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Simultaneous Localization
and Map-Building Using Active Vision

Andrew J. Davison and David W. Murray, Member, IEEE

Abstract—An active approach to sensing can provide the focused measurement capability over a wide field of view which allows
correctly formulated Simultaneous Localization and Map-Building (SLAM) to be implemented with vision, permitting repeatable long-
term localization using only naturally occurring, automatically-detected features. In this paper, we present the first example of a general
system for autonomous localization using active vision, enabled here by a high-performance stereo head, addressing such issues as
uncertainty-based measurement selection, automatic map-maintenance, and goal-directed steering. We present varied real-time

experiments in a complex environment.

Index Terms—Active vision, simultaneous localization and map-building, mobile robots.

1 INTRODUCTION

INCREMENTAL building and maintaining of maps for
immediate use by a navigating robot has been shown to
rely on detailed knowledge of the cross-coupling between
running estimates of the locations of robot and mapped
features [1]. Without this information, features, which are
redetected after a period of neglect, are treated as new and
the entire structure suffers progressive error accumulation
which depends on the distance traveled, not on distance
from the starting position in the fiducial coordinate frame. It
becomes impossible to build persistent maps for long-term
use as apparent in earlier navigation research [2], [3], [4],
[5], [6], [7]. For example, Fig. 5a of reference [7], shows that
the start and end of an actually closed path are recovered as
different locations.

Storing and maintaining coupling information proves to
be computationally expensive, in turn imposing the need to
use only a sparse sets of features. This runs counter to the
emphasis of recent research into visual reconstruction
where large numbers of features over many images are
used in batch mode to obtain accurate, dense, and visually
realistic reconstructions for multimedia applications rather
than robotic tasks (e.g., [8], [9]). Although batch methods
provide the most accurate and robust reconstructions, the
volume of calculation required for each camera location
grows depending on the total length of the trajectory. Real-
time applications, on the other hand, require updates to be
calculable in a time bounded by a constant step interval: It is
satisfying this crucial constraint which permits all-impor-
tant interaction with the map data as it is acquired.

So, although visual sensing is the most information-rich
modality for navigation in everyday environments, recent
advances in simultaneous localization and map building
(SLAM) for mobile robots have been made using sonar and
laser range sensing to build maps in 2D and have been largely
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overlooked in the vision literature. Durrant-Whyte and
colleagues (e.g., [10]) have implemented systems using a
wide range of vehicles and sensor types and are currently
working on ways to ease the computational burden of SLAM.
Chong and Kleeman [11] achieved impressive results using
advanced tracking sonar and accurate odometry combined
with a submapping strategy. Thrun et al. [12] have produced
some of the best known demonstrations of robot navigation in
real environments (for example, in a museum) using laser
range-finders and some vision. Castellanos [13] also used a
laser range finder and a mapping strategy called the SPmap.
Leonard and Feder [14], working primarily with underwater
robots and sonar sensors, have recently proposed new
submapping ideas, breaking a large area into smaller regions
for more efficient map-building.

In this paper, we describe the first application of active
vision to real-time, sequential map-building within a SLAM
framework, building on our earlier work reported in [15]. We
show that active visual sensing is ideally suited to the
exploitation of sparse “landmark” information required in
robot map-building. Using cameras with the ability both to
fixate and to change fixation over a wide angular range
ensures that persistent features redetected after lengthy
neglect can also be rematched, even if the area is passed
through along a different trajectory or in a different direction.
This is key to reducing the effect of motion drift from the
fiducial coordinate frame: The drift now depends on the
distance from the origin, not the total distance traveled.

No doubt, active sensing will be implemented electro-
nically by choosing to process only a subwindow from
high-resolution omni-directional data. At present, however,
full resolution multiple sensor cameras (fly-eyes) are
expensive to construct and mosaicing still a research
problem. On the other hand, fish-eye lenses and catadiop-
tric mirrors [16] have the disadvantage of variable and
sometimes low angular resolution. In this work, we use a
agile electro-mechanical stereo head with known forward
kinematics, four degrees of movement freedom, and full
odometry permitting the locations of the cameras with
respect to the robot to be known accurately at all times and
their location to be controlled in an closed-loop sense. While
an active head combines a wide field of view with high
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sensing resolution, it also introduces the interesting penalty
that a finite time is required to refixate the camera, time in
which further measurements might have been made of the
previously fixated scene point.

Selective sensing is the essence of the active approach
and, in map-building, there is much more to be gained by
making observations of some parts of the robot’s surround-
ings than others: the two appear well-matched. Here, we
only consider how active vision can provide a robot with
accurate localization; but, this could be just one part of a
robot’s overall task. In [17], one of us described a system
where attention is divided between localization and
inspection. Regardless of the simplicity or complexity of
the task, a rigorous statistical framework is necessary if
prudent serial selection of fixation point is to be made.
Although the computational complexity is high (in EKF-
based SLAM, proportional to N?, where N is the number of
mapped features), real-time implementation is feasible on
modest hardware, even without the various SLAM short-
cut methods which have recently appeared [14], [18], [10].

The rest of the paper is organized as follows: In Section 2,
we introduce the SLAM problem and discuss some of the
points relevant to our implementation. We present the image
processing approach and active head control strategies
involved in identifying and locating natural scene features
in Section 3 and Section 4 describes an experiment using
contrived scene features to verify localization and map-
building performance against ground-truth. We continue in
Section 5 by discussing the additional sensing and processing
tools, in particular, active feature selection, which are
necessary in fully autonomous navigation and, in Section 6,
give results from a fully automatic experiment. In Section 7,
welook atsupplementing SLAM with a small amount of prior
knowledge and, in Section 8, bring all these elements together
in a final experiment in goal-directed navigation.

2 SLAM UsING ACTIVE VISION

Sequential localization and map-build based on the ex-
tended Kalman Filter (EKF) is now increasingly well
understood [1], [13], [11], [19], [10] and, in this section, we
only wish to establish some background and notation.
Detailed expressions for the kinematics of our particular
vehicle and active head can be found in [15].

2.1 The State Vector and Its Covariance

In order for information from motion models, vision, and
other sensors to be combined to produce reliable estimates,
sequential localization and map-building [20] involves the
propagation through time of probability density functions
(PDF’s) representing not only uncertain estimates of the
position of the robot and mapped features individually, but
coupling information on how these estimates relate to each
other.

