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Abstract— As an increasing number of automatic safety
and navigation features are added to modern vehicles, the
crucial job of providing real-time localisation is predominantly
performed by a single sensor, GPS, despite its well-known
failings, particularly in urban environments. Various attempts
have been made to supplement GPS to improve localisation
performance, but these usually require additional specialised
and expensive sensors. Offering increased value to vehicle
OEMs, we show that it is possible to use just the video stream
from a rear parking camera to produce smooth and locally
accurate visual odometry in real-time. We use an efficient whole
image alignment approach based on ESM, taking account of
both the difficulties and advantages of the fact that a parking
camera views only the road surface directly behind a vehicle.

Visual odometry is complementary to GPS in offering lo-
calisation information at 30Hz which is smooth and highly
accurate locally whilst GPS is course but offers absolute
measurements. We demonstrate our system in a large scale
experiment covering real urban driving. We also present real-
time fusion of our visual estimation with automotive GPS
to generate a commodity-cost localisation solution which is
smooth, accurate and drift free in global coordinates.

I. INTRODUCTION

Driving assistance systems are an increasingly important
part of modern vehicles and various sensors are now fitted
as standard to improve safety and aid in navigation. These
systems rely more and more on knowledge of the vehicle’s
real-time position and orientation. Vehicles of the near future
may need to refer to a global map for advance warning
of approaching hazards such as intersections and pedestrian
crossings [3], or may want to add to that map itself to share
information with other road users. Localisation estimates for
current vehicles come predominantly from automotive GPS,
but its well known limitations, particularly in urban settings,
mean that it cannot be relied on for the local accuracy needed
for this type of function.

Fig. 1. A rear parking camera, as fitted to many current vehicles, views
the road surface directly behind the car during normal driving.

In this paper we show that it is possible to use the video
stream from a standard rear parking camera (Figure 1) to pro-
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duce a real-time trajectory estimate with local accuracy and
smoothness which is highly complementary to automotive
GPS. This camera, a standard feature of many current mod-
els, views the road surface directly behind the vehicle during
normal driving. This surface (Figure 2) consists of mostly
high frequency, self-similar, speckly texture. Although many
point features can be detected in these images, they are
individually highly ambiguous. Matching each part of the
image successfully requires the support of whole frame.

Fig. 2. Four video frame samples taken from a parking camera in our test
sequence.

Rather than feature matching, we use instead an efficient
whole image alignment approach, based on the ESM algo-
rithm and explicitly taking advantage of the near-planarity
of the local road surface. Thereby we are able to make use
of all of the texture present to robustly measure the image
warp from one video frame to the next. This in turn leads to
an accurate estimate of the vehicle’s motion over the ground
plane. A large advantage of the ESM method is that it is
inherently parallelisable. Processing VGA images, we have
a CPU only implementation that operates at 30 fps on an Intel
i7 920 and a GPU accelerated implementation that achieves
in excess of 300 fps with a single NVidia GTX 480 GPU.

In large scale urban driving experiments with a full
ground-truth comparison, we show that our trajectory esti-
mates from pure visual odometry are locally very accurate
and smooth, though subject to inevitable drift over the long
distances travelled in our full experiment. We go on to
perform a live filtered fusion between our parking camera
visual odometry estimates and an automotive GPS signal,
and show that this combination of commodity level sensing
available on many standard vehicles gives a quality of tra-
jectory estimate comparable to an expensive PHINS system
in robustness and accuracy.

II. RELATED WORK

In the motor industry, there has been much interest in using
cameras to add functions related to safety and autonomous
driving, with a particular emphasis on forward-looking stereo
camera rigs to detect and estimate the locations of pedestrians
or other vehicles. There have recently been attempts to
use these cameras for estimation of the ego-motion of the
vehicle itself. These approaches (e.g. [5], [2]) have mainly



followed the methods for visual odometry developed in the
computer vision and robotics literature over recent years,
based on point feature matching and geometry estimation
over a sliding window. The first convincing stereo visual
odometry system of this type was due to Nistér et al.[15],
and state of the art performance is well represented by the
recent work of Mei et al.[12]. Napier et al.tackled drift in
their forward-looking stereo system by aligning frames to
overhead satellite images [14].

