
Randomised Testing of the Compiler for a
Verification-Aware Programming Language

Alastair F. Donaldson
Imperial College London

London, UK

0000-0002-7448-7961

Dilan Sheth
Imperial College London

London, UK

0009-0000-9567-5497

Jean-Baptiste Tristan
AWS

Boston, USA

0000-0003-2574-7883

Alex Usher
Imperial College London

London, UK

0009-0007-2416-3962

Abstract—We present the design and implementation of two
new tools for randomised testing of the compiler of the Dafny pro-
gramming language. The Dafny language and tool-chain supports
formal verification of rich functional properties of programs,
and is seeing increasing adoption by industry, being used by
companies such as Amazon, Consensys, Microsoft and VMWare
for the construction of high assurance software components.
Bugs in the Dafny compiler are of critical importance because
they have the potential to undermine the safety and security of
deployed software that has been formally verified at the source
code level. Our new testing tools, fuzz-d and DafnyFuzz, are
based on randomised program generation, and overcome the
test oracle problem using a combination of differential testing,
metamorphic testing and the generation of programs with known
expected results. The new tools go significantly further than
XDsmith, an existing randomised compiler testing tool for Dafny,
in terms of the features of the language that they support. We
have used these tools to find and report 24 previously-unknown
Dafny compiler bugs that were beyond the reach of XDsmith, of
which 9 are soundness issues. Our fuzzing campaign has also led
to changes to the Dafny language specification via the identifica-
tion of ambiguous or under-documented language features. We
present a set of controlled experiments looking at statement and
mutation coverage on the Dafny compiler code base. The results
show that fuzz-d and DafnyFuzz achieve substantial additional
coverage on top of that provided by XDsmith, and can cover
some areas missed by the Dafny compiler regression test suite.
All three of fuzz-d, DafnyFuzz and XDsmith improve upon the
number of mutants killed by the Dafny regression test suite.

Index Terms—Fuzzing, compilers, formal verification, Dafny

I. INTRODUCTION

The Dafny programming language and its verifying com-

piler [9], [23], [24] are seeing increasing adoption in industry

for the construction of high assurance software. For example:

Dafny was recently used to model the authorisation engine

and validator for Amazon’s new Cedar authorisation-policy

language [19] (used by the the Amazon Verified Permissions

and AWS Verified Access managed services [1], [4]); the AWS

Cryptographic Material Providers Library is written using

Dafny [2] and Amazon provide an AWS Encryption SDK for

Dafny [3]; VMWare have used Dafny to build their VeriBe-

trFS verified file system [51]; the Dafny-EVM project from

Consensys uses Dafny to construct a functional specification

for the Etherium Virtual Machine [8]; and verification using

This work was supported by EPSRC grant EP/R006865/1, and by an
Amazon Research Award.

Dafny was a key component of Microsoft’s IronFleet project

on proving the correctness of distributed systems [17].

As well as the formal correctness guarantees that Dafny can

offer, the Dafny ecosystem is attractive because it features

compiler back-ends for multiple target languages: currently

C#, Go, Python, Java and JavaScript, with support for C++

and Rust added recently. This can reduce maintenance costs

by avoiding the need for multiple implementations of software

components written in diverse languages.

The increasing adoption of Dafny for engineering high-

assurance software makes it critically important that the Dafny

verification engine and the Dafny compiler, including all of

its back-ends, are well tested. Bugs in the verification engine

threaten to undermine the correctness guarantees that Dafny

claims to provide. But arguably worse still, wrong code bugs in

the Dafny compiler, where incorrect code is silently generated,

evade both code review and formal verification. Presently, the

only practical defence against such bugs is to extensively test

the Dafny compiler. The focus of this paper is on techniques

for automatically testing the Dafny compiler.

Amazon have already made steps towards testing the Dafny

compiler using randomised testing, via the XDsmith tool [20].

Focusing on a small subset of the Dafny language, XDsmith

generates Dafny programs in a randomised fashion. Each

generated program is then compiled to all of the back-end

languages that Dafny supports, and downstream tooling for

these languages is used to compile and execute the generated

code. The the results of execution are then compared, with

result mismatches being indicative of compiler bugs. Through

this application of differential testing [27], XDsmith was able

to find a number of Dafny compiler bugs.1

While these results are encouraging, the reach of XDsmith

is limited: the subset of Dafny that XDsmith focuses on omits

key features such as loops, recursive procedure calls and

various object-oriented language constructs that are widely-

used in practice.

Our contribution. We report on the design, implementation

and deployment of two new black-box randomised compiler

1Another notable feature of XDsmith is its ability to find verifier bugs
by generating annotated programs whose verification status is known by
construction. As the focus of our work is on compiler testing, we do not
consider this feature of XDsmith further.

407

2024 IEEE Conference on Software Testing, Verification and Validation (ICST)

979-8-3503-0818-1/24/$31.00 ©2024 IEEE
DOI 10.1109/ICST60714.2024.00044

testing tools for Dafny: fuzz-d and DafnyFuzz. Each of these

tools supports a substantially larger fragment of the Dafny

language compared with XDsmith. Like XDsmith, both fuzz-

d and DafnyFuzz generate programs in a randomised fashion

that are suitable for differential testing. The tools also support

(each in their own way) an alternative oracle whereby at

generation time the expected result that the generated program

should compute is deduced. This is useful for finding bugs

in common parts of the Dafny compiler: such bugs would be

missed by standard differential testing if they cause each back-

end to computing the same wrong result. The DafnyFuzz tool

also supports metamorphic testing [6]: it can generate families

of equivalent Dafny programs such that each program in a

family should compute the same result, with result differences

between programs being indicative of compiler bugs.

In part, we opted to build two new Dafny compiler testing

tools to increase testing diversity. In his essay on the uses of

diversity in software testing, Groce makes the case that we

should think of software testing as “a scavenger hunt, where

it might be a good idea to split up the team, since finding

a teacup with blue flowers and finding a Bunsen burner will

probably involve trips to very different locations” [15]. Seen

in this light, fuzz-d and DafnyFuzz join XDsmith in the team

of randomised testing tools that can be thrown at the Dafny

compiler to make it as reliable as possible.

New bugs found using our tools. We have used fuzz-d and

DafnyFuzz to find 24 previously-unknown Dafny compiler

bugs that could not be found by XDsmith, of which 18 have

been confirmed and 9 fixed. Of these bugs, 9 are soundness
issues, because they cause to the Dafny compiler to emit

code that will execute, but will deviate from the semantics

of the source program at runtime (either throwing a runtime

exception, or computing incorrect results). The remaining bugs

are either crash bugs that cause the Dafny compiler to abort

when processing an input program, or invalid code bugs, where

the Dafny compiler emits invalid code in one of its target

languages that is rejected at compile time by downstream

tools. While still important because they may inconvenience

developers, these are less critical than soundness bugs because

they cannot compromise the correctness of formally verified,

deployed code. We report on examples of crash and invalid

code bugs that turned out to be “fuzz blockers”: they triggered

so frequently that they prevented fuzz-d and DafnyFuzz from

finding any other (potentially more serious) bugs, and thus had

to be urgently fixed or worked-around in order for our fuzzing

campaign to proceed.

In addition to finding bugs, the process of designing and

deploying new Dafny program generators highlighted a num-

ber of Dafny language design issues, where the intended

semantics of constructs was not clear (to us) from the language

specification. This led to cases where what we believed to

be compiler bugs (due to us having implemented fuzz-d and

DafnyFuzz according to our interpretation of these language

features) turned out to be valuable false alarms: valuable in that

they led to the Dafny language specification being clarified.

This provides further evidence that randomised testing of

programming language implementations can aid in clarifying

the semantics of the target programming language, as has been

noted in previous work [11].

Increased thoroughness of testing enabled by our tools.
In addition to using fuzz-d and DafnyFuzz “in the wild”,

we report on a set of controlled experiments examining the

statement and mutation coverage that the tools achieve on

parts of the Dafny compiler in comparison to that achieved

by XDsmith and by the Dafny compiler regression test suite.