The approach taken in this paper and in most other work
on SLAM is to propagate first-order approximations to
these probability distributions in the framework of the EKF,
implicitly assuming that all PDF’s are Gaussian in shape.
Geometrical nonlinearity in the motion and measurement
processes in most SLAM applications means that this
assumption is a poor one, but the EKF has been widely
demonstrated not to be badly affected by these problems.
More significant is the EKF’s inability to represent the

multimodal PDF’s resulting from imperfect data association
(mismatches). The particle filtering approaches which have
recently come to the fore in visual tracking research offer a
solution to these problems, but in their current form are
inapplicable to the SLAM problem due to their huge growth
in computational complexity with state dimension [21]—in
SLAM, the state consists of coupled estimates of the
positions of a robot and many features and it is impossible
to span a space of this state-dimension with a number of
particles which would be manageable in real-time; how-
ever, some authors [22] are investigating the use of particle
filters in robot localization.

In the first-order uncertainty propagation framework,
the overall “state” of the system x is a vector which can be
partitioned into the state %, of the robot and the states y; of
entries in the map of its surroundings. The state vector is
accompanied by a covariance matrix P, which can also be
partitioned as follows:

}A(v Pamc Pmyl P1y2
R ¥1 Pylw Pylyl Pyl;l/?
x=1 3 , P=

Py?z Py?yl p y2y2

In this paper, the robot state is just ground plane position
and orientation %, = (7, %, )" and each feature state is a 3D
position y; = (X;, Y3, Z:)", but a state vector is not limited
to pure position estimates: Other feature and robot
attributes (such as velocity or the positions of redundant
joints) can be included (e.g., [17]).

2.2 Coordinate Frames and Initialization

When the robot moves in surroundings which are initially
unknown, the choice of world coordinate frame is arbitrary:
Only relative locations are significant. Indeed, it is possible
to do away with a world coordinate frame altogether and
estimate the locations of features in a frame fixed to the
robot: Motions of the robot simply appear as backwards
motion of features. However, in most applications, there
will be interaction with information from other frames of
reference—often in the form of known way-points through
which the robot is required to move (even in a case so
simple as that in which the robot must return to its starting
position). A world coordinate frame is essential to interact
with information of this kind and, as there is little
computational penalty in including an explicit robot state,
we always do so (Fig. 1a).

In typical navigation scenarios (such as that of the
experiments of Sections 4 and 6) where there is no prior
knowledge of the environment, the world coordinate frame
can be defined with its origin at the robot’s starting position
and the initial uncertainty relating to the robot’s position in
P, is zeroed.

If there is prior knowledge of some feature locations (as
in the experiment of Section 7), these can be inserted
explicitly into the map at initialization and this information
will effectively define the world coordinate frame. The
robot’s starting position relative to these features must also
be input and both robot and feature positions assigned
suitable initial covariance values.
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Fig. 1. (a) Coordinate frames. The robot’s location in the world coordinate frame is specified by coordinates (z, z, ¢). (b) Motion model. The vehicle’s
motion geometry. (c) Atcyive head model. Head geometry: The head center is at height H vertically above the ground plane.

2.3 Process Model
Temporal updating using an EKF requires prediction of the
state and covariance after a robot movement during a

possibly variable period At;.

Ko(rer1p) = Lo (Ro(ripys Wes Aty)
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Here, £, is a function of the current robot state estimate, the
period, and control inputs u, which for our robot are
steering angle and wheel velocity (Fig. 1b). The robot’s
motion in each time step is modeled as a circular trajectory
with radius R determined by wheel geometry and steering
angle (see [19] for details). The full state transition Jacobian
is denoted 2£ and Q is the process noise,

of, _Of,"
_ Oy O
Q du  Ou ’

where U is the diagonal covariance matrix of u. Process

noise accounts essentially for unmodeled effects in the
vehicle motion such as wheel slippage.

2.4 Measurement Model

Any sensor which is able to measure the location of fixed
features in the scene relative to the robot can contribute
localization information and it is wise in implementation to
separate the details of the sensors (and indeed the robot)
from the algorithms used to build and process maps [20].

The key to our active approach is the ability we gain from
our probabilistic state representation to predict the value h; of
any measurement and also calculate the uncertainty expected
in this measurement in the form of the innovation covariance
S;. Explicitly, our measurement model is:

—1 hgix
i tan h%
—1 haiy
h=| ay | = tanlﬁ ,
(6% —-1_1
v tan 2hgi
where
hGix cos p(X; — ) —sing(Z; — z)
hgi = | haiy | = Y, - H
haix sin (X; — x) + cos p(Z; — 2)

is the Cartesian vector from the head center to feature i
(expressed in the robot-centerd coordinate frame). h¢; is the
length of vector hg; and hgip = V/ heis® + hais’ isits projection
onto the zz plane. [ is the interocular separation of the active
head and H is the height above the ground plane of the head
center.

The innovation covariance S; is calculated as:

g _Ohip Oh' b Oh Oh o Oh
‘Tox, Mox, Ox, Moy, 9y, "ox,
Oh; Oh;
—Pyiyi— +R.
dy; " Jy; *

Here, R is the measurement noise covariance matrix,
defined shortly. Calculating S; before making measure-
ments allows us to form a search region in measurement
space for each feature, at a chosen number of standard
deviations (providing automatic gating and minimizing
search computation). We will see later that S; also provides
the basis for automatic measurement selection.

In our work, measurement of a feature in the map involves
the stereo head (sketched in Fig. 1c) using this prediction to
turn to fixate the expected position of the feature, carry out a
stereo image search of size determined by the innovation
covariance (see Section 3.2), and then use its matched image
coordinates in combination with the head’s known odometry
and forward kinematics to produce a measurement z; of the
position of the feature relative to the robot.

For filtering, measurements are parameterized in terms
of the pan, elevation, and (symmetric) vergence angles o,
of an idealised active head able to measure the positions of
the features at perfect fixation: by idealized, we mean an
active head which does not have the small offsets between
axes possessed by our head. In image measurements, we
expect to detect features to an accuracy of £1 pixel, which at
the center of the image in the cameras used is an angular
uncertainty of about 6 x 1073 rad. Compared with this,
angular errors introduced by the active head, whose axes
have repeatabilities two orders of magnitude smaller, are
negligible. The advantage of the idealized head parameter-
ization is that when we map the uncertainty coming from
image measurements into this space, the measurement
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noise covariance is very closely diagonal and constant and
can be approximated by:

Aaz 0 0
R=| 0 A2 0
0 0 Ad?

In fact, in our system Aaq, = Aa, = Aq,. This is
preferable to parameterizing measurements in the Cartesian
space of the relative location of feature and robot since, in
that case, the measurement noise covariance would depend
on the measurement in a nonlinear fashion (in particular,
the uncertainty in depth increases rapidly with feature
distance) and this could lead to biased estimates.

