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Abstract

Ego-motion estimation for an agile single camera moving
through general, unknown scenes becomes a much more
challenging problem when real-time performance is re-
quired rather than under the off-line processing conditions
under which most successful structure from motion work
has been achieved. This task of estimating camera motion
[from measurements of a continuously expanding set of self-
mapped visual features is one of a class of problems known
as Simultaneous Localisation and Mapping (SLAM) in the
robotics community, and we argue that such real-time map-
ping research, despite rarely being camera-based, is more
relevant here than off-line structure from motion methods
due to the more fundamental emphasis placed on propaga-
tion of uncertainty.

We present a top-down Bayesian framework for single-
camera localisation via mapping of a sparse set of natu-
ral features using motion modelling and an information-
guided active measurement strategy, in particular address-
ing the difficult issue of real-time feature initialisation via
a factored sampling approach. Real-time handling of un-
certainty permits robust localisation via the creating and
active measurement of a sparse map of landmarks such that
regions can be re-visited after periods of neglect and local-
isation can continue through periods when few features are
visible. Results are presented of real-time localisation for
a hand-waved camera with very sparse prior scene knowl-
edge and all processing carried out on a desktop PC.

1 Introduction

A new range of applications for camera-based localisation
and mapping opens up if the border to real-time processing
can be crossed: with real-time processing, motion estimates
for a moving camera are available for immediate use in in-
teractive scenarios. A live camera connected to a computer
becomes a real-time position sensor which could be applied
with a minimum of domain knowledge to areas in robotics
(motion estimation for generally moving robots such as hu-
manoids), wearable robotics (motion estimation for camera-

equipped devices worn by humans), telepresence (head mo-
tion estimation using an outward-looking camera), or televi-
sion (camera motion estimation for live augmented reality).

Structure from motion research in computer vision has
reached the point where fully automated reconstruction of
the trajectory of a video camera moving through a previ-
ously unknown scene is becoming routine [8], but these and
other successful approaches seen to date have been formu-
lated as off-line algorithms and required batch, simultane-
ous processing of all the images acquired in the sequence.
In these methods, large numbers of well-localised features
of high image interest (usually “corner” points or lines) are
detected in each image of a video sequence and, postulat-
ing that each is associated with a repeatably identifiable 3D
entity in the environment, matched between consecutive (or
close) video frames. The assumption of rigidity in the scene
is then used to assert that the feature image motion observed
is due purely to the movement of the camera relative to the
unknown but static 3D geometry or “structure” of the fea-
tures, and this permits solutions for both the motion of the
camera between the matched positions and the locations of
the 3D features to be obtained. Long chains of these frame-
to-frame motion solutions can be stitched together to pro-
duce an estimate of a complete camera trajectory and full
3D map of all the features observed, and the quality of the
overall solution can be refined by further constrained alter-
ation (“bundle adjustment”).

Of course batch processing provides the most accurate
and robust solution to any estimation problem in applica-
tions where off-line operation is satisfactory. Real-time op-
eration, however, enforces hard constraints on the process-
ing permissible: specifically, in the common case in which
data arrives at a constant rate (e.g. from a camera at 30Hz)
the estimation must operate in constant time, requiring an
amount of processing bounded by a constant to take ac-
count of the pertinent information available from each im-
age. The value of this constant will depend on the details
of the processor available but significantly the processing
time per image cannot increase indefinitely with time oth-
erwise a point will always be reached at which the real-
time constraint is breached. Rather than storing a history of
measurements we are led towards a time-independent state-



based representation, in which everything of interest about
the system in question is captured in a snapshot of the cur-
rent instant. Sequential estimation then proceeds at each
time step by updating the state estimate due to the effect of
the passage of time and any new data obtained.

