0.5

1.0

1.5

2.0

2.5

L
o
ca
l
M
em

o
ry

A
cc
es
se
s
[1
0
7
]

(b) 32 Bit Radix

8 28 48 68 88 108 128

Number of cores

0.0

1.0

2.0

3.0

4.0

5.0

L
o
ca
l
M
em

o
ry

A
cc
es
se
s
[1
0
7
]

(c) 64 Bit Radix

Fig. 9: Radix-Sort: memory accesses when varying core counts.

The higher number of remote cache accesses for the NUMA-
aware approach without shu�ing, compared to with shu�ing, is
due to suboptimal data distribution and access patterns. Without
shu�ing, memory accesses concentrate in speci�c regions, leading
to increased contention and cache con�icts. This concentration
forces the system to fetch data from remote caches more frequently,
resulting in higher remote cache access counts.

In contrast, shu�ing in the NUMA-aware approach distributes
memory accesses more evenly across NUMA nodes. This even dis-
tribution reduces hotspots and execution time, thereby minimizing
remote cache accesses.

4.5 Further optimizations

We also applied the following optimizations:
We introduced prefetching during the histogram creation and

partitioning phases to optimize memory access patterns. We used
the following instruction:
_mm_prefetch(void* mem, _MM_HINT_T0).

Furthermore, we improved branch prediction during the parti-
tioning phase by simplifying the loop structure. Speci�cally, we
separate loops for aligned and unaligned data and minimize the
depth of nested branches. We also use the __builtin_expect
hint to inform the compiler which branches are more likely to be
taken, as the loop for misaligned data is less likely to be used.

The source code for this project is accessible via our GitHub
repository: https://github.com/Alessandro727/Chiplet-aware-sorting-
algorithms.

5 EXPERIMENTAL EVALUATION

We conducted a range of experiments to evaluate the behavior of
our approach on modern chiplet-based machines. Speci�cally, we
answer the following questions:

Q1: What is the impact of chiplet-aware optimizations on the
performance of Radix-Sort and Comparison-Sort in chiplet-
based processors? (§5.2, §5.3 and §5.4)

Q2: How do they scale with increased data size? (§5.5)
Q3: How is the performance a�ected by skew? (§5.6)

Q4: How does the performance vary with di�erent task place-
ment strategies? (§5.7)

Q5: What does the ablation study show about the relative perfor-
mance improvements of di�erent optimization strategies?
(§5.8)

5.1 Experimental setup

The experiments are conducted on a dual-socket AMD EPYC Milan
7713 processor. Each socket features 64 CPU cores, 512 GB of RAM,
and 8 chiplets, each with 32 MB of L3 cache.

The operating system is Ubuntu 23.04, and the compiler used
is GCC 12 with -O3 optimization. We utilize SSE (128-bit SIMD)
instructions on AVX registers (256-bit). Our primary focus is to an-
alyze the impact of chiplet architectures on parallel sorting, rather
than explore SIMD/AVX/AVX2 optimizations. We maintained the
use of SSE instructions, consistent with the baseline NUMA-aware
implementation, to isolate the e�ects of our chiplet-aware opti-
mizations. When comparing chiplet-aware and NUMA-aware ap-
proaches, we ensure that each approach has access to the same
hardware resources, including L3 cache and memory controllers,
allowing each implementation to manage these resources indepen-
dently.

We measured throughput in terms of GB/s (instead of tuples/s)
to account for the varying tuple sizes and the memory bandwidth
utilization of the sorting algorithm. Unless stated otherwise, the
input data is uniformly random, the experiments are conducted
with 1 billion tuples and 16 cores, and the results represent the
average of 10 executions.

5.2 Radix-Sort

Fig. 8 shows the scalability of our Radix-Sort implementation with
16-bit, 32-bit, and 64-bit keys, respectively, comparing two policies
(i.e., chiplet-aware and NUMA-aware) when varying the number
of cores. For all key sizes, the chiplet-aware policy consistently
outperforms the NUMA-aware policy. Notably, with just 32 cores,
the chiplet-aware implementation achieves a throughput of 24 GB/s,
surpassing the 16.2 GB/s achieved by the NUMA-aware approach.
This trend is also observed for the 32-bit and 64-bit keys, as shown
in Fig. 8b and Fig. 8c.

The limited scalability beyond 24 cores is due to increased con-
tention for shared cache resources. As more threads are assigned
per chiplet, each thread has access to a smaller portion of the local
cache and thus resorts to more memory accesses, becoming mem-
ory bound. We measured the algorithm’s main memory accesses
as we varied the number of cores and key sizes, and the results are
shown in Fig. 9. Notably, main memory access remains constant or
slightly increases up to 24 cores (when the scalability slows down),
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Fig. 10: Comparison-Sort Scalability

before increasing signi�cantly across all key sizes. This, in turn,
results in increased pressure on the memory subsystem.