These results demonstrated that our tools offer a significant

improvement in code coverage compared to XDsmith, and they

can also identify weaknesses in the Dafny compiler regression

test suite, using both coverage analysis and mutation testing.

In summary, the contributions of our paper are:

• The design and implementation of two new randomised

testing tools for improving the reliability of the compiler

for Dafny, a verified programming language that is seeing

increasing adoption in industry for the construction of

high assurance software. The tools use a combination of

differential testing, metamorphic testing, and the genera-

tion of self-checking programs, to find bugs.

• A report on the successful use of these tools to improve

the Dafny compiler and language specification, leading

to the discovery of 24 previously-unknown bugs in the

Dafny compiler that could not be found by the existing

XDsmith fuzzer, including 9 soundness bugs, as well as

a number of language design issues.

• A set of controlled experiments showing that fuzz-d

and DafnyFuzz offer improvements over XDsmith with

respect to statement coverage, and further using statement

and mutation coverage analysis to highlight weaknesses

in the Dafny compiler regression test suite.

Paper structure. We present background on the Dafny lan-

guage, its compiler and verifier, and the XDsmith tool (Sec-

tion II), details of the fuzz-d and DafnyFuzz tools (Section III),

an overview and examples of the compiler bugs and language

design issues that we have found and reported using these

tools (Section IV), and the results of a set of controlled

experiments to compare the test thoroughness of fuzz-d and

DafnyFuzz to that of XDsmith and the Dafny regression test

suite (Section V). We discuss related work on compiler testing

(Section VI) and conclude with a discussion of avenue for

future work (Section VII).

II. BACKGROUND

A. The Dafny language

Dafny is a verification-aware programming language with

native support for annotating programs with specifications [9],

[23], [24], allowing developers to write code which is provably

correct with respect to these specifications. Its language style is

imperative in nature, featuring common programming idioms

such as control flow constructs, pattern matching, collection

types and object-oriented paradigms. Dafny also contains some

408

more unique imperative idioms, such as its forall parallel

assignment construct. This is used to simultaneously compute

and assign values to array indices, as well as having some

additional uses in verifier proofs.

At the core of the Dafny language lies a selection of verifi-

cation constructs that can be used to write functional specifica-

tions for methods and functions. Adherence to these functional

specifications can then be proven using a Floyd-Hoare-style

program verification method. Alongside traditional specifica-

tion constructs, such as pre- and post-conditions, invariants

and framing constructs, Dafny also provides developers with

more powerful constructs, including calculational proofs and

lemmas.

B. The Dafny compiler and verifier

The tool-chain associated with the Dafny programming

language comprises a compiler and verifier, which internally

transform a program into a number of abstract syntax trees

(ASTs) following the workflow detailed in Fig. 1. The correct-

ness of a Dafny program is established via formal verification,

thus Dafny first runs the verifier over a program, and compiles

the program only when verification is successful. Verification

works in a modular fashion by encoding each procedure in

the Dafny program into a corresponding procedure in the

Boogie intermediate verification language [5]. The Boogie

verification engine then constructs a verification condition

for each procedure, which is discharged by an SMT solver

(Z3 [10] by default).

Programs can be compiled into one of a number of different

target languages: currently C#, Go, Python, Java, JavaScript,

C++ and Rust are supported (though support for C++ and

Rust was added after we undertook the testing work reported

in this paper). Regardless of target language, every Dafny

program undergoes AST transformations from the frontend

and resolver. Each target language is then handled by a

separate back-end, all of which inherit a common AST class—

the SinglePassCompiler (Fig. 1).

Dafny compiler bugs affecting the code common to all target

languages are likely to impact all back-ends, while there is also

potential for bugs related to code generation for a particular

target language, and that thus affect only a particular back-end.

In this project, we focus on identifying such bugs in the

compiler stages of the Dafny AST transformations, both in

the shared AST classes and those specific to each back-end.

When using our tools for compiler testing, we disable the

Dafny verifier to allow higher throughput, ensuring that while

test programs are not verified, they are created in a manner

which makes them correct-by-construction, hence they should

correctly compile.

C. XDsmith and its limitations

Existing testing for the Dafny programming language saw

the creation of the tool XDsmith [20], which aimed to find

bugs in both the Dafny verifier and compiler. It uses an un-

derlying framework, Xsmith [16], to randomly generate AST

structures and pretty-prints these into Dafny. When testing

Dafny
Program

Internal
AST

Internal
AST

Single Pass
Compiler

Java
AST

C#
AST

...

Boogie
AST

frontend resolver

Fig. 1: Dafny Internal AST Transformations

the verifier, it uses built-in heuristics to generate compute

specifications for the generated AST structures such that the

expected verification outcome for each specification is known

in advance; deviations from these expectations are indicative

of verifier bugs. When used for compiler testing, XDsmith uses

differential testing: it invokes the Dafny compiler to generate

and execute code for each supported target language, and the

outputs of execution are compared—all the back-end outputs

should be the same.

While XDsmith is able to generate for many basic Dafny

features, such as primitive types, collections and basic control

flow (if statements), limitations in the underlying Xsmith

framework meant that XDsmith could not support more com-

plex language features, such as loops and object oriented

features [20]. Consequently, a large portion of the Dafny

language features were left untested, and in our testing we

aimed to focus towards these. Furthermore, because XDsmith

relies solely on differential testing across back-ends, it lacks

mechanisms for identifying bugs in the common parts of the

compilers—the AST transformations that are applied regard-

less of the target language. It is likely such bugs will impact all

back-ends in the same way, in which case differential testing

across back-ends will not be able to detect them.

III. THE FUZZ-D AND DAFNYFUZZ TOOLS

We now give a brief overview of the fuzz-d [47] and

DafnyFuzz [32] tools, both of which are open source on

GitHub. We start by describing what the tools have in common

in terms of their design (Section III-A), then detail features that

are particular to each tool (Sections III-B and III-C).

A. Common features

a) Program generation: Both tools take a grammar-

aided, generative approach to producing programs, inspired

by the well-known Csmith tool for C compiler testing [52]

(and also used by other “-smith” tools, including XDsmith).

They start with a template main method and generate an AST

in a top-down fashion, randomly choosing selections from

available language features until the complete AST is formed.

Generation maintains a context that stores available variables

and top-level constructs, and is also used to determine which

language features would be valid to generate at any given point

during generation. As well as primitive types, collection types

and control flow, the tools both support a number of more

complex Dafny features such as inductive datatypes, parallel

409

assignment and pattern matching. The set of features is not

entirely the same between fuzz-d and DafnyFuzz; we highlight

differences in Sections III-B and III-C.

b) Self-checking oracles: Both fuzz-d and DafnyFuzz

implement a notion of a self-checking oracle. This allows

the tools to determine the expected output for any arbitrary

program that they generate. This is useful for detecting bugs

in code that is shared between back-ends (e.g. bugs in the

frontend and resolver; see Fig. 1). As noted above, if a bug

did exist in such code, it would likely be missed by differential

testing across back-ends, since all back-ends would inherit the

same behaviour and exhibit the same incorrect result.

c) Test case reduction: To allow diagnosis of the root

causes of bugs found by our fuzzers, we have integrated fuzz-

d and DafnyFuzz with the Perses test case reducer [43]. To

leverage Perses, we first encoded the Dafny grammar in the

input format of the Antlr parser generator tool [30]. Driven by

this grammar, Perses then allows a large, randomly-generated

Dafny program that triggers a compiler bug to be minimised

to a small program triggering the same bug that is relatively

easy for the Dafny team to inspect in order to investigate the

cause of the bug.

d) Common challenges: We discuss two challenges that

had to be overcome during the development of both tools.

First, the printing of or iterating over unordered Dafny data

structures (such as sets and multisets) can lead to non-

deterministic output that varies across back-ends. This is

because the order in which elements of such structures are

considered is not mandated by the Dafny language, and

depends on the way that these data structures are modelled

via features of the downstream languages that Dafny supports.

