
Finding Symmetry in Models of Concurrent

Systems by Static Channel Diagram Analysis

Alastair F. Donaldson, Alice Miller, Muffy Calder

Department of Computing Science, University of Glasgow, Scotland
{ally,alice,muffy}@dcs.gla.ac.uk

Abstract

Over the last decade there has been much interest in exploiting symmetry to combat the state
explosion problem in model checking. Although symmetry in a model often arises as a result
of symmetry in the topology of the system being modelled, most model checkers which exploit
structural symmetry are limited to topologies which exhibit total symmetries, such as stars and
cliques. We define the static channel diagram of a concurrent, message passing program, and show
that under certain restrictions there is a correspondence between symmetries of the static channel
diagram of a program and symmetries of the Kripke structure associated with the program. This
allows the detection, and potential exploitation, of structural symmetry in systems with arbitrary
topologies. Our method of symmetry detection can handle mobile systems where channel references
are passed on channels, resulting in a dynamic communication structure. We illustrate our results
with an example using the Promela modelling language.

Keywords: Model checking, symmetry, concurrency, distributed systems, formal verification,
Promela/SPIN.

1 Introduction

Model checking is an automated technique for the verification of concurrent
systems [4]. To check whether or not a system satisfies a set of properties,
an abstract, finite state model of the system is written using a specification
language, and the properties are expressed as temporal logic formulae. A
software tool called a model checker then searches the state space of the model,
checking whether or not the properties hold at each state. If a violation of a
property is found, the model checker returns a counter example path through
the model which leads to the error. If the state space is exhaustively searched
and no violations are found then the model satisfies the properties. As long

Electronic Notes in Theoretical Computer Science 128 (2005) 161–177

1571-0661/$ – see front matter © 2005 Elsevier B.V. All rights reserved.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2005.04.010

http://www.elsevier.com/locate/entcs

as the model accurately specifies the behaviour of the system relevant to the
properties, it can be concluded that the system satisfies the properties. Model
checking is useful for finding bugs which have a rare probability of occurrence
(and are therefore hard to detect), and a potentially catastrophic effect. As
a result, model checking is particularly suitable for the verification of critical
systems.

Model checking is hindered by the state explosion problem. This is where,
as the number of components in a model increases, the state space of the
model suffers combinatorial growth, quickly becoming too large to feasibly
check. Much research in model checking concentrates on methods to tackle
the state explosion problem. Such methods include symbolic representation
of states, abstraction, partial order reduction, and induction (see [4] for exam-
ple). Another approach exploits symmetry inherent in the system [1,2,5,6,11].
Concurrent systems often contain many replicated components and, as a con-
sequence, model checking may involve making a redundant search over equiv-
alent areas of the state space. Symmetry reduction techniques involve re-
stricting the search to equivalence class representatives, and often result in
significant savings in memory and verification time [1,5,6]. However, most
model checkers which exploit structural symmetry are restricted in two ways.
First, they are limited to topologies which exhibit total symmetries, such as
stars and cliques. Second, they rely on the user to specify information about
symmetry in the model. This is potentially error prone, and compromises
the automation of model checking, which is one of its main strengths as a
verification technique.

We present an approach to the detection of structural symmetries in models
of message passing systems with arbitrary communication structures. Our
approach involves analysing the static channel diagram of the system being
modelled. Symmetry detection using this approach can be fully automated,
and requires no additional information from the user—the only requirement is
that models satisfy certain restrictions, which can be automatically checked.
Future work will be to implement symmetry reduction using these structural
symmetries.

1.1 Overview of results

We define the static channel diagram of a concurrent program, and show that,
under certain restrictions, there is a correspondence between automorphisms
of the static channel diagram of a program and automorphisms of the Kripke
structure associated with the program. Thus automorphisms of an intractably
large Kripke structure can be obtained from the static channel diagram of the
program, which is typically a small graph. The static channel diagram can be

A.F. Donaldson et al. / Electronic Notes in Theoretical Computer Science 128 (2005) 161–177162

automatically determined with complexity linear in the size of the program.
The restrictions can be checked with complexity O(k(|X| + N)), where N is
the size of the program, X is the set of variables in the program, and k is
the number of generators of the automorphism group of the static channel
diagram. Our approach can handle programs where channel references are
passed on channels, leading to a dynamic communication structure.

2 Concurrent programs

Throughout the paper we use ‘:=’ to denote the assignment operator, and ‘=’
to denote the boolean operator which tests equality. Let D be a finite data
domain, and let ⊥∈ D denote an undefined value.

Definition 2.1 A concurrent program P consists of:

• a set of concurrently executing processes {pi | 1 ≤ i ≤ m} for some m ≥ 1,

• a set of communication channels {ci | m < i ≤ m + n} for some n ≥ 0,

• a finite set X of local variables, which take values from D. A local variable
of process pi (1 ≤ i ≤ m) is denoted by an identifier subscripted by i, e.g. xi.
The set of local variables of pi is denoted Xi. Variables in X are divided into
three types: p-variables, the values of which are process indices drawn from
the set {⊥, 1, . . . , m}; c-variables, the values of which are channel indices
drawn from the set {⊥, m+1, . . . , m+n}; and standard variables (variables
which are not p-variables or c-variables).