5.3 Comparison-Sort

As with the Radix-Sort evaluation, we measure the performance
of the Comparison-Sort implementation using 16-bit, 32-bit, and
64-bit keys on both the chiplet-aware and NUMA-aware policies,
varying the core count. The results are shown in Fig. 10. In all cases,
the chiplet-aware policy demonstrates superior performance and
scalability compared to the NUMA-aware policy. For 16-bit keys,
the chiplet-aware approach achieves a peak throughput of 8.3 GB/s
at 96 cores, outperforming the NUMA-aware policy’s 6.7 GB/s at
the same core count. Overall, this translates to an average speedup
of 1.23× between 8 and 96 cores, with a maximum speedup of 1.41×.
This trend persists for 32-bit and 64-bit keys. With 32-bit keys,
we observe an average speedup of 1.40× and a maximum speedup
of 1.64×. For 64-bit keys, the chiplet-aware approach delivers an
overall speedup of 1.34× between 8 and 96 cores, peaking at 1.61×.
Additionally, we note that the NUMA-aware policy exhibits highly
variable results, which we identi�ed as being due to imperfect load
balancing within the same NUMA node.

5.4 Radix-Sort vs. Comparison-Sort:
performance comparison

The performance characteristics of Radix-Sort and Comparison-
Sort algorithms vary signi�cantly depending on the width of the
integers being sorted. For 16-bit and 32-bit integers, Radix-Sort
demonstrates superior overall performance, while Comparison-Sort
shows better scalability. However, this dynamic shifts when dealing
with 64-bit integers, where Comparison-Sort outperforms Radix-
Sort. The reversal in performance for 64-bit integers is attributed
to the inherent complexities of Radix-Sort when handling larger
data types. Radix-Sort requires multiple passes through the data,
creating histograms and partitioning the elements in each pass. As
the integer width increases, so does the number of passes required,
leading to increased overhead and processing time. This overhead
becomes particularly pronounced with 64-bit integers, signi�cantly
impacting the algorithm’s throughput. In contrast, Comparison-
Sort bene�ts from a more streamlined approach. After a single
histogram creation and partitioning phase, Comparison-Sort can
e�ciently sort the keys within the cache. This behavior allows it to
maintain higher performance levels when sorting 64-bit integers,
as it avoids the repeated histogram creation and partitioning steps
that burden Radix-Sort.

The throughput of both sorting algorithms falls short of the ma-
chine’s peak memory bandwidth. This shortfall is primarily attrib-
uted to the computational overhead during the partitioning phase,
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Fig. 11: Throughput [GB/s] when varying input data size.

where managing bu�ers and calculating partition functions reduce
the available time for pure memory operations. Furthermore, parti-
tioning to multiple outputs induces TLB thrashing, which degrades
performance. For large arrays, this issue is further exacerbated by
cache misses. These factors collectively hinder the partitioning
operation from fully exploiting the system’s sequential memory
bandwidth. While our approach mitigates some of these issues,
it cannot entirely eliminate their impact on achieving maximum
throughput.

5.5 Impact of data size

To assess the e�ectiveness of our chiplet-aware policy, we analyzed
the throughput of the Radix- and Comparison-Sort implementations
across various input data sizes. Fig. 11 shows the results for data
sizes ranging from 1 million tuples (equivalent to 15 MB) to 1 billion
tuples (equivalent to 15 GB). Speci�cally, we evaluated the 64-bit
implementations of the NUMA- and chiplet-aware policies.

An immediate observation from Fig. 11a is that the chiplet-aware
policy consistently outperforms the NUMA-aware policy across
all input sizes by approximately 40%. We attribute the superior
performance of the chiplet-aware policy to optimized data locality
and reduced inter-core communication overhead. This optimization
leads to higher bandwidth, especially as the input size increases.

Fig. 11b shows the results for the Comparison-Sort, which in-
dicate a more mixed outcome. For smaller input sizes, such as 1
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Tab. 2: Total main memory accesses (103).

