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Abstract. In the matching tasks which form an integral part of all types of track-
ing and geometrical vision, there are invariably priors available on the absolute
and/or relative image locations of features of interest. Usually, these priors are
used post-hoc in the process of resolving feature matches and obtaining final
scene estimates, via ‘first get candidate matches, then resolve’ consensus algo-
rithms such as RANSAC. In this paper we show that the dramatically differ-
ent approach of using priors dynamically to guide a feature by feature matching
search can achieve global matching with much fewer image processing opera-
tions and lower overall computational cost. Essentially, we put image processing
into the loop of the search for global consensus. In particular, our approach is able
to cope with significant image ambiguity thanks to a dynamic mixture of Gaus-
sians treatment. In our fully Bayesian algorithm, the choice of the most efficient
search action at each step is guided intuitively and rigorously by expected Shan-
non information gain. We demonstrate the algorithm in feature matching as part
of a sequential SLAM system for 3D camera tracking. Robust, real-time matching
can be achieved even in the previously unmanageable case of jerky, rapid motion
necessitating weak motion modelling and large search regions.

1 Introduction

It is well known that the key to obtaining correct feature associations in potentially
ambiguous image matching tasks is to search for a set of correspondences which are
in consensus: they are all consistent with a believable global hypothesis. The usual
approach taken to search for matching consensus is as follows: first candidate matches
are generated, for instance by detecting all features in both images and pairing features
which are nearby in image space and have similar appearance. Then, incorrect ‘outlier’
matches are pruned by proposing and testing hypotheses of global parameters which
describe the world state of interest — the 3D position of an object or the camera itself,
for instance. The sampling and voting algorithm RANSAC [6] has been widely used to
achieve this in geometrical vision problems.

Outliers are match candidates which lie outside of bounds determined by global con-
sensus constraints: these are priors on the true absolute and relative locations of features
if expressed in a proper probabilistic manner. The idea that inevitable outlier matches
must be ‘rejected’ from a large number of candidates achieved by some blanket initial
image processing is deeply entrenched in computer vision. The approach in the active
matching paradigm of this paper is very different — to cut outliers out at source wher-
ever possible by searching only the parts of the image where true positive matches are
most probable. Instead of searching for all features and then resolving, feature searches
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(a) Slow camera motion at 15Hz (b) Fast camera motion at 15Hz

Fig. 1. Active matching dramatically reduces image processing operations while still achieving
global matching consensus. Here, in a search for 11 point features in 3D camera tracking we
contrast green regions for standard feature search with the much smaller yellow ellipses searched
by our Active Matching method. In these frames, joint compatibility needed to search a factor
of 4.8 more image area than Active Matching in (a) and a factor or 8.4 in (b). Moreover, JCBB
encounters all the matches shown (blobs), whereas Active Matching only finds the yellow blobs.

occur one by one. The results of each search, via an exhaustive but concentrated tem-
plate checking scan within a region, affect the regions within which it is likely that each
of the other features will lie. This is thanks to the same inter-feature correlations of
which standard consensus algorithms take advantage — but our algorithm’s dynamic
updating of these regions within the matching search itself means that low probability
parts of the image are never examined at all (see Figure 1), and the number of image
processing operations required to achieve global matching is reduced by a large factor.
Information theory intelligently guides the step by step search process from one search
region to the next and can even indicate when matching should be terminated at a point
of diminishing returns.

While matching is often formulated as a search for correspondence between one
image and another (for example in the literature on 3D multi-view constraints with
concepts such as the multi-view tensors), stronger constraints are available when we
consider matching an image to a state — an estimate of world properties perhaps ac-
cumulated over many images. Uncertainty in a state is represented with a probability
distribution. Matching constraints are obtained by projecting the uncertain world state
into a new image, the general result being a joint prior probability distribution over the
image locations of features. These uncertain feature predictions will often be highly cor-
related. When probabilistic priors are available, the unsatisfying random sampling and
preset thresholds of RANSAC have been improved on by probabilistic methods such as
the Joint Compatibility Branch and Bound (JCBB) algorithm [11] which matches fea-
tures via a deterministic interpretation tree [7] and has been applied to geometric image
matching in [1]. JCBB takes account of a joint Gaussian prior on feature positions and
calculates the joint probability that any particular hypothesized set of correspondences
is correct.

