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Abstract. We propose a method which can perform real-time 3D recon-
struction from a single hand-held event camera with no additional sens-
ing, and works in unstructured scenes of which it has no prior knowledge.
It is based on three decoupled probabilistic filters, each estimating 6-DoF
camera motion, scene logarithmic (log) intensity gradient and scene in-
verse depth relative to a keyframe, and we build a real-time graph of
these to track and model over an extended local workspace. We also
upgrade the gradient estimate for each keyframe into an intensity im-
age, allowing us to recover a real-time video-like intensity sequence with
spatial and temporal super-resolution from the low bit-rate input event
stream. To the best of our knowledge, this is the first algorithm provably
able to track a general 6D motion along with reconstruction of arbitrary
structure including its intensity and the reconstruction of grayscale video
that exclusively relies on event camera data.

Keywords: 6-DoF Tracking, 3D Reconstruction, Intensity Reconstruc-
tion, Visual Odometry, SLAM, Event-Based Camera.

1 Introduction

Event cameras offer a breakthrough new paradigm for real-time vision, with po-
tential in robotics, wearable devices and autonomous vehicles, but it has proven
very challenging to use them in most standard computer vision problems. In-
spired by the superior properties of human vision [2], an event camera records
not image frames but an asynchronous sequence of per-pixel intensity changes,
each with a precise timestamp. While this data stream efficiently encodes image
dynamics with extremely high dynamic range and temporal contrast, the lack of
synchronous intensity information means that it is not possible to apply much of
the standard computer vision toolbox of techniques. In particular, the multi-view
correspondence information which is essential to estimate motion and structure
is difficult to obtain because each event by itself carries little information and
no signature suitable for reliable matching.

Approaches aiming at simultaneous camera motion and scene structure es-
timation therefore need also to jointly estimate the intensity appearance of the
scene, or at least a highly descriptive function of this such as a gradient map. So
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far, this has only been successfully achieved in the reduced case of pure camera
rotation, where the scene reconstruction takes the form of a panorama image.

In this paper we present the first algorithm which performs joint estimation
of 3D scene structure, 6-DoF camera motion and up to scale scene intensity from
a single hand-held event camera moved in front of an unstructured static scene.
Our approach runs in real-time on a standard PC. The core of our method
is three interleaved probabilistic filters, each estimating one unknown aspect
of this challenging Simultaneous Localisation and Mapping (SLAM) problem:
camera motion, scene log intensity gradient and scene inverse depth. From pure
event input our algorithm generates various outputs including a real-time, high
bandwidth 6-DoF camera track, scene depth map for one or multiple linked
keyframes, and a high dynamic range reconstructed video sequence at a user-
chosen frame-rate.

1.1 Event-Based Cameras

The event camera or silicon retina is gradually becoming more widely known
by researchers in computer vision, robotics and related fields, in particular since
the release as a commercial device for researchers of the Dynamic Vision Sensor
(DVS) [14] shown in Figure 1 (c). The pixels of this device asynchronously re-
port log intensity changes of a pre-set threshold size as a stream of asynchronous
events, each with pixel location, polarity, and microsecond-precise timestamp.
Figure 1 visualises some of the main properties of the event stream; in particular
the almost continuous response to very rapid motion and the way that the output
data-rate depends on scene motion, though in practice almost always dramati-
cally lower than that of standard video. These properties offer the potential to
overcome the limitations of real-world computer vision applications, relying on
conventional imaging sensors, such as high latency, low dynamic range, and high
power consumption.

Recently, cameras have been developed that interleave event data with con-
ventional intensity frames (DAVIS [3]), or per-event intensity measurement (ATIS
[21]). Our framework could be extended to make use of these image measure-
ments this would surely make joint estimation easier. However, in a persistently
dynamic motion, they may not be useful. Also, they partially break the appeal
and optimal information efficiency of a pure event-based data stream. We there-
fore believe that first solving the hardest problem of not relying on standard
image frames will be useful on its own and provides the insights to make best
use of additional measurements if they are available.