2 Repeatable Localisation

Our goal is not the processing of image sequences received
from an external source, but the real-time use of a camera in
context. The scenario under current consideration involves
a live camera module connected to a PC (in this case via
the IEEE1394 “Firewire” bus). Within a room, the camera
starts at rest with some known object in view to act as a
starting point and provide a metric scale to the proceedings
(this can be as simple as an A4 piece of paper). It is picked
up in the hand and moved smoothly but rapidly, translating
and rotating freely in 3D, within the room or a restricted
volume within it, such that various parts of the unknown
environment come into view. The aim is to estimate its 3D
position continuously, promptly and repeatably during arbi-
trary long periods of movement. This will certainly involve
accurately estimating the locations of features in the envi-
ronment, but in this case this mapping is considered a means
to obtaining camera localisation rather than an output in it-
self: the goal is only to map such features as are sufficient
to obtain camera localisation.

A key aspect of this scenario is the desire for repeat-
able localisation: by this we mean requiring the ability to
estimate the location of the camera with just as much ac-
curacy after 10 minutes of motion as was possible after
10 seconds — a gradual drifting over time is not accept-
able. To achieve this the features detected and mapped must
function as stable, long-term landmarks rather than tran-
sient tracking points, and this implies both that the features
must be strongly salient and identifiable, and that care must
be put into propagating the uncertainty in their locations.
Early implementations of sequential structure from motion
[1, 10, 2] used the standard short-lived “corner” features fa-
miliar from off-line methods and independent estimators for
the location of each feature, and displayed significant mo-
tion drift over time: the inability either to re-recognise fea-
tures from the past or make correct use of measurements of
them meant that the trajectories estimated displayed a grad-
ual divergence over time from the fiducial coordinate frame.

2.1 SLAM with First-Order Uncertainty
Propagation
The question of motion drift in real-time simultaneous lo-

calisation and mapping (SLAM) is now well-understood in
mobile robotics research. Extended Kalman Filter (EKF)-

based algorithms, propagating first-order uncertainty in the
coupled estimates of robot and map feature positions, com-
bined with various techniques for reducing computational
complexity in large maps, have shown great success in en-
abling robots to estimate their locations accurately and ro-
bustly over large movement areas [7, 13]. In the first-order
uncertainty propagation framework, the overall “state” of
the system x is represented as a vector which can be par-
titioned into the state X, of the robot (or camera) and the
states ¥; of entries in the map of its surroundings. Crucially,
the state vector is accompanied by a single covariance ma-
trix P which can also be partitioned as follows:
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The role of the covariance matrix is to represent the uncer-
tainty, to first order, in all the quantities in the state vector.
Feature estimates y; can freely be added to or deleted from
the map as required, x and P growing or shrinking dynam-
ically. In normal operation, x and P change in two steps:
1. during motion, a prediction step uses a motion model to
calculate how the robot (or camera) moves and how its po-
sition uncertainty increases; 2. when feature measurements
are obtained, a measurement model described how map
and robot uncertainty can be reduced.

The critical role of maintaining a full covariance ma-
trix P, complete with off-diagonal elements, has been ir-
refutably proven in SLAM research because these elements
represent the correlation between estimates which is always
inherent in map-building: typically clusters of close fea-
tures will have position estimates which are uncertain the
world reference frame but highly correlated — their relative
positions are well known. Holding correlation information
means that measurements of any one of this cluster correctly
affects estimate of the others, and is the key to being able to
re-visit and recognise known areas after periods of neglect.

Successful SLAM approaches have generally operated
not using vision but specialised sensors such as laser range-
finders, and in somewhat restricted conditions including
2D planar robot movement and/or mapping, known robot
control inputs and accurately-modelled dynamics. In vi-
sion, Davison and Murray [6] made early progress in full-
covariance mapping using active stereo and Davison and
Kita [4], in perhaps the first work on SLAM in full 3D, used
a curvature model for unknown surface shape in combina-
tion with active stereo to estimate the location of a robot
moving on non-flat surfaces. However in both cases the
algorithms were restricted to the case of smoothly moving
robots with known control parameters and stereo vision.