General monocular visual odometry systems still lag
somewhat in performance behind stereo systems, particularly
due to the extra difficultly in reliably tracking enough high
quality features to constrain motion, but good results can
be achieved from video streams with high texture levels
(e.g. [16]). The video stream available from a commodity
vehicle parking camera is clearly not amenable to a general
feature-based approach, due to the lack of distinctive texture
in most frames. However, here we have the strong advantage
of the assumptions that can be made about the constrained
planar scene shape and vehicle motion, and this motivates our
choice of a whole image alignment method. The ESM [10]
algorithm we use is a development of Lucas and Kanade’s
well known original alignment approach [9], and we are
particularly motivated by its recent highly effective use in
real-time spherical image mosaicing [8].

To our knowledge, we present the first convincing re-
sults for trajectory estimation based on a parking camera
which views only the road surface. Azuma et al.[1] recently
presented a method for estimating the motion of a car
using a single forward-looking camera, which combined a
standard feature-based approach in the top half of the image
viewing street-side objects with an approach in principle
similar to our own using homography estimation for the
lower part of the image observing the road. However, many
parts of their method were ad-hoc, and the results ultimately
presented were limited (only one corner of real road). This
was presumably because the robustness of the method was
low. Our large scale results demonstrating both high accuracy
and robustness go much further in proving the validity of
estimating vehicle motion from road texture alignment, and
have particular value due to the low-cost, software-only
solution permitted by the use of an existing parking camera.

III. VISUAL ODOMETRY

In this paper, we choose to pose inter-frame odometry
as an iterative continuous optimisation problem. For two
consecutive video frames, the image warp that transforms the
visible portion of one frame to the other is uniquely described
by the video camera’s motion and the structure of the scene
being observed. For a rear mounted parking camera, video
frames recorded whilst driving will largely image the ground
upon which the vehicle is moving. We treat the ground as
a smooth, locally planar manifold, and produce odometry
relative to that manifold.

Our simple model assumes that the car moves perfectly
parallel to the ground and inter-frame vehicle motion can be
parametrised by the vector (∆x,∆y,∆θ)T. The constrained

dynamics of a vehicle allow us to model motion with a
constant velocity prior. This helps us in our optimisation to
find the true minima over other local minima which may
exist.

A. Parametrisation

The camera’s motion is a function of the vehicle’s motion
and thus we consider two important frames of reference, that
of the camera and that of the car (Figure 3).
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Fig. 3. Calibrated car centric and camera centric frames of reference.

We describe the two-dimensional location of the vehicle
with respect to the world whilst taking image Ii by Twvi ,
a homogeneous point transfer matrix belonging to the Lie
Group of rigid body transforms in two-dimensions, SE(2).
For two images Il and Ir with associated positions Twvl and
Twvr , we can calculate the vehicle transformation between
them by matrix composition, Tvlvr = (Twvl)

−1
Twvr =

TvlwTwvr .
Since the parking camera captures images of the world

projectively in three-dimensions, we also describe the pose of
the camera whilst imaging frame Ii, by Twci , a homogeneous
point transfer matrix belonging to the Lie Group of rigid
body transforms in three-dimensions, SE(3). Although Twvi

is a two-dimensional transform, we can arbitrarily refer to it
in three-dimensions by ‘raising’ it into SE(3) by enforcing
that the vehicle lives on the X-Y plane. We do so implicitly
for notational convenience.

As the camera is fixed rigidly to the vehicle, there is a
constant transform Tvc = (Twvi)

−1
Twci which relates the

vehicle frame of reference to that of the camera, for all i.
This allows us to write the three-dimensional transformation
of the camera between images Ir and Il as a function of
the vehicle motion.

Tclcr = (Tvc)
−1

TvlvrTvc (1)

B. Cost Function

Observations of a plane via a projective camera are related
to one another via a plane induced homography:

Hlr = KTclcr (I| − ndc)
T
K−1. (2)

Here, Hlr ∈ R3×3 describes the homogeneous transform
that takes pixels in the ‘reference’ camera image, Ir, to



those in the ‘live’ image, Il. K ∈ R3×3 is referred to as the
intrinsics matrix which projects points in three-dimensions
into the camera. ndc = n̂c

dc
describes the pose and height

of the camera relative to the ground, where n̂c is the unit
normal of the plane in the camera frame of reference c and
dc is the distance of closest approach to the plane.