1.2 Related Work

Early published work using event cameras focused on tracking moving objects
from a fixed point of view, successfully showing the superior high speed mea-
surement and low latency properties [8,6]. However, work on tracking and re-
construction of more general, previously unknown scenes with a freely moving
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Fig. 1. Event-based camera: (a): in contrast to standard video frames shown in the
upper graph, a stream of events from an event camera, plotted in the lower graph,
offers no redundant data output, only informative pixels or no events at all. Red and
blue dots represent positive and negative events respectively (this figure was recreated
inspired by the associated animation of [19]: https://youtu.be/LauQ6LWTkxM?t=35s).
(b): image-like visualisation by accumulating events within a time interval — white and
black pixels represent positive and negative events respectively. (c): the first commercial
event camera, DVS128, from iniLabs Ltd.

event camera, which we believe is the best place to take full advantage of its re-
markable properties, has been limited. The clear difficulty is that most methods
normally used in tracking and mapping, such as feature detection and match-
ing or whole image alignment, cannot be directly applied to its fundamentally
different visual measurement stream.

Cook et al. [7] proposed an interacting network which interprets a stream
of events to recover different visual estimate ‘maps’ of scenes such as intensity,
gradient and optical flow while estimating global rotating camera motion. More
recently, Bardow et al. [1] presented an optical flow and intensity estimation
using an event camera which allows any camera motion as well as dynamic
scenes.

An early 2D SLAM method was proposed by Weikersdorfer et al. [24] which
tracks a ground robot pose while reconstructing a planar ceiling map with an
upward looking DVS camera. Mueggler et al. [19] presented an onboard 6-DoF
localisation flying robot system which is able to track its relative pose to a known
target even at very high speed. To investigate whether current techniques can
be applied to a large scale visual SLAM problem, Milford et al. [16] presented a
simple visual odometry system using a DVS camera with loop closure built on
top of the SeqSLAM algorithm using events accumulated into frames [17].

In a much more constrained and hardware-dependent setup, Schraml et al. [22]
developed a special 360° rotating camera that consists of a pair of dynamic vision
line sensors which creates 3D panoramic scenes aided by its embedded encoders
and stereo event streams. Combined with an active projector, Matsuda et al. [15]
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showed that high quality 3D object reconstruction can be achievable which is
better than for laser scanners or RGB-D cameras in some specific situations.

The most related work to our method is the simplified SLAM system based
on probabilistic filtering proposed by Kim et al. [12], which estimates spatial
gradients which are then integrated to reconstruct high quality and high dynamic
range planar scenes while tracking global camera rotation. Their method has a
similar overall concept to ours with multiple interacting probabilistic filters, but
is limited to pure rotation camera motion and panorama reconstruction. Also
it is not completely real-time because of the computational complexity of the
particle filter used in their tracking algorithm.

There have been no previous published results on estimating 3D depth from
a single moving event camera. Most researchers working with event cameras
have assumed that this problem is too difficult, and attempts at 3D estimation
have combined an event camera with other sensors: a standard frame-based
CMOS camera [5], or an RGB-D camera [23]. These are, of course, possible
practical ways of using an event camera for solving SLAM problems. However,
we believe that resorting to standard sensors discards many of the advantages of
processing the efficient and data-rick pure event stream, as well as introducing
extra complication including synchronisation and calibration problems to be
solved. One very interesting approach if the application permits is to combine
two event cameras in a stereo setup [4]. The nicest part of that method is the way
that stereo matching of events can be achieved based on coherent timestamps.

Our work in this paper was inspired by a strong belief that depth estimation
from a single moving event camera must be possible, because if the device is
working correctly and recording all pixel-wise intensity changes then all of the
information present in a standard video stream must be available in principle,
at least up to scale. In fact, the high temporal contrast and dynamic range of
event pixels means that much more information should be present in an event
stream than in standard video at the same resolution. In particular, the results of
Kim et al. [12] on sub-pixel tracking and super-resolution mosaic reconstruction
from events gave a strong indication that the accurate multi-view correspon-
dence needed for depth estimation is possible. The essential insight to extending
Kim et al.’s approach towards getting depth from events is that once the cam-
era starts to translate, if two pixels have the same intensity gradient, the one
which is closer to the camera move past the camera faster and therefore emit
more events than the farther one. This is the essential mechanism built into our
probabilistic filter for inverse depth.