Our algorithm aims to perform at least as well as JCBB in determining global con-
sensus while searching much smaller regions of an image. It goes much further than
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previously published ‘guided matching’ algorithms such as [12] in guiding not just a
search for consensus but the image processing to determine candidate matches them-
selves.

Davison [3] presented a theoretical analysis of information gain in sequential im-
age search. However, this work had the serious limitation of representing the current
estimate of the state of the search at all times with a single multi-variate Gaussian dis-
tribution. This meant that while theoretically and intuitively satisfying active search
procedures were demonstrated in simulated problems, the technique was not applicable
to real image search because of the lack of ability to deal with discrete multiple hy-
potheses which arise due to matching ambiguity — only simulation results were given.
Here we use a dynamic mixture of Gaussians (MOG) representation which grows as
necessary to represent the discrete multiple hypotheses arising during active search.
We show that this representation can now be applied to achieve highly efficient image
search in real, ambiguous tracking problems.

2 Probabilistic Prediction and Feature by Feature Search

We consider making image measurements of an object or scene of which the current
state of knowledge is modelled by a probability distribution over a finite vector of pa-
rameters x — representing the position of a moving object or camera, for instance. In
an image, we are able to observe features: measurable projections of the scene state. A
measurement of feature i yields the vector of parameters zi — for example the 2D im-
age coordinates of a keypoint. A likelihood function p(zi|x) models the measurement
process.

When a new image arrives, we can project the current probability distribution over
state parameters x into feature space to predict the image locations of all the features

which are measurement candidates. Defining stacked vector zT =
(
z1 z2 . . .

)�
con-

taining all candidate feature measurements, the density:

p(zT ) =
∫

p(zT |x)p(x)dx . (1)

is a probabilistic prediction not just of the most likely image position of each feature,
but a joint distribution over the expected locations of all of them. Given just individu-
ally marginalised parts p(zi) of this prediction, the image search for each feature can
sensibly be limited to high-probability regions, which will practically often be small in
situations such as tracking. In Isard and Blake’s Condensation [8], for example, feature
searches take place in fixed-size windows around pre-determined measurement sites
centred at a projection into measurement space of each of the particles representing the
state probability distribution.

However, the extra information available that has usually been overlooked in feature
search but which we exploit in this paper is that the predictions of the values of all
the candidate measurements which make up joint vector zT are often highly correlated,
since they all depend on common parts of the scene state x. In a nutshell, the correlation
between candidate measurements means that making a measurement of one feature tells
us a lot about where to look for another feature, suggesting a step by step guided search
rather than blanket examination of all feature regions.
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2.1 Guiding Search Using Information Theory

At each step in the search, the next feature and search region must be selected. Such
candidate measurements vary in two significant ways: the amount of information which
they are expected to offer, and the amount of image processing likely to be required
to extract a match; both of these quantities can be computed directly from the cur-
rent search prior. There are ad-hoc ways to score the value of a measurement such as
search ellipse size, used for simple active search for instance in [5]. However, Davi-
son [3], building on early work by others such as Manyika [10], explained clearly that
the Mutual Information (MI) between a candidate and the scene state is the essential
probabilistic measure of measurement value.

Following the notation of Mackay [9], the (MI) of continuous multivariate PDFs
p(x) and p(zi) is:

I(x; zi) = E

[
log2

p(x|zi)
p(x)

]
(2)

=
∫

x,zi

p(x, zi) log2

p(x|zi)
p(x)

dxdzi . (3)

Mutual information is expected information gain: I(x; zi) is how many bits of informa-
tion we expect to learn about the uncertain vector x by determining the exact value of
zi. In active matching, the MI scores of the various candidate measurements zi can be
fairly compared to determine which has most utility in reducing uncertainty in the state
x, even if the measurements are of different types (e.g. point feature vs. edge feature).
Further, dividing MI by the computational cost required to extract a measurement leads
to an ‘information efficiency’ score [3] representing the bits to be gained per unit of
computation.