Single camera SLAM with general 3D motion is at the
very difficult extreme of the genre. Among previous work,



that of Chiuso et al.[3] has most in common with the present
paper. They present a real-time, full-covariance Kalman
Filter-based approach to sequential structure from motion,
but aim towards model generation rather than localisation.
Bottom-up 2D feature tracking means that only relatively
slow camera motions are permissible, and does not allow
features to be re-acquired after periods of neglect: their fea-
tures typically survive for 20-40 frames then are replaced in
the state vector by others. This means that as a localisation
method motion drift would eventualy enter the system.
There is much interest in camera-based localisation from
the wearable computing community. Foxlin [9] demon-
strated an impressive system combining accurate inertial
sensing with visual measurement of automatically-mapped
fiducial targets on the ceiling to provide real-time localisa-
tion in extended indoor areas. Kourogi et al. [12] also used
inertial sensing combined with visual recognition of key-
framed waypoints to permit localisation-based annotation.

3 A Motion Model for a Smoothly
Moving Camera

In Bayesian real-time localisation, performing estimation
in an uncalibrated frame of reference would really be to
lose the chance to make use of the very useful information
available from a motion model and other priors. Except in
some very restricted cases, motion models based in the real
physics of acceleration and angular acceleration simply do
not make sense in the non-metric, non-Euclidean coordi-
nate frames often used in batch structure from motion. We
therefore assume camera calibration is available and place
all estimates in a world of right angles and SI units. If self-
calibration was desired, given a reasonable prior guess this
could be refined explicitly within the probabilistic filter (al-
though we do not consider this issue here).

We define the coordinate frames W, fixed in the world,
and R, fixed with respect to the camera (see Figure 1). To
ease issues with linearisation and singularities, we choose
a non-minimal representation of 3D orientation, and use a
quaternion. The vector of 7 parameters chosen to represent
position and orientation is the position state x,,.
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Constructing a motion model for an agile camera which
may for instance be carried by a person at first glance might
seem to be fundamentally different to modelling the motion
of a wheeled robot moving on a plane: the key difference
is that in the robot case one is in possession of the control
inputs driving the motion, such as “move forward 1m with
steering angle 5°”, wheras we do not have such prior in-
formation about a person’s movements. However, it is im-
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Figure 1: Frames and vectors in camera geometry.

portant to remember that both cases are just points on the
continuum of types of model for representing physical sys-
tems. Since (classical) physics is deterministic, in theory
an enclosed system could be modelled down to infinitessi-
mal precision by a collection of parameters and equations
and then its future behaviour predicted for all time. In real-
ity, however, the precision of a model always stops at some
level of detail and a probabilistic assumption is made about
the discrepancy between this model and reality: this is what
is referred to as process noise. In the case of a wheeled
robot, this noise term takes account of factors such as poten-
tial wheel slippage, surface irregularities and other predom-
inantly unsystematic effects which have not been explicitly
modelled. In the case of a camera attached to a person, it
takes account of the unknown intentions of the person, but
these too can be statistically modelled.

We choose initially a “constant velocity, constant angu-
lar velocity model”. This means not that we assume that the
camera moves at a constant velocity over all time, but that
our statistical model of its motion in a time step is that on
average we expect undetermined accelerations occur with
a Gaussian profile. The implication of this model is that we
are imposing a certain smoothness on the camera motion
expected: very large accelerations are relatively unlikely.
This model is subtley effective and gives the whole sys-
tem important robustness even when visual measurements
are sparse. Let us remember that the vast majority of struc-
ture from motion methods in computer vision use no motion
model at all — their approach is to throw away all informa-
tion about where the camera was in previous frames and
start again from scratch with each new image.

