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Abstract

Real-time motion estimation for a generally moving,
agile single camera is a particularly challenging SLAM
problem, but one whose solution will lead to a host of
lucrative and interesting applications in robotics, mul-
timedia and television. We argue that mapping re-
search in mobile robotics, despite rarely being camera-
based, is more relevant when tackling this problem
than recent structure from motion work in computer
vision which has focused on off-line reconstruction of
camera trajectories. We present a framework for EKF-
based single-camera localisation and initial experimen-
tal results, and discuss current and future research is-
sues.

1 Introduction

Real-time Simultaneous Localisation and Map-
Building (“SLAM?”) in mobile robotics has seen great
progress in recent years — to the point that some re-
searchers are now claiming it to be a largely solved
problem. Extended Kalman Filter (EKF)-based al-
gorithms, propagating first-order uncertainty in the
coupled estimates of robot and map feature posi-
tions, combined with various techniques for reducing
computational complexity in large maps, have shown
great success in enabling robots to estimate their lo-
cations accurately and robustly over large movement
areas [1, 6, 9, 12, 5]. However, it is important to
remember the somewhat restricted conditions under
which these successful demonstrations have generally
been achieved:

e 2D planar robot movement and/or mapping

e Known robot control inputs and accurately-
modelled dynamics

e Slow or smooth robot motion
e Specialised, accurate, well-calibrated sensors
e Multiple sensors of the same or different types

e Simple, easy to map environments with unambigu-
ous landmarks

e Large computational resources available

We argue that the gradual loosening of these restric-
tions is able to add almost limitless extra “difficulty”
to the SLAM problem, and that new research issues
will continue to arise. The various demonstrations
produced so far remain valid, because a great num-
ber of useful robots are able to operate in restricted
circumstances: for instance, large, expensive robots in
industrial scenarios are often able to function in simple
2D environments, move slowly, and carry various high-
performance sensors and powerful processors. Nev-
ertheless, a gradual lifting of restrictions opens up a
whole range of new applications for SLAM algorithms.

1.1 Cameras and SLAM

In this paper we look specifically at a SLAM prob-
lem which presents a particularly testing set of circum-
stances: motion estimation for a single camera, moving
rapidly in 3D in normal human environments, based on
mapping of visual features, potentially with minimal
prior information about motion dynamics. The value
in working on this problem is in the flexibility, ubiquity,
compactness and power of optical cameras compared
with other more esoteric sensors — reflecting the fact



Figure 1: The goal: 3D motion estimation for a
generally-moving single camera.

that humans are predominantly visual animals, cam-
eras exist in many domains.

We do not propose here that vision is necessarily the
“best” sensor for SLAM: in an expensive robotic ap-
plication one would likely choose a sensor like a laser
range-finder first to bear the grunt of SLAM process-
ing, and then add cameras if particular benefits could
be achieved. However, in various potential applica-
tions cameras are either already present in the scenario,
or could be installed very conveniently. Examples are
shown in Figure 2: in the short term, camera-based
SLAM will be most useful in domains where the goal
is to recover camera position in real-time, via sparse
feature maps, rather then aiming to build dense vi-
sual maps as outputs themselves: the computation in-
voloved in building dense maps is simply too great.
The short term goal should be a rather general-purpose
real-time position sensor, which could be rapidly and
flexibly implemented with a minimun of domain knowl-
edge in robotics (motion estimation for generally mov-
ing robots such as humanoids), wearable robotics (mo-
tion estimation for devices worn by humans to assist
in tasks such as search and rescue or industrial inspec-
tion), telepresence (human head motion estimation by
means of an outward-looking head-mounted camera at-
tached to a head-mounted display), or television (used
to provide camera motion estimation for on-line aug-
mented reality).

High performance, fully digital cameras able to ac-
quire images at 640 x 480 pixels resolution and transfer
them to any PC or laptop at 30Hz (in this case over
the IEEE1394 “firewire” bus) are now available for just
over US$100. Algorithms which work with cameras
like these could really bring SLAM to the desktop and
mean that applications could reach millions of users

Telepresence Augmented Reality
Figure 2: Potential applications: motion estimation for
a humanoid robot (the Honda P3) or wearable robot
(developed by Walterio Mayol and David Murray at
the University of Oxford); head motion estimation for
telepresence (picture shows robotic head slaving de-
veloped by Jason Heuring and David Murray at the
University of Oxford); camera motion estimation for
real-time augmented reality (picture shows off-line im-
plementation by Kurt Cornelis and Marc Pollefeys at
K.U. Leuven).

rather than hundreds.