We also see here that when evaluating candidate measurements, a useful alternative
to calculating the mutual information I(x; zi) between a candidate measurement and
the state is to use the MI I(zT �=i; zi) between the candidate and all the other candidate
measurements. This is a measure of how much information the candidate would provide
about the other candidates, capturing the core aim of an active search strategy to decide
on measurement order. This formulation has the very satisfying property that active
search can proceed purely in measurement space, and is appealing in problems where it
is not desirable to make manipulations of the full state distribution during active search.

2.2 Active Search Using a Single Gaussian Model

To attack the coupled search problem, Davison [3] made the simplifying assumption
that the PDFs describing knowledge of x and zT can be approximated always by single
multi-variate Gaussian distributions. The measurement process is modelled by zi =
hi(x) + nm, where hi(x) describes the functional relationship between the expected
measurement and the object state as far as understood via the models used of the object
and sensor, and nm is a Gaussian-distributed vector representing unmodelled effects
(noise) with covariance Ri which is independent for each measurement. The vector xm

which stacks the object state and candidate measurements (in measurement space) can
be calculated along with its full covariance:
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ẑ1
ẑ2
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The lower-right portion of Pxm representing the covariance of zT =
(
z1 z2 . . .

)�
is

known as the innovation covariance matrix S in Kalman filter tracking. The correlations
between different candidate measurements mean that generally S will not be block-
diagonal but contain off-diagonal correlations between the predicted measurements of
different features.

With this single Gaussian formulation, the mutual information in bits between any
two partitions α and β of xm can be calculated according to this formula:

I(α; β) =
1
2

log2

|Pαα|
|Pαα − PαβP

−1
ββPβα|

, (5)

where Pαα, Pαβ , Pββ and Pβα are sub-blocks of Pxm . This representation however can
be computationally expensive as it involves matrix inversion and multiplication so ex-
ploiting the properties of mutual information we can reformulate into:

I(α; β) = H(α) − H(α|β) = H(α) + H(β) − H(α, β) (6)

=
1
2

log2

|Pαα||Pββ |
|Pxm | . (7)

2.3 Multiple Hypothesis Active Search

The weakness of the single Gaussian approach of the previous section is that, as ever, a
Gaussian is uni-modal and can only represent a PDF with one peak. In real image search
problems no match (or failed match) can be fully trusted: true matches are sometimes
missed (false negatives), and clutter similar in appearance to the feature of interest can
lead to false positives. This is the motivation for the mixture of Gaussians formulation
used in our active matching algorithm. We wish to retain the feature-by-feature quality
of active search. The MOG representation allows dynamic, online updating of the multi-
peaked PDF over feature locations which represents the multiple hypotheses which arise
during as features are matched ambiguously.

3 Active Matching Algorithm

Our active matching algorithm searches for global correspondence in a series of steps
which gradually refine the probabilistic ‘search state’ initially set as the prior on feature
positions. Each step consists of a search for a template match to one feature within a
certain bounded image region, followed by an update of the search state which depends
on the search outcome. After many well-chosen steps the search state collapses to a
highly peaked posterior estimate of image feature locations — and matching is finished.
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3.1 Search State Mixture of Gaussians Model

A single multi-variate Gaussian probability distribution over vector xm defined in Equa-
tion 4 is parameterised by a ‘mean vector’ x̂m and covariance matrix Pxm , and we use
the shorthand G(x̂m, Pxm) to represent the explicit normalised PDF:

p(xm) = G(x̂m, Pxm ) (8)

= (2π)−
D
2 |Pxm |− 1

2 e−
1
2 (xm−x̂m)�P−1

xm
(xm−x̂m) . (9)

During active matching, we now represent the PDF over xm with a multi-variate MOG
distribution formed by the sum of K individual Gaussians each with weight λi:

p(x) =
K∑

i=1

p(xi) =
K∑

i=1

λiGi , (10)

where we have now used the further notational shorthand Gi = G(x̂mi , Pxmi
). Each

Gaussian distribution must have the same dimensionality. We normally assume that the
input prior at the start of the search process is well-represented by a single Gaussian and
therefore λ1 = 1, λi�=1 = 0. As active search progresses and there is a need to propagate
multiple hypotheses, this and subsequent Gaussians will divide as necessary, so that at
a general instant there will be K Gaussians with normalised weights

∑K
i=1 λi = 1.