• a finite set of program statements of the form gi → ui, where i ∈ {1, . . . , m}
is a process index, gi is a boolean guard, and ui is an update to variables of
pi and channels of the program.

• a mapping type which maps each process index to a process type, and each
channel index to a channel type.

• an initialisation function init : X → D which assigns each variable in X to
an initial value in D.

Variables may initially be assigned to the undefined value ⊥. Two pro-
cesses pi and pj (1 ≤ i, j ≤ m) are of the same type (i.e. type(i) = type(j))
if they are instantiations of the same parameterised process definition. Two
channels are of the same type if they have the same capacity, and hold values
of the same data type (p-variables, c-variables, or standard variables). Chan-
nels in the program may only hold values of a single data type. Note that
in allowing channels to hold c-variable values we can handle systems with
dynamic communication structures.

Associated with P is a set AP of atomic propositions, which we now define.

A.F. Donaldson et al. / Electronic Notes in Theoretical Computer Science 128 (2005) 161–177 163

For each variable x ∈ X, and for each d ∈ D, (x = d) ∈ AP (these propositions
refer to the values of variables in the program). For each channel ci in P, let
cap(ci) denote the maximum number of messages which ci can hold, len(ci)
the number of messages that ci holds at a given time, and next(ci) the next
message to be read from ci. Then for values d1, . . . , dk ∈ D, m < i ≤ m + n,
0 ≤ k ≤ cap(ci), and for any k-tuple [d1, . . . , dk] ∈ Dk, (ci = [d1, . . . , dk]) ∈
AP , (next(ci) = d1) ∈ AP and (len(ci) = k) ∈ AP (these propositions refer
to the contents and lengths of channels in the program).

Here [d1, . . . , dk] denotes a first-in-first-out buffer containing k elements (we
use [] to denote an empty buffer). When a message is written to a channel, it
is added to the right of the buffer. When a message is read from a channel, it
is removed from the left of the buffer, and all messages shift one place to the
left.

The execution of the program P is determined by its set of statements. For
a statement gi → ui, in any system state where the guard gi evaluates to true,
the program may execute the update ui, resulting in a transition to another
system state. A guard gi is a boolean combination of atomic propositions
referring to variables of process pi, or to the length or next value of a channel.

An update ui is an assignment to local variables of process pi, and to
channels of the system. An update ui can have the form skip (no values of
variables or channels are updated), xi := d (xi ∈ Xi, d ∈ D), or may involve a
static channel update (read from or write to a fixed channel cj), or a dynamic

channel update. A dynamic channel update involves reading from or writing
to channel cxi

, where xi ∈ Xi is a c-variable. We use the notation read(cj) and
write(d, cj) (m < j ≤ m+n, d ∈ D) to denote a static read from and a write to
channel cj respectively (and similarly for a dynamic read/write). An update
can also consist of a sequence of these updates, executed simultaneously.

Note that a model expressed as a sequence of statements (for example, a
model written in the Promela specification language [10]) can still be thought
of in these terms. If k is the program counter value associated with a statement
of a Promela model executed by process pi, then the guard associated with this
statement contains the proposition (pci = k), where pci is the local variable
representing the program counter of process pi.

2.1 Deriving a Kripke structure from a concurrent program

To reason about the formal semantics of a concurrent program P we use a
Kripke structure [4].

Definition 2.2 Let P be a concurrent program with atomic propositions AP .
The Kripke structure M over AP for P is a quadruple M = (S, R, L, s0)

A.F. Donaldson et al. / Electronic Notes in Theoretical Computer Science 128 (2005) 161–177164

where:

• S is a finite set of program states, consisting of all possible assignments to
variables and channels.

• R ⊆ S × S is a transition relation. For a state s ∈ S and a program
statement gi → ui (1 ≤ i ≤ n), if gi holds in s then (s, t) ∈ R, where t ∈ S
is the state resulting from the update ui.

• L : S → 2AP is a mapping that labels each state in S with the values of
variables, contents of channels and lengths of channels in that state.

• s0 ∈ S is the initial state of the program.

The initial state s0 of the program is labelled as follows:

L(s0) =

m+n⋃

i=m+1

{(ci = []), (len(ci) = 0), (next(ci) =⊥)} ∪ {(x = init(x) | x ∈ X}

We now define the effect of statement execution on the Kripke structure for
a program. Let s ∈ S, and gi → ui a statement of process pi (1 ≤ i ≤ m).
Applying ui to s results in a state t ∈ S. If ui has the form skip then t = s.
Suppose ui consists of a single assignment xi := d′ (xi ∈ Xi, d

′ ∈ D). Then t
is defined by:

L(t) =
(
L(s) \ {(xi = d)}

)
∪ {xi = d′},

where d, d′ ∈ D are the values of xi before and after the update respectively.
Suppose that, for channel cj, (cj = [d1, . . . , dk]) ∈ L(s), where m < j ≤ m+n,
dl ∈ D (1 ≤ l ≤ k), and 0 ≤ k ≤ cap(cj). If the update ui consists of a static
channel write of the form write(d, cj) (d ∈ D) then t is defined by:

L(t) =
(
L(s) \ {(cj = [d1, . . . , dk]), (len(cj) = k)}

)
∪

{(cj = [d1, . . . , dk, d]), (len(cj) = k + 1)}.