Fig. 4. A co-visible region (shaded red) exists between consecutive camera
images. A linear mapping described by a plane induced homography lets
us transfer pixels from one image to another.

Between two consecutive image frames, Il and Ir (Fig-
ure 4), if we were to know the parameters of K, Tvc, Tvlvr
and ndc , we could synthesize one frame from the other by
transferring the pixels via Hlr (Equation 2). For any given
synthesis, we can compare how similar it is to the true image
by comparing how similar their pixels are. Assuming that the
parking camera is fixed rigidly to the vehicle, and following
from the assumption that it is travelling along a locally planar
surface, K, Tvc and ndc will not change. They can be easily
estimated via off the shelf camera calibration packages. This
leaves the motion of the vehicle Tvlvr unknown, and is in
fact the quantity we wish to estimate.

Instead of measuring Tvlvr directly, we progress by saying
that we have an estimate of the vehicle motion T̂vlvr (which
may come from a motion model such as a constant velocity
prior) and wish to find some refinement parametrised by
some vector x. With this in mind, we define a cost function,
F (x), which is equal to the sum of squared pixel error
between a synthetic image generated by warping Il by
Hlr(x) and the true image, Ir. The sum is taken for every
pixel pr in image Ir, belonging to the region Ωr. Per pixel
differences fpr (x) can be written as a stacked column vector
f(x):

F (x) =
1

2

∑
pr∈Ωr

(
fpr (x)

)2

=
1

2
‖f(x)‖2, (3)

fpr (x) = Il
(
π
(
Hlr(x)pr

))
− Ir

(
π (pr)

)
, (4)

where π : R3 → R2 is the lowering function which per-
forms homogeneous division. We rewrite Equation 2 using
Equation 1 and T̂vlvr as:

Hlr(x) = KTcvT̂vlvrT(x)Tvc (I| − ndc)
T
K−1. (5)

T(x) represents a small change to the estimate T̂vlvr . We
wish to find the vector x = x0 which minimises F (x), so
we would like to do so iteratively, estimating x0 by x̂ and
applying the update rule:

T̂vlvr ← T̂vlvrT(x̂). (6)

This process is repeated until convergence which may
be detected based on a threshold on the magnitude of the
update x̂. We choose to parametrise our update matrix T(x)
minimally by x ∈ R3 belonging to se(2), the Lie Algebra
of the Lie Group SE(2). This parametrisation is locally
euclidean around the identity transform and for SE(2) is
equivalent to the vector (∆x,∆y,∆θ)T. The Lie Algebra
se(2) is related to the Lie Group SE(2) by:

T(x) = exp

(
3∑

i=1

xiAi

)
, (7)

where A0,1,2 ∈ R3×3 are the group generators for SE(2) [6].
One solution to finding x0 and therefore the inter-frame

motion of the vehicle would be to sample from the function
F (x) to find its local minimiser. For a live system this
is clearly undesirable in terms of computational cost and
it would be difficult to decide on a sufficient sampling
resolution in the space of x.

Consecutive Image Pair x,y +/- 0.75m x,y +/- 0.05m
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Fig. 5. Two sample image pairs from sequence (top left, bottom left)
with visualisation of cost landscape, centred around the chosen minima and
normalised to lowest cost (black) and highest visible cost (white), for +/-
0.75 m (middle) and +/- 0.05m (right).

Figure 5 shows the cost landscape for varying the first
two ordinates of x (∆x and ∆y) for two separate consecutive
image pairs in our test sequence. The cost landscape plots are
centred around the true minima and are intensity normalised
to display lowest sampled cost as black, and highest sampled
cost as white. For the more structured image pair containing
road markings, we can see that the horizontal direction is
more heavily constrained than the forward-backward ∆y
direction. This is caused by the strong road markings which
lie largely in the direction of travel. The more structured
texture in this pair creates an extremely steep horizontal cost
basin.

For the plain tarmac, we see a much flatter cost landscape,
with a very sharp basin containing the minima. This reflects
the uniform self similarity of the images and motivates a
technique which considers the images as a whole.

C. Efficient Second order Minimisation

In order to approximate x0 closely but efficiently, we
follow the method proposed by Malis of Efficient Second
order Minimisation (ESM) [10] with further contributions



from Mei et al. [11]. ESM descends on the solution it-
eratively, taking second-order steps within the cost space
whilst computing only first-order terms. For completeness,
this section will derive the ESM update for a general sum
of squared error cost function. The development and con-
vergence / performance analysis of ESM compared to other
prevalent methods can be found within [10].