Nondeterminism across back-ends is incompatible with differ-

ential testing as it makes it difficult to distinguish between

an erroneous result mismatch due to a compiler bug, and a

legitimate result mismatch due to non-determinism. Both tools

incorporate logic that allows unordered data structures to be

supported in a manner that does not lead to nondeterminism in

the results that are printed by generated programs. This logic

is also applied for heap based objects such as the array type

which would otherwise print a memory location.

Second, both tools suffered from the problem of “fuzz

blockers”: easy-to-trigger bugs in the Dafny compiler that

obscured the discovery of new bugs. At various stages in our

fuzzing efforts we had to adjust the tools to inhibit them from

generating programs likely to trigger common, previously-

identified bugs. This is problematic as it inhibits the full testing

of the Dafny language as it prevents language features being

tested in conjunction which was found as the cause of some

bugs discussed below.

B. fuzz-d

a) Program generation: fuzz-d generates arbitrary pro-

grams by selecting from features in its supported language

set, which extends the commons set listed above to include

Dafny’s object oriented features: classes, traits and inheritance.

The programs produced by the generator may not be valid, and

therefore it is necessary to further transform the program to

ensure its validity. This approach takes inspiration from re-

conditioning [22]—safe wrapper functions are inserted where

necessary in a separate pass over the randomly generated AST.

b) Differential testing: Similar to XDsmith, fuzz-d

utilises differential testing to identify bugs impacting the

Dafny back-ends. Once a program is generated, a built-in

test harness invokes all the Dafny back-ends in parallel, and

their outputs are compared to identify differences (indicative

of bugs).

c) Interpreter: To overcome the limitation of differential

testing being unable to identify bugs in common compiler

code, fuzz-d implements a Dafny interpreter as a reference or-

acle, independent from the Dafny codebase. This is a separate

component within fuzz-d which can be invoked independently

of its program generator.

Given a Dafny program restricted to the subset of features

that fuzz-d supports, the interpreter computes the expected

output for this program. This provides an independent result to

compare the back-end outputs to when performing differential

testing, such that if the back-end outputs are then not as

expected, either we have found a bug in a shared compiler

AST, or in the interpreter itself.

So far, the only bugs we have found in shared code have

been invalid code bugs, thus differential testing has proved

the most effective oracle within fuzz-d. It is possible that

with additional testing we may find such wrong result bugs

impacting all back-ends.

C. DafnyFuzz

a) Program generation: Like fuzz-d, DafnyFuzz gener-

ates a program in a fairly standard fashion by constructing an

AST on the fly, tracking the context in which each program

statement is generated so that e.g. a continue statement

is only generated inside a loop. Upon generating a valid

statement, at the top level of the program, it is executed in

memory, mutating the statement to avoid defects, such as

divide by zero operations, and changing the state space due to

the effects of the statement.

To enable comparison of the compiled programs, DafnyFuzz

prints all the variable values upon exiting a scope. This enables

comparison between executions of Dafny that should produce

the same results.

b) Metamorphic testing: When a DafnyFuzz-constructed

AST is converted into Dafny syntax, there are several opera-

tions that can be emitted in different, equivalent ways. For ex-

ample, an expression node e1+e2 can be emitted equivalently

as e2 + e1. DafnyFuzz exploits such equivalences to generate

a set of equivalent programs that should all produce the same

result. This is useful for testing the internal AST representation

of the Dafny compiler to ensure that equivalent programs are

not mutated in an unexpected way during the parsing and

resolution stage. Such bugs may evade differential testing, if a

defect during components of the compiler shared by all back

ends leads to all back ends behaving in an identically wrong

fashion.

410

Additionally, equivalence can be proved through the control

flow the program. For example, a program statement if
(c) { A } else { B } can be emitted equivalently as

A assuming the boolean c can be guaranteed to be truthy

at every invocation of the statement. This is because B is

considered as dead-code, allowing for it to be removed with

no impact to the execution of the resultant program. This is

useful as each statement is executed in memory during the

value tracking process allowing for dead-code to be eliminated

when converting the program to Dafny syntax. This also tests

the Dafny compiler does not perform unexpected mutations

due to dead code during the parsing and resolution which

would lead to incorrect compiled results in all back-ends.

c) Value tracking: DafnyFuzz uses value tracking to

ensure that the program that is generated is free from defects

such as out-of-bounds array accesses (so that it should indeed

produce some well-defined output). This process avoids the

Csmith [52] approach of always using safe wrapper replace-

ment operations which would limit the capabilities of the

programs generated. Value tracking also provides an alter-

native test oracle, because the actual output of the program

can be compared with the expected output predicted by value

tracking. This is similar to how the YARPGen [26] and Or-

ange3 [29] tools work, but DafnyFuzz incorporates variations

to allow reduced restrictions upon loops and reuse of methods

and functions.

A challenge associated with value tracking is to ensure that

the semantics of Dafny are strictly adhered to. An example

that surprised us here is that arithmetic in Dafny is performed

according to Euclidean algorithms, rather than geometrical

arithmetic used in most modern programming languages. With

Euclidean arithmetic, the result of a division, a/b should

produce an integer quotient q and a natural number remainder

r strictly smaller than the absolute value of the denominator

(i.e. 0 < r < |b|). This is done such that a = b× q + r holds.

Accurate value tracking in DafnyFuzz required implementing

division and modulo operations in this way in the value tracker.

The value tracking is used to create the self-checking oracle

by outputting the value of each variable at upon executing a

print statement, allowing the output of executing the program

to be compared with an independently formed expectation.

Most bugs were identified using differential testing with the

self-checking oracle; however, one bug [36] was also identified

by the metamorphic testing oracle above.

IV. PRACTICAL IMPACT ON THE DAFNY COMPILER AND

LANGUAGE SPECIFICATION

Our testing work so far has led to the reporting of 14 issues

found by fuzz-d, of which 6 have been fixed, and 12 issues

found by DafnyFuzz, of which 5 have been fixed. Among

these, 5 have been tagged by the Dafny team as soundness

issues, indicating that they have the potential to compromise

the reliability of deployed, formally verified software by

causing the software to behave incorrectly at runtime. We have

also identified a further 4 issues which are not yet categorised,

but we believe to be soundness related.

We provide a detailed overview of the GitHub issues that

correspond to these in Table I. For any issues which are not

categorised, we provide a predicted categorisation marked by

an asterisk (*).

As discussed in the introduction, bugs can be broadly cate-

gorised as: soundness bugs, where the Dafny compiler gener-

ates incorrect code in a downstream programming language,

and where the fact that this code is incorrect only becomes

clear when the generated code is executed; invalid code bugs,

where the Dafny compiler generates code that is statically

rejected by the compiler of the downstream programming

language (e.g. because it is syntactically incorrect or violates

static typing rules); and crash bugs, where the Dafny compiler

crashes (e.g. due to an assertion failure).

Soundness bugs are the most serious class of bugs, since

they have the potential to cause applications that have been for-

mally verified at the Dafny level to violate their specifications

when they are deployed. Invalid code and crash bugs may be

an impediment to deploying Dafny applications, but are less

severe than soundness bugs because they are caught before

execution time. When the result produced by Dafny cannot

be executed, through invalid code or compiler crashing, the

offending feature poses a “fuzz blocker” as they prevent the

output of the compiler being tested and any miscompilation

errors being detected.

Our fuzzing campaign also highlighted a number of clarity

problems with features of the Dafny language, leading to

improved documentation.

We now detail a selection of soundness bugs (Section IV-A),

invalid code and crash bugs (Section IV-B) and language

design issues (Section IV-C) that were brought to light by

the use of our tools.