2.5 Updating and Maintaining the Map

Once a measurement z; of a feature has been returned, the
Kalman gain W can then be calculated and the filter update
performed in the usual way [20]:

oh;"
W =pP_— s
ox
Pylw oh T Sfl wa 8h7T Sfl
| Py 0%, + Py ay;

)A(new = )A(old + W(Zl — hz)
Pnew = Pold - VVSVVT

Since, in our measurement model, the measurement noise
Ris diagonal, this update can be separated in implementation
into separate, sequential updates for each scalar component
of the measurement (that is to say that we perform the above
update three times, once for each angular component «, . ,, of
the measurement; h;, z;, and S become scalar in these steps):
this is computationally advantageous.

Initializing a New Feature. When an unknown feature n
is observed for the first time, a vector measurement h,, is
obtained of its position relative to the head and its state
initialized accordingly using the inverse y, (x,,h,) of the
measurement model. Jacobians gf( and m’;c are calculated
and used to update the total state vector and covariance:

X,
Y1
Xnpew =
Yn
oy T
P.. nyl P aXL”l
oy T
Pylw Pylyl h PULL gz](_T
Pnew = 3
0 0
where
A_Dup Oya' 09,0y,
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Deleting a Feature. A similar Jacobian calculation shows
that deleting a feature from the state vector and covariance
matrix is a simple case of excising the rows and columns
which contain it. For example, where the second of three
known features is deleted, the parts removed are delineated
as follows:

Xy Px:l: nyl ‘ PmyZ | PryS
Y1 Pyiz Py ‘ Pyiye | Py
~ )

Y2 Pny Py2y1 ‘ Py2y2 | Py2y3
Y3 Pyse Py | P y3y2 | Pysys

3 DETECTION AND MATCHING OF SCENE FEATURES

Repeatable localization in a particular area requires that
reliable, persistent features in the environment can be found
and refound over long periods of time. This differs perhaps
from the more common use of visual features in structure
from motion, where they are often treated as transient
entities to be matched over a few frames and then
discarded. When the goal of mapping is localization, it is
important to remember that motion drift will occur unless
reference can be made to features after periods of neglect.

The visual landmarks we will use should be features
which are easily distinguishable from their surroundings,
robustly associated with the scene geometry, viewpoint
invariant, and seldom occluded. In this work, we assume
the features to be stationary points.

Since when navigating in unknown areas nothing is
known in advance about the scene, we do not attempt to
search purposively for features in certain locations which
would be good sites for landmarks: There is no guarantee
that anything will be visible in these sites which will make a
good landmark. Rather, feature acquisition takes place as a
data-driven process: The robot points its cameras in rather
arbitrary directions and acquires features if regions of
image interest are found. This rather rough collection of
features is then refined naturally through the map main-
tenance steps described in Section 5.3 into a landmark set
which spans the robot’s area of operation.

3.1 Acquiring 3D Features

Features are detected using the Harris corner detector [23]
as applied by Shi and Tomasi [24] to relatively large pixel
patches (15 x 15 rather than the usual 5 x5 for corner
detection). Products of the spatial gradients I, and I, of the
smoothed image irradiance are averaged over the patch
and, if both eigenvalues of the matrix

LI, LI,
L1, I,

are large, the patch is corner-like.

To acquire a new feature at the current head position, the
detector is run over the left image, finding a predetermined
number of the most salient nonoverlapping regions. For the
strongest feature, an epipolar line is constructed in the right
image (via the known head geometry) and a band around
the line searched for a stereo match. If a good match is
found, the two pairs of image coordinates (ur,v;) and
(ug,vg) allow the feature’s 3D location in the robot-centered
coordinate frame to be calculated. The head is driven to
fixate the feature, enforcing symmetric left and right head
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Fig. 2. (a) and (b): Feature detection. Rogue features likely to be deleted as nonstationary arise from depth discontinutites and specularities. (c) and
(d): Elliptical search regions generated for features; the size of the ellipse depends on the uncertainty in the relative position of the robot and feature.
(e) and (f): Two examples of successful feature matching close to the limits of visibility constraints.

vergence angles to remove redundancy, the feature remea-
sured, and the process iterated to a given tolerance. Making
measurements at fixation reduces dependency on knowl-
edge of the camera focal lengths. The image patch intensity
values of the new feature are saved so that appearance
matching is possible later and the feature is inserted into the
map with uncertainty derived as in Section 2. Note that this
uncertainty depends only on the geometrical location of the
feature and not on its image characteristics: We assume that
image matching (see Section 3.2) has a constant uncertainty
in image space; that is to say that how accurately a
particular feature can be located in the image does not
depend on its appearance.

In our work, as in [24], no attempt is made to discern
good or bad features, such as those corresponding to
reflections or lying at depth discontinuities (such as those
seen in the rather pathological examples of Figs. 2a and 2b)
or those which are frequently occluded at the detection
stage: The strategy used is to accept or reject features
depending on how well they can be tracked once the robot

has started moving. Patches which do not actually
correspond to stationary, point features will quickly look
very different from a new viewpoint, or will not appear in
the position expected from the vehicle motion model and,
thus, matching will fail (this is also the case with frequently
occluded features which are soon hidden behind other
objects. These features can then be deleted from the map as
will become clearer in our discussion of experiments later:
While the initial choice of features is unplanned and
random, the best features survive for long periods and
become persistent landmarks.

3.2 Searching for and Matching Features

Applying the feature detection algorithm to the entire image
is required only to find new features. Since we propagate full
information about the uncertainty present in the map,
whenever a measurement is required of a particular feature,
regions can be generated in the left and right images within
which the feature should lie with some desired probability
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(usually three standard deviations from the mean). Typical
search ellipses are shown in Figs. 2c and 2d.

Matching within these regions is then achieved by a
brute-force correlation search using normalized sum-of-
squared-differences for the best match to the saved feature
patch within the (usually relatively small) regions defined
by the search ellipses in both left and right images. A
consistency check is then applied between the two image
locations found (taking account of the epipolar coupling
between the two measurements): This gives some robust-
ness against mismatches. Normalized sum-of-squared-
differences gives the matching a fairly large degree of
robustness with respect to changing light conditions and in
experiments has meant that the same features could be
matched well over the duration of experiments of many
minutes or a few hours, though we have not tested the
durability of matching under extreme changes (from
natural to artificial lighting, for example).