If ui is a static channel read, namely read(cj), then t is defined by:

L(t) =
(
L(s) \ {(cj = [d1, . . . , dk]), (len(cj) = k), (next(cj) = d1)}

)

∪{(cj = [d2, . . . , dk]), (len(cj) = k − 1), (next(cj) = d2)}.

If the update is a dynamic channel update involving channel cxi
, where xi ∈ Xi

is a c-variable of process pi, suppose (xi = j) ∈ L(s) for some m < j ≤ m+n.
Then the update involves channel cj , and the state t is defined in the same
way as for a static channel update. If ui is a sequence of updates, executed
simultaneously, then the state t is determined by applying each update in the
sequence in order.

A.F. Donaldson et al. / Electronic Notes in Theoretical Computer Science 128 (2005) 161–177 165

3 Symmetry and model checking

In this section we present some basic group theoretic definitions, and sum-
marise the theory of symmetry reduction in model checking. For a thorough
introduction to symmetry reduction in model checking see e.g. [6].

Definition 3.1 Let G be a non-empty set, and let ◦ : G×G → G be a binary
operation. We say that (G, ◦) is a group if G is closed under ◦; ◦ is associative;
G has an identity element 1G; and for each element x ∈ G there is an inverse
element x−1 ∈ G such that x ◦ x−1 = x−1 ◦ x = 1G.

When it is clear what the binary operation ◦ is, we simply refer to a group
as G rather than (G, ◦). Let H be a non-empty subset of a group G. If H
is a group in its own right under the binary operation of G, i.e. it satisfies
Definition 3.1, then we call H a subgroup of G and write H ≤ G.

Let G be a group, and let g1, g2, . . . , gn ∈ G. The set of elements of G
obtained by multiplying together (in any order and allowing repetition) any
of the elements g1, . . . , gn, g

−1
1 , . . . , g−1

n is denoted 〈g1, g2, . . . , gn〉. This set is
a subgroup of G, called the subgroup generated by g1, g2, . . . , gn.

Let M = (S, R, L, s0) be a Kripke structure. An automorphism of M is a
bijection α : S → S which satisfies the following conditions: 1

• ∀s, t ∈ S, (s, t) ∈ R ⇒ (α(s), α(t)) ∈ R,

• α(s0) = s0

The set of all automorphisms of the Kripke structure M forms a group under
composition of mappings. This group is denoted Aut(M). A subgroup G of
Aut(M) induces an equivalence relation ≡G on the states of M by the rule
s ≡G t ⇔ s = α(t) for some α ∈ G. The equivalence class under ≡G of a state
s ∈ S, denoted [s], is called the orbit of s under the action of G. The orbits
can be used to construct a quotient Kripke structure MG as follows:

Definition 3.2 The quotient Kripke structure MG of M with respect to G
is a quadruple MG = (SG, RG, LG, [s0]) where:

• SG = {[s] : s ∈ S} (the set of orbits of S under the action of G),

• RG = {([s], [t]) : (s, t) ∈ R},

• LG([s]) = L(rep([s])) (where rep([s]) is a unique representative of [s]),

• [s0] ∈ SG (the orbit of the initial state s0 ∈ S).

In general MG is a smaller structure than M, but MG and M are equiv-

1 These conditions define automorphisms of the underlying transition system only, as in-
variance under labellings isn’t needed in our approach.

A.F. Donaldson et al. / Electronic Notes in Theoretical Computer Science 128 (2005) 161–177166

alent in the sense that they satisfy the same set of logic properties which are
invariant under the group G (that is, properties which are “symmetric” with
respect to G). For a proof of the following theorem, together with details of
the temporal logic CTL∗, see [4].

Theorem 3.3 Let M be a Kripke structure, G be a subgroup of of Aut(M)
and f be a CTL∗ formula. If f is invariant under the group G then

M, s |= f ⇔ MG, [s] |= f

where MG is the quotient structure corresponding to M.

Thus by choosing a suitable symmetry group G, model checking can be
performed over MG instead of M, often resulting in considerable savings in
memory and verification time [1,5,6].

It would be possible in principle to construct a quotient Kripke structure
by constructing the original structure, finding its automorphism group, and
identifying the orbits of the structure under this group. However, finding
automorphisms of a graph is a hard problem, for which no polynomial time
algorithm is known [13]. In addition, a quotient Kripke structure cannot be
found using this method if the original structure is intractable. Thus any useful
symmetry reduction method must allow us to find automorphisms of a Kripke
structure without explicitly building the structure. If automorphisms of a
Kripke structure can be identified in advance, then a quotient structure can
be incrementally constructed using Algorithm 1, even if the original structure
is intractable.