1.2 Structure from Motion

Attempting SLAM using vision brings into sharp fo-
cus the similarities between work on map-building in
mobile robotics and “structure from motion” research
in computer vision, where 3D models and camera tra-
jectories are recovered from image sequences. The key
goals are clearly the same: simultaeous reconstruction
from sensor measurements both of the motion of the
sensor body and its movement. Nevertheless, struc-
ture from motion research has taken a very different
route from the methods commonly used in SLAM for a
single key reason: the lack of hard real-time constrants
in many useful applications for vision technology.
Structure from motion research in computer vision
has reached the point where fully automated recon-
struction of the trajectory of a camera and the loca-
tions of the arbitrary features it observes is becoming
routine [7, 10]; however the successful approaches seen
to date have almost exclusively required off-line, batch
processing of the images acquired, via computationally



costly simultaneous analysis of all the images obtained
in a sequence using non-linear minimisation techniques.
These off-line methods are readily applied to building
3D models from video sequences for use in video games,
or for recovering camera trajectories for augmented re-
ality effects in cinematic post-processing, and commer-
cial products have been recently been released in these
areas.

On the contrary, robotic applications have always
required real-time performance, and therefore a se-
quential approach, where map-building and localisa-
tion proceed in a step-by-step fashion as movement
occurs. Real-time applications require that with each
new piece of data, its effect on estimates can be incor-
porated within the constant time-step available until
the next data arrives. The kind of batch optimisation
used in typical reconstruction algorithms is fundamen-
tally unsuited to the real-time domain, since this con-
stant time-step constraint is not obeyed. For this rea-
son, the algorithms developed for real-time SLAM in
robotics using predominantly sensors other than vision
will be more relevant to the problem of real-time visual
localisation and mapping, a point elaborated on in [4].

1.3 The Rest of this Paper

In this paper, in addition to general discussion we
will present the basic framework for a real-time single-
camera localisation system based on the EKF.

The key points of the approach we propose are:

1. A general model for smooth motion

2. Sparse mapping of a useful selection of high-
quality features

3. Active measurement of features selected by infor-
mation content

2 Representing 3D Position and
Orientation

We define the following coordinate frames (see Fig-
ure 3):

1. W, the world coordinate frame, defined such that
the y axis points directly up and the z and z axes
are horizotal.

2. R, the robot frame, fixed with respect to camera.
and aligned such that its y axis points to the top
of the camera, z to the front and x to the left.

Position and orientation in 3D can be represented
minimally with 6 parameters: 3 for position and 3 for

y*(up)

Camera Frame R

A x=(left)
v/

zR (forward)

World Frame W

Figure 3: Coordinate frames and vectors in camera
geometry: fixed world frame W and robot frame R
carried by the camera. The vectors involved in mea-
surement of a feature: robot position r, cartesian mea-
surement hy, and feature position y satisfy y =r+hp.

orientation. However, we take here the approach of
using an extra parameter when representing 3D orien-
tation, and use a quaternion which is a way to rep-
resent 3D orientation with 4 parameters. Quaternions
have the advantages of mathematical convenience and
a lack of singularities as a representation for 3D orien-
tation.

The vector of 7 parameters chosen represent position
and orientation is therefore:

<

We refer to x, as the position state of a robot or
body: a standard way to define 3D position and ori-
entation which is common for any type of robot. We
differentiate between x, and x,, the actual state of
a robot, which may include parameters additional to
those representing pure position — these extra param-
eters may represent parts of a robot which move redun-
dantly with respect to overall position, or other aspects
of interest: in the motion model we shall present later,
we store estimates of the camera’s velocity and angular
velocity as well as of position.