Figs. 2e and 2f show matches obtained for some features,
giving an impression of the surprising range of viewpoints
which can be matched successfully using the large patch
representation of features. However, clearly matching can
only be expected to succeed for moderate robot motions since
the patch representation is intrinsically viewpoint-variant—-
features look different when viewed from new distances or
angles (to avoid drift, we do not update feature templates
after matching). Therefore, we have defined a criterion for
expected matchability based on the difference between the
viewpoint from which the feature was initially seen and a
new viewpoint. Fig. 3 shows a simplified cut-through of the
situation: h;, is the vector from the head center to the feature
when it was initialized and h is that from the head center ata
new vehicle position. The feature is expected to be visible if
the length ratio b s close enough to 1 (in practice between

something like‘h%ng‘and I) and the angle difference (=
cos H((h - heyig)/(Jh || horig|)) is close enough to 0 (in practice
less than 45° in magnitude); the matches shown in Figs. 2e
and 2f are close to these limits of viewpoint change. In our
localization algorithm, we are in a position to estimate both of
these vectors before a measurement is made and so attempts
are made only to measure features which are expected to be

visible. The result is a region of the robot’s movement space

defined for each feature from which it should be able to be
seen. A feature which fails to match regularly within this
region should be deleted from the map since the failures must
be due to it being an essentially “bad” feature in one of the
senses discussed above rather than due to simple viewpoint
change.

3.3 Failure Modes

Two failure modes were observed in our EKF-based SLAM
system. The first arises from failure of data association:
Mismatches are likely to happen when robot and feature
uncertainty grow and search regions (Figs. 2c and 2d) become
very large (for instance, of a width in the region of 100 pixels
rather than the more normal 10-20 pixels). In this situation,
thereis a chance that an image region of similar appearance to
a mapped feature is incorrectly identified and this failure
cannot be identified by normal measurement gating. In this
work, we did not implement a multiple hypothesis frame-
work and, therefore, a single mismatch could prove to be fatal
to the localization process. However, mismatches were
actually very rare: First, the large size of image patch used
to represent a feature meant that matching gave very few
false-positives within the uncertainty-bounded search re-
gions (which implicitly impose the explicit consistency
checks, based on multifocal tensors, for example, included
in most structure from motion systems). More importantly,
though, the active measurement selection and map-manage-
ment approaches used meant that at all times attempts were
made to keep uncertainty in the consistency of the map to a
minimum. In normal operation, image search regions were
small and the chance of mismatches low. For this reason, long
periods of error-free localization were possible. Nevertheless,
in future systems there is a clear need for an explicit approach
to multiple hypotheses.

The second, much rarer, failure mode arose from
nonlinearities. When uncertainty in the map is large,
measurements with a large innovation may lead to
unpredictable EKF updates due to the unmodeled non-
linearity in the system.

4 SYSTEM VERIFICATION AGAINST GROUND TRUTH

To evaluate the localization and map-building accuracy of
the system in a controlled environment, the laboratory floor
was marked with a grid (to enable manual ground-truth
robot position measurements) and artificial scene features
were set up in known positions equally spaced in a line
along the bench top (Fig. 4a). The robot’s motion was
controlled interactively in this experiment by a human
operator, who also manually indicated (by highlighting
image interest regions via the mouse) which features the
robot should initialize into its map.

Starting from the grid origin withno prior knowledge of the
locations of scene features, the robot was driven nominally
straight forward. Every second feature in the line was fixated
and tracked for a short while on this outward journey, the
robot stopping at frequent intervals so that manual ground-
truth measurements could be made of its position and
orientation using an onboard laser pointer. The recovered
values and uncertainties in the positions of features 0-5 are
shown in gray in Fig. 4b, superimposed on the measured
ground truth in black. The effects of drift are apparent and the
uncertainties have increased steadily.
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Fig. 4. Experiment with artificially introduced features. Experimental arrangement. Estimated positions of the robot (%,) and features (y;) in gray,
along with 30 ellipses for the point covariances Py;y; are shown superimposed on the true positions (from manual measurement) in black as the
robot moved forward and back. The feature spacing was 40cm and the robot moved abnout 5m from its origin. Feature labels 0-10 show the order
they were tracked in. (As ever with stereo, the major axis of the uncertainty ellipse lies along the Cyclopean direction—and so here the head was
viewing on average perpendicular to the direction of travel.) (a) Experimental setup, (b) outward journey, (c) return journey, and (d) feature 0 refound.

The robot was then reversed back down the corridor and
made to fixate upon the alternate features it had not used
previously. The aim was that it should return to its origin
while always tracking only recently acquired features, as
would be the case in a looped movement around a
rectangular layout of corridors, for example. As expected,
the uncertainty continued to increase (Fig. 4c) and, by its
return to the nominal origin, the filter estimated the robot’s
position as z = —0.11m, z = 0.26m, ¢ = —0.08rad, whereas
the true position was z = 0.01m, = 0.02m, ¢ = 0.02rad.

At this stage, following one more movement step, the
robot was allowed to refixate feature 0, which it had seen
much earlier at the start of the experiment. As can be seen in
Fig. 4d, drift and uncertainty are immediately reduced, both
in the robot state and scene geometry, particularly near the
refixated feature. The estimated position of z=0.31m,
x = 0.04m, ¢ = —0.08rad was now much closer to the true
position z = 0.39m, z = 0.02m, ¢ = 0.00rad. The robot state
covariance P,, reduced sharply after refixation from

0.0039 —0.0095 0.0036
—0.0095 0.0461 —0.0134 | —
0.0036 —0.0134 0.0051
0.0016 —0.0004 0.0016
—0.0004 0.0002 —0.0004
0.0016 —0.0004 0.0018

It can be seen that a reasonable degree of uncertainty still
remains: this is due to the fact that a single measurement, even
of a feature with very small position uncertainty, does not

fully constrain the robot’s position estimate—further refixa-
tions of other features providing complementary information
will allow the robot’s position to be really locked-down (as
will be explained in more detail in Section 5.1).

By maintaining full covariance information, uncertainty
grows as a function of actual distance from a known
position—here, the origin, where the coordinate frame was
defined at the robot’s starting position—not as a function of
the total distance traveled by the robot from the known point.
The drift still seen in the uncertainty in distant features is a
fundamental limitation of any map-building situation invol-
ving the use of sensors with limited range: The locations of
these features relative to the world coordinate frame must be
estimated by implicit compounding of many noisy measure-
ments and uncertain robot motions.

5 TooLs FOR AUTONOMOUS NAVIGATION

The previous experiment was contrived in that the robot
was instructed which features to fixate and how to navigate.
In this section, we describe tools which combine to permit
autonomous active SLAM, as will be demonstrated in the
experiments presented later. First, in Sections 5.1 and 5.2, is
a method for performing the critical role of actively
choosing which feature to fixate upon at each stage of
navigation, both without and with consideration of the time
penalty involved with refixation using a mechanical device.
Next, in Section 5.3, we consider the maintenance of a
feature set and, finally, in Section 5.4, discuss how to inject
an element of goal-direction into the robot’s progress.
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5.1 Active Feature Selection

In our SLAM work, the goal is to build a map of features
which aids localization rather than an end result in itself.
Nevertheless, in the combined and coupled estimation of
robot and feature locations which this involves, estimation
of the robot position is not intrinsically more “important”
than that of the feature positions: aiming to optimize robot
position uncertainty through active choices is misleading
since it is the overall integrity and consistency of the map
and the robot’s position within it which is the critical factor.
We have already seen in the preceding experiment that
robot position uncertainty relative to a world frame will
increase with distance traveled from the origin of that
frame. It is the mutual, relative uncertainty between
features and robot which is key.