2 Method

Following many recent successful SLAM systems such as PTAM [13], DTAM [20],
and LSD-SLAM [10], which separate the tracking and mapping components
based on the assumption that the current estimate from one component is accu-
rate enough to lock for the purposes of estimating the other, the basic structure
of our approach relies on three interleaved probabilistic filters. One tracks the
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global 6-DoF camera motion; the second estimates the log intensity gradients in
a keyframe image — a representation which is also in parallel upgraded into a full
image-like intensity map. Finally the third filter estimates the inverse depths of a
keyframe. It should be noted that we essentially separate the mapping part into
two, i.e. the gradient and inverse depth estimations, considering fewer number
of events caused by parallax while almost all events carry gradient information.
We also build a textured semi-dense 3D point cloud from selected keyframes
with their associated reconstructed intensity and inverse depth estimate. We do
not use an explicit bootstrapping method as we have found that, starting from
scratch, alternating estimation very often lead to convergence.

2.1 Preliminaries

We denote an event as e(u,v) = (u,v,p,t)" where u and v are pixel location, p is
polarity and ¢ is microsecond-precise timestamp — our event-based camera has
the fixed pre-calibrated intrinsic matrix K and all event pixel locations are pre-
warped to remove radial distortion. We also define two important time intervals
7 and T, as in [12], which are the time elapsed since the most recent previous
event from any pizel and at the same pizel respectively.

2.2 Event-Based Camera 6-DoF Tracking

We use an Extended Kalman Filter (EKF) to estimate the global 6-DoF camera
motion over time with its state x € R%, which is a minimal representation of the
camera pose ¢ with respect to the world frame of reference w, and covariance
matrix P, € RYX®, The state vector is mapped to a member of the Lie group
SE(3), the set of 3D rigid body transformations, by the matrix exponential map:

6
ch tw
Twe = exp (inci) = <0T 1 > ) (1)
i=1

where G is the Lie group generator for SE(3), Ry € SO(3), and t,, € R?. The
basic idea is to find (assuming that the current log intensity and inverse depth
estimates are correct) the camera pose which best predicts a log intensity change
consistent with the event just received, as shown in Figure 2 (a).

Motion Prediction We use a 6-DoF (translation and rotation) constant po-
sition motion model for motion prediction; the variance of the prediction is
proportional to the time interval:

X(t|t77') _ X(tf‘r\tf‘r) +n, (2)
Px(t\tf‘r) — Pg(tfﬂtf’r) +Pn , (3)

where each component of n is independent Gaussian noise in all six axes i.e.
n; ~ N(0,0%7), and P,, = diag(o?r,...,07).
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Fig. 2. Camera pose and inverse depth estimation. (a): based on the assumption that
the current log intensity estimate (shown as the colour of the solid line) and inverse
depth estimate (shown as the geometry of the solid line) are correct, we find current
camera pose Tgi most consistent with the predicted log intensity change since the
previous event at the same pixel at pose TS compared to the current event polarity.
(b): similarly for inverse depth estimation, we assume that the current reconstructed
log intensity and camera pose estimate are correct, and find the most probable inverse
depth consistent with the new event measurement.

Measurement Update We calculate the value of a measurement zyx given an
event e(u7 v), the current keyframe pose T, the current camera pose estimate
Tﬁfi, the previous pose estimate Tq(,f; T“), where the previous event was received
at the same pizel, and a reconstructed image-like log intensity keyframe with

inverse depth by taking a log intensity difference between two corresponding
(t) (t—Te)

ray-triangle intersection points, py’ and pay , as shown in Figure 3:
zx = £C (4)
hx(x177)) = (Pg)) -1 ( g_f“)) ; (5)
where I; (pyw) = (1 —a—0)I;(vo) + al; (vy) + b1 (va) . (6)

Here £C' is a known event threshold — its sign is decided by the polarity of an
event. I; is a log intensity value based on a reconstructed log intensity keyframe,
and vg, vi, and vy are three vertices of an intersected triangle. To obtain a
corresponding 3D point location p,, in the world frame of reference, we use ray-
triangle intersection [18] which yields a vector (I,a,b) " where [ is the distance to
the triangle from the origin of the ray and a, b are the barycentric coordinates of
the intersected point which is then used to calculate an interpolated log intensity.