The current MOG search state model forms the prior for a step of active matching.
This prior, and the likelihood and posterior distributions to be explained in the following
sections, are shown in symbolic 1D form in Section 3.4.

3.2 The Algorithm

The active matching algorithm (see Figure 2) is initialized with a joint Gaussian prior
over the features’ locations in measurement space (e.g. prediction after application of
motion model). At each step we select a {Gaussian, Feature} pair for measurement
based on the expected information gain (see Section 4) and make an exhaustive search
for feature matches within this region, finding zero or more matches above a threshold.
For every template match yielded by the search a new Gaussian is spawned with mean
and covariance conditioned on the hypothesis of that match being a true positive, and
we also consider the ‘null’ possibility that none of the matches is a true positive. After
a search the MoG distribution is updated to represent the outcome, as detailed in the
rest of this section. Very weak Gaussians are pruned from the mixture after each search
step. The algorithm continues until all features have been measured, or an alternative
stopping criterion can be defined based on expected information gain falling below a
desired value indicating that nothing more of relevance is to be obtained from the image.

3.3 Likelihood Function

One step of active matching takes place by searching the region defined by the high-
probability 3σ extent of one of the Gaussians in the measurement space of the se-
lected feature. If we find M candidate template matches and no match elsewhere zc =
{z1 . . . zMz′rest} then the likelihood p(zc|x) of this result is modelled as a mixture:
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ACTIVEMATCHING(Gin) UPDATEMIXTURE(Mixture1..K,Matches1..M )
Mixture = [[1, Gin]] [λi,Gi] = get measured gaussian(Mixture)
{Fsel,Gsel} = get max gain pair(Mixture) for m = 1 : M
while is unmeasured(Fsel,Gsel) [λm,Gm] = fuse match(Gi,λi,Matches[m])

Matches = measure(Fsel, Gsel) Mixture = [Mixture,[λm, Gm]]
UPDATEMIXTURE(Mixture,Matches) end for
prune weak gaussians(Mixture) for k = 1 : K
{Fsel,Gsel} = get max gain pair(Mixture) λk,new = update weight(λk,Matches)

end while Mixture[k] = [λk,new ,Gk]
Gbest = get most probable gaussian(Mixture) end for
return Gbest normalize weights(Mixture)

return

Fig. 2. Active matching algorithm and UPDATEMIXTURE sub-procedure

M Gaussians Hm representing the hypotheses that each candidate is the true match
(these Gaussians, functions of x, having the width of the measurement uncertainty Ri),
and two constant terms representing the hypotheses that the candidates are all spurious
false positives and the true match lies either in or out of the searched region:

p(zc|x) = μinTin + μoutTout +
M∑

m=1

μmatchHm . (11)

If N is the total number of pixels in the search region, then the constants in this
expression have the form:

μin = PM
fp PfnP

N−(M+1)
tn (12)

μout = PM
fp PN−M

tn (13)

μmatch = PtpPM−1
fp PN−M

tn , (14)

where Ptp, Pfp Ptn, Pfn are per-pixel true positive, false positive, true negative and false
negative probabilities respectively for the feature. Tin and Tout are top-hat functions
with value one inside and outside of the searched Gaussian Hm respectively and zero
elsewhere, since the probability of a null search depends on whether the feature is really
within the search region or not. Given that there can only be one true match in the searched
region, μin represents the probability that we record M false positives, one false negative
and N − (M + 1) true negatives. μout represents the probability of M false positives
and N −M true negatives. The μmatch weight of a Gaussian hypothesis of a true match
represents one true positive, M − 1 false positives and N − M true negatives.

3.4 Posterior: Updating After a Measurement

The standard application of Bayes’ Rule to obtain the posterior distribution for x given
the new measurement is:

p(x|zc) =
p(zc|x)p(x)

p(zc)
. (15)
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Substituting MOG models from Equations 10 and 11:

p(x|zc) =

�
μinTin + μoutTout +

M�
m=1

μmatchHm

��
K�

i=1

λiGi

�

p(zc)
. (16)

The denominator p(zc) is a constant determined by normalising all new weights λi

to add up to one). In the illustration below illustrating the formation of a posterior, we
show an example of M = 1 match. This posterior will then become the prior for the
next active matching step.