The quaternion q"' ¥ is uniquely associated with the
rotation matrix RW# defining the transformation be-
tween frames R and W. If r" is zero and RV % is
identity, frames W and R coincide (the robot is at the
origin of coordinates of the world frame).



3 A Motion Model for a Gener-
ally Moving Camera

Constructing a motion model for an agile camera which
may for instance be attached to a person’s head at
first glance might seem to be fundamentally different
to modelling the motion of a wheeled robot moving on
a plane: the key difference is that in the robot case we
were in possession of the control inputs driving the
motion, such as “move forward 1m with steering an-
gle 5°”, wheras we do not have such prior information
about a person’s movements; without imposing strong
domain constraints, the best we can hope to do is make
amodel along the lines of only permitting motions with
certain maximum accelerations and therefore smooth-
ness. However, it is important to remember that both
cases are just points on the continuum of types of
model for representing physical systems. Since (clas-
sical) physics is deterministic, in theory an enclosed
system could be modelled down to infinitessimal pre-
cision by a collection of parameters and equations and
then its future behaviour predicted for all time. In re-
ality, however, the precision of a model always stops at
some level of detail and a statistical assumption is made
about the discrepancy between this model and reality:
this is what is referred to as process noise. In the case
of a wheeled robot, this noise term takes account of
factors such as potential wheel slippage, surface irreg-
ularities and other predominantly unsystematic effects
which have not been explicitly modelled. In the case of
a camera attached to a person’s head, it takes account
of the unknown intentions of the person, but these too
can be statistically modelled.

An intermediate step between the two cases we have
discussed is that of a wheeled robot moving on a non-
planar surface whose undulations are not known in ad-
vance, as studied in [3] in perhaps the first work on
SLAM in full 3D. Here, a model for robot motion on
a locally flat surface was combined with a model for
unknown surface shape which depended on just one
parameter (standard deviation of curvature). The re-
sult was that uncertainty in position, and particularly
in orientation, increased much more rapidly than in the
planar case due to the lack of knowledge about surface
orientation.

In the case of our agile camera, the type of model we
will use initially is a “constant velocity, constant angu-
lar velocity model”. This means not that we assume
that the camera moves at a constant velocity over all
time, but that our statistical model of its motion in
a time step is that on average we expect its velocity
and angular velocity to remain the same, while un-
determined accelerations occur with a Gaussian pro-

file. (Note that a more sensible model in many circum-
stances where motion occurs within a bounded area
may be an auto-regressive model, where statistically
we expect a rapidly moving object to slow down or
change direction rather than increase it’s speed.) The
implication of this model is that we are imposing a
certain smoothness on the camera motion: very large
accelerations are relatively unlikely.

The fact that we directly model the velocity of the
camera in this way means that we must augment the
robot position state vector x, with velocity terms to
form the robot state vector:
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Here v is the linear velocity and w" the angular
velocity. Angular velocity is a vector whose orienta-
tion denotes the axis of rotation and whose magnitude
the rate of rotation in radians per second. The to-
tal dimension of the robot state vector is therefore 13.
(Note that the redundancy in the quaternion part of
the state vector means that we must perform a nor-
malisation at each step of the EKF to ensure that
each filtering step results in a true quaternion satisfying
43 + 42 +4q;+4q? = 1; this normalisation is accompanied
by a corresponding Jacobian calculation affecting the
covariance matrix.)

We assume that in each time step, an unknown im-
pulse of acceleration and angular acceleration

w
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is applied to the robot. Depending on the circum-
stances, VW and Q"% may be coupled together (for
example, by assuming that a single force impulse is ap-
plied to the rigid shape of the body carrying the camera,
at every time step, producing correlated changes in its
linear and angular velocity). Currently, however, we
assume that the covariance matrix of the noise vec-
tor n is diagonal, representing uncorrelated noise in all
linear and rotational components. The state update
produced is:
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Here the notation q((w" + Q%)At) denotes the
quaternion trivially defined by the angle-axis rotation
vector (w" + QW)At.

In the EKF, the new state estimate f,(x,,u) must
be accompanied by the increase in state uncertainty
(process noise covariance) Q, for the robot after this
motion. We find Q, via the Jacobian calculation:

_of,_ O,

Q = 6_nPn6_n ’ (5)

where P,, is the covariance of noise vector n. This Ja-
cobian calculation is complicated but tractable; we do
not present the results here.

The rate of growth of uncertainty in this motion
model is determined by the size of P,, and setting
these parameters to small or large values defines the
smoothness of the motion we expect. With small P,,,
we expect a very smooth motion with small acceler-
ations, and would be well placed to track motions of
this type, but would not be able to cope with sudden
rapid movements. High P,, means that the uncertainty
in the system would increase significantly at each time
step, and while this gives the ability to cope with rapid
accelerations the very large uncertainty means that a
lot of good measurements must be made at each time
step to constrain estimates.

4 Incorporating Visual Feature
Measurements

The features used as landmarks in a visual SLAM sys-
tem are image interest regions detected with a saliency
operator [11] and matched using image correlation (see
Figure 4, or [2] for much more detail). We use image
patches which are larger (around 15 x 15 pixels) than
those typically used in structure from motion, since the
features must be highly distinguishable to act as stable
long-term landmarks rather than behave as transient
tracking points.

Considering the vector sum of Figure 3, the position
of a point feature relative to the robot is given by:

hf = RV (yW W) | (6)

Here h¥ is the cartesian vector from the sensor centre
to the feature. A given sensor will not directly measure
the cartesian vector, but some vector h of parameters
which is a function of h%:

h = h(h}) (7)

In the particular case of making measurements with
a single camera, the measurements achieved from the

Figure 4: Typical features used in a visual mapping
system: an image interest operator locates patches
with high intensity gradients in both the x and y di-
rections. These typically correspond to the corners of
scene objects and are well localised in space, though re-
flections or depth discontinuities can also throw up un-
suitable candidates: in SLAM, these can rejected over
time since they do not behave as stationary landmarks
when observed from new viewpoints.

observation of a feature are its horizontal and verti-
cal image positions (u,v). Figure 5 shows the pinhole
camera model used:
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Parameters k, and k, are the pixel element densities
(in pixels per metre) in the u and v directions respec-
tively. The noise covariance R of this measurement is
taken to be diagonal with magnitude determined by
image resolution.

A clear characteristic of this measurement model is
that it is not invertible: that is to say that while it
tells us the value of an image measurement given the
position of the camera and a feature, it cannot be in-
verted to give the position of a feature given image mea-
surement and camera position. This is obvious once
we consider the projective character of visual measure-
ment: the depth of scene features is lost. This means
that initialising features in single camera SLAM will be
a difficult task: initial 3D positions for features cannot
be estimated from one measurement alone. From just
one view, all that can be initialised into the map is
a ray in space on which it is known that the feature
must lie. At least one other view of the feature from
a different camera position must then be obtained so
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Figure 5: The standard pinhole camera model with
focal length f and principal point (ug,vg). For ease
of understanding, the figure shows the image plane in
front of the optic centre, though of course in a real
camera it is behind and inverted.

that the features’s 3D position can be estimated. This
is a task which is not currently solved in our imple-
mentation. There are important issues with respect to
search to be solved: when the camera has reached a
new position and wished to obtain a second view of a
partially-initialised feature, where should it search in
the image to find it? Clearly along the “epipolar line”
which is the image of the ray the feature must lie on
in the current view, but the details of search regions
present an involved problem when all the coupled un-
certainty in the system is taken into account.

5 An Experiment in Real-Time
Single Camera Localisation

Since one of the outstanding problems of single-camera
SLAM is feature initialisation, as a first step an ex-
periment was carried out in which feature positions
were measured by hand and initialised into a map as
known features (see Figure 6: the features were cor-
ners of some of the squares on a calibration grid and
a piece of paper on the floor). A total of 12 features
were mapped.

Starting from rest in a known position, a hand-held
camera was waved in front of the scene during 6 seconds
and images were captured at 30 frames per second. In
an EKF implementation (using a full-covariance map
for the 12 features despite the fact that in this particu-
lar experiment their perfectly-known positions were in
fact uncoupled), at each frame first a predictive update
was performed based on the constant-velocity motion
model, then a measurement update based on a mea-
surement of just one feature per frame.