In the EKF framework, the camera pose estimate and its uncertainty covari-
ance matrix are updated by the standard equations at every event using:

xUD = xt=7) L W v (7)

oh
(tlt) _ _W x (t]t—7)
1Dx - (IGXG xax(tt7)> le ) (8)
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Fig. 3. Basic geometry for; tracking and inverse depth estimation: we find two
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corresponding ray-triangle intersection points, p,,’ and pay , in the world frame

of reference using a ray-triangle intersection method [18] to compute the value of a

measurement — a log intensity difference between two points given an event e(u,v),

the current keyframe pose Tk, the current camera pose estimate ng, the previous pose

estimate T\ TC), the reconstructed log intensity and inverse depth keyframe, gradient
estimation: we project two intersection points onto the current keyframe, p,(:> and
pgffT“), to find a displacement vector between them, which is then used to calculate
a motion vector m to compute the value of a measurement (g - m) at a midpoint px

based on the brightness constancy and the linear gradient assumption.

where the innovation vy and Kalman gain W are defined by the standard EKF
definitions. The measurement uncertainty is a scalar variance o2, and we omit
the Jacobian % derivation due to the space limitation.

2.3 Gradient Estimation and Log Intensity Reconstruction

We now use the updated camera pose estimate to incrementally improve the
estimates of the log intensity gradient at each keyframe pixel based on a pixel-
wise EKF. However, because of the random walk nature of our tracker which
generates a noisy motion estimate, we first apply a weighted average filter to the
new camera pose estimate. To reconstruct super resolution scenes by harnessing
the very high speed measurement property of the event camera, we use a higher
resolution for keyframes than for the low resolution sensor. This method is similar
to the one in [12], but we model the measurement noise properly to get better
gradient estimate, and use a parallelisable reconstruction method for speed.

Pixel-Wise EKF Based Gradient Estimation Each pixel of the keyframe
holds an independent gradient estimate g(px) = (gu,gv) ', consisting of log
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intensity gradients g,, and g, along the horizontal and vertical axes in image space
respectively, and a 2 x 2 uncertainty covariance matrix Pg(pg). At initialisation,
all gradients are initialised to zero with large variances.

We assume, based on the rapidity of events, a linear gradient between two
consecutive events at the same event camera pixel, and update the midpoint pg
of the two projected points p,(:) and p,(f_Tc). We now define zg, a measurement of
the instantaneous event rate at this pixel, and its measurement model hg based
on the brightness constancy equation (g - m)7. = £C, where g is a gradient
estimate and m = (m,, m,)' is a motion vector — the displacement between
two corresponding pixels in the current keyframe divided by the elapsed time 7.
as shown in Figure 3:

C
g = i?c ) (9)
hg = (g(Px) - m) , (10)
() _ (t=Te)
where m = 2k~ Pk (11)
Te

The current gradient estimate and its uncertainty covariance matrix at that
pixel are updated independently in the same way as in the measurement update
of our tracker followin% the standard EKF equations.

g

The Jacobian W of the measurement function with respect to changes

in gradient is simply (m,,m,), and the measurement noise Ng is:

0z dzg\ | o2
Ng = TOgPC (6Cg> = % ) (12)

TC
where 0% is the sensor noise with respect to the event threshold.
Log Intensity Reconstruction Along with the pixel-wise EKF based gradient

estimation method, we perform interleaved absolute log intensity reconstruction
running on a GPU. We define our convex minimisation function as:

min{ [ llgte0) - VR@OIL + NTHEILD S - 03)

