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Abstract—We present the design and implementation of Sym-
booglix, a symbolic execution engine for the Boogie intermediate
verification language. Symbooglix aims to find bugs in Boogie
programs efficiently, providing bug-finding capabilities for any
program analysis framework that uses Boogie as a target
language. We discuss the technical challenges associated with
handling Boogie, and describe how we optimised Symbooglix
using a small training set of benchmarks. This empirically-
driven optimisation approach avoids over-fitting Symbooglix to
our benchmarks, enabling a fair comparison with other tools.
We present an evaluation across 3749 Boogie programs generated
from the SV-COMP suite of C programs using the SMACK front-
end, and 579 Boogie programs originating from several OpenCL
and CUDA GPU benchmark suites, translated by the GPU Verify
front-end. Our results show that Symbooglix significantly out-
performs Boogaloo, an existing symbolic execution tool for Boogie,
and is competitive with GPUVerify on benchmarks for which
GPU Verify is highly optimised. While generally less effective than
the Corral and Duality tools on the SV-COMP suite, Symbooglix
is complementary to them in terms of bug-finding ability.

I. INTRODUCTION

An intermediate verification language (IVL) simplifies the
task of building a program analysis tool, by decoupling
the handling of the semantics of a real world programming
language from the method that is used to assess the correctness
of programs. Much like a compiler, a program analysis tool
can have a front-end and a back-end, linked by a common
intermediate representation of the input program. The front-end
translates the input program from a programming language (e.g.
C) into the IVL; the back-end then analyses the IVL program.
A single IVL back-end can thus act as an analyser for multiple
high-level languages if the front-ends are available. Example
IVLs include Boogie [48], WhyML [37] and the IVL proposed
by Le et al. [46].

Boogie is a small and simple IVL with a clearly-defined
semantics, in contrast to the semantics of real-world pro-
gramming languages that are usually prone to a degree of
ambiguity. A front-end targeting Boogie commits to a specific
encoding of the source language, after which program analysis
is performed with respect to the precise semantics of Boogie.
Resolution of source language ambiguity is controlled explicitly
by the front-end, and does not taint the underlying program
analysis techniques. Boogie front-ends have been developed
for (fragments of) several languages, including C [33], [53],
Java [20], C# [2], Dafny [49] and OpenCL/CUDA [27]. Boogie
has traditionally been used for program verification, via the

Boogie verifier back-end [23], but recently the IVL has also
been used for bug-finding (e.g. Boogaloo [52] and Corral [44]).
Corral recently replaced the SLAM tool [21] as the engine that
powers Microsoft’s Static Driver Verifier [43].

Recently there has been growing interest in the use of
symbolic execution for testing code written in production
languages such as C [28], [39] and Java [19]. In contrast,
few attempts to apply symbolic execution in the context of
IVLs have been reported [46], [52]. Having a flexible symbolic
execution engine for a popular IVL such as Boogie would
provide symbolic testing capabilities for any input language
for which there is an IVL front-end.

Symbolic execution has already been implemented at the
level of intermediate languages—notably KLEE [28], which
operates at the level of the LLVM IR [45]. An industry-
strength compiler IR such as LLVM’s presents advantages and
disadvantages for symbolic execution, stemming from the high
precision with which language features and the target platform
are taken into account (e.g. undefined behaviour, calling
conventions, etc.). This precision enables a symbolic execution
engine to find low-level bugs, but also adds complexity, in terms
of run time overhead, feature addition and code maintenance.
In contrast, the syntactic and semantic simplicity of Boogie
makes it an ideal platform on which to initially study the
combination of symbolic execution with other analyses, and
the design of new optimisations for more effective symbolic
execution.

We present the design and implementation of Symbooglix
(Symbolic Boogie Executor), an open source [14] symbolic
execution engine for Boogie, written in C#, that aims to provide:

1) High coverage of the Boogie language, supporting all
features exercised in practice by existing front-ends;

2) Faster and more precise bug-finding capabilities for Boo-
gie programs translated from real-world code, compared
with existing IVL back-ends.

We took an empirically-driven approach to optimising
Symbooglix: we selected a small training set from two large
benchmark suites and used only this set to drive optimisation of
the tool. This prevented us from over-fitting Symbooglix to our
benchmarks, which might unfairly bias comparison with other
tools and misrepresent how well Symbooglix would perform
on further benchmarks.

We evaluate Symbooglix on two large benchmark suites.
The first suite consists of 3749 C programs taken from



the benchmark suite of the International Competition on
Software Verification (SV-COMP) [5], translated to Boogie
using the SMACK front-end [53]. The translated programs use
mathematical integers to represent bitvectors in the original
C programs and have a large number of branch points. The
second suite consists of 579 GPU kernels written in OpenCL
and CUDA, translated to Boogie using the GPU Verify front-
end [27]. These programs use bitvector types and exhibit
loops with large bounds. We use these suites to conduct
a comparison between Symbooglix and five state-of-the-art
Boogie analysers: the Boogie verifier [3]; Boogaloo [52], an
existing symbolic execution tool; Corral [44] and Duality [50],
based on stratified inlining and interpolation, respectively; and
GPU Verify [27], a GPU kernel verifier. Boogaloo does not
support bitvectors, so cannot handle the GPU benchmarks,
and Symbooglix significantly outperforms Boogaloo on the SV-
COMP suite. Our results show that Symbooglix finds more bugs
than GPUVerify in the GPU benchmarks, despite GPU Verify
being highly optimised for this domain (albeit for verification
not bug-finding). On the SV-COMP benchmarks, Symbooglix
is generally less effective than Corral and Duality, but is
complementary to them in terms of bug-finding ability.

We discuss problems that make an apples-to-apples compar-
ison between Symbooglix and KLEE [28] hard, and present
a best-effort comparison of the tools using the SV-COMP
benchmarks. Because it is highly tuned towards C, KLEE
is more efficient than Symbooglix and finds bugs in more
programs, but Symbooglix is able to verify more programs
than KLEE can, and finds a significant number of distinct bugs.

In summary, our main contributions are:

1) The design and implementation of Symbooglix, provid-
ing symbolic bug-finding capabilities for all high-level
languages for which there is a Boogie front-end;

2) An empirically-driven approach to optimising the tool,
based on the separation of benchmarks into a small
training set and a large evaluation set, providing an
unbiased method for assessing our optimisations;

3) An experimental evaluation on 4328 Boogie programs,
assessing the effectiveness of Symbooglix and comparing
it with five state-of-the-art Boogie analysers.