Our feature selection strategy achieves this by making a
measurement at the currently visible feature in the map
whose position is hardest to predict, an idea used in the area
of active exploration of surface shape by Whaite and Ferrie
[25]. The validity of this principle seems clear: There is little
utility in making a measurement whose result is easy to
forecast, whereas much is to be gained by making a
measurement whose result is uncertain and reveals some-
thing new. The principle can also be understood in terms of
information theory since a measurement which reduces a
widely spread prior probability distribution to a more peaked
posterior distribution has a high information content.

Our approach to mapping is active, not in the sense of
Whaite and Ferrie who actually control the movement of a
camera in order to optimize its utility in sensing surface
shape, in that we do not choose to alter the robot’s path to
improve map estimates. Rather, assuming that the robot
trajectory is given or provided by some other goal-driven
process, we aim to control the active head’s movement and
sensing on a short-term tactical basis, making a choice
between a selection of currently visible features: Which
immediate feature measurement is the best use of the
resources available?

To evaluate candidate measurements, we calculate
predicted measurements h and innovation covariances S
for all visible features (where feature “visibility” is
calculated as in Section 3.2). In measurement space, the
size of the ellipsoid represented by each S is a normalized
measure of the uncertainty in the estimated relative position
of the feature and the robot, and we wish to choose the
feature with the largest uncertainty. To produce a scalar
decision criterion, the volume Vs in «,., space of the
ellipsoid at the n, = 30 level is calculated for each visible
feature (an important point here is that, in our implementa-
tion, the measurement noise in the three measurement
components ., is a multiple of the identity matrix).
Computing the eigenvalues A; 23 of S yields the volume

Vs = (47/3)n3 /M Ao s

We use this measure Vg as our score function for
comparing candidate measurements: A measurement with
high Vg is hard to predict and, therefore, advantageous to
make. Here, we do not propose that Vs is the optimal choice
of criterion from an information-theoretic point of view—-
nevertheless, we believe that it will give results for
measurement comparison which are almost identical to an
optimal criterion. The important point is that since it is
evaluated in a measurement space where the measurement

noise is constant, its value reflects how much new
information is to be obtained from a measurement and
does not a priori favor features which are, for example,
close or far from the robot.

An illustrative example is shown in Fig. 5. With the robot
at the origin, five well-spaced features were initialized and
the robot driven forward and backwards while fixating on
feature 0 (chosen arbitrarily). The situation at the end of this
motion is shown in Fig. 5a, at which time the five Vg values
were evaluated as:

Vs(0,1,2,3,4) = (0.04, 0.46, 1.27, 0.49, 0.40) x 1073,

According to our criterion, there is little merit in making
another measurement of feature 0 and feature 2 should be
fixated instead, rather than 1, 3, or 4. Note here that Vg,
being calculated in measurement space, does not necessa-
rily favor those features such as 1 which have large
uncertainty in the world coordinate frame. Figs. 5b, 5c,
and 5d show the situations which result if features 0, 1, or 2
are fixated for the next measurement. Clearly, making the
extra measurement of feature 0 in (b) does little to improve
the robot position estimation which has drifted along the
direction ambiguous to measurements of that feature. Using
features 1 or 2 in Figs. 5¢c and 5d, however, show significant
improvements in robot localization: Visually there is little to
choose between these two, but the robot state covariance
after fixating feature 2 is smaller:

P, x 103(if 1 fixated) =

0.35 0.08 —0.13
0.08 024 —0.09
—0.13 —0.09 0.10

P, x 103(if 2 fixated) =
0.10  0.05 —0.03
005 021 —0.10
—0.03 —0.10  0.09

The qualities of the Vg above criterion become clear when
we consider the case of comparing features immediately after
they have been initialized into the map; this is a situation we
will often face as the robot moves into a new area and stops
to find new features. In this case, if the just-initialized
features are compared for immediate remeasurement, we
find that they all have exactly the same value of Vg:

Vinew) = (47T/3)(\/§n,,)3AapAaeAa1,.

This is aninitially surprising but desirable characteristic of V:
what has happened is that, in initialization, one unit of
measurement noise has been injected into the estimate of the
position of each feature relative to the robot. When the
innovation covariance for remeasurement is calculated, it has
a value which is simply this plus one more unit of
measurement noise. We have proven that the Vg criterion
hasnoa priori favoritism toward features in certain positions.

To split these identical values, we need to use additional
information: in this case, the future heading direction of the
robot. We predict the robot’s position in a small amount of
time and then evaluate Vs for the new features based on
this. The result is that we can choose the feature which we
expect to give the most information about the robot’s future
movement. In reality, what happens is that the criterion will
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Fig. 5. Selecting between features after a long period tracking one (ground-truth quantities in black, estimates in gray): in (a) the robot stops after tracking
feature 0. In (b), (c), and (d), the estimated state is updates after further measurments of features 0, 1, and 2, respectively. The large improvement in the
estimated robot state in (c) and (d) shows the value of making measurments of multiple features. (b) Fixate 0O, (c) fixate 1, and (d) fixate 2.

choose a feature which will be viewed from a significantly
different aspect from the future robot position: When we
consider the elongated shape of the measurement noise in
our system in Cartesian space, it will choose a feature where
from the new position we are able to make a measurement
whose covariance ellipse overlaps minimally with the
feature’s world uncertainty (typically by crossing it at a
large angle). This feature provides the best information for
reducing future motion uncertainty.

5.2 Measurement Selection during Motion

The strategy developed so far considers measurement
choice when the robot is stationary; however, it is not
suitable for making active choices actually while the robot is
moving since it all but demands a change in fixation at every
opportunity given to do so. This imperative to switch arises
because measuring one point feature does not fully
constrain the robot’s motion—uncertainty is always grow-
ing in one direction or another but predominantly ortho-
gonal to the current fixation direction. This means that
switches in fixation are likely to be through around 90°
which may take several 100 ms. In fixation switching during
motion, we must consider this time delay as a penalty since
it could otherwise be spent making different measurements.

We first require a basis for deciding whether one
estimated state is better than another. Remembering that
total map integrity is what is important, we suggest that the
highest Vs found for all visible features, Vg(max), is a good
indicator. If Vg(max) is high, there is a measurement which
needs to be made urgently, indicating that the state estimate
is poor. Conversely, if Vg(max) is low, the relative positions
of all visible features are known well.