An active measurement strategy was used, similar

to that used in our previous work using movable cam-
eras [2, 5, 3]. An information criterion made choices
about which feature to measure at each time step with
the essential result that the measurement was chosen
whose result was least predictable. The effect of
this is to keep estimates consistently good by contin-
uously locking down the largest uncertainty available
in the system. In practice, the criterion recommends
very rapid switching of attention between different fea-
tures. As opposed to our previous work with movable
cameras, where a penalty was associated with chang-
ing fixation from one feature to the other, the purely
digital fixation switching occuring here is costless and
can be undertaken freely.

Image and map processing were carried out on a
standard laptop PC and the required processing per
frame was achieved in a small amount less than the
355 available in a real-time budget.

Camera motion estimation proceeded accurately for
around 6 seconds, when a lack of visible features led
to a rapid growth in uncertainty, large feature search
regions and eventually a mismatch (failure of data asso-
ciation: the search window was so big that more than
one part of the grid with similar appearance was in-
cluded) which caused accurate estimation to fail. Al-
though we do not have ground-truth data for the mo-
tion, the fact that accurate tracking of all the features
was maintained during the 6 seconds of successful es-
timation: this is a very promising result indeed, based
as it was on measurement of just a single feature
at each time step, and a real validation of the active
measurement strategy, and a sharp contrast with struc-
ture from motion systems where dozens or hundreds
of different features are measured in each frame: the
message is clearly that the information gained by such
dense measurement is highly redundant and it is far
better to concentrate on a few, high quality features if
camera localisation is the goal.

Increased robustness and accuracy will be achieved
using more feature measurements per step, but at a
computational cost. The factor of robustness is key:
if we wish to have a system which does not fail with
one mismatched feature, immediate verification of each
proposed match must be available from attempted
matches of other features; if a consistent set of matches
is found, using a technique such as RANSAC, incorrect
matches can be pruned out.

6 Conclusions

We have introduced the issues involved in tackling
SLAM with a single camera and presented a prelim-
inary implementation to perform map-based localisa-
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Figure 6: Experiment in real-time camera localisation
using a known map of features. Images were received
and processed at 30 frames per second on a standard
400MHz laptop PC. Only one feature measurement was
made in each frame, the feature to be measured chosen
based on visibility and information content criteria. El-
lipses in the images show 3o search regions: these were
the only image regions needing to be processed in each
frame.

tion in real-time with the very promising result that
we can get good results with just one feature measure-
ment per frame. A full implementation of the demon-
stration described in this paper is available open-source
and ready-to-run for Linux as part of the “Scene” C++
software library [4] for sequential localisation and map-
building at:

http://www.robots.ox.ac.uk/"ajd/Scene/

The research issues which we will focus on in the
near future are as follows:

1. Feature initialisation from multiple views: features
must be viewed from two significantly different
viewpoints before their 3D positions can be ini-
tialised, and care must be taken that they are in-
serted into the map with the correct uncertainty.

2. Multiple hypotheses and non-Gaussian probability
distributions: while the EKF has often been shown
to perform well in SLAM, there will be many cases
with the sparse measurements of single camera
SLAM where it is desirable to propagate multi-
ple hypotheses over time for later resolution. Since
generalised schemes for representing non-Gaussian
probability densities suffer from scaling problems,
explicit schemes for multiple Gaussian hypotheses
may suffice.

3. Pure information theoretic searching: we are con-
vinced of the benefits of active search based on
information content, but there is much to be done
to apply information theory rigorously in this do-
main. For instance, when measurements of several
features are being made in each frame, what does a
successful measurement of one tell us about where
to look for the others? And what if there is a
chance that that measurement was the result of
incorrect data association?

4. Local sensors such as accelerometers and gyros
may be permissible in some applications and are
expected to a have large positive effect, dramati-
cally reducing visual search regions.

5. Map scaling: in this as in all SLAM problems,
the problem of computational cost in large maps
arises, and methods such as the postponement of
map updates [2, 8] will be implemented.

6. Different camera/lens types: it is expected that
cameras with a wide field of view will be especially
useful for localisation despite their low angular res-
olution, since they permit smaller sets of features
to be visible through large motions.
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