Size (#Tuples) Local Memory Remote Memory

NUMA-aware
100 Million 39683 12492

1 Billion 3236810 652202

Chiplet-aware
100 Million 11681 20084

1 Billion 140405 218315
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Fig. 12: Impact of skew: 32b Radix-Sort, Ă in Zipf distribution.

million tuples (15 MB), the throughput for both policies is compa-
rable. As the input size increases to 10 million tuples (150 MB), the
chiplet-aware policy outperforms the NUMA-aware policy by 17-
40%. However, for the largest input size of 1 billion tuples (15 GB),
the NUMA-aware policy severely deteriorates. This drop in per-
formance for the NUMA-aware policy at larger input sizes sug-
gests ine�ciencies in data distribution and memory access patterns,
which are better managed by the chiplet-aware policy. For exam-
ple, in Tab. 2, we display the number of main memory accesses for
both policies when using 100 million and 1 billion tuples. On one
hand, the chiplet-aware policy shows an increase in main memory
accesses that is proportional to the increase in input data size, ap-
proximately 10 times higher. On the other hand, the NUMA-aware
policy signi�cantly increases the number of memory accesses, with
remote memory accesses increasing by about 52× and local memory
accesses by about 81×.

5.6 Impact of skew

We now assess the impact of data skew on performance and exam-
ine the throughput of the 32-bit Radix-Sort implementation while
varying the skew parameter Ă in the Zipf distribution. Fig. 12 shows
the results of the two evaluated policies. Once again, we observe
that the chiplet-aware policy outperforms the NUMA-aware pol-
icy. While the chiplet-aware policy can sustain throughput levels
(even increasing from 6.9 GB/s to 9.2 GB/s), the throughput of the
NUMA-aware policy drops from 5.1 GB/s to 4.2 GB/s. We attribute
the improving trend for the chiplet-aware policy to enhanced local-
ity in the cache-aware implementation. More speci�cally, pro�ling
shows that the cache miss rate drops from 6% to 1.5% when increas-
ing Ă from 1.2 to 2. This experiment underscores the robustness of
the chiplet-aware policy in managing data locality, making it more
e�ective at handling data skew.

5.7 Impact of scheduling

We also evaluate how the performance of our chiplet-aware ap-
proach varies with di�erent scheduling strategies. In §2.3, we dis-
cussed how bandwidth varies depending on the type of schedul-
ing—either by assigning tasks to cores belonging to the fewest
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Fig. 13: Impact of scheduling on 32-bit Radix-Sort, 8 threads

chiplets possible (Chiplet_Local) or by assigning tasks to cores
across as many chiplets as possible (Chiplet_Mixed). Fig. 13 shows
the throughput of the Radix-Sort algorithm with 32-bit keys, evalu-
ated using the two mentioned scheduling strategies on an 8-core
setup, as in the experiment in §2.3.

For smaller data sizes, the Chiplet_Local strategy yields higher
bandwidth, leveraging the proximity of tasks to maximize through-
put, as 15 MB �ts in a single chiplet cache. As data sizes increase,
the Chiplet_Mixed policy becomes more e�ective, exploiting the
larger L3 cache available across multiple chiplets. These results are
consistent with the analysis presented in §2.3, underscoring the
importance of selecting the appropriate scheduling strategy based
on the data size to optimize performance.

Fig. 14 compares the thread timeline activity for the LSB Radix-
Sort algorithm using chiplet-aware and NUMA-aware scheduling
approaches.With the chiplet-aware scheduling timeline, the threads
exhibit a more concentrated and synchronized utilization pattern:
the workload distribution is balanced across all threads, reducing
idle times and enhancing e�ciency.

In contrast, the NUMA-aware scheduling timeline shows a broader
and more dispersed thread activity after the data shu�ing opera-
tion. The spread indicates a less uniform distribution of workload,
which can lead to increased latency and ine�ciency. The NUMA-
aware scheduling struggles with maintaining an even workload
distribution due to the heterogeneity introduced by chiplets.
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Fig. 14: Thread timelines of LSB Radix-Sort.

5.8 Ablation study

Finally, we performed an ablation study to evaluate the impact
of each optimization strategy on the performance of our chiplet-
aware implementations. We present the results in Fig. 15 for both
the Radix-Sort and Comparison-Sort algorithms using 32-bit keys
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Fig. 15: Performance optimizations.

and 100 million tuples on a 32-core setup. Both algorithms experi-
enced the greatest performance boost from using the Chiplet_Mixed
scheduling and eliminating the data shu�ing phase. Speci�cally,
Radix-Sort’s throughput increased from 10.71 GB/s to 14.87 GB/s,
while Comparison-Sort’s throughput increased from 3.98 GB/s to
5.77 GB/s. Additionally, prefetching and improved branch predic-
tion increased Radix-Sort’s performance by about 15%, but had no
signi�cant e�ect on Comparison-Sort.

6 ADDITIONAL RELATED WORK

Here we provide more information on prior work done in the
context of chiplet-based CPUs, more general optimizations for
hardware-conscious algorithm implementations, and on parallel
sorting algorithms.