Prior

Likelihood

Posterior

Searched Region

in

μout
μ

G1

G2

G3

G2 G1

1H

In the top line of Equation 16, the product of the two MOG sums will lead to K
scaled versions of all the original Gaussians and MK terms which are the products
of two Gaussians. However, we make the approximation that only M of these MK
Gaussian product terms are significant: those involving the prior Gaussian currently be-
ing measured. We assume that since the other Gaussians in the prior distribution are
either widely separated or have very different weights, the resulting products will be
negligible. Therefore there are only M new Gaussians added to the mixture: gener-
ally highly-weighted, spiked Gaussians corresponding to new matches in the searched
region. These are considered to be ‘children’ of the searched parent Gaussian. An im-
portant point to note is that if multiple matches in a search region lead to several new
child Gaussians being added, one corresponding to a match close to the centre of the
search region will correctly have a higher weight than others, having been formed by
the product of a prior and a measurement Gaussian with nearby means.

All other existing Gaussians get updated posterior weights by multiplication with the
constant terms. Note that the null information ofmaking asearch where no template match
is found is fully accounted for in our framework — in this case we will have M = 0 and no
new Gaussians will be generated, but the weight of the searched Gaussian will diminish.

Finally, very weak Gaussians (with weight < 0.001) are pruned from the mixture
after each search step. This avoids otherwise rapid growth in the number of Gaussians
such that in practical cases fewer than 10 Gaussians are ‘live’ at any point, and most
of the time far fewer than this. This pruning is the better, fully probabilistic equivalent
in the dynamic MOG scheme of lopping off branches in an explicit interpretation tree
search such as JCBB [11].

4 Measurement Selection

4.1 Search Candidates

At each step of the MOG active matching process, we use the mixture p(xm) to predict
individual feature measurements, and there are KF possible actions, where K is the
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number of Gaussians and F is the number of measurable features. We rule out any
{Gaussian, Feature} combinations where we have already made a search. Also ruled
out are ‘child’ Gaussians for a certain feature which lie completely within an already
searched ellipse. For example, if we have measured root Gaussian G1 at feature 1,
leading to the spawning of G2 which we search at feature 3 to spawn G3, then the
candidates marked with ‘∗’ would be ruled out from selection:

F1 F2 F3 F4 F1 F2 F3 F4 F1 F2 F3 F4

G1 ∗ ⇒ G1 ∗ G1 ∗
G2 ∗ ∗ ⇒ G2 ∗ ∗

G3 ∗ ∗

All of the remaining candidates are evaluated in terms of mutual information with
the state or other candidate measurements, and then selected based on an information
efficiency score [3] which is this mutual information divided by the area of the search
region, assumed proportional to search cost.

4.2 Mutual Information for a Mixture of Gaussians Distribution

In order to assess the amount of information that each candidate {Feature, Gaussian}
measurement pair can provide, we predict the post-search mixture of Gaussians depend-
ing on the possible outcome of the measurement: (1): A null search, where no template
match is found above a threshold. The effect is only to change the weights of the current
Gaussians in the mixture into λ′

i. (2): A template match, causing a new Gaussian to be
spawned with reduced width as well as re-distributing the weights of the all Gaussians
of the new mixture to λ′′

i .
In a well-justified assumption of ‘weakly-interacting Gaussians’ which are either

well-separated or have dramatically different weights, we separate the information im-
pact of each candidate measurement into two components: (a) Idiscrete captures the
effect of the redistribution of weights depending on the search outcome (the desire to
reduce ambiguity), which (b) Icontinuous gives a measure of the reduction in covariance
of the most likely Gaussian which becomes more peaked after a match (the desire to
increase precision). Due to the intuitive absolute nature of mutual information, these
terms are additive:

I = Idiscrete + Icontinuous (17)

One of other of these terms will dominate at different stages of the matching process,
depending on whether the key uncertainty is due to discrete ambiguity or continuous
accuracy. It is highly appealing that this behaviour arises automatically thanks to the
MI formulation.