Defining ∇f(x) to be the row vector of partial derivatives
of f , evaluated at x, we start by taking the Taylor series
expansion of both f(x) and ∇f(x) about 0:

f(x) = f(0) + ∇f(0)x +
1

2
xT∇∇f(0)x + . . . (8)

∇f(x) = ∇f(0) + xT∇∇f(0) + . . . (9)

Equating xT∇∇f(0) in Equations 8 and 9, we can
approximate F (x) up to second order as a function of first
order terms, F̂ (x) ≈ F (x), f̂(x) ≈ f(x):

f̂(x) = f(0) +
1

2
(∇f(0) + ∇f(x))x (10)

F̂ (x) =
1

2
‖f̂(x)‖2 =

1

2
f̂(x)Tf̂(x). (11)

A simple application of the product rule allows us to
approximate ∇F (x) from Equation 11. By definition, the
local minimum of F (x) represents a stationary point of that
function (Equation 13), and we make the assumption that
such a minimum exists.

∇F (x) ≈∇f̂(x)Tf̂(x). (12)

∇F (x0) = 0. (13)

It follows from Equations 10, 12 and 13 that we can find
the approximate local minimiser of F (x) by solving:

∇f̂(x0)T

(
f(0) +

1

2
(∇f(0) + ∇f(x0))x0

)
= 0 (14)

Jx0 = −f(0) (15)

Writing J = 1
2 (∇f(0) + ∇f(x0)), solving Equation 14

is equivalent to solving Equation 15. We can instead solve
this overdetermined system in the linear least squares sense
by considering its normal equations:

JTJx0 = −JTf(0) (16)

x0 = − (JTJ)
−1

JTf(0) (17)

We see that in order to find the solution x0 in Equation 17,
we are required to evaluate the partial derivatives of the cost
function at 0 and at the solution x0. At first this might
seem difficult, but returning to our specific cost function
(Equation 4), we can express its partial derivatives per pixel,
through the chain and product rules, as follows:

∂fpr (x)

∂xi
=
∂Il(a)

∂a

∣∣∣
a=π(Hlr(x)pr)

.
∂π(b)

∂b

∣∣∣
b=Hlr(x)pr

.
∂Hlr(x)

∂xi
pr

∂Hlr(x)

∂xi
= KTcvT̂vlvr

∂T(x)

∂xi
Tvc (I| − ndc)

T
K−1 (18)

Since the Lie Algebra se(2) defines a locally invariant
vector field tangential to the manifold of SE(2), ∂T(x0)

∂xi
x0 =

∂T(0)
∂xi

x0 for small x0. This can be shown to render the terms
∂Hlr(0)
∂xi

and ∂Hlr(x0)
∂xi

equivalent and they are constant for each
pixel within the iteration. ∂T(0)

∂xi
= Ai, the ith group generator

for SE(2) as used in Equation 7.
Finally, in order to evaluate the image gradient in the live

image for the solution vector x0, the ESM method draws on
the fact that at the true minimiser, the two images are directly
aligned, so we take the image gradient of the reference image
instead.

IV. EXPERIMENTAL SETUP

Our evaluation is against data obtained during an extended
experiment where a multipurpose Renault Espace passenger
vehicle conducted a 2.5km run through an urban setting,
capturing images continuously at 30fps while travelling at
speeds of up to 45km/h. Data from a U-blox automotive type
GPS receiver is used during our data fusion experiments.
The rear view camera is a Fire-i digital camera having VGA
resolution.

On board was also a ground truth system capable of
estimating with high-accuracy the vehicle’s position and
orientation. This system consists of a tactical level Inertial
Measurement Unit made of 3 fibre optic gyroscopes and 3
pendulum type accelerometers, a bi-frequency GPS receiver
and the vehicle wheel odometry [4]. Despite occlusion of
GPS signals or multipaths, the ground truth estimations
remain precise with positioning error below half a meter.

The intrinsic parameters K of the parking camera used
were calibrated using a standard calibration grid technique.
The camera’s extrinsic location relative to the vehicle frame
Tcv was initially hand-measured, but this estimate was then
refined by visual means in a process similar to that developed
by Miksch et al. [13].