The steps then followed are:

1. Calculate the number of measurements N; which
would be lost during a saccade (a rapid redirection

of fixation direction) to each of the visible features.
This is done by estimating the time which each head
axis would need to move to the correct position,
taking the largest (usually the pan time since this
axis is the slowest), and dividing by the intermea-
surement time interval (200 ms).

2. Identify Npay, the highest N;: This is the number of

measurements lost in the largest saccade available.

3. For each feature 7, make an estimate of the state after

Npax + 1 steps if an immediate saccade to it is
initiated. This consists of making N; filter prediction
steps followed by Ny.x — N; + 1 simulated predic-
tion/measurement updates. A measurement is
simulated by updating the state as if the feature
had been found in exactly the predicted position (it
is the change in covariance which is important here
rather than the actual estimate). An estimated state
after the same number of steps is also calculated for
continued tracking of the currently selected feature.
4. For each of these estimated states, Vs(max) is evalu-
ated. The saccade providing the lowest Vg(max) is
chosen for action or tracking stays with the current
feature if that Vs (max)is lowest.

Fig. 6 shows an experiment into continuous fixation
switching: four features were initialized, and Fig. 6a shows
the robot’s trajectory as it started to move forward, choosing
which features to fixate on as described above. In Fig. 6b,
the values obtained from a straight Vg comparison of the
four features at each time step are plotted. The four lines
show how uncertainties in the positions of the features
relative to the robot vary with time. As would be hoped,
there is a general downward trend from the initial state
(where all the features have Vs = Vg as explained
earlier), showing that the positions are becoming more
and more certain.
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In the early stages of the motion, fixation switches as
rapidly as possible between the four features: Only one
measurement at a time is made of each feature before
attention is shifted to another. In the graph of Fig. 6b, a
measurement of a particular feature appears as a sharp
drop in its Vs value. While a feature is being neglected, its
Vs gradually creeps up again. This is because the newly-
initialized features have large and uncoupled uncertainties:
Their relative locations are not well known and measuring
one does not do much to improve the estimate of another’s
position. After a while, the feature states become more
coupled: Around step 40, clear zig-zags in the rising curves
of neglected features show that the uncertainties in their
positions relative to the robot are slightly reduced when a
measurement is made of another feature.

At around step 80, the first clear situation is seen where it
becomes preferable to fixate one feature for an extended
period: feature 1 is tracked for about 10 steps. This feature is
very close to the robot and the robot is moving towards it:
Measurements of it provide the best information on the
robot’s motion. Since the locations of the other features are
becoming better known, their positions relative to the robot
are constrained quite well by these repeated measurements
(only a gentle rise in the lines for features 0, 2, and 3 is seen
during this time). Feature 1 actually goes out of the robot’s
view at step 101 (the robot having moved too close to it,
violating one of the visibility criteria) and behavior returns
to quite rapid switching between the other features.

The robot was stopped at the end of this run with state
estimates intact. It was then driven back to near the origin in
a step-by-step fashion, making further dense measurements
of all of the features along the way. The result was that once
it was back at its starting point, feature estimates had been
very well established. It was from this point that a second
continuous switching run was initiated: The trajectory and
the now accurately estimated feature positions are shown in
Fig. 6¢c, and a graph of the feature comparison in Fig. 6d.

This second graph is dramatically different from the first:
In the early stages, low Vg values for all the features are now
maintained by extended periods of tracking one feature
(feature 1 again). The strong coupling now established
between feature estimates means that if the robot position
relative to one can be well estimated, as is the case when the
nicely placed feature 1 is tracked, its position relative to the
others will be as well. There is the occasional jump to
another feature, appearing as spikes in the traces at around
steps 70 and 90. Just after step 120, feature 1 goes out of view
and a period of rapid switching occurs. None of the
remaining features on its own provides especially good
overall robot position information and it is necessary to
measure them in turn.

Feature 0 goes out of view (due to too large a change in
viewing angle) at step 147. After this, only the distant
features 2 and 3 remain for measurements. It is noticeable
that throughout the graph these two have been locked
together in their Vg values: Measurements of them provide
very similar information due to their proximity and there is
little need to switch attention between them. These features
finally go out of view at about step 270, leaving the robot to
navigate with odometry only.

A further experiment was performed to investigate the
effect of using a head with a lower performance. Software
velocity limits were introduced, increasing the head’s time to

complete saccades by some 30 percent. Runs were made with
both fast and slow performances. Two distant features
(features 2 and 3 in the previous experiment) were initialized
from the origin and the robot drove straight forward,
switching attention between them. The results were as one
would anticipate. The fast head was able to keep the errors on
both points of similar size and continued to switch fixation at
a constant rate throughout the run. The slow head was less
able to keep the error ratio constant and, later in the run when
the feature estimates were well coupled, the rate of switching
fell. The larger penalty of slower saccades meant that it was
worthwhile tracking one feature for longer.

5.3 Automatic Map Growing and Pruning

Our map-maintenance criterion aims to keep the number of
reliable features visible from any robot location close to a
value determined by the specifics of robot and sensor, the
required localization accuracy, and the computing power
available: In this work, the value two was chosen because
measurements of two widely-spaced features are enough to
produce a fully-constrained robot position estimated.

Features are added to the map if the number visible in
the area the robot is passing through is less than this
threshold: The robot stops to detect and initialize new
features in arbitrarily chosen, widely-spaced viewing
directions. This criterion was imposed with efficiency in
mind—it is not desirable to increase the number of features
and add to the computational complexity of filtering
without good reason—and the gain in localization accuracy
from adding more features than this minimum would not
be great. However, in future work, it may be useful to
ensure that one or two features more than the minimum are
always visible to ensure that adding new features does not
happen too late and the robot is not ever left in a position
with less than the minimum available.

A feature is deleted from the map if, after a predeter-
mined number of detection and matching attempts when
the feature should be visible, more than a fixed proportion
(in our work 50 percent) are failures. This is the criterion
which prunes the “bad” features discussed in Section 3.1. In
our current implementation, there is no rule in place to
ensure that the scene objects corresponding previously
deleted features (which are of interest to the feature
detection algorithm despite their unsuitability as long-term
landmarks) are not acquired again in the future but, in
practice, this was rare due to the fact that the robot rarely
passes along exactly the same route twice.