Mutual Information: Discrete Component. Considering the effect of a candidate
measurement purely in terms of the change in the weights of the Gaussians in the mix-
ture, we calculate the mutual information it is predicted to provide by:

I(x;z) = H(x) − H(x|z). (18)
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Given that the search outcome can have two possible states (null or match-search),
then:

Idiscrete = H(x) − P (z = null) H(x|z = null) (19)

− P (z = match)H(x|z = match) . (20)

where

H(x) =

K�

i=1

λi log2
1

λi

, H(x|z = null) =

K�

i=1

λ′
i log2

1

λ′
i

, H(x|z = match) =

K+1�

i=1

λ′′
i log2

1

λ′′
i

. (21)

The predicted weights after a null or a match search are calculated as in Equation 16
with the only difference that the likelihood of a match-search is summed over all posi-
tions in the search-region that can possibly yield a match.

Mutual Information: Continuous Component. Continuous MI is computed using
Equation 7:

Icontinuous =
1
2
P (z = match)λ′′

m log2

|Pαα||Pββ|
|Pxm | (22)

This captures the information gain associated with the shrinkage of the measured
Gaussian (λ′′

m is the predicted weight of the new Gaussian evolving) thanks to the
positive match: if the new Gaussian has half the determinant of the old one, that is
one bit of information gain. This was the only MI term considered in [3] but is now
scaled and combined with discrete component arising due to the expected change in the
λi distribution. As explained in Section 2, we can replace the product |Pαα||Pββ| with
|PzT �=i

||PzT=i | to calculate a continuous MI score in measurement space.
Figure 3(a, b) shows the MI and MI efficiency scores of the selected measurement

at each step of the matching process when Active Matching is applied to a frame from
MonoSLAM (see Section 5) with around 50 candidate features. These plots demon-
strate the expected tailing off of measurement utility and the diminishing returns of
continued search.

(a) Breakdown of Mutual Information scores (b) Mutual Information Efficiency scores

Fig. 3. The evolution of MI and MI-efficiency scores of the selected measurement through the
search-steps of Active Matching within a frame, tracking on average 50 features. Both values
tail off generally with spikes as null searches or ambiguities arise and send search in a different
direction. In (a) the total Mutual Information is shown broken down into its discrete and continu-
ous components. It is the continuous component which displays a smooth decay with search step
number, while the discrete component spikes up at ambiguities.
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5 Results

We present results on the application of the algorithm to feature matching within the
publically available MonoSLAM system [4] for real-time probabilistic structure and
motion estimation. This system, which is well known for its computational efficiency
thanks to predictive search, uses an Extended Kalman Filter to estimate the joint distri-
bution over the 3D location of a calibrated camera and a sparse set of point features —
here we use it to track the motion of a hand-held camera in an office scene with image
capture at 15 or 30Hz. At each image of the real-time sequence, MonoSLAM applies
a probabilistic motion model to the accurate posterior estimate of the previous frame,
adding uncertainty to the camera part of the state distribution. In standard configuration
it then makes independent probabilistic predictions of the image location of each of the
features of interest, and each feature is independently searched for by an exhaustive
template matching search within the ellipse defined by a three standard deviation gate.
The top-scoring template match is taken as correct if its normalised SSD score passes
a threshold. At low levels of motion model uncertainty, mismatches via this method
are relatively rare, but in advanced applications of the algorithm [1,13] it has been ob-
served that Joint Compatibility testing finds a significant number of matching errors and
greatly improves performance.

Our active matching algorithm simply takes as input from MonoSLAM the predicted
stacked measurement vector zT and innovation covariance matrix S and returns a list
of globally matched feature locations. We have implemented a straightforward feature
statistics capability within MonoSLAM to sequentially record the average number of
locations in an image similar to each of the mapped features, counting successful and
failed match attempts in the feature’s true location. This is used to assess false positive
and false negative rates for each feature. More sophisticated online methods for assess-
ing feature statistics during mapping have recently been published [2]. An example of
how ambiguity is handled and resolved by active matching within a typical MonoSLAM
frame is shown in Figure 4.