A. Soundness bugs

Forall expression inside match statement [49] (found by
fuzz-d). Of the language features tested by fuzz-d, pattern-

matching-related features were among those which caused

the most issues. Fig. 2 shows a minimised version of a

program generated by fuzz-d. This features a forall parallel

assignment inside a match statement, and proved particularly

problematic, causing issues across all 5 back-ends: for three

back-ends (C#, Java and Go), Dafny produced invalid code

that caused exceptions during compilation by the relevant

back-end. However, for the interpreted back-ends (Python and

JavaScript), this manifested as a soundness bug because it

resulted in runtime exceptions. Because this bug affected all

back-ends it was likely to be contained in common compiler

code—this was demonstrated in the fix the developers released

for this issue, which related to improving the deep copying

logic of the AST class corresponding to the forall feature.

Runtime cardinality limit of multisets [50] (found by
fuzz-d). An interesting edge case in the C# and Python

implementations of multisets was identified by fuzz-d. When

trying to take the modulus of a multiset whose size is greater

than the maximum supported integer value, runtime exceptions

411

Issue Status Categorisation Component Description
#4894 Crash Invalid Code Resolver Nested match within loop with assignment after break.
#4358 Unconfirmed Documentation* Compiler (all back-ends) Inconsistent printing of strings across back-ends
#4141 Fixed Wrong Result (Soundness) Compiler (Java) Incorrect use of deep equality comparing arrays
#4130 Confirmed Code Generation Compiler (Python) Memory issues with nested lambdas
#4061 Unconfirmed Invalid Code* Compiler (Java) Generated code with invalid use of variables
#4032 Fixed Wrong Result (Soundness)* Compiler (Java) Incorrect use of deep equality comparing arrays
#4011 Unconfirmed Wrong Result (Soundness)* Compiler (C#) Incorrect equality of multisets with 0-cardinality elements
#4007 Fixed Invalid Code Compiler (Python) Invalid syntax in generated code
#4004 Fixed Crash Parser Match with parallel assignment
#3988 Fixed Crash (Soundness)* Compiler (C#, Python) Runtime cardinality limit for multisets
#3987 Fixed Crash (Soundness) Compiler (Python, JS) Referencing undeclared variable in generated code
#3978 Fixed Invalid Code Compiler (Go) Miscompilation related to use of continue
#3969 Confirmed Crash Verifier Assertion failure during translation
#3966 Fixed Crash Parser Assertion failures with nested match statements
#3952 Confirmed Invalid Code Compiler (Java) Miscompiling combinations of tertiary and comparison operators
#3950 Confirmed Incorrect rejection Resolver Incomplete type checking for multiset operations
#3949 Fixed Documentation - Unexpected handling of variables in match cases
#3932 Won’t Fix Error Reporting Parser Handling of a clash in the grammar
#3910 Unconfirmed Invalid Code Compiler (Java, Go, C#) Multiple issues using variables in pattern matches
#3906 Unconfirmed Crash Verifier Boogie – Internal translation error
#3887 Unconfirmed Invalid Code Compiler (Java) Type representation issues for maps using chars
#3874 Fixed Invalid Code (Soundness) Compiler (Python) Multiset equality issues
#3873 Confirmed Invalid Code (Soundness) Compiler (JS) Type representation issues for maps with array keys
#3871 Confirmed Wrong Result (Soundness) Compiler (Java) Incorrect cardinality of sets and multisets
#3856 Duplicate Wrong Result (Soundness) Compiler (JS, Go) Incorrect internal representation of maps
#3854 Confirmed Invalid Code Compiler (Java) Multiple issues related to type representation and class casting.

TABLE I: Summary of issues reported to Dafny developers

1 datatype D = A | B
2

3 method Main () {
4 match A {
5 case A ⇒
6 var a: array<int> := new i n t [2 4] (i 1 ⇒ i 1) ;
7 f o r a l l i 2 | 0 ≤ i 2 < a . Length {
8 a [i 2] := i 2 ;
9 }

10 case ⇒ {}
11 }
12 }

Fig. 2: Test case inserting a parallel assignment inside a match

statement, resulting in invalid generated code that triggered

compile-time and runtime exceptions in the back-ends.

are thrown due to an arithmetic overflow from trying to fit

the modulus into an integer type. The other three back-ends

are able to handle this case using Dafny’s BigInteger
implementation, which allows Dafny to have (theoretically)

unbounded integer values, therefore this is clearly a missed

implementation detail in the C# and Python back-ends.

Fig. 3 shows the test case which caused this error for

Python—it sets multiplicity of the value 1 in multiset x as

264, which is greater than the maximum allowed value for

an index-type integer. Consequently, when the test case was

run, the error OverflowError: cannot fit ’int’
into an index-sized integer was thrown.

Multi-level Multisets Wrong Result [45] (found by fuzz-
d). Running the program of Fig. 4 will trigger a wrong

result bug in the C# back-end. It is clear that the output

of the program should be true, since a[true := 0] is

equivalent to multiset{false}. However, the C# back-

1 method Main () {
2 var x: multiset<int> := mult iset {} ;
3 x := x [1 := 18446744073709551616];
4 pr in t | x | ;
5 }

Fig. 3: Test case demonstrating the runtime cardinality limit

of Python multisets. Generated code tries to place the value

264 inside an integer type, which triggers a runtime overflow

exception.

1 method Main () {
2 var a: multiset<bool> := mult iset{ false , true } ;
3 var b: multiset<multiset<bool>> := mult iset{a [true :=

0]} ;
4

5 pr in t b = mult iset{mult iset{ fa lse }} , ”\n ” ;
6 }

Fig. 4: Test case which triggers a wrong result in the C# back-

end, which outputs false instead of true.

end outputs false at runtime, while all other tested back-

ends output true. Although the Dafny developers have not

confirmed this bug, we believe it to be a soundness issue as

it impacts the runtime safety of deployed programs using the

C# back-end. It is likely to be caused by logical issues in the

C# definition of multiset equality.

Incorrect compilation of set and multiset cardinality oper-
ations [38] (found by Dafny-Fuzz). The program of Fig. 5,

reduced from a program generated by DafnyFuzz, triggered a

miscompilation in the Java back-end of Dafny. This program

prints the cardinality of (a) a set containing a single array,

and (b) a multiset containing a single array. In both cases it is

412

1 method Main () {
2 var v array : array<int> := new i n t [] [1 , 2] ;
3

4 var v in t s : i n t := |{ v array } | ;
5 assert (v in t s = 1) ;
6 pr in t v in t s , ”\n ” ;
7

8 var v int m: i n t := | mult iset{v array } | ;
9 assert (v int m = 1) ;

10 pr in t v int m , ”\n ” ;
11 }

Fig. 5: Miscompilation by Java back-end: incorrect cardinality

of set and multiset<array>

1 method m method 12 () returns (re t 1 : seq<array<int>>)
2 {
3 var v array 1 : array<int> := new i n t [2] [25 , 2] ;
4 var v array 2 : array<int> := new i n t [3] [16 , 9 , 1 7] ;
5 var v seq: seq<array<int>> := [v array 1 , v array 2] ;
6 return v seq ;
7 }
8

9 method Main () returns ()
10 {
11 var v seq 1: seq<array<int>> := m method 12 () ;
12 var v seq 2: seq<array<int>> := m method 12 () ;
13 pr in t v seq 34 = v seq 36 ;
14 }

Fig. 6: Miscompilation by Java back-end: incorrect return

equality check

clear that the cardinality should be 1. However, the Java code

emitted by the Dafny Java back-end yields 2 as the cardinality

in both cases. This bug was found thanks to the value

tracking oracle of DafnyFuzz. Additionally, differential testing

confirmed that only the Java back-end behaves incorrectly

here; the JavaScript, C#, Python and Go back-ends compute

correct results for these cardinalities.

Miscompilation by Java back-end: Inconsistent equality
between return values of methods [37] (found by Dafny-
Fuzz). The program shown in Fig. 6, reduced from a program

generated by DafnyFuzz, triggered a miscompilation in the

Java back-end of Dafny. This program prints the equality of

the return values from subsequent calls to the same method.

Given each array creates a new object in memory, the equality

should return false. However, the Java code emitted by

the Dafny Java back-end yields true as the result of the

comparison. This bug was found thanks to the value tracking

oracle of DafnyFuzz. Additionally, differential testing con-

firmed that only the Java back-end behaves incorrectly here;

the JavaScript, C#, Python and Go back-ends compute correct

results for these equality check.