Algorithm 1 Algorithm to construct a quotient Kripke structure

reached := {rep(s0)}
unexplored := {rep(s0)}
while unexplored �= ∅ do

remove a state s from unexplored
for all successor states q of s do

if rep(q) is not in reached then

append rep(q) to reached
append rep(q) to unexplored

end if

end for

end while

It is well known that automorphisms of a Kripke structure often arise as a
result of symmetry in the architecture or network topology of the concurrent
system being modelled [5]. In Sections 4 and 5 we define the static channel

A.F. Donaldson et al. / Electronic Notes in Theoretical Computer Science 128 (2005) 161–177 167

diagram of a concurrent program P, and show that, under certain restrictions,
automorphisms of the static channel diagram of P give rise to automorphisms
of the Kripke structure associated with P.

4 Static channel diagrams

Let P be a concurrent program as defined in Section 2.

Definition 4.1 The static channel diagram corresponding to the concurrent
program P is a directed, coloured graph C(P) = (V, E, C) where:

• V = VP ∪ VC is the set of indices of processes and channels in the program:
VP = {1, . . . , m} and VC = {m + 1, . . . , m + n}.

• for i ∈ VP and j ∈ VC , (i, j) ∈ E if and only if there is a statement gi → ui

in P where ui involves a static channel write update on the channel cj ;
for i ∈ VC and j ∈ VP , (i, j) ∈ E if and only if there is a statement gj → uj

in P where uj involves a static channel read update on the channel ci,

• C is a colouring function defined by, for all i ∈ V , C(i) = type(i) (see
Definition 2.1).

In [7] we present a similar definition of the channel diagram of a concurrent
program. In a channel diagram there is an edge between i and j if it is possible

for process pi to write to or read from channel cj . The static channel diagram
differs in two ways. First, it does not capture dynamic communication, which
arises from dynamic channel updates of the form write(d, cxi

) and read(cxi
),

where xi ∈ Xi is a c-variable. Second, suppose the program has a statement
gi → ui such that ui updates channel cj , but that the guard gi does not
evaluate to true in any state of the system. Then the update ui will give rise
to an edge in the static channel diagram even though it is impossible for it
to be executed. These differences mean that the static channel diagram can
be found by straightforward analysis of the program P—it is not necessary to
establish the possible run time values for each c-variable, or to check for guards
which will never be executable. The static channel diagram corresponding to
a concurrent program P can be constructed using Algorithm 2, which has
complexity linear in the size of P.

Proposition 4.2 Let P be a concurrent program, and let N be the number of

statements in P. Then the complexity of Algorithm 2 is O(N).

An automorphism of the static channel diagram C(P) is a bijection α : V → V
which satisfies the following condition:

∀i, j ∈ V, (i, j) ∈ E ⇒ (α(i), α(j)) ∈ E, and ∀i ∈ V, C(i) = C(α(i)).

A.F. Donaldson et al. / Electronic Notes in Theoretical Computer Science 128 (2005) 161–177168

Algorithm 2 Algorithm for finding the static channel diagram C(P) of a
concurrent program P.

V := {1, 2, . . . , m + n}, E := ∅, C := type
for all (gi → ui) ∈ P do

if ui involves a channel write update on cj then

E := E ∪ {(i, j)}
else if ui involves a channel read update on cj then

E := E ∪ {(j, i)}
end if

end for

It can be shown that the set of automorphisms of a static channel diagram
C(P) forms a group under composition of mappings. We denote this group
Aut(C(P)).

5 Correspondence result

In this section we present the main theorem of the paper. For convenience,
proofs have been collected in an appendix at the end of the paper. We show
that an automorphism α of the static channel diagram corresponding to a
program P can be used to define a permutation α∗ of the state set S of the
Kripke structure M associated with P, and that under Restrictions 1 and 2,
α∗ is an automorphism of M. Thus:

Restriction 1 Let gi → ui be a statement in P. Then for all α ∈ Aut(C(P)),
gα(i) → uα(i) must also be a statement in P.

Restriction 2 Let α ∈ Aut(C(P)). The init function which assigns initial

values to the variables of P must be such that for each xi ∈ X (1 ≤ i ≤ m),
init(xα(i)) = init(xi)

α, where init(xi)
α = init(xi) if xi is a standard variable,

and init(xi)
α = α(init(xi)) otherwise.

Restriction 1 assures that statements of the program are closed under the
elements of Aut(C(P)), and Restriction 2 that variables of the system must
be initialised symmetrically.

Theorem 5.1 Let P be a concurrent program which satisfies Restrictions 1

and 2. Let C(P) be the static channel diagram of P, and let M be the Kripke

structure associated with P. Let G = {α∗ : α ∈ Aut(C(P)). Then G ≤
Aut(M).