Chiplet-based CPUs. Industry documentation and product manu-
als from AMD and Intel provide comprehensive details on chiplet
based CPU designs [30, 32, 34]. For practical insights, Velten et al.
conducted thorough tests on the memory hierarchies of AMD EPYC
Rome and Intel Xeon Cascade Lake SP processors [44]. Suggs et al.
examined the Zen 2 architecture [43], while Schöne et al. focused
on the energy e�ciency aspects [42]. Na�ziger et al. discussed
multi-die chiplet con�gurations [33] while Chirkov et al. evaluated
the performance of the interconnects and introduced Meduza, a
write-update coherence protocol for chiplet systems [42].

Hardware-conscious algorithms and optimizations. Satish et al. [41]
introduced methods for e�cient out-of-cache partitioning, while
Wassenberg et al. [45] highlighted the importance of software-based
write-combining. Manegold et al. [29] addressed the TLB thrashing
issue caused by partitioning into a large number of outputs and
suggested using cache-resident hash tables for partitioning in join
operations, a design later adopted by Kim et al. [25] for multi-core
CPUs. Wu et al. [46] proposed hardware-accelerated partitioning
to enhance both performance and power e�ciency.

Sorting Algorithms. Parallel sorting algorithms have been widely
studied, with advancements in both radix and comparison-based
sorting approaches. Obeya et al. [36] introduced Regions Sort, a new
parallel in-place radix sorting algorithm that uses a graph structure
to model dependencies among elements, generating independent
tasks executed in parallel. Cho et al. [16] proposed PARADIS, ad-
dressing memory overhead and load imbalance in parallel in-place
radix sort. It uses speculative permutation and distribution-adaptive
load balancing to permute array elements into buckets in parallel
and in-place. Axtmann et al. [9] presented IPS2Ra, a sequential and

parallel in-place radix sort algorithm. IPS2Ra introduces a scalar
approach that processes multiple keys simultaneously to improve
instruction-level parallelism.

There has also been signi�cant prior work on parallel algorithms
for comparison sorting [8, 9, 12, 17, 22, 40]. One of the most recent
is IPS4o by Axtmann at al. that implements an in-place parallel
samplesort [9] and compares it with IPS2Ra. Rasmussen et al. [40]
developed TritonSort, a balanced large-scale sorting system de-
signed to handle massive datasets e�ciently. TritonSort focuses
on balancing I/O and computation to achieve high throughput and
scalability. Goodrich et al. [21] implemented parallel sorting algo-
rithms for sorting with comparison errors in the persistent and
non-persistent models. Pasetto et al. [37] conducted a compara-
tive study of parallel sorting algorithms on multi-core hardware,
evaluating unstable methods like Mapsort and Parallel Quicksort,
providing insights into hardware restrictions. Dong et al. [18] intro-
duced DovetailSort, a theoretically-e�cient parallel integer sorting
algorithm that e�ectively detects and handles duplicate keys.

7 EXTENDING CHIPLET-AWARE
OPTIMIZATIONS

While our study focuses on sorting algorithms, the chiplet-aware
optimizations we propose have potential applications across a wide
range of High-Performance Computing (HPC) workloads. Many
HPC applications share similar characteristics with sorting algo-
rithms, such as being memory-intensive and requiring e�cient data
movement and processing across multiple cores. For instance, in
large-scale graph processing, chiplet-aware scheduling can group
closely connected nodes within the same chiplet, reducing cache
misses and speeding up traversal. For real-time streaming analytics,
dedicating speci�c chiplets to di�erent stages of the processing
pipeline enables parallel operations while maintaining low latency.

Overall, the principles underlying our chiplet-aware optimiza-
tions—such as aligning data partitions with chiplet boundaries, ex-
tending the memory hierarchy to account for partitioned L3 caches,
and scheduling tasks based on data size relative to cache capaci-
ties—can be adapted to general highly parallel applications. Future
work could explore speci�c implementations and performance gains
in these diverse memory-intensive domains, potentially leading to
a more general framework for chiplet-aware algorithm design in
high-performance computing.

8 CONCLUSION

We evaluated the impact of chiplet-based architectures on sorting
algorithms, emphasizing the necessity of �ner granularity when
allocating resources between sorting threads and the importance
of considering the partitioned nature of the L3 cache. We propose
an approach that achieves higher performance compared to widely
applied NUMA-aware solutions.

Through extensive experiments, we demonstrate that careful
chiplet-aware placement of tasks and in-cache resources can sig-
ni�cantly enhance sorting performance, eliminating the need for
costly data shu�ing. Overall, our �ndings provide valuable insights
for designing internal operations for databases and query engines
on novel chiplet-based processors.
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