It should be noted that a degree of clutter in the scene can
be dealt with even if it sometimes occludes landmarks. As
long as clutter does not too closely resemble a particular
landmark and does not occlude it too often from viewing
positions within the landmark’s region of expected visibility,
attempted measurements while the landmark is occluded
will simply fail and notlead to a filter update. The same can be
said for moving clutter, such as people moving around the
robot, who sometimes occlude landmarks—a few missed
measurements are not a big issue. Problems only arise if
mismatches occur due to a similarity in appearance between
clutter and landmarks and this can potentially lead to
catastrophic failure. The correct operation of the system
relies on the fact that in most scenes, very similar objects do
not commonly appear in a close enough vicinity to lie withina
single image search region (and special steps would need to
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Fig. 6. The innovation covariance volume Vs values and fixation switching (b) as the robot moves forward in the region of four newly-initalized
features shown in (a). Each line, representing one feature, drops sharply as that feature is measured and its uncertainty decreases. Later, in the run
(e.g., near step 90), extended fixation on one feature becomes preferable to rapid switching. A general downward trend shows continuous
improvement in estimates. Parts (c) and (d) show the same for a longer second run, where the geometry is better known from the start. Now, low Vg
values for all features are maintained predominantly by long periods tracking one feature. Changes in behavior are seen when feature 1 goes out of
view at step 120, feature 0 at step 147 and, finally, features 2 and 3 at step 270, after which all Vs values grow without bound.

be taken to enable the system to work in scenes with a lot of
repeated texture).

5.4 Goal-Directed Navigation

The purpose of this paper is to build a map which aids
localization rather than one dense enough to be useful for
identifying free space. Nevertheless, this localization meth-
od could form part of a complete system where an
additional module (visual or otherwise) could perform this
role and communicate with the localization system to label
some of its features with contextual information, such as
“this is a feature at the left-hand side of an obstacle.”

In an earlier paper [26], we showed how fixation could
be used to steer a vehicle toward and then around a fixated
waypoint and then on to the next waypoint. The method
produces steering outputs similar to those of human drivers
[27]. In Fig. 7, we show an image sequence obtained from

one of the robot’s cameras in a period of fixation tracking of
a certain map feature and the path followed by the robot
during such a maneuver. Section 8 shows how this type of
behavior can be incorporated into the mapping system.

6 AUTOMATIC POSITION-BASED NAVIGATION

With automatic feature-selection, map maintenance, and
goal-directed steering, the robot is in a position to perform
autonomous position-based navigation. A trajectory is
specified as a sequence of waypoints in the world
coordinate frame through which the robot is desired to
pass. The robot moves in steps of approximately two
seconds duration. Before each step, the feature selection
algorithm of the previous section chooses the best feature to
track during the movement and this feature is tracked
continuously during movement (at a rate of 5Hz, making 10
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Fig. 7. Image sequence obtained from continuous fixation tracking of a feature while following an avoidance path generated by a biologically-inspired

control law.

measurements and the same number of filter prediction/
update steps per movement step). The robot stops for a
short period between movement steps to make a gross
fixation change to another feature. The breaks in movement
are also used to automatically add features to or delete them
from the map as necessary. As the robot drives making
measurements of the chosen feature and updating the
localization filter, the steering angle is continuously set to
the appropriate value to reach the next waypoint.

In the follow experiment, the instructions given to the
robot were to head in sequence from its starting point at
(z2,z) = (0,0) to the waypoints (6,0.4), (6,0) and, finally,
back to (0,0) again (in meter units). This experiment was
designed to prove again the system’s ability to return to a
previously visited area and recognize it as such, but now
using a map which was generated and maintained com-
pletely automatically. (The extra waypoint (6,0.4) was
specified merely to ensure that the robot turned in a way
which did not snag its umbilical cable.)

The robot’s progress is shown in Fig. 8, along with
views from the left camera of some of the first 15 features
inserted into the map, which itself is shown at various
stages in Fig. 9.

On the outward journey, the sequence of features fixated
in the early stages of the run (up to step (21)) was 0,2, 1,0, 2,
1,35 4,7,6,8,3,6,8,7,3,7,8, 3, 9—we see frequent
switching between a certain set of features until some go
out of visibility and it is necessary to find new ones.
Features 4 and 5 did not survive past very early measure-
ment attempts and do not appear in Fig. 9. Others, such as
0, 12, and 14 proved to be very durable, being easy to see
and match from all positions from which they are expected
to be visible. It can be seen that many of the best features
found lie near the ends of the corridor, particularly the large
number found on the furthest wall (11-15, etc.). The active
approach really comes into its own during sharp turns such
as that made around step (44), where using the full range of
the pan axis features such as these could be fixated while
the robot made a turn of 180°. The angle of turn can be
estimated accurately at a time when wheel odometry data is
particularly unreliable.

At step (77), the robot had reached the final waypoint
and returned to its starting point. The robot successfully
rematched original features on its return journey, in
particular feature 0.

The robot’s true position on the grid compared with the
estimated position was (x, = (2, z, (b)T being given in meter
and radian units):

x, = (0.06, —0.12, 3.05)", %, = (0.15, —0.03, 2.99)".

To verify the usefulness of the map generated, the
experiment was continued by commanding the robot to
repeat the round trip. In these further runs, the system
needed to do little map maintenance—of course, all
measurements add to the accuracy of the map but there
was little need to add to or delete from the set of features
stored because the existing set covered the area to be
traversed well. At (6, 0), step (124), the veridical and
estimated positions were

x, = (5.68, 0.12, 0.02)", %, = (5.83, 0.12, 0.02)"

and on return to the origin, after a total trip of 24m,

x, = (0.17, —0.07, —3.03)",%, = (0.18, 0.00, —3.06) .

A pleasing aspect of the feature choice criterion
described earlier is its inbuilt pressure to create tightly
known and globally consistent maps. Because uncertainty
in the robot’s position relative to earlier-seen features
expands during the period of neglect, the criterion makes
them prime candidates for fixation as soon as they become
visible again; reregistration with the original world co-
ordinate frame, in which the locations of these early
features is well-known, happens as a matter of course.

7 INCORPORATING SPARSE PRIOR KNOWLEDGE

The fundamental limitation of SLAM is that as the robot
moves further from its fudicial starting point, position
estimates relative to the world frame become increasingly
uncertain and this can be mitigated in many real
application domains if there are some visual landmarks
which are in positions known in advance. Ideally, they
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Fig. 8. Frames from a video of the robot navigating autonomously up and down the corridor where the active head can be seen fixating on various
features and fixated views from one of its cameras of some of the first 15 features initalized. The gridded floor was an aid to manual ground-truth

measurements and was not used by the vision system.
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Fig. 9. Numbered steps in autonomous navigation up and down a corridor. Gray shows the estimated locations of the robot features and black
(where measured) the true robot position. The furthest features lie at z ~ 8m.

would be distributed uniformly around the mapped area.
They must also be visually distinguishable from other
features which could, within the growing uncertainty
bounds, be mistaken for them: however, this can be more
easily achieved with these hand-picked features then
those detected autonomously by the robot. There have
been many approaches to robot localization using land-
marks in known locations: when a map is given in
advance, the localization problem becomes relatively
simple [4]. Here, however, we wish to show that a small
number of natural visual landmarks (small in the sense
that there are not enough to permit good localization
using only these landmarks) can be easily integrated into
the SLAM framework to improve localization.