This means that if a program P satisfies Restrictions 1 and 2, (symmetry
reduced) model checking can be performed over the quotient structure MG.
Since C(P) is typically a small graph, the group Aut(C(P)), and hence the

A.F. Donaldson et al. / Electronic Notes in Theoretical Computer Science 128 (2005) 161–177 169

group G, can be found quickly using a standard algorithm [12].

In order to define the permutation α∗ acting on the states of M, we first
define the action of α on an atomic proposition p ∈ AP . Suppose p = (xi = d)
for some xi ∈ Xi, d ∈ D, 1 ≤ i ≤ m. Then α(p) = (xα(i) = dα), where
dα = d if xi is a standard variable, and dα = α(d) otherwise. If p = (ci =
[d1, . . . , dk]) for some channel ci (m < i ≤ m + n), dl ∈ D (1 ≤ l ≤ k),
and 0 ≤ k ≤ cap(ci), then α(p) = (cα(i) = [dα

1 , . . . , dα
k]), where dα

l = dl

if the channel ci holds standard variable values, and dα
l = α(dl) otherwise

(1 ≤ l ≤ k). If p = (len(ci) = k) for some channel ci (m < i ≤ m + n) and
0 ≤ k ≤ cap(ci) then α(p) = (len(cα(i)) = k). If p = (next(ci) = d) for some
channel ci (m < i ≤ m + n) and d ∈ D, then α(p) = (next(cα(i)) = dα), where
dα = d if cj holds standard variable values, and dα = α(d) otherwise. We
define α(⊥) =⊥, hence α(x =⊥) = (α(x) =⊥) for all x ∈ X.

We now define the permutation α∗ on a state s ∈ S. Recall that a state
is uniquely defined by a labelling in terms of atomic propositions. The state
α∗(s) is defined as follows:

L(α∗(s)) = {α(p) | p ∈ L(s)}.

It is clear that α∗ is indeed a permutation of the set S.

To prove Theorem 5.1, we must consider the action of α ∈ Aut(C(P)) on
the guards and updates of the program. The action of α on a guard gi is
defined inductively (on the atomic propositions contained in gi).

Lemma 5.2 Let s ∈ S be a state of the program P. Let α ∈ Aut(C(P)), and

let gi be a guard. Then gi holds at s iff gα(i) holds at α∗(s).

Proof. See appendix. �

Let ui be an update in the program P. Suppose ui is a variable update
of the form xi := d (xi ∈ Xi, d ∈ D). Then the update uα(i) has the form
xα(i) := dα, where dα = d if xi is a standard variable, and dα = α(d) oth-
erwise. If ui is a static channel update write(d, cj) or read(cj), for some
channel cj (m < j ≤ m + n) and d ∈ D, then uα(i) is a static channel update
write(dα, cα(j)) or read(cα(j)) respectively. Similarly, if ui is a dynamic channel
update write(d, cxi

) or read(cxi
), for some c-variable xi ∈ Xi and d ∈ D, then

uα(i) is a dynamic channel update write(dα, cxα(i)
) or read(cxα(i)

). If ui has
the form skip then uα(i) also has the form skip. Finally, if ui is a sequence of
updates executed simultaneously, then uα(i) is the sequence of corresponding
updates obtained by applying the above rules. We now prove that if executing
update ui from state s leads to state t, then executing update uα(i) from state
α∗(s) leads to state α∗(t).

A.F. Donaldson et al. / Electronic Notes in Theoretical Computer Science 128 (2005) 161–177170

Algorithm 3 Algorithm to find a subgroup of Aut(C(P)) which satisfies Re-
strictions 1 and 2.

gens :=generators of Aut(C(P))
for all xi ∈ X do

for all α ∈ gens do

if init(xα(i)) �= init(xi)
α then

gens := gens \ {α}
end if

end for

end for

for all (gi → ui) ∈ P do

for all each α ∈ gens do

if gα(i) → uα(i) /∈ P then

gens := gens \ {α}
end if

end for

end for

Lemma 5.3 Let s ∈ S be a state of the program P, and let α ∈ Aut(C(P)).
If s → t ∈ R is a transition associated with update ui, and α∗(s) → t′ is the

corresponding transition associated with update uα(i), then t′ = α∗(t).

Proof. See appendix. �

Using Lemmas 5.2 and 5.3, Theorem 5.1 follows. The proof is given in the
appendix. To see why Restriction 1 of Theorem 5.1 is necessary, suppose that
(x1 = 2) → (y1 := 3) is a statement of a concurrent program P, where x1

and y1 are p-variables (of process p1). Suppose α = (1 2)(2 3) ∈ Aut(C(P)).
Then processes p1 and p2 must have the same process type, so are instantia-
tions of the same parameterised process. Therefore x2 and y2 are p-variables
of process p2, and (x2 = 2) → (y2 := 3) is also a statement of the program.
However, applying α to the statement (x1 = 2) → (y1 := 3) gives the state-
ment (xα(1) = α(2)) → (yα(1) := α(3)) (since x1 and y1 are p-variables), which
is the statement (x2 = 1) → (y2 := 2). This statement may not necessarily

belong to the program P.