Modelling the velocity of the camera in this way means
that we must augment the position state vector x,, with ve-
locity terms to form the state vector:
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Here v" is the linear velocity and w" the angular ve-
locity. Angular velocity is a vector whose orientation de-



notes the axis of rotation and whose magnitude the rate of
rotation in radians per second. The total dimension of the
camera state vector is therefore 13. (Note that the redun-
dancy in the quaternion part of the state vector means that
we must perform a normalisation at each step of the EKF
to ensure that each filtering step results in a true quaternion
satisfying ¢§ + ¢2 + ¢5 + ¢2 = 1; this normalisation is
accompanied by a corresponding Jacobian calculation af-
fecting the covariance matrix.)

We assume that in each time step, unknown acceleration
a" and angular acceleration o'V’ processes of zero mean
and Gaussian distribution cause an impulse of velocity and
angular velocity:

()= (2)
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Depending on the circumstances, V¥ and % may be cou-
pled together (for example, by assuming that a single force
impulse is applied to the rigid shape of the body carrying
the camera at every time step, producing correlated changes
in its linear and angular velocity). Currently, however, we
assume that the covariance matrix of the noise vector n is

diagonal, representing uncorrelated noise in all linear and
rotational components. The state update produced is:
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Here the notation q((w" + Q") At) denotes the quater-
nion trivially defined by the angle-axis rotation vector
W + Q")At.

In the EKF, the new state estimate f,(x,,u) must be
accompanied by the increase in state uncertainty (process
noise covariance) Q, for the camera after this motion. We
find Q, via the Jacobian calculation:
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where P,, is the covariance of noise vector n. EKF im-
plementation also requires calculation of the Jacobian gf;ﬂ .
These Jacobian calculations are complicated but a tractable
matter of differentiation; we do not present the results here.
The rate of growth of uncertainty in this motion model is
determined by the size of P,,, and setting these parameters to
small or large values defines the smoothness of the motion
we expect. With small P,,, we expect a very smooth motion
with small accelerations, and would be well placed to track
motions of this type but unable to cope with sudden rapid
movements. High P,, means that the uncertainty in the sys-
tem increases significantly at each time step, and while this
gives the ability to cope with rapid accelerations the very
large uncertainty means that a lot of good measurements
must be made at each time step to constrain estimates.
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Figure 2: (a) Feature image patches. Patches are detected as
in [14] and generally correspond to well-localised point ob-
jects, though reflections or depth discontinuities can throw
up unsuitable candidates: in SLAM, these can be rejected
over time since they do not behave as stationary landmarks
when observed from many viewpoints. (b) Search regions
during high acceleration: the positions at which features are
found (small ellipses representing estimates after filtering)
lie towards the boundary of the large search ellipses.

4 Visual Feature Measurements

We have followed the approach of Davison and Murray [6],
who showed that relatively large (9x9 to 15x 15 pixels) im-
age patches are able to serve as long-term landmark fea-
tures with a surprising degree of viewpoint-independence
(see Figure 2(a)). Each interest region is detected once with
the saliency operator of Shi and Tomasi [14], and matched
in subsequent frames using normalised sum-of-squared dif-
ference correlation.

In this section we consider the measurement model of
the process of measuring a feature already in the SLAM
map (we will discuss initialisation later). First, the estimates
we have x,, of camera position and y; (a straightforward 3D
position vector) of feature position allow the value of this
measurement to be predicted. Considering the vector sum
of Figure 1, the position of a point feature relative to the
camera is expected to be:
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The position (u,v) at which the feature is expected to be
found in the image isfound using the pinhole camera model:

hEa

u U’O - fku hLE

hz' = = hé‘
Vo — fk’U hgy

Further, we can also calculate the uncertainty in this predic-
tion, represented by the innovation covariance matrix S;:
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Figure 4: Frame-by-frame evolution of the probability den-
sity over feature depth represented by a particle set. 100
equally-weighted particles are initially spread evenly along
the range 0.5m to 5.0m; with each subsequent image mea-
surement the distribution becomes more closely Gaussian.