Here the data term represents the error between estimated gradients g(py) and
those of a reconstructed log intensity VI;(px), and the regularisation term en-
forces smoothness, both under a robust Huber norm. This function can be writ-
ten using the Legendre Fenchel transformation [11] as follows:

. ed
min max max{(p,g — VI;) — =|p||* - 6p(p)+
I 'a p 2

(a. V1) = Fllal® = da(e)} . (14)
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Fig. 4. Typical temporal progression (left to right) of gradient estimation and log
intensity reconstruction as a hand-held camera browses a 3D scene. The colours and
intensities on the top row represent the orientations and strengths of the gradients of
the scene (refer to the colour chart in the top right). In the bottom row, we see these
gradient estimates upgraded to reconstructed intensity images.

where we can solve by maximising with respect to p:

p ™ +op(g—VI)

(n+1) _ 1+opeq
P - o ; (15)
p("+op(g—V1))
max (1, ) 1+‘:,p6d ! |)
maximising with respect to q:
q™ +0qVI;
(n+1) _ 1+gq7>\€r 16
4 max (1 1]a™+0qVL ) ’ (16)
AL 1
and minimising with respect to I;:
I?"H) = Il(n) — o1, (divp™ ) — divg™ V) | (17)

We visualise the progress of gradient estimation and log intensity reconstruction
over time during hand-held event camera motion in Figure 4.

2.4 Inverse Depth Estimation and Regularisation

We now use the same camera pose estimate as in the gradient estimation and
a reconstructed log intensity keyframe to incrementally improve the estimates
of the inverse depth at each keyframe pixel based on another pixel-wise EKF.
As in camera pose estimation, assuming that the current camera pose estimate
and reconstructed log intensity are correct, we aim to update the inverse depth
estimate to best predict the log intensity change consistent with the current
event polarity as shown in Figure 2 (b).
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Fig. 5. Typical temporal progression (left to right) of inverse depth estimation and
regularisation as a hand-held camera browses a 3D scene. The colours on the top row
represent the different depths of the scene (refer to the colour chart in the top right
and the associated semi-dense 3D point cloud on the bottom row).

Pixel-Wise EKF Based Inverse Depth Estimation Each pixel of the
keyframe holds an independent inverse depth state value p(pg) with variance
Ji(pk). At initialisation, all inverse depths are initialised to nominal values with
large variances. In the same way as in our tracking method, we calculate the
value of a measurement z, which is a log intensity difference between two corre-

sponding ray-triangle intersection points pq(p and ij‘“) as shown in Figure 3:

2o =xC, (18)
ho =1 (p0) — 1 (pU)) (19)

In the EKF framework, we stack the inverse depths of all three vertices p =
(Pvos> Pvys Pvy) | Which contribute to the intersected 3D point and update them
with their associated 3 x 3 uncertainty covariance matrix at every event in the
same way of the measurement update of our tracker following the standard EKF
equations. The measurement noise N, is a scalar variance 057 and we omit the

. ah C e
Jacobian ﬁ derivation due to the space limitation.

°)

Inverse Depth Regularisation As a background process running on a GPU,
we perform inverse depth regularisation on keyframe pixels with high confidence
inverse depth estimate whenever there has been a large change in the estimates.
We penalise deviation from a spatially smooth inverse depth map by assign-
ing each inverse depth value the average of its neighbours, weighted by their
respective inverse variances as described in [9]. If two adjacent inverse depths
are different more than 20, they do not contribute to each other to preserve
discontinuities due to occlusion boundaries. We visualise the progress of inverse
depth estimation and regularisation over time as event data is captured during
hand-held event camera motion in Figure 5.
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3 Experiments

Our algorithm runs in real-time on a standard PC with typical scenes and mo-
tion speed, and we have conducted experiments both indoors and outdoors. We
recommend viewing our video ! which illustrates all of the key results in a better
form than still pictures and in real-time.

3.1 Single Keyframe Estimation

We demonstrate the results from our algorithm as it tracks against and recon-
structs a single keyframe in a number of different scenes. In Figure 6, for each
scene we show column by column an image-like view of the event streams, esti-
mated gradient map, reconstructed intensity map with super resolution and high
dynamic range properties, estimate depth map and semi-dense 3D point cloud.
The 3D reconstruction quality is generally good, though we can see that there
are sometimes poorer quality depth estimates near to occlusion boundaries and
where not enough events have been generated.