To check Restriction 1 it is sufficient to check, for each generator α of
Aut(C(P)) and each statement gi → ui in P, that gα(i) → uα(i) is also a
statement in P (any element of Aut(C(P)) can be expressed as a product of
generators). Similarly, Restriction 2 can be checked using only the generators
of Aut(C(P)). Let H be the subgroup of Aut(C(P)) generated by the subset of
generators of Aut(C(P)) which satisfy Restrictions 1 and 2. Let K = {α∗ |α ∈
H}. It is clear from the proof of Theorem 5.1 that in this case K ≤ Aut(M).

A.F. Donaldson et al. / Electronic Notes in Theoretical Computer Science 128 (2005) 161–177 171

Algorithm 3 shows how the largest subset of a given set of generators for
Aut(C(P)) which satisfy Restrictions 1 and 2 can be found.

Proposition 5.4 Let P be a concurrent program with variable set X and

static channel diagram C(P). Suppose P has N statements, and Aut(C(P))
has k generators. Then the complexity of Algorithm 3 is O(k(|X| + N)).

6 Load balancing example

To illustrate the theory we now give an example of a model of a concurrent
message passing system. The model consists of three server processes, six
client processes, and two load balancer processes. A load balancer process
continuously receives messages sent by client processes, and forwards each
message to the server process with the shortest queue of incoming messages.
The message received by a load balancer process from a client is a reference
to the incoming channel of the client. The load balancer passes this reference
on to the chosen server, and the server sends a message back to the client
using the channel reference. Thus the model has a dynamic communication
structure. We have implemented this model using Promela, the input language
to the SPIN model checker [10], and the code is available on our website [3].

Cl Cl Cl Cl Cl Cl

Lb Lb

1 2 3 4 5 6

10 11

21 22

12 13 14 15 16 17

Se Se Se
7 8 9

[3] of {chan}

18 19 20

[3] of {chan} [3] of {chan}

[1] of {mtype}

[1] of {chan} [1] of {chan}

[1] of {mtype} [1] of {mtype} [1] of {mtype} [1] of {mtype} [1] of {mtype}

Fig. 1. Channel diagram of the load balancing example—clients are denoted Cl, servers Se and
load balancers Lb.

We have written a tool which finds the static channel diagram of a Promela
model using Algorithm 2, and uses the nauty algorithm [13] to compute the
group of static channel diagram automorphisms. Figure 1 shows a graphical
representation of the channel diagram found by our tool. Processes are rep-
resented by ovals, channels by rectangles, and types by textual labels. The
label {chan} indicates that a channel holds c-variable values, and the label

A.F. Donaldson et al. / Electronic Notes in Theoretical Computer Science 128 (2005) 161–177172

{mtype} indicates that a channel holds values of an enumerated message type.
Note that there are no outgoing edges from the server processes. This is be-
cause communication from a server process to a client channel is achieved
dynamically, using the reference passed to the server by one of the load bal-
ancer processes. Using the nauty algorithm, our tool finds the generators of
Aut(C(P)) as follows:

Aut(C(P)) = 〈(5 6)(16 17), (4 5)(15 16), (2 3)(13 14),

(1 2)(12 13), (8 9)(19 20), (7 8)(18 19),

(1 4)(2 5)(3 6)(10 11)(12 15)(13 16)(14 17)(21 22)〉

To see how the first generator acts on the static channel diagram shown in
Figure 1, observe that swapping (client) processes 5 and 6, and simultaneously
swapping channels 16 and 17, preserves the structure of the graph. Inputting
the generators to the group theoretic package GAP [9] reveals that, for this
example, Aut(C(P)) has 864 elements.

We have not yet implemented Algorithm 3 to check Restrictions 1 and 2 of
Theorem 5.1. However, in this example it is clear from the Promela code that
they are satisfied. By Theorem 5.1, a subgroup of Aut(M) is derivable from
Aut(C(P)). This group of automorphisms could be exploited during model
checking.

7 Related work

In [5], a result similar to Theorem 5.1 is presented for a shared variable model
of communication—the automorphism group of the coloured hypergraph of a
concurrent, shared variable program is shown to be a subgroup of the au-
tomorphism group of the underlying Kripke structure. In a sense the static
channel diagram of a concurrent message passing program is analogous to the
coloured hypergraph of a concurrent, shared variable program. The definition
of a static channel diagram is adapted from the definition of a channel diagram
originally presented in [14], and used in [7]. The SymmSpin package [1] adds
symmetry reduction to the SPIN model checker using the scalarset approach of
Ip and Dill [11]. However, scalarsets only allow the exploitation of total sym-
metries, and require the modeller to specify symmetries using the scalarset
data type. The problem of exploiting symmetry reduction while model check-
ing under fairness constraints is the focus of the SMC tool [15], and in [8], the
problem of exploiting partial symmetries of systems is considered.