The noise covariance R of measurements is taken to be di-
agonal with magnitude determined by image resolution.

Knowledge of S; is what permits a fully active approach
to image search; S; represents the shape of a 2D Gaussian
pdf over image coordinates and choosing a number of stan-
dard deviations (gating, normally at 3¢0) defines an elliptical
search window within which the feature should lie with high
probability. In our system, correlation searches always oc-
cur within gated search regions, maximising efficiency and
minimising the chance of mismatches. See Figure 2(b).

S; has a further role in active search; it is a measure of the
information content expected of a measurement. Feature
searches with high S; (where the result is difficult to pre-
dict) will provide more information about estimates of cam-
era and feature positions. In an implementation of vision-
based SLAM for a robot with steerable cameras [6] this led
directly to active control of the viewing direction towards
profitable measurements; here we cannot control the cam-
era movement, but in the case that many candidate mea-
surements are available we select those with high innova-
tion covariance. Choosing measurements like this aims to
squash the uncertainty in the system along the longest axis
available, and helps ensures that no particular component of
uncertainty in the estimated state gets out of hand.

5 Automatic Feature Initialisation

The projective nature of camera measurements means that
while a measurement tells us the value of an image mea-

surement given the position of the camera and a feature,
it cannot be directly inverted to give the position of a fea-
ture given image measurement and camera position since
the feature depth is unknown. Initialising features in single
camera SLAM will therefore be a difficult task: 3D depths
for features cannot be estimated from one measurement.

An obvious way to initialise features would be to track
them in 2D in the image over a number of frames and then
perform a mini-batch update when enough evidence had
been gathered about their depth. However, this would vi-
olate our top-down methodolgy and waste available infor-
mation: such 2D tracking is actually very difficult when the
camera is potentially moving fast. Additionally, we will
commonly need to initialise features very quickly because a
camera with a narrow field of view may soon pass them by.

It is important to realise that a statement like “not in-
vertible” does not have real meaning in a Bayesian frame-
work, in which everything is uncertain and we must talk
about probability distributions rather than in binary state-
ments. Even after seeing a feature only once, we can talk
about a PDF for its 3D position assuming that we had some
prior belief about its depth. However, to use the feature
in our SLAM map we require that its 3D position PDF can
reasonably be modelled as a multi-variate Gaussian and this
is why we cannot initialise it fully after just one measure-
ment. The approach we take therefore after one measure-
ment is to initialise a 3D line into the map along which the
feature must lie. This is a semi-infinite line, starting at the
estimated camera position and heading to infinity along the
feature viewing direction, and like other map members has
Gaussian uncertainty in its paremeters. Its representation in
the SLAM map is: y,; = ( ll:le ) where r; is the position

(2
of its one end and ﬁfv is a unit vector describing its direc-
tion. Along this line, a set of discrete depth hypotheses are
made, analogous to a 1D particle distribution: currently, the
prior probability used is uniform with 100 particles in the
range 0.5m to 5.0m, reflecting indoor operation (quite a dif-
ferent type of prior may be required in larger environments
where features may be very distant or even effectively at
infinity). At subsequent time steps, these hypotheses are
all tested by projecting them into the image. As Figure 3
shows, each particle translates into an elliptical search re-
gion. Feature matching within each ellipse (via an efficient
implementation for the case of search multiple overlapping
ellipses for the same image patch) produces a likelihood for
each, and their probabilities are reweighted. Figure 4 shows
the evolution of the distribution over time, from uniform
prior to sharp peak. When the ratio of the standard devi-
ation of depth to depth estimate drops below a threshold,
the distribution is safely approximated as Gaussian and the
feature initialised as a point into the map. The important
factor of this initialisation is the shape of the search regions
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Figure 3: A close-up view of image search in successive frames during feature initialisation. In the first frame a candidate
feature image patch is identified within a search region. A 3D ray along which the feature must lie is added to the SLAM
map, and this ray is projected into subsequent images. A distribution of depth hypotheses from 0.5m to Sm translates via the
uncertainty in the new camera position relative to the ray into a set of ellipses which are all searched to produce likelihoods
for Bayesian re-weighting of the depth distribution. A small number of time-steps are normally sufficient to reduce depth
uncertainly sufficiently to approximate as Gaussian and enable the feature to be added for use in the SLAM map.