V. RESULTS

A. Drifting Odometry

Our visual odometry system estimates inter-frame motion
at frame rate (30Hz). This measurement is most useful
to determine the velocity of the vehicle. Figure 6 shows
the linear and angular velocity as measured by our system
compared to that of the ground truth PHINS system on a five
and a half minute road sequence. Visual odometry is plotted
at 30Hz whereas the PHINS system is plotted at 1Hz. The
bottom plot shows the system’s confidence as measured by
the sum of squared pixel error between aligned frames. We
can see that the visual odometry measurement follows the
ground truth system closely. There are four short sections in



the sequence where tracking could not provide an estimate
and here constant velocity is assumed (Annotation 2).
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Fig. 6. Linear and angular velocity of visual odometry compared with
ground truth over time for 2.5km sample sequence.

We can integrate our measured velocity over time to
produce a trajectory in some common frame of reference.
This, like any form of motion estimation based only on
relative local sensing such as vision, will of course drift
away from the frame of reference over time. Figure 7
shows stretches of trajectory estimate, each one minute long,
aligned in each case to ground truth at the first frame. This
helps us to visualise the rate at which the odometry drifts
from an absolute map.

Fig. 7. Four minute-long sequences of integrated visual odometry (blue)
against ground truth (green).

Figure 8 shows four ten second stretches of trajectory,
again each aligned on the first frame to ground truth. We

additionally show standard automotive GPS overlaid for
comparison. We can see that our visual odometry system
is much smoother locally than the GPS measurements and
is sampled at a higher frequency.

Fig. 8. Four 10 second sequences of integrated visual odometry (blue)
against GPS (red) and ground truth (green).

B. Visual Odometry fused with GPS

The benefits of visual odometry and GPS are clearly
complimentary. Visual odometry offers a robust, accurate
and smooth local estimate whereas GPS provides coarse
measurements fixed to a global map. We performed a real-
time sliding window optimisation which incorporated both
visual odometry and GPS to provide accurate drift-free
vehicle localisation. We used g2o, a general framework for
graph optimisation which allowed us to enter relative edges
corresponding to inter-frame measurements, and unary edges
corresponding to absolute GPS measurements [7].

Fig. 9. Fused visual odometry and GPS (blue) against ground truth (green).

Figure 9 shows the resulting trajectory after sensor fusion.
We can see that the resulting system deviates only a small



amount from the ground truth system and it is hard at this
scale to differentiate them. Figure 10 shows an enlargement
which includes also the automotive GPS trajectory. We
can see that compared to GPS, the combination of GPS
and visual odometry is much smoother, whilst accurately
capturing the path of the vehicle through the roundabout.

Fig. 10. Close up sample of fused visual odometry and GPS (blue) against
GPS only (red) and ground truth (green).

C. Failure Modes

a) b)

Fig. 11. a) The vehicle passes under heavy shadow causing the image
frame to become completely saturated by pure black. b) Another vehicle
obscures a large amount of the road, and induces incorrect motion.

There are two main failure modes in our system (Fig-
ure 11). The first comes from lighting which exceeds the
dynamic range of the camera; there are four short sections
in the sequence which are also identifiable in Figure 6 where
the video frames are completely saturated black. Clearly,
no software solution could do any better than relying on
motion priors or extra sensors such as wheel odometry. Such
a situation is clearly detectable by measuring the image
variance. We assume constant velocity motion when image
variance passes below a set-once threshold.

The second failure mode comes when our basic scene
assumption is violated. Annotation 1 in Figure 6 shows

the velocity measurement error induced by a non-planar
speed bump and the associated increase in mean squared
pixel error. Annotation 3 highlights this assumption being
broken again when the road is part obscured by a turning
vehicle (Figure 11b). These situations can be considered
during sensor fusion by making use of the visual odometry’s
confidence output, mitigating their overall influence.

VI. CONCLUSION

We have presented a robust method for estimating accurate
vehicle odometry from images obtained from a rear-facing
parking camera. We have demonstrated how this might be
combined with standard automotive GPS to provide accurate
30Hz localisation of a vehicle relative to a global map and
suggest that such localisation is a clear benefit to future
autonomous and safety systems. The failure cases of the
system are infrequent and when they do occur, they can be
detected.
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