A.F. Donaldson et al. / Electronic Notes in Theoretical Computer Science 128 (2005) 161–177 173

8 Conclusions and future work

We have defined the static channel diagram C(P) of a concurrent, message
passing program P, and have proved that, under certain restrictions, the
group Aut(C(P)) of automorphisms of C(P) allows us to derive a subgroup of
Aut(M), the group of automorphisms of the Kripke structure M associated
with P. We have shown that the static channel diagram can be automatically
extracted with complexity linear in the size of P, and the restrictions can be
checked automatically with complexity O(k(|X|+N), where N is the size of P,
X the set of variables in P, and k the number of generators of Aut(C(P)). The
modeller does not need to provide information about symmetry in the model,
so the approach does not require error prone, manual effort. We describe a
tool which automatically finds automorphisms of the static channel diagram
of a Promela model, and give an example model of a client-server system with
load balancing. Our symmetry detection technique can handle systems which
exhibit mobility, i.e. systems where channel references are passed on channels.
To our knowledge, no other published work on symmetry detection can handle
such systems. Our results show that symmetry reduction for message passing
models can potentially be a “push button” reduction technique.

We intend to implement symmetry reduction in the SPIN model checker [10]
using this approach to symmetry detection. Exploiting symmetry effectively
during search is made difficult by the problem of computing representatives of
states. For the exploitation of total symmetries, heuristics have been shown
to be effective in solving this problem [1], and for certain kinds of symmetry
groups, unique representatives can be computed with complexity polynomial
in the number of processes [5]. Since our approach can detect symmetries
of arbitrary communication structures, an important area of future work will
be to try to identify heuristics which are more generally applicable. We will
also try to extend our approach to detect partial symmetries of models, as
investigated by Emerson et al. [8].

References

[1] D. Bosnacki, D. Dams, and L. Holenderski. Symmetric spin. International Journal on Software
Tools for Technology Transfer, 4(1):65–80, 2002.

[2] M. Calder and A. Miller. Five ways to use induction and symmetry in the verification of
networks of processes by model-checking. In AVoCS ’02.

[3] M. Calder and A. Miller. Veriscope publications website:
http://www.dcs.gla.ac.uk/research/veriscope/publications.html.

[4] Edmund M. Clarke, Orna Grumberg, and Doron Peled. Model Checking. The MIT Press,
Cambridge, Masachusetts, 1999.

A.F. Donaldson et al. / Electronic Notes in Theoretical Computer Science 128 (2005) 161–177174

http://www.dcs.gla.ac.uk/research/veriscope/publications.html

[5] E.M. Clarke, E.A. Emerson, S. Jha, and A.P. Sistla. Symmetry reductions in model-checking.
In CAV ’98, pages 147–158, 1998.

[6] E.M. Clarke, R. Enders, T. Filkhorn, and S. Jha. Exploiting symmetry in temporal logic model
checking. Formal Methods in System Design, 9(1–2):77–104, 1996.

[7] A. Donaldson, A. Miller, and M. Calder. SPIN-to-GRAPE: a tool for analysing symmetry in
promela models. In ARTS ’04.

[8] E. Allen Emerson, John W. Havelick, and Richard J. Trefler. Virtual symmetry reduction. In
LICS ’00, pages 121–131, Santa Barbara, California, USA, 1995.

[9] The Gap Group. GAP– Groups Algorithms and Programming, Version 4.2. Aachen, St.
Andrews, 1999. http://www-gap.dcs.st-and.ac.uk/~gap.

[10] Gerard J. Holzmann. The SPIN model checker: primer and reference manual. Addison Wesley,
Boston, 2003.

[11] C.Norris Ip and D. Dill. Better verification through symmetry. Formal Methods in System
Design, 9:41–75, 1996.

[12] B.D. McKay. nauty user’s guide (version 1.5). Technical Report TR-CS-90-02, Australian
National University, Computer Science Department, 1990.

[13] Brendan D. McKay. Practical graph isomorphism. Congressus Numerantium, 30:45–87, 1981.

[14] Peter Saffrey. Optimising Communication Structure for Model Checking. PhD thesis,
Department of Computing Science, University of Glasgow, July 2003.

[15] A. Prasad Sistla, Viktor Gyuris, and E. Allen Emerson. SMC: A symmetry-based model
checker for verification of safety and liveness properties. ACM Transactions on Software
Engineering and Methodology, 9:133–166, 2000.

Appendix—Proofs Omitted From the Text

Proof of Lemma 5.2. If gi = true the result holds trivially. If gi = p
for some p ∈ AP , then gα(i) = α(p). Now p ∈ L(s) ⇔ α(p) ∈ L(α∗(s)) by
definition of α∗(s), so the result holds. If gi = ¬hi for some propositional hi,
gα(i) = ¬α(hi). We have

¬hi ∈ L(s)⇔ p /∈ L(s) ∀p ∈ hi

⇔α(p) /∈ L(α∗(s)) ∀p ∈ hi

⇔¬α(p) ∈ L(α∗(s)) ∀p ∈ hi

⇔¬hα(i) ∈ L(α∗(s))

so the result holds. The cases where gi = hi ∧ ki and gi = hi ∨ ki for proposi-
tional subformulae hi and ki follow using structural induction.