generated by the overlapping ellipses. A depth prior has re-
moved the need to search along the entire epipolar line, and
improved the robustness and speed of initialisation. In real-
time implementation, the speed of collapse of the particle
distribution is aided (and correlation search work saved) by
deterministic pruning of the weakest particles at each step.

5.1 Map Management

With the ability to add features to the map comes the need
for criteria to decide when this should be necessary, and
potentially when features should be deleted. Our map-
maintenance criterion aims to keep the number of reliable
features visible from any camera location close to a pre-
determined value determined by the specifics of the mea-
surement process, the required localisation accuracy and the
computing power available: currently, numbers in the re-
gion 6-10 are used in this work. Feature “visibility” (more
accurately predicted measurability) is calculated based on
the relative position of the camera and feature, and the
saved position of the camera from which the feature was
initialised: the feature must be predicted to lie within the
image, but further the camera must not have moved or ro-
tated too far from its initialisation viewpoint of the feature
or we would expect correlation to fail. Features are added to
the map if the number visible in the area the camera is pass-
ing through is less than this threshold. This criterion was
imposed with efficiency in mind — it is undesirable to in-
crease the number of features and add to the computational
complexity of filtering without good reason. Features are
detected by running the image interest operator of Shi and
Tomasi to locate the best candidate within a box of limited
size (around 100 x 50 pixels) placed within the image —
this is for reasons of efficiency in a real-time implementa-
tion. The position of the search box is currently chosen ran-
domly, with the constraints only that it should not overlap
with any existing features and that based on the current esti-

mates of camera velocity and angular velocity any detected
features are not expected to disappear from the field of view
immediately. No effort is currently made to detect features
in “useful” positions in terms of improving localisation in-
formation although this would be an interesting avenue for
research — more important is to find the features of strong
image salience which exist in the image and to have them
widely distributed across the image.

A feature is deleted from the map if, after a predeter-
mined number of detection and matching attempts when the
feature should be visible, more than a fixed proportion (in
our work 50%) are failures. This criterion prunes “bad” fea-
tures which are not true 3D points or are often occluded.

A degree of clutter in the scene can be dealt with even
if it sometimes occludes landmarks. As long as clutter does
not too closely resemble a particular landmark, and does
not occlude it too often from viewing positions within the
landmark’s region of expected visibility, attempted mea-
surements while the landmark is occluded will simply fail
and not lead to a filter update. Problems only arise if mis-
matches occur due to a similarity in appearance between
clutter and landmarks, and this can potentially lead to catas-
trophic failure. Correct operation of the system relies on the
fact that in most scenes very similar objects do not com-
monly appear close enough to lie within a single image
search region (and special steps would need to be taken to
enable the system to work in scenes with repeated texture).

6 Results

We present results corresponding a video of a 20 second run
of real-time SLAM (see Figure 5). The positions of six fea-
tures corresponding to corners of a paper target were given
to the system as prior knowledge (image patches were se-
lected and saved by hand, and their 3D positions relative to a
defined coordinate frame accurately measured — these fea-
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Figure 5: Frames from video illustrating a 20 second period of real-time tracking during which a map of around 60 fea-
tures was built. For each time-step an image view (in which all feature estimates are projected into the estimated camera
frame) is shown next to an external 3D view in which the camera can also be seen. Features are colour-coded as fol-
lows: red = successfully measured at this frame; blue = failed measurement; yellow = not selected for measurement. At
different time-steps, feature location uncertainties, search regions or image patches are displayed. Video available from
http://www.robots.ox.ac.uk/ ajd/Movies/realtime 30fps_slam.mpg.