3.2 Multiple Keyframes

We evaluated the proposed method on several trajectories which require multiple
keyframes to cover. If the camera has moved too far away from the current
keyframe, we create a new keyframe from the most recent estimation results and
reconstruction. To create a new keyframe, we project all 3D points based on the
current keyframe pose and the estimated inverse depth into the current camera
pose, and propagate the current estimates and reconstruction only if they have
high confidence in inverse depth. Figure 7 shows one of the results in a semi-dense
3D point cloud form constructed based on generated keyframes each consisting
of reconstructed super-resolution and high dynamic range intensity and inverse
depth map. The bright RGB 3D coordinate axes represent the current camera
pose while the darker ones show all keyframe poses generated in this experiment.

3.3 Video Rendering

Using our proposed method, we can turn an event-based camera into a high
speed and high dynamic range artificial camera by rendering video frames based
on ray-casting as shown in Figure 8. Here we choose to render at the same low
resolution as event-based input.

3.4 High Speed Tracking

We evaluated the proposed method on several trajectories which include rapid
motion (e.g. shaking hand). The top graph in Fig. 9 shows the estimated camera
pose history, and the two groups of the insets below show an image-like event

! nttps://youtu.be/yHLyhdMSw7w
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Fig. 6. Demonstrations in various settings of the different aspects of our joint esti-
mation algorithm. (a) visualisation of the input event stream; (b) estimated gradient
keyframes; (c) reconstructed intensity keyframes with super resolution and high dy-
namic range properties; (d) estimated depth maps; (e) semi-dense 3D point clouds.
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Fig. 7. 3D point cloud of an indoor scene constructed from multiple keyframes, showing
keyframe poses with their intensity and depth map estimates.

visualisation, a rendered video frame showing the quality of our tracker, and
a motion blurred standard camera video frame as a reference of rapid motion.
Our current implementation is not able to process this very high event-rate (up
to 1M events per second in this experiment) in real-time, but we believe it is a
simple matter of engineering to run at this extremely high rate in real-time in
the near future.

3.5 Discussion

Our results so far are qualitative, and we have focused on demonstrating the
core novelty of our approach in breaking through to get joint estimation of
depth, 6-DoF motion and intensity from pure event data with general motion
and unknown general scenes. There are certainly still weakness in our current
approach, and while we believe that it is remarkable that our approach of three
interleaved filters, each of which operates as if the results of the others are

Fig. 8. Our proposed method can render HDR video frames at user-chosen time in-
stances and resolutions by ray-casting the current reconstruction. This is the same
scene as in the first row of Figure 6.
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Fig. 9. The top graph shows the estimated camera pose history, and the two groups
of the insets below show an image-like event visualisation, a rendered video frame
showing the quality of our tracker, and a motion blurred standard camera video frame
as a reference of rapid motion (up to 5Hz in this experiment).

correct, works at all, there is plenty of room for further research. It is clear
that the interaction of these estimation processes is key, and in particular that
the relatively slow convergence of inverse depth estimates tends to cause poor
tracking, then data association errors and a corruption of other parts of the
estimation process. We will investigate this further, and may need to step back
from our current approach of real-time pure event-by-event processing towards
a partially batch estimation approach in order to get better results.

4 Conclusions

To the best of our knowledge, this is the first 6-DoF tracking and 3D recon-
struction method purely based on a stream of events with no additional sensing,
and it runs in real-time on a standard PC. We hope this opens up the door to
practical solutions to the current limitations of real-world SLAM applications.
It is worth restating that the measurement rate of the event-based camera is on
the order of a microsecond, its independent pixel architecture provides very high
dynamic range, and the bandwidth of an event stream is much lower than a stan-
dard video stream. These superior properties of event-based cameras offer the
potential to overcome the limitations of real-world computer vision applications
relying on conventional imaging sensors.
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