Proof of Lemma 5.3. Suppose ui is a variable update xi := d (xi ∈ Xi, d ∈
D), and suppose (xi = e) ∈ L(s) (e ∈ D). Then uα(i) is a variable update
xα(i) := dα, and (xα(i) = eα) ∈ L(α∗(s)). We have L(t′) = (L(α∗(s))\{(xα(i) =
eα)}) ∪ {(xα(i) = d)} = (L(α∗(s)) \ {α(xi = e)}) ∪ {α(xi = d)} = L(α∗(t)).
Therefore t′ = α∗(t).

A.F. Donaldson et al. / Electronic Notes in Theoretical Computer Science 128 (2005) 161–177 175

http://www-gap.dcs.st-and.ac.uk/~gap

Suppose ui is a static channel write update write(d, cj) for some channel
cj (m < j ≤ m + n), d ∈ D, and suppose (cj = [d1, . . . , dk]), (len(cj) =
k) ∈ L(s). Then uα(i) is a channel write update write(dα, cα(j)), and (cα(j) =
[dα

1 , . . . , dα
k]), (len(cα(j)) = k) ∈ L(α∗(s)). We have

L(t′)= (L(α∗(s)) \ {(cα(j) = [dα
1 , . . . , dα

k]), (len(cα(j)) = k)})

∪{(cα(j) = [dα
1 , . . . , dα

k , dα]), (len(cα(j)) = k + 1)}

= (L(α∗(s)) \ {α(cj = [d1, . . . , dk]), α(len(cj) = k)})

∪{α(cj = [d1, . . . , dk, d]), α(len(cj) = k + 1)}

= L(α∗(t)).

Therefore t′ = α∗(t). If ui is a static channel read update then a similar
argument applies.

Suppose ui is a dynamic channel write update write(d, cxi
), where d ∈ D,

and xi ∈ Xi is a c-variable. If (xi = j) ∈ L(s) for some m < j ≤ m + n, then
the transition associated with ui is the same as the transition that would be
associated with a static channel write update of the form write(d, cj). The
update uα(i) is a dynamic channel write update write(dα, cxα(i)

), and (xα(i) =
α(j)) ∈ L(s). Therefore the transition associated with uα(i) is the same as the
transition that would be associated with a static channel write update of the
form write(dα, cα(j)). It follows, using the argument above for static channel
write updates, that t′ = α∗(t). If ui is a dynamic channel read update then a
similar argument applies.

Suppose ui has the form skip. Then uα(i) also has the form skip. In this
case, s = t and t′ = α∗(s), therefore t′ = α∗(t). Finally, if ui is a sequence of
updates executed simultaneously, then clearly t′ = α∗(t).

Proof of Theorem 5.1. Let α∗ ∈ G for some α ∈ Aut(C(P)). Let p = (xi =
d) ∈ AP for some xi ∈ Xi (1 ≤ i ≤ m) and d ∈ D. Then

p ∈ L(s0)⇔ (xi = init(xi)) ∈ L(s0)

⇔ (xα(i) = init(xi)
α) ∈ L(s0) (by Restriction 2)

⇔α(xi = init(xi)) ∈ L(s0)

⇔α(p) ∈ L(s0).

Let p ∈ AP refer to channel cj for some m < j ≤ m + n. If p ∈ L(s0), then
p = (cj = []), p = (len(cj) = 0) or p = (next(cj) =⊥). So α(p) = (cα(j) = []),
α(p) = (len(cα(j)) = 0) or α(p) = (next(cα(j)) =⊥) respectively. In all cases,
p ∈ L(s0) ⇔ α(p) ∈ L(α∗(s0)). It follows that s0 = α∗(s0).

Let (s, t) ∈ R. The transition (s, t) is made by a statement gi → ui of
the program P, executed by some process pi. By Restriction 1, the statement
gα(i) → uα(i) is also a statement of process pα(i) in the program P. Since

A.F. Donaldson et al. / Electronic Notes in Theoretical Computer Science 128 (2005) 161–177176

gi holds in s, it follows by Lemma 5.2 that gα(i) holds in α∗(s). Therefore
the statement gα(i) → uα(i), executed in state α∗(s), results in a transition
(α∗(s), t′) ∈ R for some t′ ∈ S. By Lemma 5.3, t′ = α∗(t), so (α∗(s), α∗(t)) ∈
R.

We have shown that α∗ is an automorphism of M, i.e. α∗ ∈ Aut(M). It
follows that G ⊆ Aut(M), and since G is a group, G ≤ Aut(M) as required.

A.F. Donaldson et al. / Electronic Notes in Theoretical Computer Science 128 (2005) 161–177 177

	Introduction
	Overview of results

	Concurrent programs
	Deriving a Kripke structure from a concurrent program

	Symmetry and model checking
	Static channel diagrams
	Correspondence result
	Load balancing example
	Related work
	Conclusions and future work
	References