tures are inserted into the SLAM map with zero uncertainty,
and therefore all rows and columns of the covariance matrix
relating to them will always have zero values). The initial
position x,, of the camera within this coordinate frame was
also measured, though this estimate is inserted into the state
vector accompanied by a covariance P, which corresponds
to an uncertainty of a few centimetres and this enables track-
ing to start as long as the initial camera position is reason-
ably close to that defined. Linear acceleration noise compo-
nents in P,, were set to a standard deviation of 4ms 1, and
angular components with a standard deviation of 6rads—?.
These figures are sufficient to track the motion of a camera
waved freely but smoothly in the hand.

Figure 5 shows snapshots from the video showing both
internal and external camera views in 3D. A degree of “jit-
ter” in the camera motion is observed, reflecting the fact that
real-time operation forces the number of features use to be
small, but tracking is very robust and the rare feature mis-
matches do not cause disaster despite the current lack of an
explicit “robust statistics” approach. Features are routinely
recaptured after long periods of neglect as the camera moves
between viewing zones with no overlap. The characteristic
drift with distance from fiducial coordinate frame of SLAM
is observed, but also the correction of this drift when old
features are re-acquired (a group of features is seen to move
en masse after this implicit re-registration). The algorithm
also tracks successfully through several periods when very
few features are visible; something which would be im-
possible without a motion model Tracking of this kind has
been observed to be very repeatable and adaptable within
this kind of desk-top scenario: long periods of tracking of
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Figure 6: An experiment using an artificial scene to investi-
gate structure recovery: real-time SLAM was carried out as
the camera was waved back and forth in front of a calibra-
tion grid consisting of two highly-textured planes. Initial
knowledge was of the locations of only four feature loca-
tions, lying in the left-hand plane. The images show a snap-
shot of the map (image and top-down external views) after
15 seconds, when much repeated measurement had reduced
the feature location uncertainties to small values, and indi-
cate that the planar surfaces have been accurately recovered.

several minutes present no problem. Significant problems
with non-linearity and the Gaussian assumptions of the EKF
have not been encountered but may because significant dur-
ing camera trajectories which move farther from the original
coordinate frame. The method has recently been applied to
the localisation of a wearable visual robot [5].

A brief experiment depicted and described in Figure 6
investigated the absolute feature reconstruction accuracy.



6.1 Processing Time

On a 2.2GHz Pentium processor, a typical breakdown of
processing time required at each frame at 30Hz (such that
33ms is available for processing each image) is as follows:

10ms | Correlation searches
Sms | Kalman Filter update
10ms | Feature initialisation search

A fundamental characteristic of full-covariance EKF
SLAM is that the computational complexity of the filter up-
date is of order N2, where N is the number of features in
the map. The Kalman Filter update time begins to grow
rapidly when the number of features approaches 100, and
going past this would require implementation of one of the
many published SLAM shortcut methods (e.g. [11]).

7 Conclusions

We have described a principled, Bayesian, top-down ap-
proach to sequential Simultaneous Localisation and Map-
ping or Structure from Motion which takes account of the
extra sources of information often neglected in batch meth-
ods to push performance past the real-time barrier, and
demonstrated robust performance in an indoor scene.

There are a number of research issues which must be
tackled before such a system could leave a desk-like en-
vironment and map a whole building or town in real-time,
however. The image features used, being 2D patches, are
limited in viewpoint-variance, and the algorithm would ben-
efit from the use of features such as planar 3D patches
whose change in image appearance could be better pre-
dicted from different viewpoints.

Lastly we are convinced of the benefits of active search
based on information content, but there is much to be done
to apply information theory rigorously in this domain. For
instance, when measurements of several features are being
made in each frame, what does a successful measurement
of one tell us about where to look for the others? And what
if there is a chance that that measurement was the result of
incorrect data association?
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