(a) Measure F9 (b) Measure F8 (c) Measure F7 (d) Measure F6

Fig. 4. Resolving ambiguity in MonoSLAM using active matching. Starting from (a) showing
single Gaussian G0 set to the image prior at the start of matching, red ellipses represent the
most probable Gaussian at each step and the arrows denote the {Feature,Gaussian} combination
selected for measurement guided by MI efficiency. Feature 9 yields 2 matches and therefore two
new Gaussians evolve in (b), G1 (small red) and G2(small black) . Successful measurement of
Feature 8 in G1 lowers the weight of G2 (0.00013) so in (c) it gets pruned from the mixture.
Despite the unsuccessful measurement of Feature 7 in G1, after successful measurements of
Features 3 and 4, there is only one Gaussian left in the mixture, with very small search-regions
for all yet-unmeasured features.
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5.1 Sequence Results

Two different hand-held camera motions were used to capture image sequences at 30Hz:
one with a standard level of dynamics slightly faster than in the results of [4], and one
with much faster, jerky motion (see the video submitted with this paper). MonoSLAM’s
motion model parameters were tuned such that prediction search regions were wide
enough that features did not ‘jump out’ at any point — necessitating a large process
noise covariance and very large search regions for the fast sequence. Two more se-
quences were generated by subsampling each of the 30Hz sequences by a factor of two.
These four sequences were all processed using active matching and also the combina-
tion of full searches of all ellipses standard in MonoSLAM with JCBB to prune outliers.
In terms of accuracy, active matching was found to determine the same set of feature
associations as JCBB on all frames of the sequences. The key difference was in the
computational requirements of the algorithms, as shown below:

One tracking step Matching only No. pixels searched
Max no. live
Gaussians

Fast Sequence at 30Hz (752 frames)
JCBB 56.8ms 51.2ms 40341

Active Matching 21.6ms 16.1ms 5039 7
Fast Sequence at 15Hz (376 frames)

JCBB 102.6ms 97.1ms 78675
Active Matching 38.1ms 30.4ms 9508 10

Slow Sequence at 30Hz (592 frames)
JCBB 34.9ms 28.7ms 21517

Active Matching 19.5ms 16.1ms 3124 5
Slow Sequence at 15Hz (296 frames)

JCBB 59.4ms 52.4ms 40548
Active Matching 22.0ms 15.6ms 5212 6

The key result here is the ability of active matching to cope efficiently with global
consensus matching at real-time speeds (looking at the ‘One tracking step’ total process-
ing time column in the table) even for the very jerky camera motion which is beyond
the real-time capability of the standard ‘search all ellipses and resolve with JCBB’ ap-
proach whose processing times exceed real-time constraints. This computational gain is
due to the large reductions in the average number of template matching operations per
frame carried out during feature search, as highlighted in the ‘No. pixels searched’ col-
umn — global consensus matching has been achieved by analysing around one eighth
of the image locations needed by standard techniques. This is illustrated dramatically
in Figure 1, where the regions of pixels actually searched by the two techniques are
overlaid on frames from two of the sequences.

This new real-time ability to tracking extremely rapid camera motion at a range
of frame-rates significantly expands the potential applications of 3D camera tracking.
Please see the submitted videos for full illustration of the operation of active matching
on these sequences.
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5.2 Computational Complexity

We have seen that active matching will always reduce the number of image processing
operations required when compared to blanket matching schemes, but it requires extra
computation in calculating where to search at each step of the matching process. The se-
quence results indicate that these extra computations are more than cancelled out by the
gain in image processing speed, but it is appropriate to analyse of their computational
complexity.

Each step of the active matching algorithm first requires MI efficiency scores to be
generated and compared for up to the KF measurable combinations of feature and
current live Gaussians.

Each MI evaluation requires computation of order O(K) for the discrete component
and O(F 3) for the continuous component using formula Equation 22 (the deterimnants
can be computed by LU decomposition or similar). The constants of proportionality
are small here and these evaluations are cheap for low numbers of feature candidates.
Although the the cost of evaluating continuous MI scales poorly with the number of
feature candidates, in practice if the image feature density is high then it will be sen-
sible to limit the number of candidates selected between at each step: for instance one
candidate could be randomly chosen from each block of a regular grid overlaid on the
image, on the assumption that candidates within a small region are highly correlated
and choosing between them is unnecessary.