The landmark’s known location is initialized into the
estimated state vector as the coordinates y; of a feature i at
the start of the run (i.e., as though it had already been
observed) and its covariance P, is set with all elements
equal to zero, along with the cross-covariances between the
feature state and that of the robot and other features. In
prediction and measurement updates, the filter handles
these perfectly known landmarks just like any other feature.
Note, however, that uncertainty in a landmark’s relative
position will grow as the robot moves before observing it,
and so the Vg criterion will, as ever, make the landmark

desirable to look at.
When there are perfectly known features in the map, it is
these which define the world coordinate frame, rather than
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Fig. 10. Automatic position-base navigation with three known features (0, 1, and 2). High localization accuracy can now be achieved over a wider

range of robot movement.

the arbitrary definition of this frame at the robot’s starting
position used before. Therefore, in this experiment, the
robot’s position was initialized with a starting uncertainty
not equal to zero: An assessment was made of the uncertainty
in robot location and orientation relative to the known
landmarks (with standard deviation of the order of a few
centimetres and degrees) and this formed the initial P,,. Note
too that as well as perfectly known landmarks, it would be
straightforward to introduce landmarks in partially known
positions (i.e., with some uncertainty) into this framework.
An experiment was conducted where the robot made a
movement similar to that in the autonomous navigation
experiment presented earlier, but now with three known
features inserted the map before it set out. These lay to one
side of the corridor and are labeled as 0, 1, and 2 in the
pictures of Fig. 10 showing the progress of the experiment.
In just the same way that in the previous experiment the
automatic feature-choice criterion selected features not
measured for a long time whenever possible, in this
experiment the known features were selected as soon as
they became visible, showing the drift which was occurring
in the robot’s estimation relative to the world frame. The
benefit of the known features was to improve world-frame
localization accuracy when the robot was a long way from
its origin. At step (37), when the robot was at its farthest
distance from the origin, its ground-truth location was
measured. The true and estimated locations were

x, = (5.83, 0.01, —0.01)", %, = (5.81, 0.01, —0.02)",

and the covariance matrix an order of magnitude smaller
than that achieved earlier.

It can also be seen that the “natural” features initialized
close to the landmark are now more certain: The features at
the far end of the corridor (high 2) in Fig. 10 have much
smaller ellipses than those in Fig. 9.

A lateral slice through 3D map recovered in this
experiment (Fig. 11a) reveals a curiosity—the use of a
virtual reflected feature. The experiment was carried out at
night under artificial lighting and as the robot returned to
its starting position, it inserted the reflection of one of the
ceiling lights into the map as feature 32.

8 ADDING CONTEXT TO A MaAP

Well-located visual landmarks spread through the scene
allow the robot to remain true to the world coordinate
frame over a wider area, making navigation by specifying
waypoints viable. But, it is also likely that features, whether
those supplied to the robot manually or detected auto-
matically, also have contextual meaning and can have labels
attached such as “feature 0 is a point on the edge of an
obstacle region” or “... is the door jamb.” This information
could be attached by a human operator or supplied by
another visual process.

To illustrate the use of all the techniques developed in
this paper for autonomous localization and navigation
while map-building, the locations of just two landmarks at
the corners of a zig-zag path were given to the robot, along
with instructions to steer to the left of the first and to the
right of the second on its way to a final location using the
following plan:

Landmark 0 is Obstacle A at (z,z) = (5.50, —0.50)
Landmark 1 is Obstacle B at (z,z) = (7.60, —2.15)
Go forward to waypoint (z,z) = (2.0,0.0).

Steer round Obstacle A, keeping to the left.

Steer round Obstacle B, keeping to the right.

Go forward to waypoint (z,z) = (8.5, —3.5).

Stop.

SRR

In this experiment, steering around the known obstacles
took place on a positional basis—the robot steered so as to
avoid the known obstacles based on its current position
estimate, even before it had first measured them. The
automatic feature-selection criterion decided when it was
necessary actually to measure the known features and, in
the experiments, this proved to be as soon as they became
visible in order to lock the robot position estimate down to
the world frame. The results are shown in Fig. 12, where the
estimated trajectory generated is pictured next to stills from
a video of the robot.

The point when a first measurement of known feature 0 is
made can be clearly seen in Fig. 12 as a small kink in the robot
trajectory: Measuring the feature corrected the robot’s
drifting position estimate and meant that the steering angle
was changed slightly to correct the approach. After this, the
obstacle feature was only fixated on when it again became the



DAVISON AND MURRAY: SIMULTANEOUS LOCALIZATION AND MAP-BUILDING USING ACTIVE VISION 879

\\ y
32
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Approximate Position of Light

(b)

Fig. 11. A virtual reflected feature: 32 is a reflection in a window of an overhead light. Its position in the map lies outside of the laboratory, but it still

acts as a stable landmark.

A

Fig. 12. The estimated trajetory and frames cut from a video as the robot navigated autonomously around two known landmarks and out of the
laboratory door. The robot knew the locations of features 0 and 1 as prior knowledge, along with information on their status as obstacles.

best measurement to make. Otherwise, attention was paid to
improving the map of automatically-acquired features.

9 CONCLUSIONS

We have shown that an active approach is the device which
permits vision to be used effectively in simultaneous
localization and map-building for mobile robots and
presented a fully autonomous real-time implementation.
Here, our use of active vision for navigation differs
fundamentally from that explored by Sandini and Tistar-
elli [28], [29], [30] whose emphasis was on an active
approach to recovering free space by computing time to
contact from the evolution of disparity and motion

parallax. Their representation was dense rather than
sparse. The approach here also differs from our earlier
work where we utilized an active head for navigation
tasks, such as steering around corners and along winding
roads [26]. Our results indicate that active fixation has a
part to play not only in short-term or tactical navigation
tasks, but also in strategic tasks where informed visual
search is required.

From this position, visual navigation research can join
with that progressing using other sensor types and move
toward solving the remaining problems in the burgeoning
field of sequential map-building. It is also hoped that by
introducing the problems of robot map-building to re-
searchers in visual reconstruction, insights can be gained
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into the methodology which will be needed to construct
structure from motion systems which can operate in real
time, the first examples [31] of which have just started to

appear.
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