This root cause of this issue has been identified and fixed,

being an incorrect use of deep-equality to check the equality of

each element within the sequence. This leads the performing

an equality check between the individual elements of the

arrays and hence the incorrect result being returned.

B. Invalid code and crash bugs

Match statement crash bug [39] (found by fuzz-d and
DafnyFuzz). The program shown in Fig. 7 demonstrates a

1 method Main () returns ()
2 {
3 match 8 {
4 case ⇒ {
5 var v bool : bool , v rea l : rea l := true , match 15.06

{
6 case ⇒ 6.58
7 } ;
8 pr in t v bool , ” ” , v real , ”\n ” ;
9 }

10 }
11 }

Fig. 7: Match parallel assignment crash bug

1 datatype D0 = DC1(c f1 : int , c f2 : i n t)
2

3 method Main () {
4 f o r i := 1 to 2 {
5 pr in t DC1(1 , 2) . (c f1 := i) ;
6 }
7 }

Fig. 8: Test case causing a Java compilation crash due to non-

final variables referenced in lambdas in generated code.

crash bug that was discovered during the development process

of the fuzzers. This occurred due to performing a parallel

assignment within a match statement. This bug was introduced

during a fix of a different bug, and proved to be a fuzz blocker,

with the throughput of successfully compiled programs reduc-

ing to 3% of the previous throughput of random programs

produced by DafnyFuzz. This emphasised the importance of

testing against the latest version of the Dafny compiler, as this

may have gone unnoticed and released as an official stable

version.

Datatype Update inside For Loop [48] (found by fuzz-
d). We experienced a lot of issues testing Dafny’s Java back-

end, finding that it was particularly vulnerable to generating

invalid code which would trigger errors in the Java compiler.

These issues were so common that they became fuzz blockers,

preventing us from testing the Java back-end thoroughly as

only very simple generated programs could successfully pass

through the compiler. Fig. 8 shows an example that causes

invalid Java code to be output. Internally, the generated code

uses lambdas for the datatype operations; however, this causes

issues when it tries to use the loop counter i inside these

lambdas, despite i not being final. Hence, the Java compiler

rejects the generated code.

Error in the handling of continue statements [33] (found
by Dafny-Fuzz). The program of Fig. 9, reduced from a

program generated by DafnyFuzz, triggered a bug in the Dafny

Go back-end. The Go code generated by Dafny implemented

the semantics of continue using a goto statement, but

inadvertently violated a rule of the Go language that prohibits a

goto from jumping over a declaration of a variable that is still

in scope at the target label for the goto. Thus the generated

Go code did not compile. This is an example of a bug that

did not require the metamorphic or value tracking oracle to be

detected, since the problem manifests by the Dafny-generated

413

1 method Main ()
2 {
3 f o r v in t 7 := 3 to 18
4 {
5 i f (fa lse) {
6 cont inue ;
7 }
8 var v in t 93 := 1;
9 pr in t v int 93 , ”\n ” ;

10 }
11 }

Fig. 9: A Dafny program for which the Go back-end generated

invalid code

code failing to compile (rather than compiling successfully

but into a form that does not respect the semantics of the

input Dafny program). This issue has been fixed by the Dafny

compiler developers.

C. Language design issues

Lack of clarity about interchangeability between strings
and character sequences [34] (found by DafnyFuzz). The

program detailed in Fig. 10 was unexpectedly rejected by

Dafny’s parsing stage during testings, caused due to a type

mismatch between string and seq<char>. According to

the Dafny documentation [9], these types should be synony-

mous, stating “A special case of a sequence type is seq<char>,

for which Dafny provides a synonym: string”. This suggests

that the types should be interchangeable, as can be seen on line

3 which produces the result true. However, the program is

rejected during the parsing stage as matching on the sequence

type is invalid. This was detected by DafnyFuzz where the it

interchangeably uses the synonymous types. From testing the

subset of the language, this was the the only case found where

the types were not interchangeable. Dafny’s developers have

not yet responded to this issue.

1 method Main () returns ()
2 {
3 pr in t ” s t r ” = [’ s ’ , ’ t ’ , ’ r ’] ;
4 var v s t r ing 9 : str ing := (match ”GX” {
5 case [’G’ , ’X ’] ⇒ ” 123 ”
6 case ⇒ ” 456 ”
7 }) ;
8 pr in t v s t r ing 9 ;
9 }

Fig. 10: Test case demonstrating inconsistency in the Dafny

language specification

This leads to a related issue when printing strings and

seq<char> types, shown in Fig. 11 where the printing of the

string varies based on the surrounding context. When printing

the sequence of characters generates an equivalent output

to printing the equivalent string representation, displayed as

juxtaposed characters. However when the string is contained

within another structure, in this case a tuple, it is then printed

as separate characters. While the Dafny language maintain-

ers commented that this was an intentional, the change in

behaviour when printing makes verifying the output of the

program have an additional challenge which had to be worked

around by both fuzz-d and DafnyFuzz.

1 method Main () {
2 pr in t ” abcd ” , ”\n ” ;
3 pr in t [’ a ’ , ’ b ’ , ’ c ’ , ’ d ’] , ”\n ” ;
4 pr in t (1 , ” abcd ”) , ”\n ” ;
5 }
6

7 / / Output:
8 / / abcd
9 / / abcd

10 / / (1 , [’ a ’ , ’ b ’ , ’ c ’ , ’ d ’])

Fig. 11: Test case demonstrating inconsistency in the printing

of strings

Parsing ambiguity: clash between generics and comparison
operators [46] (found by fuzz-d). To our surprise, the

program of Fig. 12 was rejected by Dafny’s resolver. This was

identified to be caused by a clash in the language grammar—

line 3 could either be parsed as a parallel assignment with

two comma-separated expressions on the right-hand side, or

as a parallel assignment where the values are returned from

a parameterised function call. Dafny parsed this as the latter,

whereas the program requires the former and therefore the

program was rejected. This design decision could be better

documented and rejections following this case could provide

better diagnostic error messages; however, these changes have

yet to be made. It might also be that more context-aware

parsing could allow Dafny to handle both cases; however, the

Dafny developers do not feel that this would be worthwhile

since there already exists a workaround to the problem.

1 method Main () {
2 var x := 1;
3 var z1 , z2 := x < x , x > (1) ;
4 }

Fig. 12: Test case demonstrating a clash between generics and

comparison operators

Semantics of match statements with variables [35] (found
by DafnyFuzz). The program detailed in Fig. 13 was compiled

correctly and executed by all backends, each producing the

identical result of Unexpected. Match statement documen-

tation [9] had stated “The cases must be exhaustive, but

you can use a wild variable (‘ ‘) or an as yet unused simple

identifier to indicate ‘match anything’ ”, which suggested that

the case would compare the existing variables value. This also

produced the warning this branch is redundant in

relation to line 7 which was unclear given the reduced test

case would not enter the first case. This lead to a change in

the documentation, to increase clarity on how identifiers can

be used in cases, now stating “The cases must be exhaustive,

but you can use a wild variable (‘ ‘) or a simple identifier to

indicate ‘match anything’ ”. The bug, detected due to value

tracking by DafnyFuzz, lead to clearer documentation and

a better defined language. Ideally, this would have shown a

414

TABLE II: Coverage experiment results, showing line and

branch coverage percentages

Run Line (%) Branch (%)
1 32.59 30.51
2 32.54 30.50
3 32.50 30.46

Avg 32.54 30.49

(a) Coverage results for XD-
Smith

Run Line (%) Branch (%)
1 46.56 40.83
2 46.51 40.81
3 46.38 40.75

Avg 46.48 40.80

(b) Coverage results for fuzz-d

Run Line (%) Branch (%)
1 38.55 28.99
2 38.48 35.30
3 38.59 35.36

Avg 38.54 33.22

(c) Coverage results for Dafny-
Fuzz

Line (%) Branch (%)
74.00 69.24

(d) Coverage Results for Dafny
Compiler Regression Test Suite

warning to indicate that a variable previously declared in the

scope would be shadowed in the match body.

1 method Main () returns () {
2 var v: i n t := 1;
3 match 0 {
4 case v ⇒ {
5 pr in t ” Unexpected ” ;
6 }
7 case ⇒ {
8 pr in t ” Expected ” ;
9 }

10 }
11 }

Fig. 13: Test case demonstrating a lack of clarity in documen-

tation of variables in match statements

V. CONTROLLED EXPERIMENTS

To gain further insights into the overlap and complementar-

ity between fuzz-d, DafnyFuzz, XDsmith and the Dafny test

suite, we conducted controlled experiments to evaluate code

coverage and mutation coverage on the Dafny compiler.

A. Statement coverage

We conducted experiments for statement coverage over an

instrumented version of the Dafny codebase created using the

coverlet tool [40]. For each of the fuzzing tools XDsmith,

fuzz-d and DafnyFuzz, we performed 8 hour testing campaigns

and calculated the coverage that their generated programs

could achieve over the instrumented codebase. To account for

the stochastic nature of fuzzing, we performed three repeat

runs. As a baseline, we compare with the coverage achieved

by the existing Dafny compiler regression test suite.

The more flexible generation approach taken by fuzz-d and

DafnyFuzz clearly shows promising improvements over the

existing tool XDsmith (Table II). We attribute the difference

in coverage between our two tools to fuzz-d supporting a

more complete subset of the features of Dafny, in particular

through its support for Dafny’s object-oriented features. There

are, however, some areas that DafnyFuzz covers which fuzz-d

cannot—notably for generic datatypes.

There is evidently still quite a large portion of the codebase

left uncovered by the tools, but covered by the Dafny compiler

regression test suite, including verification features which were

not the focus of the designed fuzzers. In spite of this, we

were able to identify edge cases within the Dafny language

which were not covered by the regression test suite, but were

covered by our tools’ generated test programs. We present two

examples below featuring code which could be generated by

our tools, but is not included in Dafny’s test suite.

Example 1: Cloning of Sequence/Multiset Bounded Pools
(detected by fuzz-d)

1 method Main () {
2 var a := [1 , 2 , 3] ;
3 match true {
4 case ⇒ var b := map x | x in a : : x := x * x ;
5 }
6 }

Fig. 14: Smallest test case covering cloning of the

SeqBoundedPool class

Within Dafny, comprehensions are considered as being

formed of three parts: a list of bound variables, a range
which confines these variables to a finite range of values,

and a term which represents the expression used to evaluate

the comprehension’s elements. The range can take multiple

different forms, and each of these results in the possible range

values being represented as a bounded pool—for example,

providing an int range (e.g. 0 <= i < 10) results in an

IntBoundedPool while providing a data structure (e.g. x
in [1, 2, 3]) results in a bounded pool corresponding

to that data structure. The lines omitted by Dafny’s compiler

regression test suite result from an edge case related to the

bounded pools for sequences and multisets.

Each bounded pool implements a function Clone() pro-

viding a deep copy of itself. This is necessary since the

Dafny internal AST representation is mutable, meaning that

if the current AST state needs to be cached or maintained

for later use, it must be cloned so as not to be changed by

later transformations. However, the Dafny regression tests omit

testing the clone functions for comprehensions bounded by

the contents of sequences or multisets. This is covered fuzz-d

following its support of match statements and comprehensions,

and a reduced test case obtained from fuzz-d covering cloning

of sequence bounded pools is shown in Figure 14.

Example 2: Missed Binary Operators (detected by fuzz-d

and DafnyFuzz)

1 method Main () {
2 pr in t true ⇐= fa lse ;
3 pr in t true ⇐⇒ true ;
4 pr in t map[1 := 1] �= map[1 := 2] ;
5 pr in t mult iset{1} �= mult iset {2};
6 }

Fig. 15: A small test case with statements to achieve coverage

for missing binary operators

The Dafny test suite notably has a number of missing

cases for binary operators: for explies (<==), iff (<==>) and

415

map/multiset not equals (!=). Missing these operators could be

argued as a potential weakness in Dafny, since binary operators

are among the most commonly used language features and

therefore it is important the tests are able to identify any

compile issues related to all possible types. Figure 15 shows a

simple test case where each line would introduce coverage for

one of the above operators. These statements are representative

of code generated by our tools.

B. Mutation coverage

We used a C# mutation testing tool, Stryker [41], to per-

form four controlled experiments evaluating mutation coverage

using fuzz-d, DafnyFuzz, XDsmith and the Dafny compiler

regression test suite respectively. Stryker identifies and injects

mutations—including arithmetic, logical, initialisation and

assignment-based—into the Dafny codebase, with the test suite

then being invoked to see if at least one test fails, in which

case the mutant is killed by the test suite. Due to the compute-

intensive nature of mutation testing—Stryker generates over

80,000 mutants over all of the DafnyCore module—it is neces-

sary to limit the scope of the experiment to mutations affecting

only the core compiler file, SinglePassCompiler, for

which Stryker generates 2967 mutants.

Since randomised compiler testing usually involves generat-

ing an indefinitely-large sequence of test programs, rather than

working with a fixed test suite, while Stryker requires a fixed

test suite, it was necessary for us to use fuzz-d, DafnyFuzz and

XDsmith to form test suites representative of the capabilities

of each tool. These consist of programs generated by the tool

and their expected output over each back-end. To make this

as fair as possible in comparison with the Dafny compiler

regression test suite, we compiled the test suites by generating

and running programs with the fuzzers for the time taken to

execute the Dafny regression tests, with the aim of all four

test suites therefore having approximately the same amount of

time to test Dafny.

TABLE III: Mutation coverage results over the

SinglePassCompiler.

Test Suite Killed Survived Timed Out
fuzz-d 2960 1 6
DafnyFuzz 2956 11 0
XDsmith 2957 0 10
Dafny Compiler Regression Tests 2939 28 0

The results of this experiment are shown in Table III. A

mutant classified as “timed out” is still detected [41], but

not killed—for example, a test suite cannot kill a mutant that

induces an infinite loop; instead Stryker would mark this as

“timed out” after the test suite failed to complete within a

certain time budget.

While the Dafny compiler regression tests kill the majority

of the mutants, a number of mutants survived. Of these, 21

mutants are located in functions responsible for compiling the

direct comparison of integer types with zero. This is treated

as a special case aimed at simplifying the comparison, for

example from x < 0 to x.Sign == -1. All three fuzzers

were able to kill these 21 mutants (those which survived in the

case of fuzz-d and DafnyFuzz were located in other parts of

the codebase). This demonstrates that, similarly to our findings

with statement coverage, fuzzing is able to identify missing

cases in the Dafny compiler regression test suite.

We were surprised that our tools did not outperform XD-

smith in this experiment, given how many more features are

supported in comparison. Understanding this result further will

require additional investigation.

VI. RELATED WORK

Our fuzz-d tool principally uses differential testing [27] as

a test oracle. Differential testing is widely used for compiler

testing: it was popularised by the Csmith project for C com-

pilers [52], and has since been used in the testing of compilers

for languages such as OpenCL [25], Java [7], Verilog [18] and

Rust [31]. The XDsmith tool was the first to apply differential

testing to compilers for the Dafny language [20]. Compared

with XDsmith, our fuzz-d and DafnyFuzz tools handle a

substantially larger fragment of the Dafny language.

DafnyFuzz uses metamorphic testing [6], which has also

been widely applied in the domain of compiler testing: an

early approach involved generating equivalent programs [44];

a family of techniques termed “Equivalence Modulo Inputs”

testing involve creating equivalent versions of existing pro-

grams by applying mutations that do not affect the expected

output of a program for a given input [21], [42]; and this idea

has been extended to the more general notion of applying

semantics-preserving transformations to an existing program

to obtain families of equivalent programs [12]–[14].

Another means for obtaining a test oracle for compiler

testing is to produce self-checking programs. This is the

approach taken by the Orange family of C compiler testing

tools [28], [29], and it is also a facility that the YARPGen

C/C++ compiler testing tool offers [26] (although in practice

YARPGen is reported to have been used for differential test-

ing). Both fuzz-d and DafnyFuzz offer the ability to produce

self-checking programs, and the XDsmith tool uses generation-

time analysis to produce programs with known expected

verification outcomes [20].

A useful by-product of our work has been the clarification of

some aspects of the Dafny language specification, as discussed

in Section IV-C. The potential of compiler fuzzing to inform

programming language design was noted in a report on the

industrial deployment of randomised testing techniques for

GPU compilers, which led to clarifications being made to the

specification of the WebGPU shading language [11].

VII. CONCLUSIONS AND FUTURE WORK

We have presented details of the design and implementation

of fuzz-d and DafnyFuzz, two new tools for automatically

testing the reliability of the Dafny compiler via random gener-

ation of programs. These tools have allowed the discovery of

a substantial number of new compiler bugs, several of which

have been fixed, and they go beyond the capabilities of an

existing automated testing tool for Dafny, XDsmith.

416

Avenues for future work include: incorporating fuzz-d and

DafnyFuzz into the continuous integration infrastructure of the

Dafny project, so that they are either run continuously, or so

that a limited amount of fuzzing is done on a per-commit

basis; testing a new Dafny back-end that emits Rust code,

that was not in place when we conducted our bug-finding

campaign; and using a combination of fuzzing and mutation

testing to synthesise additional regression test suites for Dafny

that fill gaps in the coverage that the current regression test

suite achieves.

REFERENCES

[1] Amazon Web Services, “Amazon verified permissions,” 2023, https://
aws.amazon.com/verified-permissions/.

[2] ——, “AWS cryptographic material providers library,” 2023, https:
//github.com/aws/aws-cryptographic-material-providers-library-dafny.

[3] ——, “AWS encryption SDK for Dafny,” 2023, https://github.com/aws/
aws-encryption-sdk-dafny.

[4] ——, “AWS verified access,” 2023, https://aws.amazon.com/
verified-access/.

[5] M. Barnett, B. E. Chang, R. DeLine, B. Jacobs, and K. R. M. Leino,
“Boogie: A modular reusable verifier for object-oriented programs,”
in Formal Methods for Components and Objects, 4th International
Symposium, FMCO 2005, Amsterdam, The Netherlands, November
1-4, 2005, Revised Lectures, ser. Lecture Notes in Computer Science,
F. S. de Boer, M. M. Bonsangue, S. Graf, and W. P. de Roever,
Eds., vol. 4111. Springer, 2005, pp. 364–387. [Online]. Available:
https://doi.org/10.1007/11804192 17

[6] T. Chen, S. Cheung, and S. Yiu, “Metamorphic testing: a new approach
for generating next test cases,” Department of Computer Science, The
Hong Kong University of Science and Technology, Tech. Rep. HKUST-
CS98-01, 1998.

[7] Y. Chen, T. Su, C. Sun, Z. Su, and J. Zhao, “Coverage-directed
differential testing of JVM implementations,” in Proceedings of the
37th ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI 2016, Santa Barbara, CA, USA, June 13-17,
2016, C. Krintz and E. D. Berger, Eds. ACM, 2016, pp. 85–99.
[Online]. Available: https://doi.org/10.1145/2908080.2908095

[8] Consensys, “evm-dafny,” 2023, https://github.com/Consensys/
evm-dafny.

[9] Dafny Project, “Dafny GitHub repository,” 2023, https://github.com/
dafny-lang/dafny.

[10] L. M. de Moura and N. S. Bjørner, “Z3: an efficient SMT solver,” in
Tools and Algorithms for the Construction and Analysis of Systems,
14th International Conference, TACAS 2008, Held as Part of the Joint
European Conferences on Theory and Practice of Software, ETAPS
2008, Budapest, Hungary, March 29-April 6, 2008. Proceedings, ser.
Lecture Notes in Computer Science, C. R. Ramakrishnan and J. Rehof,
Eds., vol. 4963. Springer, 2008, pp. 337–340. [Online]. Available:
https://doi.org/10.1007/978-3-540-78800-3 24

[11] A. F. Donaldson, B. Clayton, R. Harrison, H. Mohsin, D. Neto,
V. Teliman, and H. Watson, “Industrial deployment of compiler fuzzing
techniques for two GPU shading languages,” in IEEE Conference
on Software Testing, Verification and Validation, ICST 2023, Dublin,
Ireland, April 16-20, 2023. IEEE, 2023, pp. 374–385. [Online].
Available: https://doi.org/10.1109/ICST57152.2023.00042

[12] A. F. Donaldson, H. Evrard, A. Lascu, and P. Thomson, “Automated
testing of graphics shader compilers,” PACMPL, vol. 1, no. OOPSLA,
pp. 93:1–93:29, 2017. [Online]. Available: https://doi.org/10.1145/
3133917

[13] A. F. Donaldson and A. Lascu, “Metamorphic testing for (graphics)
compilers,” in Proceedings of the 1st International Workshop
on Metamorphic Testing, MET@ICSE 2016, Austin, Texas, USA,
May 16, 2016. ACM, 2016, pp. 44–47. [Online]. Available:
https://doi.org/10.1145/2896971.2896978

[14] A. F. Donaldson, P. Thomson, V. Teliman, S. Milizia, A. P. Maselco,
and A. Karpinski, “Test-case reduction and deduplication almost for
free with transformation-based compiler testing,” in PLDI ’21: 42nd
ACM SIGPLAN International Conference on Programming Language
Design and Implementation, Virtual Event, Canada, June 20-25, 20211,

S. N. Freund and E. Yahav, Eds. ACM, 2021, pp. 1017–1032.
[Online]. Available: https://doi.org/10.1145/3453483.3454092

[15] A. Groce, “Let a thousand flowers bloom: on the uses of diversity
in software testing,” in Onward! 2021: Proceedings of the 2021 ACM
SIGPLAN International Symposium on New Ideas, New Paradigms,
and Reflections on Programming and Software, Virtual Event /
Chicago, IL, USA, October 20-22, 2021, W. D. Meuter and E. L. A.
Baniassad, Eds. ACM, 2021, pp. 136–144. [Online]. Available:
https://doi.org/10.1145/3486607.3486772

[16] W. Hatch, P. Darragh, and E. Eide, “Xsmith,” 2023, https://docs.
racket-lang.org/xsmith/index.html, accessed 18 October 2023.

[17] C. Hawblitzel, J. Howell, M. Kapritsos, J. R. Lorch, B. Parno, M. L.
Roberts, S. T. V. Setty, and B. Zill, “Ironfleet: proving safety and
liveness of practical distributed systems,” Commun. ACM, vol. 60, no. 7,
pp. 83–92, 2017. [Online]. Available: https://doi.org/10.1145/3068608

[18] Y. Herklotz and J. Wickerson, “Finding and understanding bugs
in FPGA synthesis tools,” in FPGA ’20: The 2020 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays, Seaside,
CA, USA, February 23-25, 2020, S. Neuendorffer and L. Shannon,
Eds. ACM, 2020, pp. 277–287. [Online]. Available: https://doi.org/10.
1145/3373087.3375310

[19] M. Hicks, “How we built Cedar with automated reasoning
and differential testing,” 2023, https://www.amazon.science/blog/
how-we-built-cedar-with-automated-reasoning-and-differential-testing.

[20] A. Irfan, S. Porncharoenwase, Z. Rakamaric, N. Rungta, and
E. Torlak, “Testing Dafny (experience paper),” in ISSTA ’22: 31st
ACM SIGSOFT International Symposium on Software Testing and
Analysis, Virtual Event, South Korea, July 18 - 22, 2022, S. Ryu and
Y. Smaragdakis, Eds. ACM, 2022, pp. 556–567. [Online]. Available:
https://doi.org/10.1145/3533767.3534382

[21] V. Le, M. Afshari, and Z. Su, “Compiler validation via equivalence
modulo inputs,” in ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’14, Edinburgh, United
Kingdom - June 09 - 11, 2014, M. F. P. O’Boyle and K. Pingali, Eds.
ACM, 2014, pp. 216–226. [Online]. Available: https://doi.org/10.1145/
2594291.2594334

[22] B. Lecoeur, H. Mohsin, and A. F. Donaldson, “Program reconditioning:
Avoiding undefined behaviour when finding and reducing compiler
bugs,” Proc. ACM Program. Lang., vol. 7, no. PLDI, pp. 1801–1825,
2023. [Online]. Available: https://doi.org/10.1145/3591294

[23] K. R. M. Leino, “Dafny: An automatic program verifier for functional
correctness,” in Logic for Programming, Artificial Intelligence, and
Reasoning - 16th International Conference, LPAR-16, Dakar, Senegal,
April 25-May 1, 2010, Revised Selected Papers, ser. Lecture
Notes in Computer Science, E. M. Clarke and A. Voronkov,
Eds., vol. 6355. Springer, 2010, pp. 348–370. [Online]. Available:
https://doi.org/10.1007/978-3-642-17511-4 20

[24] ——, “Accessible software verification with dafny,” IEEE Softw.,
vol. 34, no. 6, pp. 94–97, 2017. [Online]. Available: https:
//doi.org/10.1109/MS.2017.4121212

[25] C. Lidbury, A. Lascu, N. Chong, and A. F. Donaldson, “Many-core
compiler fuzzing,” in Proceedings of the 36th ACM SIGPLAN
Conference on Programming Language Design and Implementation,
Portland, OR, USA, June 15-17, 2015, D. Grove and S. Blackburn,
Eds. ACM, 2015, pp. 65–76. [Online]. Available: https://doi.org/10.
1145/2737924.2737986

[26] V. Livinskii, D. Babokin, and J. Regehr, “Random testing for C
and C++ compilers with YARPGen,” Proc. ACM Program. Lang.,
vol. 4, no. OOPSLA, pp. 196:1–196:25, 2020. [Online]. Available:
https://doi.org/10.1145/3428264

[27] W. M. McKeeman, “Differential testing for software,” Digital Technical
Journal, vol. 10, no. 1, pp. 100–107, 1998. [Online]. Available:
http://www.hpl.hp.com/hpjournal/dtj/vol10num1/vol10num1art9.pdf

[28] E. Nagai, A. Hashimoto, and N. Ishiura, “Reinforcing random testing of
arithmetic optimization of C compilers by scaling up size and number of
expressions,” IPSJ Trans. Syst. LSI Des. Methodol., vol. 7, pp. 91–100,
2014. [Online]. Available: https://doi.org/10.2197/ipsjtsldm.7.91

[29] K. Nakamura and N. Ishiura, “Introducing loop statements in random
testing of C compilers based on expected value calculation,” in Pro-
ceedings of the Workshop on Synthesis And System Integration of Mixed
Information Technologies (SASIMI 2015), 2015, p. 226–227.

[30] T. Parr, “ANTLR,” 2023, https://www.antlr.org/, last accessed 2023-10-
24.

417

[31] M. Sharma, P. Yu, and A. F. Donaldson, “Rustsmith: Random
differential compiler testing for rust,” in Proceedings of the 32nd
ACM SIGSOFT International Symposium on Software Testing and
Analysis, ISSTA 2023, Seattle, WA, USA, July 17-21, 2023, R. Just
and G. Fraser, Eds. ACM, 2023, pp. 1483–1486. [Online]. Available:
https://doi.org/10.1145/3597926.3604919

[32] D. Sheth, “Dafnyfuzz github repository,” 2023, accessed: 25th October
2023. [Online]. Available: https://github.com/dilan-s/dafny-verifier

[33] ——, “Go continue miscompilation error,” 2023, https://github.com/
dafny-lang/dafny/issues/3978.

[34] ——, “Inconsistencies in handling of string and sequence of char,” 2023,
https://github.com/dafny-lang/dafny/issues/4672.

[35] ——, “Inconsistencies in handling of string and sequence of char,” 2023,
https://github.com/dafny-lang/dafny/issues/3949.

[36] ——, “Incorrect cardinality of set and multiset¡array¿ - java miscom-
pilation error,” 2023, https://github.com/dafny-lang/dafny/issues/3871#
issuecomment-1520854345.

[37] ——, “Java inconsistent equality between return values of methods,”
2023, https://github.com/dafny-lang/dafny/issues/4141.

[38] ——, “Miscompilation for java set and multiset cardinality,” 2023, https:
//github.com/dafny-lang/dafny/issues/3871.

[39] ——, “Parallel assignment including match epression within match
statement crash,” 2023, https://github.com/dafny-lang/dafny/issues/4004.

[40] T. Solarin-Sodara, “Coverlet: Cross-platform code coverage,” 2023,
accessed: 19th October 2023. [Online]. Available: https://github.com/
coverlet-coverage/coverlet

[41] Stryker Project, “Stryker Mutator,” 2023, accessed: 19th October
2023. [Online]. Available: https://stryker-mutator.io/docs/stryker-net/
introduction/

[42] C. Sun, V. Le, and Z. Su, “Finding compiler bugs via live code
mutation,” in Proceedings of the 2016 ACM SIGPLAN International
Conference on Object-Oriented Programming, Systems, Languages,
and Applications, OOPSLA 2016, part of SPLASH 2016, Amsterdam,
The Netherlands, October 30 - November 4, 2016, E. Visser and
Y. Smaragdakis, Eds. ACM, 2016, pp. 849–863. [Online]. Available:
https://doi.org/10.1145/2983990.2984038

[43] C. Sun, Y. Li, Q. Zhang, T. Gu, and Z. Su, “Perses: syntax-
guided program reduction,” in Proceedings of the 40th International
Conference on Software Engineering, ICSE 2018, Gothenburg, Sweden,
May 27 - June 03, 2018, M. Chaudron, I. Crnkovic, M. Chechik,
and M. Harman, Eds. ACM, 2018, pp. 361–371. [Online]. Available:
https://doi.org/10.1145/3180155.3180236

[44] Q. Tao, W. Wu, C. Zhao, and W. Shen, “An automatic testing
approach for compiler based on metamorphic testing technique,” in
17th Asia Pacific Software Engineering Conference, APSEC 2010,
Sydney, Australia, November 30 - December 3, 2010, J. Han and T. D.
Thu, Eds. IEEE Computer Society, 2010, pp. 270–279. [Online].
Available: https://doi.org/10.1109/APSEC.2010.39

[45] A. Usher, “C# wrong result: Multi-level multisets,” 2023, https://github.
com/dafny-lang/dafny/issues/4011.

[46] ——, “Comma seperated expressions parsed incorrectly as generics,”
2023, https://github.com/dafny-lang/dafny/issues/3932.

[47] ——, “fuzz-d GitHub repository,” 2023, https://github.com/fuzz-d/
fuzz-d.

[48] ——, “Java compilation crash: Datatype update inside for loop,” 2023,
https://github.com/dafny-lang/dafny/issues/4061.

[49] ——, “JS, Python runtime exception: Forall inside match statement,”
2023, https://github.com/dafny-lang/dafny/issues/3987.

[50] ——, “Runtime exceptions for modulus of large multiset,” 2023, https:
//github.com/dafny-lang/dafny/issues/3988.

[51] VMware Labs, “Verified BetrFS,” 2023, https://github.com/
vmware-labs/verified-betrfs.

[52] X. Yang, Y. Chen, E. Eide, and J. Regehr, “Finding and understanding
bugs in C compilers,” in Proceedings of the 32nd ACM SIGPLAN
Conference on Programming Language Design and Implementation,
PLDI 2011, San Jose, CA, USA, June 4-8, 2011, M. W. Hall and
D. A. Padua, Eds. ACM, 2011, pp. 283–294. [Online]. Available:
https://doi.org/10.1145/1993498.1993532

418