II. BACKGROUND
A. Symbolic execution

Symbolic execution [42] works by enumerating the feasible
paths of a program. Program input is treated as symbolic, i.e. as
a set of unknown values, rather than concrete (i.e. as a set of
constants). As the program is executed, constraints are gathered
on the input. On encountering a branch, the constraint set and
each branch condition are solved to determine which paths
leaving the branch are feasible, those paths are then explored.

Symbolic execution can be used to detect bugs, by checking
user-supplied assertions, or through implicit safety checks that
can be automatically instrumented (e.g. asserting that division
by zero is not possible). On reaching an assertion during
symbolic execution, the negation of the asserted condition

conjoined with the current constraint set is solved. A satisfying
assignment to the combined set of constraints yields inputs that
will cause the assertion to fail (modulo non-determinism in the
application under test). Another use case for symbolic execution
is high-coverage test case generation. When exploration of a
path terminates (due to program termination or identification
of a bug) the gathered constraints can be solved to generate
a concrete input that will cause the same path (modulo non-
determinism) to be followed.

Interest in symbolic execution has increased dramatically due
to the availability of efficient Satisfiability Modulo Theories
(SMT) solvers that can handle large sets of constraints [36].
Notable symbolic execution tools include CREST [34], JPF-
SE [19], KLEE [28], PEX [54] and SAGE [39].

B. The Boogie IVL

We illustrate some of the core features of Boogie using the
simple example of Figure 1. Procedure checked_div takes
two integers a and b and returns the result of dividing a by b
unless b is zero, in which case a is returned and a global err
flag is set. Procedure test_div checks that dividing axb by
axb (by calling checked_div on line 18) yields the value
1 without setting the error flag, as long as both a and b are
non-zero. Instead of employing integer multiplication directly,
multiplication is modelled using an uninterpreted function
MUL : (int X int) — int (line 2). An axiom constrains MUL
to satisfy the integral domain property of integer multiplication:
if a and b are non-zero then a - b is non-zero (lines 3-4).
This abstraction captures exactly the property of multiplication
needed to verify this example, avoiding potentially expensive
reasoning about non-linear multiplication.

Procedure checked_div stores its result in an ex-
plicit return variable, r (line 5), and the post-condition
(ensures) and pre-condition (requires) for checked_div
and test_div are formalised (lines 6 and 17, respectively).
The body of checked_div uses a non-deterministic goto
statement (line 8) and two assume statements (lines 10
and 13) to model an if statement. Control may transfer non-
deterministically to either one of the 1_then and 1_end
labels targeted by the goto. An assume e statement blocks
further program execution (in a non-erroneous manner) if the
guard e does not hold. Thus for any concrete value of b, exactly
one of the assume statements at lines 10 and 13 will cause
execution to block.

The Boogie int data type represents the infinite set of
mathematical integers. The language also supports fixed-width
bitvector types. This allows a front-end for a C-like language
to either model machine integers precisely (the GPU Verify
front-end does this [27]), or to model machine integers as
mathematical integers (the SMACK front-end does this [53]).

We discuss some further Boogie features not illustrated by
the above example that we shall refer to later in the paper.
The havoc command accepts a sequence of variable names
and sets each variable to a non-deterministic value. This allows
abstract modelling of side effects, e.g. reading a value from
the network with no knowledge of what that value might be.



1| var err: bool;

2| function MUL (int, int): int;

3| axiom (forall a, b: int ::

4 (a != 0 && b != 0 ==> MUL(a, b) != 0));

5| procedure checked_div(a: int, b: int) returns (r:int)
6 ensures (err && b == 0) || (lerr && r == a div b); {
7 err := false;

8 goto 1_then,

9| 1_then:

10 assume b == 0;
11 err := true; r
12| 1_end:

13 assume b != 0;
14 r := a div b;
15| }

16| procedure test_div(a: int, b:
17 requires a != 0 && b != 0; {
18 call r := checked_div (MUL(a,
19 assert r == 1; assert l!err;
20| }

1_end;

:= a; return;

int) returns (r:int)

b), MUL(a, b));

Fig. 1. An example Boogie program performing checked division.

Maps allow modelling of array and heap data. For types S
and T, the type [S]T represents a total map from S to T If
type S has an infinite number of distinct values (e.g. if S = Z)
then a map of type [S]|T has an infinite number of keys.
Global constants can be declared, and axioms used to restrict
their values. The unique qualifier specifies that a global
constant of type 7" should have a distinct value from any other
unique-qualified global constant of type 7.

C. Related Boogie tools

In our evaluation (§V) we compare against five existing
Boogie analysers which we now briefly survey. All the tools
use Z3 [35] for constraint solving.

The Boogie verifier [23] applies weakest precondition meth-
ods [24] to transform each procedure in a Boogie program
into a verification condition to be checked by an SMT solver.
Procedure contracts and loop invariants must be manually
provided to enable reasoning about calls and loops; annotations
are not inferred automatically. The Boogie verifier should thus
not be expected to achieve useful results on the unannotated
benchmark suites we consider.

Boogaloo [52] is a symbolic execution tool for Boogie
programs that aims to provide a way of debugging failed
verification attempts. Boogaloo incorporates two unsound
features that may cause bugs to be missed: certain program
variables are concretised during execution and the domain of
maps is finitised to eliminate quantified constraints.

Corral [44] is a whole-program analyser built on top of
the Boogie verifier. Corral first transforms every loop into
a tail-recursive procedure call, then uses Houdini [38] to infer
(possibly trivial) pre/post specifications for all procedures. Bug-
search from an entry procedure, main say, proceeds roughly
as follows. Procedures called from main are summarised by
their specifications, so that main becomes a loop- and call-free
procedure, main’ say, that soundly over-approximates main. If
verification condition (VC)-based analysis [24] concludes that
main’ is correct, Corral reports that the program is verified.
If analysis yields an error trace through main’, Corral checks
whether the trace traverses any summarised procedures. If not,
the trace exposes a real bug, which Corral reports; otherwise,

the summarised procedures are inlined into main’, and any
procedures that they in turn call are summarised. Corral reports
unknown if a given maximum inlining depth is reached.
Duality [50] employs Craig interpolation to compute inductive
invariants at program points, generalising the Impact algo-
rithm [51]. Though these invariants are used to prove software
correctness, bugs may be identified during invariant search.
GPUVerify [27] attempts to prove that a CUDA or OpenCL
kernel is free from certain defects that are specific to GPU
programming. A parallel kernel is translated into a sequential
Boogie program, instrumented with assertions that check
whether it is possible for two distinct threads to race, or
diverge on a barrier. The Houdini algorithm [38] is used to
infer invariants for over-approximation of loops; this over-
approximation may lead to GPU Verify reporting false alarms.

III. DESIGN AND IMPLEMENTATION

Symbolic execution of the Boogie IVL. Symbooglix imple-
ments in-memory symbolic execution, where explored paths are
stored explicitly as execution states. That is, for each explored
path, Symbooglix keeps track of the execution state (program
counter, stack and global variables) so that execution can be
resumed at a later stage. As in previous execution systems [28],
efficient sharing between states is achieved through a copy-on-
write strategy (see Efficient execution state cloning in §IV).
The non-deterministic commands goto and havoc make
Boogie a good match for symbolic execution. A got o command
takes multiple target basic blocks and non-deterministically
picks a target to which control transfers. This corresponds
to the concept of forking new paths at a branch point in
symbolic execution. However, there are two differences in the
way forking new paths is implemented. First, in conventional
languages, forking usually occurs at if statements, so that
execution is forked into two paths, following the then and
else sides of the branch. In contrast, Symbooglix implements
n-way forking to match the semantics of goto in Boogie.
Second, branching at a goto is unconditional in Boogie;
Boogie programs can exploit unconditional branching to model
program behaviours abstractly. Traditional branching can be
simulated via assume statements with mutually exclusive
conditions (see lines 10 and 13 of Figure 1), and Symbooglix is
optimised for this case (see Goto-assume look-ahead in §1V).
Recall that havoc is used to assign non-deterministic values
to a set of variables. In the context of symbolic execution, this
involves giving each variable a fresh symbolic value. Two other
core Boogie commands that are central to symbolic execution
are assume and assert. When Symbooglix interprets a
command of the form assume e, it first asks its solver to
check whether expression e is satisfiable in the current state. If
s0, e is conjoined to the current path condition and execution
continues. Otherwise, the path is terminated. To interpret an
assert e command, Symbooglix checks both whether e and
—e are satisfiable in the current state (note it is possible for
both to be satisfiable). If —e is satisfiable, Symbooglix records
that the assertion can fail and thus that the program under
analysis is erroneous. Regardless of this, if e is satisfiable then



execution continues with e conjoined to the path condition, so
that analysis continues with respect to inputs that do not cause
the assertion to fail.

The requires clause on program entry has the purpose of
constraining the initial program state, thus it is treated like an
assume. All other requires clauses are treated as assertions
on procedure entry. Similarly, ensures clauses are treated as
assertions on procedure exit. A specification-only procedure
(which has no body) is executed by asserting its requires
clause, havocking its modifies set (specifying which global
variables might be updated), and assuming its ensures clause.
Path exploration. An important aspect of symbolic execution
is the order in which feasible paths are explored. This is
typically controlled by search heuristics. In Symbooglix we
use a variant of the depth-first search (DFS) strategy that aims
to prevent the search getting stuck in loops by always preferring
to follow the path leaving a loop if it is feasible. This variant
behaves like a normal depth first search in all other aspects.
Constraint solving. Symbooglix’s symbolic expressions are
constructed using Boogie’s expression building API. To support
our work, we have contributed several related changes to
the upstream Boogie project (including many bug fixes). The
most important change was the ability to make expressions
immutable. This allows safe sharing of expressions across
execution states, and enables efficient structural equality testing
between expressions, which is used by many optimisations.

To answer satisfiability queries during exploration and obtain

concrete solutions to the collected constraint sets, constraints
are printed in the standard SMT-LIBv2 format [25], and then
passed to an SMT solver. Our current implementation uses the
Z3 constraint solver [35], due to its support for all the different
features required by Symbooglix, such as integers, bitvectors,
quantifiers, maps and uninterpreted functions.
Inconsistent assumptions. Boogie differs from conventional
languages in that the entire program execution is subject to
a set of initial constraints, specified via axioms, the unique
qualifier on global constants, and requires clauses associated
with the procedure from which execution commences (see
§II). If the initial constraints are inconsistent (i.e. they are
equivalent to false), the program is vacuously correct. In
our experience, inconsistency of initial constraints is often
unintentional, and indicative of a problem with the Boogie
program under consideration. To guard against this, Symbooglix
supports an optional mode that checks the consistency of initial
constraints before execution starts. If this mode is disabled
then Symbooglix requires that the assumptions are consistent,
otherwise its behaviour is undefined.

IV. OPTIMISATIONS

Our initial design of Symbooglix included only a few basic
optimisations which we implemented without benchmarking
the tool. We then optimised Symbooglix in an empirically-
driven manner, guided by performance on a set of benchmarks.
Because we wanted to compare Symbooglix with other Boogie
analysis tools and wished to understand the extent to which
Symbooglix’s optimisations would be generally applicable, we

were cautious not to overfit Symbooglix’s optimisations to
the benchmarks used in our experimental evaluation. To avoid
this, we randomly selected a training set consisting of 10%
of our benchmarks, and benchmarked Symbooglix exclusively
with respect to this training set during optimisation (see §V-D).
Below, we summarise the main optimisations we implemented.
Unique global constants constraint representation. This
optimisation was motivated by performance problems we
observed when running on the SV-COMP portion of the training
set, which declares global variables with the unique qualifier
(see §II-B). Our initial approach to handling unique, by
emitting a quadratic number of constraints to assert pairwise
disjointness, did not scale well. To improve performance, we
took advantage of the SMT-LIBv2 distinct function, which
returns true iff all its arguments are pairwise distinct and is
efficiently handled by Z3.

Global dead declaration elimination. We observed that
benchmarks in the SV-COMP training set often declare many
global variables, functions and axioms that are not used by the
program. These dead declarations are emitted by SMACK for
every Boogie program it generates, e.g. for SMACK’s general-
purpose floating point representation and memory model. We
implemented an analysis that initially marks a global declaration
as necessary if it is used syntactically by a procedure in the
program, and then iteratively marks further declarations as
necessary if they are referred to by a declaration already marked
as necessary. Once a fixed point is reached, all declarations
not marked as necessary are removed.

Goto-assume look-ahead. We developed this optimisation
based on intuition related to symbolic execution of Boogie
programs. Recall from the example of §II-B that conditional
control flow is realised in a Boogie program through a
combination of goto and assume commands. The initial
implementation of Symbooglix would always fork at a goto
command. However, the current path constraints often mean
that one of the assume statements targeted by the goto
will have a failing guard. (This is a known issue in symbolic
execution: prior work has reported that often fewer than 20%
of symbolic branches encountered during execution have both
sides feasible [30].) As a result, Symbooglix would often spawn
a new execution state, only to kill it at the next assume
instruction. The goto-assume look ahead optimisation changes
how the goto command is handled by looking ahead at the
next instruction of each target basic block. If the next instruction
is an assume, we check whether it is satisfiable, and if not,
we do not fork a new state for that path.

Expression simplification. These optimisations simplify ex-
pressions as they are constructed, by folding constants
(e.g., 5+4 = 9) and rewriting certain expression patterns
(e.g., 1+x+2 = 3+x). The patterns we simplify are based on
potential simplifications we observed when running Symbooglix
on the training set, and on some of the patterns used by KLEE.
To help ensure preservation of the exact semantics of Boogie’s
operators during simplification, we used the Z3 SMT solver
to verify correctness of many of the rewriting patterns. One
example of subtle semantics is that the div and mod operators



use euclidean division. Because our implementation language,
C#, uses truncated division we had to implement euclidean
division in terms of truncated division (following [47]) to
provide constant folding for div and mod.

Constraint independence. This constraint solving optimisa-
tion, inspired by EXE [29], eliminates those constraints which
are not necessary to determine the satisfiability of a given query.
The optimisation transitively computes dependent constraints
by considering the set of used variables and uninterpreted
functions until a fixed point is reached.

Map updates at concrete indices. This optimisation was
inspired by the way in which KLEE handles array accesses at
concrete indices. In Symbooglix the value of a map variable
was originally represented as an expression tree. Initially the
expression is just the symbolic variable representing the map
(e.g., m). As the map is populated, map updates are added
to this expression. For example writing 5 followed by 15 to
index O would yieldm [0 := 5] [0 := 15].The expression
tree can thus become large after many updates to the map,
which can impede performance due to large expressions being
passed to the constraint solver. To address this, we try to
avoid increasing the size of the expression tree representing
a map when possible. We optimised for the case where only
concrete indices are used to index a map. In this case, rather
than updating the expression tree representing the map with
new writes, we store a set of pairs mapping writes at concrete
indices to their corresponding value. When reading from a
location at a concrete index that was previously written, the
corresponding value is returned directly. In the case of a read
from a concrete index not contained in the set, a map selection
expression that reads from the current version of the expression
tree (without the current set of concrete writes) at that concrete
index is returned. In the case of a read/write at a symbolic index,
Symbooglix switches to using an expression tree to represent
the map by flushing all the stored writes to the expression tree.
Map updates at symbolic non-aliasing indices. This optimi-
sation was motivated by several benchmarks where symbolic
indices were used to index maps, but such that the associated
indices could not alias. In the examples we investigated, the
indices were always of the form C + s, with C a constant
integer, distinct for each index, and s a symbolic integer
variable, common among the indices. Clearly for constants
Co # C1, we are guaranteed to have (Cy + s) # (C1 + s).
This lead us to generalise the map updates at concrete
indices optimisation to internally store a mapping of non-
aliasing (concrete or symbolic) indices to expressions (rather
than constant indices to expressions). Expression aliasing is
determined by simple syntactic patterns; we currently recognise
the case of distinct constant literals (capturing the initial
optimisation), and the set of expressions matching the pattern
C + s, where C' is distinct in each expression and where the
types of C and s are integers. This optimisation is currently
implemented only for integers, and not bitvectors.

Efficient execution state cloning. This optimisation was
inspired by how KLEE handles cloning of execution states,
and was motivated by high memory usage in Symbooglix on

the training set. The number of execution states can grow
quickly during symbolic execution, so efficient state cloning,
both in terms of memory used and time taken, is important.
Symbooglix originally cloned states in a simple, non-optimal
manner. Because expressions are immutable in Symbooglix
they never need to be cloned, but the data structures that a state
uses to refer to them do. The initial implementation simply
made new copies of these data structures. However, profiling
several memory-intensive training set benchmarks revealed that
a lot of memory was being used by these data structures. To
overcome this, we implemented more efficient execution state
cloning using C# immutable data structures. For our internal
representation of maps, which are not immutable, we added a
simple copy-on-write mechanism similar to that which KLEE
uses to represent memory objects.

V. EVALUATION

We now present in detail our method for evaluating Sym-
booglix and a selection of other Boogie-based tools. For
reproducibility, the tools and all non-commercially sensitive
benchmark programs are made available online at http://
symbooglix.github.io.

A. Benchmark suites

We consider two benchmark suites containing Boogie
programs from two distinct problem domains, and originating
from two different languages.

The SV-COMP benchmark suite (abbreviated to SV-COMP)
consists of programs generated from the C benchmarks used in
the 2015 “International Competition on Software Verification”
(SV-COMP 2015), translated into Boogie using SMACK [53].
We used the SMACK-translated programs made available online
by the SMACK authors [13]. The repository contains 3760
benchmarks, of which we use 3749: four benchmarks exhibit
inconsistent assumptions (see §III) and seven are empty [12].

The GPU benchmark suite (abbreviated to GPU) consists
of Boogie programs generated from a set of 579 GPU kernels
written in OpenCL and CUDA, which have been collected to
evaluate the GPU Verify tool [22], [27]. The original kernels are
drawn from a number of open source GPU benchmark suites
and one commercial suite. Among these kernels, at least 32
exhibit data race errors (which manifest as failing assertions in
the Boogie programs generated by GPUVerify): 5 are genuine
bugs previously found by GPUVerify, and 27 are artificial bugs
injected in a previous evaluation of GPU Verify [27].

The SV-COMP and GPU suites provide a comprehensive and
challenging set of evaluation benchmarks, covering correct and
buggy examples. The SV-COMP suite utilises mathematical
integers while the GPU suite utilises bitvector operations.

B. Benchmark preparation

Checking for inconsistent assumptions. As discussed in §III,
Symbooglix expects the initial set of assumptions of a Boogie
program to be consistent if its optional checking mode is
disabled. In our evaluation we decided not use the checking
mode because no other tool performs this check and thus



Symbooglix would be unfairly penalised in terms of tool
run time. We removed or fixed all benchmarks exhibiting
inconsistent assumptions (4 benchmarks in each suite [11]).
Labelling benchmarks. To compare Symbooglix with com-
peting tools in terms of bug-finding ability and capability to
perform exhaustive verification, we tagged each benchmark
with one of the following labels:

1) Correct: the benchmark is free from bugs;

2) Incorrect: the benchmark contains at least one bug;

3) Unknown: the benchmark may or may not contain bugs.

To infer as many correct and incorrect labels as possible,
we devised the following experiment. For each benchmark,
we ran each compatible Boogie tool introduced in §II (in
multiple configurations, as detailed in §V-C), with a timeout
of 900 seconds and a memory limit of 10 GiB. We did not run
Symbooglix at this point, because initially we wanted to use the
labels to select a training set for Symbooglix and evaluate its
progress over time (see §V-D). If one tool classified a program
as correct and another tool classified the program as incorrect,
we investigated the reasons for this, knowing that one tool
must be wrong in its analysis. Otherwise, if at least one tool
classified a program as correct we labelled the program correct,
while if at least one tool classified a program as incorrect we
labelled the program incorrect. Because Boogie and GPU Verify
can produce false positive bug reports, we ignored cases where
these tools classified a program as incorrect during the labelling
process. We labelled a benchmark unknown if no tool could
reliably classify the program as correct or incorrect, except in
cases where an existing label indicating the program’s status
was provided by the benchmark suite.

During the labelling process, we checked for generic failures
and crashes in the tools. This revealed one bug shared by
Boogie and Corral [4], four bugs in Corral (including a case
where Corral would report a false positive), and a crash bug in
Duality [6]. We reported these bugs and in some cases provided
our own fixes. The Corral bugs were promptly fixed.

The SV-COMP suite already provides labels for its con-
stituent benchmarks. However, we found 76 discrepancies
between these existing labels and the ones we inferred. Because
the labels are for the original C programs in SV-COMP, the
mismatch could be caused by an incorrect translation from C
to Boogie by SMACK, or it could be a genuine mislabelling of
the original benchmark. We did not examine all 76 cases, but
for the ones we did examine, the discrepancy was caused by the
translation process. For example, two of the benchmarks check
whether a self-equality comparison on an arbitrary floating point
variable can fail. The assertion in the original C program could
fail because NaN NaN is false (NaN stands for “Not a
Number”. Floating-point comparisons always return false if one
of the operands is NaN) however the corresponding assertion
in the Boogie program could not fail because NaN was not
represented in SMACK’s model of floating point numbers. We
reported this issue to the SMACK developers [8].

For the GPU suite, we labelled the benchmarks that contained
deliberately injected bugs as incorrect. We surprisingly found
mismatches between two kernels that were supposed to have

TABLE I

INITIAL AND FINAL BENCHMARK LABELLINGS.

SV-COMP GPU
Initial Final Training Initial Final Training
Correct 2705 2704 270 479 491 45
Incorrect 1044 1045 104 37 38 3
Unknown 0 0 0 63 50 9
Overall 3749 3749 374 579 579 57

injected bugs and the results reported by the tools applied to
those kernels. In one of the kernels it turned out that the injected
code did not actually induce a bug so this kernel was removed
from our benchmark suite. The other kernel had a mistake
(introduced by an error in the injection process) causing the
injected bug to be unreachable. We fixed this kernel in our
benchmark suite so that the injected bug was reachable.

The Initial columns in Table I summarise our labelling
without Symbooglix. At the end of our study, having optimised
Symbooglix, we were able to re-label the benchmarks based
on additional accuracy from Symbooglix’s results. The Final
columns in Table I reflect this labelling. Note that the number
of Correct labels decreases in the Final labelling because the
labels provided with some SV-COMP programs were incorrect
with respect to the Boogie programs (as discussed earlier).

C. Tools evaluated

We compare Symbooglix with all actively maintained
open-source tools that analyse Boogie programs: the Boogie
verifier, Boogaloo, Corral, Duality, and GPU Verify (see §II
for background on these tools). We did not run Boogaloo
and Duality on the GPU suite because they do not support
the bitvector types and operations generated by the front end
of GPUVerify. We could not apply GPU Verify to SV-COMP,
because GPU Verify only supports analysis of Boogie programs
generated by its own front-end. The configuration used for
each tool was as follows:

Boogaloo was run twice on SV-COMP. Once with a loop bound
of 8 and once without a bound. Concretisation was disabled to
avoid false negatives and counter-example minimisation was
disabled to increase performance.

Boogie was run with the —errorLimit : 1 option, so that at
most one error is generated.

Corral was run twice on each suite: once with a recursion
bound of 8 and once with a very large bound (~ 23°) on
SV-COMP; and once with a bound of 64 and once with a very
large bound (~ 23°) on GPU. We picked a bound of 8 for
SV-COMP because this was used by the authors of SMACK
for their SMACK+Corral SV-COMP 2015 submission. The
larger bound of 64 for GPU was chosen because our experience
with these benchmarks indicated that loops with large iteration
counts are common (a consequence of the throughput-oriented
nature of GPU applications). The very large bound (~ 23°) is
approximately half the largest integer that Corral supports for
specifying the bound; the Corral authors advised against using
the largest integer due to potential overflow bugs in Corral.
Duality was run using the same large bound as used for Corral
(~ 239); we used the same bound since Duality is built on top
of Corral. We did not consider a smaller bound because the



interpolation-based analysis used by Duality depends upon the
ability to unwind a program to a significant depth.
GPUVerify was run on the GPU suite with automatic invariant
inference enabled. We disabled extra invariants with which the
benchmarks had been manually annotated, so that GPU Verify
ran in an unassisted manner.

Symbooglix was run using its default settings, except that the
checking of inconsistent assumptions was disabled (see §V-B)
and the timeout per solver query was set to 30 seconds.
Having a solver timeout prevents Symbooglix getting stuck
checking the feasibility of a particular path but may prevent
full exploration of the benchmark.

Each tool was allowed a maximum execution time of 900
seconds per benchmark (which is the time used at the last
edition of SV-COMP, except that we use wall clock time
instead of CPU time). A run of a tool on a single benchmark
consists of two pieces of information, the result type and the
execution time. The former is the answer the tool gives—bug
found, verified (i.e. no bug found, no tool crash, and no bound,
memory limit, solver or global timeout reached), or unknown
(i.e. no bug found and not verified). In the case of Symbooglix
and Boogaloo verified is equivalent to exploring all feasible
paths and finding no bugs.

Each tool was executed three times on the same benchmark,
and these runs were combined using the following approach.
For results types, if at least one run reports verified or bug
found, we take that result (we initially observed conflicting
result types due to tool bugs, but these disappeared once the
bugs were fixed). Otherwise, if all runs result in unknown, the
overall result is unknown. To combine the execution times, we
treat any of the three results that were of type unknown as
having taken the maximum allowable time (i.e. 900 seconds).
We then compute the arithmetic mean of these times. The
rationale here is to penalise tools that terminate abnormally
(e.g. crash) after a short amount of time.

All tools except Boogaloo are written in C#. To run them
on our Linux machine, we used Mono 3.12.1, with a minor
patch [16] to fix crashes we were experiencing.

D. Evaluation of Empirically-Driven Optimisations

As discussed in §IV, we took an empirically-driven approach
to optimising Symbooglix, incrementally optimising the tool
guided by a training set. The training set was obtained by taking
the prepared benchmarks (see §V-B) and randomly selecting
10% of each label for both benchmark suites. The number of
benchmarks used for our training set broken down by label
can be seen in the Training columns of Table I, totalling 374
benchmarks from the SV-COMP suite and 57 benchmarks
from the GPU suite. The size of the GPU training set is not
exactly 10% of the the initial benchmark labelling because
the training set was selected based on results from an early
run of the tools in which the tools were not run optimally.
This led to fewer benchmarks being labelled Correct and more
benchmarks being labelled Unknown.

At various intervals during Symbooglix’s optimisation we
stopped development and ran that version of Symbooglix on

the training set. We refer to these versions of Symbooglix
as snapshots. We monitored our progress by comparing the
performance of the latest snapshot to previous snapshots. The
following table details the eleven snapshots, giving each a short
name and indicating the order in which the optimisations of
§IV were added. Due to the nature of our development, the
optimisations are applied cumulatively.

1) Baseline: the starting point for our optimisation work; incor-
porates unique global constants constraint representation.

2) GlobalDDE: adds global dead declaration elimination.

3) GotoAssumeLA: adds goto-assume look-ahead.

4) ExprSimpl: adds expression simplification.

5) ConstrIndep: adds constraint independence.

6) RemSomeRecur: improves an algorithm that searches expres-
sions for symbolic variables and uninterpreted functions by
making it iterative and caching results; adds further expression
simplification rules; adapts stack size to avoid overflow errors.

7) RemSomeDbg: removes a data structure used for debugging
that was accidentally left behind. We discovered this after
profiling the memory usage of Symbooglix.

8) MapConstldx: adds map updates at concrete indices.

9) MapSymldx: adds map updates at symbolic non-aliasing
indices.

10) EffentClone: adds Efficient execution state cloning.

11) SmplSolv: optimises the solver interface to assess whether
the expression to be checked for satisfiability is constant or
already in the constraint set.

Experimental setup. To assess the progress of our optimisa-
tion effort, we ran each snapshot on the training set on a single
machine with an eight core Intel Xeon CPU (3.3GHz) with
48GiB of RAM running Linux. We used the process described
in §V-C to run Symbooglix, enforcing a 5GiB memory limit
per benchmark.

To visualise the progress of Symbooglix over time we
use quantile function plots as used in SV-COMP [5]. In
Figure 2 the top and bottom plots show results for the eleven
snapshots for the SV-COMP and GPU training sets, respectively.
Each curve represents a run of Symbooglix on a particular
snapshot. We compute a score for each snapshot by adding
one point for each benchmark that the snapshot accurately
classifies as correct or incorrect and subtracting one point for
inaccurate classifications. For classification we used the initial
labelling of §V-B, but updated this labelling as Symbooglix
managed to classify additional benchmarks. Each point denotes
a benchmark that was correctly classified as correct or incorrect.
The y-coordinate is the time taken to analyse the benchmark,
and for each curve, benchmarks are sorted based on time. The
x coordinate represents the accumulated score for the snapshot.
Thus a point (x,y) shows that analysis takes y seconds or
fewer for the previous x benchmarks plotted. The y-axis uses
a linear scale between O and 1, and a log scale thereafter. This
prevents times close to 0 from making the range of the y-axis
excessively large. The ordering of the rightmost data point on
the axis ranks the snapshots in terms of classification ability,
the width of the curve along the z-axis is the number of correct
classifications, and the area under a plot represents the total
execution time for the correctly-classified benchmarks in that
snapshot.
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Fig. 2. Quantile function plot for Symbooglix running on the training sets
for SV-COMP (top) and GPU (bottom) at different snapshots. Due to the
large number of snapshots, the plot is designed to be viewed in colour. The
maximum possible accumulative scores are 374 (SV-COMP) and 57 (GPU).

Snapshot results for the SV-COMP training set. The top

plot in Figure 2 shows that quantile plot for SV-COMP.

Most snapshots bring improvements to either the number of
correctly classified benchmarks or the overall run time (or
both). The most substantial impact is made by the GlobalDDE
and ExprSimpl optimisations. Note that the Baseline is not
visible on the plot because the SV-COMP benchmarks contain
many unused universally-quantified axioms over uninterpreted
functions. In Baseline these are all passed to the constraint
solver, causing all benchmarks to time out. The GlobalDDE
snapshot eliminates these unused axioms, allowing Symbooglix
to make progress. The other high-impact optimisation is
ExprSimpl, which allows six additional benchmarks to be
correctly classified, and also brings a significant improvement
in running time. Finally the MapSymldx optimisation allows
four additional benchmarks to be classified.

Snapshot results for the GPU training set. The bottom

plot in Figure 2 shows the quantile plot for the GPU suite.

Baseline is present in this plot because the GPU suite does
not use quantified axioms, allowing Symbooglix to make
progress from the beginning. As in SV-COMP, ExprSimpl
improves performance (though here does not classify additional
benchmarks). RemSomeRecur leads to a significant performance

gain and four additional correctly-classified benchmarks. Sev-
eral optimisations do not make any difference on the GPU
suite: GotoAssumeLA (due to the very limited amount of
forking that occurs in the GPU benchmarks), MapConstldx
(GPU Verify’s front-end employs a symbolic representation of
thread ids, meaning that maps are rarely indexed concretely),
and MapSymldx (because the optimisation does not currently
support bitvectors).

Snapshot results for the entire SV-COMP and GPU suites
are included on the project website [15].

E. Comparison of Symbooglix with Other Boogie Analysers

Experimental setup. We ran the comparison of the tools on
a large general purpose computing cluster [7] with 20-core
Intel Ivybridge CPU nodes, each with 128 GiB RAM running
Linux. We used the approach discussed in §V-C to run each
tool, and enforced a memory limit of 10 GiB per benchmark.
Our timing results are prone to fluctuations due to hardware
differences between nodes; we in part account for this by
reporting averages over three independent runs.

Results table. Table II shows the extent to which the tool
configurations we compare were able to verify or find bugs
in the SV-COMP and GPU suites. For Boogaloo and Corral,
the 8, 64 and NB suffixes indicate whether the tools were
invoked with a bound of 8, 64, or with no bound (for Corral,
NB actually means the huge bound of ~ 23%). The Verified
and Bug found columns indicate, for each tool, the number of
benchmarks labelled correct and incorrect, respectively, that the
tool could accurately classify as such. False alarms identifies
cases where a tool reports a correct benchmark as incorrect.
Unknown captures timeouts, memory exhaustion and crashes.
As expected, only the Boogie verifier and GPU Verify report
false alarms, and no tool reported a false negative (classifying
an incorrect benchmark as correct).

Comparison with Boogaloo. Table II shows that for the
SV-COMP benchmarks, Boogaloo-NB is more effective than
Boogaloo-8. Symbooglix verifies more benchmarks than
Boogaloo-NB: 236 vs. 64. The tools verify 58 common
benchmarks, with Symbooglix verifying 178 benchmarks
for which Boogaloo-NB reports unknown, and Boogaloo-NB
verifying 6 benchmarks for which Symbooglix reports unknown.
Symbooglix was also able to find more bugs than Boogaloo-NB:
395 vs. 122. The tools find bugs in 107 common benchmarks,
with Symbooglix finding bugs in 288 benchmarks for which
Boogaloo-NB reported unknown, and Boogaloo-NB finding
bugs in 15 benchmarks for which Symbooglix reports unknown.
Recall that Boogaloo cannot be applied to the GPU suite
because it does not support bitvectors.

Comparison over the SV-COMP suite. Comparing all the
tools applied to the SV-COMP suite, Table II shows that Corral
and Duality are the clear winners, with Corral-NB performing
best in terms of bug-finding ability, and Duality proving most
capable at verifying benchmarks. It is not surprising that
Symbooglix is less effective at verification than these tools,
since symbolic execution is primarily geared towards finding
bugs, and suffers from path explosion on bug-free programs. In



TABLE 11
RESULTS FOR BOOGIE ANALYSIS TOOLS APPLIED TO THE SV-COMP AND
GPU SUITES, USING FINAL CLASSIFICATION LABELS.

SV-COMP suite

Tool Verified Bug found False alarm  Unknown
Boogie 0 1021 2668 60
Boogaloo-8 43 122 0 3597
Boogaloo-NB 64 122 0 3563
Corral-8 1348 541 0 1860
Corral-NB 1365 553 0 1831
Duality 1856 426 0 1467
Symbooglix 236 395 0 3118
GPU suite
Tool Verified Bug found False alarm  Unknown
Boogie 260 35 165 119
Corral-64 298 28 0 253
Corral-NB 297 28 0 254
GPU Verify 403 34 76 66
Symbooglix 303 35 0 241

terms of bug-finding ability, Symbooglix is some way behind
Corral-NB, finding bugs in 395 vs. 553 benchmarks.

To assess whether Symbooglix and Corral-NB have com-
plementary bug-finding capabilities, we compared times taken
for these tools to find bugs for all SV-COMP benchmarks
labelled incorrect. The comparison is visualised by the scatter
plot of Figure 3. A point at (x,y) indicates that for a given
incorrect benchmark, Corral-NB and Symbooglix took = and
y seconds, respectively, to find the bug. Cases where the tools
reported unknown are treated as reaching the 900s timeout limit.
Points above the diagonal indicate that Corral-NB outperformed
Symbooglix (295 cases), points below the diagonal indicate
that Symbooglix outperformed Corral (309 cases). Both tools
reported unknown for 441 benchmarks (these points lie at the
top right corner of the plot). The shape of the plot clearly shows
that the tools have complementary abilities when it comes to
bug-finding: the tools find bugs in 344 common benchmarks,
but in 51 cases Symbooglix finds a bug where Corral-NB does
not (the points lying on the far right vertical) and in 209 cases
Corral-NB finds a bug where Symbooglix does not (the points
lying on the top horizontal). The large number of points lying
close to the z-axis indicate cases where Symbooglix finds a
bug within a matter of seconds, but where the time taken by
Corral varies dramatically. For 70 benchmarks where Corral-
NB takes more than 100s to find a bug, Symbooglix finds a
bug within 10s, and there are no benchmarks for which the
reverse is true. An analogous plot comparing Symbooglix with
Duality, presented on our project website [15], shows a very
similar picture.

Comparison over the GPU suite. Table II shows that
Symbooglix finds the most bugs in GPU among the tools that do
not report false alarms: 35 bugs compared with 28 bugs found
by both Corral-NB and Corral-64 (the same bugs are identified
by each Corral configuration). Furthermore, Symbooglix finds
a superset of the 28 bugs found by Corral. The Boogie verifier
also find 35 bugs, but with a high false alarm rate (165 alarms);
GPU Verify finds 34 bugs, with a lower false alarm rate (76
alarms). Comparing GPU Verify and Symbooglix further, both
tools find bugs in 31 GPU benchmarks, with Symbooglix
finding 4 bugs not found by GPU Verify, and GPU Verify finding
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Fig. 3. Comparison of bug-finding times on the SV-COMP suite for
Symbooglix and Corral-NB.

3 not found by Symbooglix.

Symbooglix is able to verify slightly more benchmarks than
Corral-64: 303 vs. 298, and the tools are highly complementary
at verification: each tool managed to verify 225 common bench-
marks, with Symbooglix verifying 78 benchmarks where Corral-
64 reports unknown, and Corral-64 verifying 73 benchmarks
where Symbooglix reports unknown. As expected, since it
was designed for this purpose, GPU Verify is able to verify
the largest number of GPU benchmarks: 403. Symbooglix
and GPUVerify can verify 258 common benchmarks, with
Symbooglix able to verify 45 benchmarks where GPU Verify
reports unknown, and GPU Verify able to verify 145 benchmarks
where Symbooglix reports unknown.

Our results show a stronger performance from Symbooglix
on the GPU suite compared with the SV-COMP suite. We
attribute this to the fact that the benchmark suite makes no
use of quantifiers (in translating OpenCL and CUDA kernels
to Boogie, the GPUVerify front end uses domain-specific
strategies for avoiding quantifiers [22]), and to a process
of predication applied by the GPU Verify front-end, whereby
conditional code is largely flattened, reducing the number of
paths in the resulting Boogie program [27].

FE. Comparison with KLEE

Because we also apply Symbooglix to benchmarks that
arise from C programs, it seems natural to compare the tool
with KLEE, a state-of-the-art symbolic execution tool targeted
towards C code. Various issues make this comparison less
straightforward than it might appear: due to various engineering
issues, KLEE cannot be applied out-of-the-box to the SV-
COMP examples, and an apples-to-apples comparison is not
possible because the Boogie benchmarks that Symbooglix
analyses have already been translated by the SMACK front-
end, which may have changed the semantics (and shape) of the
benchmarks. However, we believe that a brief comparison is
still useful in highlighting some differences between the tools.

We took the 374 SV-COMP benchmarks used during
Symbooglix’s training phase and removed 7 floating point
benchmarks which KLEE cannot handle (Symbooglix can
handle them because SMACK provides an abstraction for
floating point operations). We then removed the benchmarks
where the original SV-COMP labels (i.e. those for the C pro-
grams) did not match the labels inferred for the corresponding



TABLE III
RESULTS FOR KLEE AND SYMBOOGLIX ON THE REDUCED TRAINING SET.
Tool Verified Bug found False alarm  Unknown
Symbooglix 17 31 0 313
KLEE 10 54 1 (see text) 296

Boogie programs. After this filtering, we were left with 361
benchmarks [10], which we call the reduced training set.

We modified [9] KLEE to support the built-in verifier
functions used by the SV-COMP benchmarks and ran it on the
reduced training set. This revealed several engineering issues.
The SV-COMP benchmarks are a mix of 32-bit and 64-bit
C benchmarks, and KLEE only works correctly when it is
compiled for a target that matches the compilation target for
the benchmarks. This required us to build a 32-bit and 64-bit
build of KLEE to run on the 32-bit and 64-bit benchmarks
respectively. We also found that KLEE cannot run the majority
of the 64-bit benchmarks, which are based on code from the
Linux kernel and use extern globals that are not initialized.
Symbooglix does not have these issue because the Boogie IVL
is architecture independent, and SMACK’s translation does
handle extern globals. These issues illustrate a trade-off
between the levels at which the two tools operate: KLEE runs
LLVM bitcode, which precisely models system implementation
details, while Symbooglix runs Boogie programs, where such
details are left abstract. The former approach is better at finding
subtle implementation-level bugs, but is more time-consuming
to apply (as illustrated by the issues above). While the latter
can miss such bugs, avoiding precise system implementation
details can simplify looking for bugs that are independent from
these details.

With these issues in mind: Table III shows how Symbooglix
and KLEE compare in terms of benchmark classification.
Symbooglix was able to verify more benchmarks than KLEE.
The tools verified 9 common benchmarks (KLEE was faster
2/3 of the time), with Symbooglix verifying 8 benchmarks
that KLEE did not, and KLEE verifying 1 benchmark that
Symbooglix did not. KLEE was able to find more bugs than
Symbooglix. The tools found bugs in 18 common benchmarks
(in all cases KLEE found the bug faster), with Symbooglix
finding bugs in 13 benchmarks that KLEE did not, and KLEE
finding bugs in 37 benchmarks that Symbooglix did not. The
single false alarm reported by KLEE is, in fact, not really a
false alarm: the associated benchmark is labelled as correct,
but KLEE reports an out-of-bounds memory access. The
benchmark is from an SV-COMP category in which memory-
safety checking is not required. SMACK omits array bounds
checks when translating benchmarks in this category to Boogie,
but KLEE always checks array bounds and thus raises this
(genuine) error. If similar issues apply in the application of
KLEE to other SV-COMP benchmarks, the number of bugs
found by KLEE in Table III might be higher than it would be if
we could disable KLEE’s automatic checks when appropriate;
however, KLEE does not support disabling of these checks.

Finally, note that a useful feature of KLEE is that, on
detecting a bug, KLEE can generate a concrete input to trigger
it. With engineering effort, we could extend Symbooglix to

query the SMT solver in order to generate conditions that would
cause a buggy Boogie program to fail. If the Boogie program
was generated by a front-end (e.g. SMACK or GPU Verity),
extra effort, tailored to the nature of the translation into Boogie,
would be required to map the failure conditions for the Boogie
program to a bug-triggering input in the original program.

VI. RELATED WORK

Symbolic execution is widely established as an effective
method for finding bugs in software and generating high-
coverage test suites, is at the heart of several practical tools [19],
[28], [34], [39], [54] and has found application in numerous
domains (see [31], [32] for a discussion of its recent impact).

To our knowledge, the only other existing symbolic execution
tool for Boogie is Boogaloo [52], which supports a smaller
subset of the Boogie language than Symbooglix. Boogaloo was
principally designed to help understand errors reported during
functional verification attempts, thus the tool incorporates
heuristics to limit the extent to which quantifiers (prevalent in
functional verification) appear in solver queries. Symbooglix,
in contrast, provides only basic quantifier handling, passing
quantified expressions directly to the Z3 SMT solver.

In §II-C we provided an overview of other Boogie analysis
tools: Corral [44], Duality [50], GPU Verify [27] and the Boogie
verifier [23]. The combination of symbolic execution with over-
approximating abstractions is a potentially rich avenue for
further investigation [26], [40], [41].

VII. CONCLUSION

We have presented Symbooglix, a new symbolic execution
engine for the Boogie intermediate verification language,
and described an empirically-driven approach to optimising
the tool. Through a large experimental evaluation on two
diverse benchmark suites, we find that Symbooglix significantly
outperforms Boogaloo, an existing symbolic execution tool,
in terms of applicability and analysis coverage. Symbooglix
is competitive with GPU Verify and out-performs other state-
of-the-art Boogie analysers on a suite of benchmarks for
which GPU Verify is highly optimised. On a suite of Boogie
programs derived from the SV-COMP 2015 benchmark suite,
the overall analysis capabilities of Symbooglix are lower than
those of the Corral and Duality tools, but Symbooglix is highly
complementary to these tools in terms of bug-finding ability.
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