The number of steps required to achieve global matching of all features will be
around K̄F , where K̄ is the average number of live Gaussians after pruning. How-
ever, in practical applications with large numbers of features we will be able to improve
on this by terminating the matching process when the expected information gain from
any remaining candidates drops below a threshold — again, when the feature density
is very high, there will be many highly correlated feature candidates and the mutual
information criterion will tell us that there is little point in measuring all of them.

6 Conclusions

We have shown that a mixture of Gaussians formulation allows global consensus feature
matching to proceed in a fully sequential, Bayesian algorithm which we call active
matching. Information theory plays a key role in guiding highly efficient image search
and we can achieve large factors in the reduction of image processing operations.

We plan to experiment with this algorithm in a range of different scenarios to gauge
the effectiveness of active search at different frame-rates, resolutions, feature densities
and tracking dynamics. While our initial instinct was that the algorithm would be most
powerful in matching problems with strong priors such as high frame-rate tracking due
to the advantage it can take of good predictions, our experiments with lower frame-
rates indicate its potential also in other problems such as recognition. There priors on
absolute feature locations will be weak but priors on relative locations may still be
strong.
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Reid, José Marı́a Montiel, José Neira, Javier Civera and Paul Newman for useful dis-
cussions.

References

1. Clemente, L.A., Davison, A.J., Reid, I.D., Neira, J., Tardós, J.D.: Mapping large loops with
a single hand-held camera. In: Proceedings of Robotics: Science and Systems (RSS) (2007)

2. Cummins, M., Newman, P.: Probabilistic appearance based navigation and loop closing.
In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA)
(2007)

3. Davison, A.J.: Active search for real-time vision. In: Proceedings of the International Con-
ference on Computer Vision (ICCV) (2005)

4. Davison, A.J., Molton, N.D., Reid, I.D., Stasse, O.: MonoSLAM: Real-time single camera
SLAM. Transactions on Pattern Analysis and Machine Intelligence (PAMI) 29(6), 1052–
1067 (2007)

5. Davison, A.J., Murray, D.W.: Mobile robot localisation using active vision. In: Proceedings
of the European Conference on Computer Vision (ECCV) (1998)

6. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting
with applications to image analysis and automated cartography. Communications of the
ACM 24(6), 381–395 (1981)

7. Grimson, W.E.L.: Object Recognition by Computer: The Role of Geometric Constraints. MIT
Press, Cambridge (1990)

8. Isard, M., Blake, A.: Contour tracking by stochastic propagation of conditional density. In:
Proceedings of the 4th European Conference on Computer Vision (ECCV), Cambridge, pp.
343–356 (1996)

9. Mackay, D.: Information Theory, Inference and Learning Algorithms. Cambridge University
Press, Cambridge (2003)

10. Manyika, J.: An Information-Theoretic Approach to Data Fusion and Sensor Management.
PhD thesis, University of Oxford (1993)

11. Neira, J., Tardós, J.D.: Data association in stochastic mapping using the joint compatibility
test. IEEE Trans. Robotics and Automation 17(6), 890–897 (2001)

12. Tordoff, B., Murray, D.: Guided-MLESAC: Faster image transform estimation by us-
ing matching priors. IEEE Transactions on Pattern Analysis and Machine Intelligence
(PAMI) 27(10), 1523–1535 (2005)

13. Williams, B., Klein, G., Reid, I.: Real-time SLAM relocalisation. In: Proceedings of the
International Conference on Computer Vision (ICCV) (2007)


	Introduction
	Probabilistic Prediction and Feature by Feature Search
	Guiding Search Using Information Theory
	Active Search Using a Single Gaussian Model
	Multiple Hypothesis Active Search

	Active Matching Algorithm
	Search State Mixture of Gaussians Model
	The Algorithm
	Likelihood Function
	Posterior: Updating After a Measurement

	Measurement Selection
	Search Candidates
	Mutual Information for a Mixture of Gaussians Distribution

	Results
	Sequence Results
	Computational Complexity

	Conclusions


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice


