
Visual SLAM: Why Filter?

Hauke Strasdata, J.M.M. Montielb, Andrew J. Davisona

aDepartment of Computing
Imperial College London, UK
{strasdat,ajd}@doc.ic.ac.uk

bInstituto de Investigacion en Ingeniera de Aragon (I3A),
Universidad de Zaragoza, Spain

josemari@unizar.es

Abstract

While the most accurate solution to off-line Structure from Motion (SFM)
problems is undoubtedly to extract as much correspondence information as
possible and perform batch optimisation, sequential methods suitable for
live video streams must approximate this to fit within fixed computational
bounds. Two quite different approaches to real-time SFM — also called
visual SLAM (Simultaneous Localisation and Mapping) — have proven suc-
cessful, but they sparsify the problem in different ways. Filtering methods
marginalise out past poses and summarise the information gained over time
with a probability distribution. Keyframe methods retain the optimisation
approach of global bundle adjustment, but computationally must select only
a small number of past frames to process.

In this paper we perform a rigorous analysis of the relative advantages
of filtering and sparse bundle adjustment for sequential visual SLAM. In a
series of Monte Carlo experiments we investigate the accuracy and cost of
visual SLAM. We measure accuracy in terms of entropy reduction as well
as Root Mean Square Error (RMSE), and analyse the efficiency of bundle
adjustment versus filtering using combined cost/accuracy measures. In our
analysis, we consider both SLAM using a stereo rig and monocular SLAM as
well as various different scenes and motion patterns. For all these scenarios,
we conclude that keyframe bundle adjustment outperforms filtering, since it
gives the most accuracy per unit of computing time.

Keywords: SLAM, structure from motion, bundle adjustment, EKF,
information filter, monocular vision, stereo vision

Preprint submitted to Image and Vision Computing February 27, 2012

1. Introduction

Live motion and structure estimation from a single moving video camera
has potential applications in domains such as robotics, wearable comput-
ing, augmented reality and the automotive sector. This research area has a
long history dating back to work such as [21], but recent years — through ad-
vances in computer processing power as well as algorithms — have seen great
progress and several standout demonstration systems have been presented.
Two methodologies have been prevalent: filtering approaches [1, 3, 9, 17, 6]
which fuse measurements from all images sequentially by updating proba-
bility distributions over features and camera pose parameters; and Bundle
Adjustment (BA) methods which perform batch optimisation over selected
images from the live stream, such as a sliding window [37, 40], or in particular
spatially distributed keyframes [27, 49, 31] which permit drift-free long-term
operation. Both approaches were used for stereo vision [40, 44, 31] as well as
monocular vision [9, 40, 37, 27, 17, 6, 49].

Understanding of the generic character of localisation and reconstruction
problems has recently matured significantly. In particular, recently a gap has
been bridged between the Structure from Motion (SFM) research area in com-
puter vision, whose principles were derived from photogrammetry, and the
Simultaneous Localisation and Mapping (SLAM) sub-field of mobile robotics
research — hence the somewhat unfortunate dual terminology. The essential
character of these two problems, estimating sensor motion by modelling the
previously unknown but static environment, is the same, but the motivation
of researchers has historically been different. SFM tackled problems of 3D
scene reconstruction from small sets of images, and projective geometry and
optimisation have been the prevalent methods of solution. In SLAM, on the
other hand, the classic problem is to estimate the motion of a moving robot
in real-time as it continuously observes and maps its unknown environment
with sensors which may or may not include cameras. Here sequential filtering
techniques have been to the fore.

It has taken the full adoption of Bayesian methods for both to be able to
be understood with a unified single language and a full cross-over of method-
ologies to occur. Some approaches such as [33, 19, 26, 25, 45] aim at pulling
together the best of both approaches. There remains, however, the fact that
in the specific problem of real-time monocular camera tracking, the best sys-
tems have been strongly tied to one approach or the other. The question
of why, and whether one approach is clearly superior to the other, needs

2

T1 T2 T3T0

1x x2 x3 x4 x5 x6

T1 T2 T3T0

x2 x3 x4 x5 x61x

T1 T2 T3T0

1x x2 x3 x4 x5 x6

(a) Markov Random Field (b) Filter (c) Keyframe BA

Figure 1: (a) SLAM/SFM as markov random field without representing the measurements
explicitly. (b) and (c) visualise how inference progressed in a filter and with keyframe-
based optimisation.

resolving to guide future research in this important application area.

2. Filtering versus Bundle Adjustment

The general problem of SLAM/SFM can be posed in terms of inference
on a graph [13]. We represent the variables involved by the Markov random
field shown in Figure 1(a). The variables of interest are Ti, each a vector
of parameters representing a historic position of the camera, and xj, each a
vector of parameters representing the position of a feature, assumed to be
static. These are linked by image feature measurements zij – the observation
of feature xj from pose Ti – represented by edges in the graph. In real-time
SLAM, this network will continuously grow as new pose and measurement
variables are added at every time step, and new feature variables will be
added whenever new parts of a scene are explored for the first time.

Although various parametric and non-parametric inference techniques
have been applied to SFM and SLAM problems (such as particle filters
[47, 16]), the most generally successful methods in both filtering and optimi-
sation have assumed Gaussian distributions for measurements and ultimately
state-space estimation; equivalently we could say that they are least-squares
methods which minimises in the reprojection error. BA in SFM, or the Ex-
tended Kalman Filter (EKF) and variants in SLAM all manipulate the same
types of matrices representing Gaussian means and covariances. The clear
reason is the special status of the Gaussian as the central distribution of prob-
ability theory which makes it the most efficient way to represent uncertainty
in a wide range of practical inference. We therefore restrict our analysis to
this domain.

3

A direct application of optimal BA to sequential SLAM would involve
finding the full maximum likelihood solution to the graph of Figure 1(a)
from scratch as it grew at every new time-step. The computational cost
would clearly get larger at every frame, and quickly out of hand. In inference
suitable for real-time implementation, we therefore face two key possibilities
in order to avoid computational explosion.

In the filtering approach illustrated by Figure 1(b), all poses other than
the current one are marginalised out after every frame. Features, which may
be measured again in the future, are retained. The result is a graph which
stays relatively compact; it will not grow arbitrarily with time, and will not
grow at all during repeated movement in a restricted area, adding persistent
feature variables only when new areas are explored. The downside is that
the graph quickly becomes fully inter-connected, since every elimination of a
past pose variable causes fill-in with new links between every pair of feature
variables to which it was joined. Joint potentials over all of these mutually-
interconnected variables must therefore be stored and updated. The compu-
tational cost of propagating joint distributions scales poorly with the number
of variables involved, and this is the main drawback of filtering: in SLAM,
the number of features in the map will be severely limited. The standard
algorithm for filtering using Gaussian probability distributions is the EKF,
where the dense inter-connections between features are manifest in a sin-
gle joint density over features stored by a mean vector and large covariance
matrix.

The other option is to retain BA’s optimisation approach, solving the
graph from scratch time after time as is grows, but to sparsify it by remov-
ing all but a small subset of past poses. In some applications it is sensible
for the retained poses to be in a sliding window of the most recent camera
positions, but more generally they are a set of intelligently or heuristically
chosen keyframes (see Figure 1(c)). The other poses, and all the measure-
ments connected to them, are not marginalised out as in the filter, but simply
discarded — they do not contribute to estimates. Compared to filtering, this
approach will produce a graph which has more elements (since many past
poses are retained), but importantly for inference the lack of marginalisa-
tion means that it will remain sparsely inter-connected. The result is that
graph optimisation remains relatively efficient, even if the number of features
in the graph and measured from the keyframes is very high. The ability to
incorporate more feature measurements counters the information lost from
the discarded frames. Note that BA-type optimisation methods are usually

4

referred to as smoothing in the robotics community [13].
So the key question is whether it makes sense to summarise the informa-

tion gained from historic poses and measurements by joint probability dis-
tributions in state space and propagate these through time (filtering), or to
discard some of those measurements in such a way that repeated optimisation
from scratch becomes feasible (keyframe BA), and propagating a probability
distribution through time is unnecessary. Comparisons of filtering and BA
have been presented in the past, but mainly focused on loop closures [12]. In
particular, the fact that the EKF led to inconsistencies due to linearisation
issues has been studied well in the past [24]. These results led to a series
of sub-mapping techniques [7, 17, 43] which are not only motivated by the
inconsistencies in filters once uncertainty is large but also by the fact that
a filter’s cost increases, typical quadratically, with the map size. Similarly,
several techniques were introduced to reduce the computational complexity
of real-time BA using segment-wise optimisation [31], feature marginalisation
followed by pose-graph optimisation [29, 49], incremental smoothing [26] or
relative/topological representations [46]. Thus, it is possible to achieve linear
or even constant-time complexity for large scale visual SLAM. However, it
remained unclear whether filtering or BA should be used for the building
block of SLAM: very local motion estimates.

In our conference paper which the current article extends [48], we com-
pared filtering versus BA for monocular SLAM in terms of accuracy and
computational cost. The analysis was performed using covariance back-
propagation starting from the ground truth solution and assuming the best
for filtering — that the accuracy of BA and filtering is identical. The main
result was: Increasing the number of observations N increases the accuracy,
while increasing the number of intermediate keyframes M only has a minor
effect. Considering the cost of BA (linear in N) to the cost of filtering (cubic
in N), it becomes clear that BA is the more efficient technique – especially
if high accuracy is required. In this work, we affirm this result while general-
ising our previous work along several dimensions: First, we implement and
analyse the full SLAM pipeline including monocular bootstrapping, feature
initialisation, and motion-only estimation. In particular, we implement a
state of the art filter and analyse its accuracy compared to BA. Second, we
extend our analysis to stereo SLAM. Third, and most important, we lift the
assumption that all points are visible in all frames and investigate a more
realistic scenario where there is only a partial scene overlap.

5

3. Defining an Experimental Setup

Hence, there are two main classes of real-time visual SLAM systems ca-
pable of consistent local mapping. The first class is based on filtering. An
early approach was developed by Chiuso et al. [3], while Davison et al.’s
MonoSLAM [9, 11] followed a similar method with developments such as ac-
tive feature measurement and local loop closure. Several enhancements —
mainly improving the parametrisation — were suggested [36, 42, 6]. Proba-
bly the best representative of this class is the approach of Eade and Drum-
mond [17] which builds a map of locally filtered sub-maps. The other class
is based on keyframe BA, introduced and mainly dominated by Klein and
Murray’s Parallel Tracking and Mapping (PTAM) framework [28].

For defining a experimental setup, we keep these two successful represen-
tatives, PTAM and Eade and Drummond system, in mind. These systems
are similar in many regards, incorporating parallel processes to solve local
metric mapping, appearance-based loop closure detection and background
global map optimisation over a graph. They are very different at the very
local level, however, in exactly the way that we wish to investigate, in what
constitutes the fundamental building block of their mapping processes. In
PTAM, it is the keyframe, a historical pose of the camera where a large
number of features are matched and measured. Only information from these
keyframes goes into the final map — all other frames are used locally for
tracking but that information is ultimately discarded. Klein and Murray’s
key observation which permits real-time operation is that BA over keyframes
does not have to happen at frame-rate. In their implementation, BA runs in
one thread on a multi-core machine, completing as often as possible, while a
second tracking thread does operate at frame-rate with the task of pose esti-
mation of the current camera position with respect to the fixed map defined
by the nearest keyframe. In Eade and Drummond’s system, the building
block is a ‘node’, which is a filtered probabilistic sub-map of the locations
of features. Measurements from all frames are digested in this sub-map, but
the number of features it contains is consequently much smaller. The spacing
of keyframes in PTAM and Eade and Drummond’s nodes is decided auto-
matically in both cases, but turns out to be similar. Essentially, during a
camera motion between two neighbouring keyframes or nodes, a high frac-
tion of features in the image will remain observable. So in our simulations,
we aim to isolate this very local part of the general mapping process: the
construction of a building block which is a few nodes or the motion between a

6

few keyframes.1 Thus, we wish to analyse both accuracy and computational
cost. As a measure of accuracy, we consider only the error between the start
and end point of a camera motion. This is appropriate as it measures how
much camera uncertainty grows with the addition of each building block to
a large map.

For our comparison, we apply a state of the art sparse BA approach
using the Schur-Complement, and a sparse Cholesky solver [30]. It is less
obvious what kind of filter variant to use. The standard EKF is funda-
mentally different from the BA formulation of SLAM, but has well-known
limitations. However, there is a broad middle ground between filtering and
BA/smoothing (see Section 7.2). Indeed, if one tries to define the best pos-
sible filter by modifying the standard approach, one would converge more
and more towards BA. Therefore, it is important to define more precisely
what we understand by a filter. Our concept of a filter is a cluster of related
properties:

1. Explicit representation of uncertainties : A set of parameters is repre-
sented using a multivariate normal distribution.

2. Marginalisation: Temporary/outdated parameters are marginalised out
in order to keep the state representation compact.

3. Covariance: Joint covariance can be recovered from the filter represen-
tation without increasing the overall algorithmic complexity.

It is obvious that property 1 is the core property of the filter concept. Prop-
erty 2 is very common in visual SLAM, since filters are often applied at
frame-rate. Each single frame produces a new pose estimate. In order to
avoid an explosion in the state space, past poses are marginalised out. Still,
property 3 is a crucial characteristic which distinguishes BA from filtering:
It is possible to calculate the covariance of the BA problem using covari-
ance propagation, but this would increase the algorithmic complexity of BA
significantly. There are two fundamentally different approaches of Gaussian
filters. The standard approach is the EKF, which represent the uncertainty
using a covariance matrix Σ. It is easy to see that the EKF fulfils all the
three properties defined above. Its dual is the extended information filter

1Note that in both systems, as opposed to MonoSLAM [9, 11] and derived work, no
motion prior is enforced. In this sense, their formulation is therefore largely equivalent
to standard BA. Therefore, we also won’t incorporate motion priors in our analysis, but
simply define the log-likelihood to minimise in terms of reprojection error only.

7

which represent the uncertainty using the inverse covariance or information
matrix Λ = Σ−1. In the SLAM community, the EKF and its variants are
particular popular since its computational complexity is O(K2) while it is
in general O(K3) for the information filter, with K being the total number
of features in the map. Since we only consider the local building block of
SLAM the computational complexity is dominated by the number of visible
features N , leading to a complexity of O(N3) for both filter types. Thus,
both approaches are largely equivalent for our purpose. Indeed we choose
the information matrix representation. The reason is twofold: First, the
information filter approach is conceptually more appropriate for our com-
parison since the relation between filtering and BA becomes more obvious
— both are non-linear least-squares methods. Second, the information form
allows us to include variables without any prior into the state space. Thus,
we can include new poses without any motion prior, and also we are able to
represent infinite depth uncertainty for monocular inverse-depth features. In
particular, we follow Eade and Drummond [17] as well as Sibley et al. [44]
and employ the Gauss-Newton filter. It iteratively solves the normal equa-
tions using the Cholesky method and therefore is the dual of the iterative
EKF [2]. Furthermore, note that the Gauss-Newton filter is algebraically
equivalent to the classic Square Root Information Filter (SRIF) [14]. The
SRIF never constructs the normal equations explicitly and solves the problem
using an orthogonal decomposition on the square root form. While perform-
ing Gauss-Newton using Cholesky decomposition is less numerical stable than
performing the orthogonal decomposition method, it is computational more
efficient and therefore the standard approach for real-time least-squares prob-
lems nowadays. Indeed, a sufficient numerical stability of even rank-deficient
problems can be archived by applying a robust variant of Cholesky — such
as the pivoted L>DL decomposition used in the Eigen matrix library2 — and
the Levenberg-Marquardt damping term, called Tikhonov regularisation [50]
in this context.

4. Preliminaries

4.1. Gauss Newton and Levenberg-Marquardt

In a general state estimation problem, we would like to estimate a vec-
tor of parameters y given a vector of measurements z, where we know the

2http://eigen.tuxfamily.org/dox/TutorialLinearAlgebra

8

form of the likelihood function p(z|y). The most probable solution is the
set of values y which maximises this likelihood, which is equivalent to min-
imising the negative log-likelihood − log p(z|y). Under the assumption that
the likelihood distribution p(z|y) is Gaussian, the negative log-likelihood
χ2(y) := − log p(z|y) has a quadratic form:

χ2(y) = (z− ẑ(y))>Λz(z− ẑ(y)) , (1)

where Λz is the information matrix or inverse of the covariance matrix of the
likelihood distribution, and ẑ(y) is the measurement function which predicts
the distribution of measurements z given a set of parameters y. Since χ2

is a quadratic function and d := z − ẑ approximates zero at its minimum,
Gauss-Newton optimisation is applicable. All estimation described in this
paper is done using a common variant of Gauss-Newton called Levenberg-
Marquardt (LM), which employs the augmented normal equation:(

J>d ΛzJd + µI
)
δ = −J>d Λzd . (2)

Here, Jd is the Jacobian of d and µ the LM damping term.

4.2. Gauss-Newton Filter

Let us assume we would like to estimate a parameter y over time. At
each time step 1, ..., t, we observe a set of measurements z1, ..., zt. Assuming
a Gaussian distribution, the following recursive update scheme is aplied:

χ2(yt) = (yt − yt−1)
>Λyt−1(yt − yt−1) + (zt − ẑ(yt))

>Λz(zt − ẑ(yt)). (3)

This quadratic energy has of two components. The left summand is a reg-
ulariser which ensures that the state estimate yt stays close to its prior
distribution 〈yt−1,Λyt−1〉. The right summand is a data term which makes
sure that the measurement error zt − ẑ(yt) is minimised. The information
matrix is updated using uncertainty propagation:

Λyt = Λyt−1 + J>dt
ΛzJdt [22, pp.141] . (4)

5. Formulation of Visual SLAM

5.1. Camera Poses

We represent poses T as members of the Lie group SE3 [20], which con-
sists of a 3 × 3 rotation matrix R and a translation 3-vector t. There exists

9

a minimal parametrisation ω ∈ R6 which is represented in the tangent space
of SE3 around the identity. Mapping from the tangent space to the manifold
SE3 is done using the exponential map expSE3(ω) = T. Since expSE3 is sur-
jective (=onto), there exists an inverse relation logSE3. It can be shown that
the Newton method has a quadratic convergence rate not only for Euclidean
vector spaces but also if we optimise over general Lie groups [32]. During
optimisation, incremental updates δ are calculated in the tangent space and
mapped back onto the manifold: T← expSE3(δ) · T.

5.2. Monocular and Stereo Camera Models

For monocular SLAM, we use the standard pinhole camera model ẑm(T,x)
where T is the camera pose and x is a point in the world.

In stereo SLAM, each observation zs =
(
ul vl ur

)>
is a 3-vector,

where the first two components ul, vl are the pixel measurements in the left
camera, which is the reference frame. The third component ur is the col-
umn measurement in the right camera frame. We assume all images are
undistorted and rectified thanks to prior calibration. Furthermore, we as-
sume independent Gaussian measurment noise for the monocular and stereo
vision: Σzm = diag(σ2

z , σ
2
z) and Σzs = diag(σ2

z , σ
2
z , σ

2
z).

In the following, we mainly concentrate on stereo SLAM. Extensions to
monocular SLAM are discussed in Section 5.5.

5.3. BA-SLAM

In BA, we optimise simultaneous for structure and motion by minimising
the reprojection error:

χ2(y) =
∑

zi,j∈Z0:i

(zi,j − ẑ(Ti,xj))
2 (5)

with respect to y = (T1, ..., Ti,X)> with X being the set of all points xj.
The first frame T0 is typically fixed in order to eliminate the underlying
gauge freedom. We employ the standard approach of BA based on LM
and the Schur-Complement [51, 18], and we implement it using the g2o
framework [30].

BA is just the core of the full SLAM pipeline. We use the following scheme
which is summarised in Table 1. In the first frame, we initialise the 3d points
xj ∈ X from the set of initial measurements Z0. Inspired by Mei et al. [34],
we select a set X of N points from a larger set of scene point candidates using

10

X ← initilise points(Z0)
for each keyframe/time step i = 1 to M do

if a number of n ≥ 1 points left field of view then
X ← X ∪ initilise n new points(Zi, n)

end if
Ti ← motion only BA(X ,Zi)
X ← structure only BA(T0:i,X ,Z0:i)
T1:i,X ← full BA(T1:i,X ,Z0:i)

end for

Table 1: BA-SLAM pipeline.

a quadtree to ensure that the corresponding 2d observations z0,j ∈ Z0 are
spread approximately equal across the image. For each time step, that is for
each new keyframe, four steps are performed. First, we optionally initialised
new 3d points in case some old features left the field of view. Using the
quadtree, we initialise new points where the feature density. Second, the
current pose Ti is estimated using motion-only BA. Thus, we minimise the
reprojection error:

χ2(Ti) =
∑

zj∈Zi

(zj − ẑ(Ti,xj))
2 (6)

with respect to the current camera Ti. We simply initialise the current pose
to the previous pose Ti = Ti−1, however, one can also use a motion model as
in [27, 11]. Third, we perform structure-only BA by minimising

χ2(X) =
∑

zi,j∈Z0:i

(zi,j − ẑ(Ti,xj))
2 (7)

with respect to the set of points X . Finally, we perform joint optimisation
of structure and motion as formalised in Equation 5.

5.4. Filter-SLAM

For filtering, it is especially important that the state representation is
as ‘linear’ as possible. It proved to be useful, especially but not exclusively
for monocular SLAM, to represent 3d points using anchored inverse depth
coordinates [5]. Our effort is to combine the most successful approaches.
We represent points using the inverse depth formulation of Eade [15]. As in
Pietzsch et al. [42], the bundle of points which were initialised at the same

11

time is is associated with its common anchor frame Ak. There is a function
a(j) = k which assigns a anchor frame index k for each point index j. Thus,
our anchored inverse depth representation ψ is defined as

ψj := inv d(Aa(j)xj) with inv d(a) =
1

a3
(a1, a2, 1)>. (8)

Hence, the reprojection error of point ψj in the current frame Ti equals

dj = zj − ẑ(Ti, A
−1
a(j)ψj) (9)

We represent the map state Φ as a set of points and their corresponding
anchor frames:

Φ = (ψ1, ...,ψN , A0, ..., Ak)
> (10)

The first frame T0 = A0 is considered as the fixed origin and therefore dis-
carded from the state representation. If all points are visible in all keyframes,
we anchor all points to the origin T0 and the map representation simplifies to
Φ = (ψ1, ...,ψN)>. As motivated above, we perform filtering using a Gauss-
Newton Filter. Thus, we minimize the following sum of squares function,

χ2(Φi, Ti) = (Φi 	Φi−1)
>ΛΦi−1

(Φi 	Φi−1) +
∑

zj∈Zi

d>j Λzdj , (11)

wrt. the to the map Φi and the current camera pose Ti. Here, 〈Φi−1,ΛΦi−1
〉

is Gaussian map prior. Differences between two poses are calculated in the
tangent space of SE3:

A[i] 	 A[i−1] := logSE3

((
A[i]
)−1 · A[i−1]) . (12)

Since we do not impose a motion prior on Ti, the prior joint information over
the current pose Ti and the map Φi−1 is

Λi−1 :=

(
ΛΦi−1

Λ>Φi−1,Ti

ΛΦi−1,Ti ΛTi

)
=

(
ΛΦi−1

O3n×6
O6×3n O6×6

)
. (13)

Following Equation 4, we calculate the update of the information matrix:

Λi = Λi−1 + D>

 Σ−1z
. . .

Σ−1z

 D . (14)

12

T0 = A0; k ← 0
〈Φ0,ΛΦ0〉 ← Initialise map using Equations 16, 17.
for each time step i = 1 to M do

if a number of n ≥ 1 points left field of view then
k ← k + 1; Ak ← Ti−1; Φi ← (Φi−1, Ak)

>; ΛΦi
← Λi−1

Marginalise out the n invisible points from Φi,ΛΦi
.

Initialise n new inverse depth points anchored to Ak.
else

Φi ← Φi−1; ΛΦi
← ΛΦi−1

− Λ>Ti−1,Φi−1
Λ−1Ti−1

ΛTi−1,Φi−1
.

end if
ΣΦi
← Λ−1Φi

{calculate covariance, optionally}
Ti ← Motion-only BA (Equation 6) or using map prior 〈Φi,ΣΦi

〉.
(Ti,Φi)← Joint filter update by minimising Equation 11.
Λi ←Augment information matrix and update it (Equations 13-14).

end for

Table 2: Filter-SLAM pipeline.

D is the sparse Jacobian of the stacked reprojection function:

d = (d>1 , ...,d
>
N)> (15)

with respect to the pose Ti, to the points ψ1, ...,ψN and to the corresponding
anchor frames {Aa(j)|j = 1, ..., N}.

The whole filter-SLAM pipeline is sketched in Table 2. In the first frame,
the inverse depth points ψ are initialised from the stereo observation zs:

ψ =
(ul−pu

f
vl−pv
f

ul−ur
fb

)>
, (16)

with f being the focal length and b being the baseline of the stereo camera.
We initial the corresponding information matrix as

Λψ =

(
∂zs
∂ψ

Σz
∂zs
∂ψ

>)−1
with

∂zs
∂ψ

=

 1
f

0 0

0 1
f

0
1
fb

0 − 1
fb

 . (17)

At each time step i, we do the following: First, we decide whether we want
initialise new points. If this is the case, we define the previous estimated pose
Ti−1 as the new anchor frame Ak and argument the map state accordingly

13

Φi = (Φi−1, Ak)
>. Then, we marginalise out n old points from the filter state

and replace them with n new points anchored to Ak. As in BA-SLAM, a
quadtree is used for point initialisation. Otherwise, we marginalise out the
pose Ti−1 from Λi−1

ΛΦi−1
= ΛΦi−1

− Λ>Ti−1,Φi−1
Λ−1Ti−1

ΛTi−1,Φi−1
. (18)

Next, we approximate the new camera pose Ti given the previous map Φi−1.
In traditional filter-based SLAM implementations, this step is often omit-
ted. However, in case of large camera displacements (e.g. due to low filter
frequency) it is desirable to approximate the camera motion before applying
the joint filter update. There are two possibilities to estimate the camera
pose given a known map. One can either do motion-only BA by minimis-
ing Equation 6. Here we assume that the points are accurately known. In
the case that there is a significant uncertainty in the map, and a model of
this uncertainty is available, we can do better. As described by Eade [15,
pp.126], we can estimate a pose given a Gaussian map prior. The effect is
that taking account of the 3D uncertainty in point positions will weight their
impact on camera motion estimation, and better accuracy will be obtained
because accurately located points will be trusted more than uncertain ones.
The pros and cons of these two approaches are analysed in Section 6.3. Fi-
nally, we perform the joint filter estimate and update the information matrix
as discussed above.

5.5. Monocular SLAM

5.5.1. Monocular Bundle Adjustment

For BA, the gauge freedom increases from 6 DoF to 7 DoF from stereo
to monocular vision. Even after fixing the origin T0, one dimension of scale
gauge remains. We simply leave this one degree unfixed, since the damping
term of LM can deal with gauge freedom effectively [23]. In BA-SLAM, new
3D points are triangulated between two consecutive keyframes using a set of
independent filters [28, 49].

5.5.2. Monocular Filter

Since an anchored inverse depth representation were chosen for the fil-
ter, no substantial improvements are necessary when moving from stereo to
monocular vision. As opposed to monocular BA, the monocular filter does
not introduce a scale ambiguity. The reason is that a non-trivial map distri-
bution 〈Φ,ΛΦ〉 introduces a scale prior and therefore the degree of free gauge

14

in Equation 3 remains zero. This arbitrary scale factor is invented during
bootstrapping (see Section 5.5.3). For monocular vision, new features ψ are
initialised with infinite uncertainty along the feature depth ψ3:

ψ =
(u−pu

f
v−pv
f

1
)>

and Λψ = diag

(
f 2

σ2
z

,
f 2

σ2
z

, 0

)
. (19)

5.5.3. Structure and Motion Bootstrapping

Unless there is any additional prior knowledge such as a known object
in the scene, monocular SLAM requires a special bootstrapping mechanism.
We perform bootstrapping between three consecutive keyframes Tb0, Tb1, T0.
The standard approach relies on the 5-point algorithm [39], which however
requires a RANSAC-like procedure. We instead employ an iterative optimi-
sation, exploiting the fact that the consecutive keyframes share similar poses.
First, we define Tb0 as our fixed origin and apply monocular filtering between
Tb0 and Tb1. Let us assume without loss of generality that Tb0 = I. Note that
now Equation 3 has one dimension of gauge freedom, since there is infinite
uncertainty along all feature depths ψ3. This scale freedom during optimisa-
tion is handled with the LM damping term. Afterwards, we check whether
the estimated motion Tb1 has sufficient parallax. To summarise, we have es-
timated 6 + 3N parameters, while the underlying problem only has 5 + 3N
DoF. In order to avoid a rank-deficient map distribution, we convert the pose
Tb1 into a 5 DoF representation by enforcing the additional constraint on SE3
that the translation must be unity |tb1| = 1. First, we scale the whole state
estimate — all inverse depth points ψj as well as the initial motion Tb1 —
such that |tb1| = 1. Afterwards, we perform uncertainty propagation (Equa-
tion 14) with a modified Jacobian D reflecting that the pose only has 5 DoF.
Then, the 5 DoF pose is marginalised out. The resulting precision matrix ΛΦ

has full rank and enforces a scale prior (that the initial translation between
Tb0 and Tb1 has unit length). Finally, we perform a standard monocular filter
update (as described above) between frame Tb1 and T0 so that the resulting
map is well initialised and can be used for either BA-SLAM or filter-SLAM.

6. Experiments

As motivated in Section 3, we analyse the performance of visual SLAM
by evaluating local motion in a set of simulation experiments. We choose a
camera with a resolution of 640 × 480 pixels and a focal length of f = 500.
Thus, the simulated camera has a horizontal view angle of 65.2◦ and a vertical

15

view angle of 51.3◦. We assume normally distributed measurement noise with
a standard derivation of σz = 1

2
pixel. For the simulated stereo camera, we

choose a baseline of 10cm.

6.1. Four Different Settings

In our experiments, we consider four different scenes/motion patterns
(see Figure 2). In Setting (i), the camera performs a motion sideways of
0.5 metre while observing an approximately planar scene. Here, all points
are visible in all frames, and therefore the number of points in the map
equals the number of observations per frame. The number M of keyframes
(intermediate keyframes plus end frame, exluding the first frame) is varied
between 1 and 16; more specifically M ∈ {1, 2, 4, 8, 16}. The number of
observations N is chosen from N ∈ {15, 30, 60, 120, 240}. In addition, we
also consider N = 480 for some specific cases.

The configuration of Setting (i) is motivated in two ways. Firstly, it
represents a situation of relatively detailed local scene reconstruction, essen-
tially optimising the local environment of one view with the support of very
nearby surrounding views, as might be encountered practically for instance
in small scale augmented reality, or object model construction. Secondly, the
estimation produced in this setting could be seen as a building block of a
sub-mapping SLAM system. In particular it is very comparable to a single
filter node of Eade and Drummond’s SLAM framework [17]. Since no new
points need to be initialised, all points are anchored to the fixed origin A0.

The previous setting is very specific in the sense that all points are visible
in all frames. In a typical visual odometry building block, there is only partial
scene overlap. In each new frame of a sequence, some point projections leave
the field of view while new points become visible. For Setting (ii), we have
chosen a translation of 1.1m, so that the first and the final frame barely
overlap. Therefore, at least one intermediate keyframe has to be used and
we choose M ∈ {2, 4, 8, 16}.

In the Setting (iii), the camera performs a sideways motion plus rotation
which leads to a partial scene overlap. Again, we choose M ∈ {2, 4, 8, 16}. In
the final Setting (iv), the camera performs a sharp forward turn. This setting
is typical for a camera mounted on a robot which performs a sharp 90◦ turn in
an indoor environment. This setting is especially hard for Monocular SLAM:
Scene points leave the field of view quickly while parallax is low due to the
lack of translation. To achieve an acceptable level of robustness, we select
M ∈ {4, 8, 16}.

16

0.1
0.5

0.75

0.25Scene Points

0.1
1.1

0.75

0.25Scene Points

Setting (i) All Points Visible Setting (ii) Partial Scene Overlap

0.1
0.5

0.75

Scene Points

0.25

Scene Points

Setting (iii) Rotation Setting (iv) Sharp Forward Turn

Figure 2: Birds-eye view of different motion/scene settings. Black cameras represent start
and end pose. Intermediate poses are presented in gray. Unfilled cameras indicates the
poses used for monocular bootstrapping Tb0, Tb1. Scene points are initialised within the
gray-shaded areas. In Setting (i), all points are visible in all frames. In Setting (ii), there is
only a partial scene overlap. Here, we illustrate the case with a single intermediate camera
(M = 2). Some points are triangulated between the first and middle frames (right/red
area), with others between middle and end frame (left/green area). In Setting (iii), the
camera performs a 30◦ rotation while still moving sideways. In Setting (iv), the camera
performs a sharp forward turn so that the scene points quickly leave the field of view. To
avoid cluttering the figure, we do not show intermediate and bootstrapping poses here.

17

xy yz xy yz xy yz xy yz xy yz
n
u
m

b
er

of
ob

se
rv

at
io

n
s
N 240

120

60

30

15

1 2 4 8 16
number of frames M

(a) Stereo SLAM

xy yz xy yz xy yz xy yz xy yz

n
u
m

b
er

of
ob

se
rv

at
io

n
s
N 240

120

60

30

15

1 2 4 8 16
number of frames M

(b) Monocular SLAM

Figure 3: End pose accuracy of stereo and monocular SLAM. BA results are shown in
red (top rows), whereas filtering results are shown in green (below). The distributions are
shown in a zero-centred 1.5 cm sector.

For all optimisations (motion update, structure-only BA, full BA, joint
filter update) we perform three LM iterations in Setting (i,ii) and ten LM
iterations in Settings (iii,iv).

6.2. Accuracy of Visual SLAM

We analyse the accuracy using the difference between the true final cam-
era position ttrue and the corresponding estimate test:

∆t = ttrue − test . (20)

Note that while our estimation framework of course produces both trans-
lation and 3D rotation estimates for camera motion, our accuracy analysis
is based purely on translation. We believe that this is valid since accurate
translation clearly implies that rotation is also well estimated; and in this way
avoid the ill-posed question of forming a single unified measure representing
both rotation and translation accuracy. For each chosen number of frames
and points 〈M,N〉, we perform a set of k = 500 Monte Carlo trials. For
Setting (i) using stereo SLAM, the resulting plots are shown in Figure 3(a).

18

Entropy reduction in bits: RMSE in m:

 1 2 4 8
 16

 15
 60

 120

 240

 2

 4

 6

 8

E in bit

M

N

E in bit

 1 2 4 8
 16

 15
 60

 120

 240

 2

 4

 6

 8

E in bit

M

N

E in bit

 1 2 4 8
 16

 15
 60

 120

 240
 0.002

 0.006
 0.008

RMSE

M

N

RMSE

(a) Stereo BA (c) Stereo Filter (e) Stereo BA

 1 2 4 8
 16

 15
 60

 120

 240

 2

 4

E in bit

M

N

E in bit

 1 2 4 8
 16

 15
 60

 120

 240

 2

 4

E in bit

M

N

E in bit

 1 2 4 8
 16

 15
 60

 120

 240
 0.002

 0.006
 0.008

RMSE

M

N

RMSE

(b) Monocular BA (d) Monocular Filter (f) Monocular BA

Figure 4: Setting (i). Accuracy plots in terms of entropy reduction in bits and RMSE.

Approximately, the presented discrete error distributions appear to consist
of samples from unimodal, zero-mean Gaussian-like distributions.

In the case of monocular SLAM, we can only estimate the translation
modulo an unknown scale factor. Therefore, we eliminate the scale ambiguity
in our evaluation by normalising the estimated translation to the true scale:

t∗ =
|ttrue|
|test|

test. (21)

Hence, all normalised estimates t∗ lie on the sphere of radius |ttrue|. This
explains why the projection of the error distribution onto the xy plane is
elongated, with no uncertainty along the unknown scale dimension (here x-
axis). Interestingly, error distributions in the yz plane for monocular and
stereo SLAM are of similar shape and size. In order to have a minimal
and Gaussian-like parametrisation of the monocular error distribution, we
calculate the error in the tangent plane around the point ttrue:

∆t = φttrue(t
∗). (22)

Here, φttrue is a orthogonal projection which maps points on the ball with
radius |ttrue| onto the tangent plane around ttrue (so that ttrue is mapped to
(0, 0)>).

19

We use two ways to describe the error distribution. Our first measure is
based on information theory. We analyse the influence of different parameters
〈M,N〉 in terms of entropy reduction. Therefore, for each setting 〈M,N〉 we
estimate the covariance matrix Σ〈M,N〉 of the translation error distribution
∆t. Then, we can compute the entropy reduction in bits,

E =
1

2
log2

(
det(Σ〈Mmin,15〉)

det(Σ〈M,N〉)

)
. (23)

in relation to the least accurate case where only the minimal number of frames
Mmin

3 and 15 points are used for SLAM. Thus, geometrically the measure E
describes the ratio of the volumes of the two ellipsoids Σ〈Mmin,15〉 and Σ〈M,N〉
on a log scale. This measure, which is described in detail in Appendix A, is
only meaningful if both distributions share approximatively the same mean.

The influence of the parameters 〈M,N〉 in Setting (i) is illustrated in
Figure 4(a-d). As can be seen in all plots (Monocular vs. Stereo, Filtering
vs. BA), increasing the number of features leads to a significant entropy
reduction. On the other hand, increasing the number of intermediate frames
has only a minor influence. This is the single most important result of our
analysis. Also, we can see that the accuracy of our filter is in fact very close to
the accuracy of BA, confirming that we have chosen the filter parametrisation
well.

The accuracy results for Setting (ii), where the camera still moves side-
ways but now over a distance such that there is hardly any scene overlap
between the first and last frames, are shown in Figure 5(a,b). The plots for
stereo SLAM look similar to Setting (i). The whole accuracy plot for monoc-
ular BA is shown in Figure 5(c). Note that for the low accuracy cases 〈2, 15〉
and 〈2, 30〉 the estimation is not very robust, and SLAM fails occasionally.
Thus, the corresponding error distributions are heavy tailed/non-Gaussian
as shown in Figure 5(d), and therefore the entropy reduction measure is not
fully meaningful. Therefore, we excluded these two cases from the subse-
quent analysis and defined 〈4, 15〉 as the minimal base case. A corresponding
accuracy plot is shown in Figure 5(e). The characteristic pattern we saw
before is repeated: increasing the number of points is the most significant
way to increase accuracy. Meanwhile, increasing the number of frames has

3This is Mmin = 1 for Setting (i) and Mmin = 2 for Settings (ii,iii), and Mmin = 4 for
Setting (iv).

20

Stereo SLAM: Monocular SLAM:

 2 4 8
 16

 15
 60

 120

 240

 2

 4

 6

E in bit

M

N

E in bit

 2 4 8
 16

 15
 60

 120

 240

-2
 0
 2
 4
 6

E in bit

M

N

E in bit

 2 4 8
 16

 15
 60

 120

 240

 2

 4

 6

E in bit

M

N

E in bit

(a) BA (c) BA (whole plot) (e) BA

 2 4 8
 16

 15
 60

 120

 240

 2

 4

 6

E in bit

M

N

E in bit

 2 4 8
 16

 15
 60

 120

 240

 2

 4

 6

E in bit

M

N

E in bit

(b) Filter (d) Low accuracy 〈2, 15〉 (f) Filter vs. BA

Figure 5: Setting (ii). Accuracy plots in terms of entropy reduction in bits (a-c,e,f).
Plot (d) illustrates the error distribution for the low robustness case 〈M,N〉 = 〈2, 15〉. For
both BA (left, red) and filtering (right, green), the distributions for this lowest accuracy
case contain outliers, i.e. complete SLAM estimation failures, and this explains the dis-
continuities in the otherwise smooth plots (c,e,f) in the low accuracy corner. Even though
we show a range of one metre, a significant portion of outliers lies outside this range.

the main effect of increasing robustness — i.e. avoiding complete failures.
Once robustness is achieved, a further increase in M has only a minor effect
on accuracy. Finally, as we can see in Figure 5(f), monocular BA leads to
marginally better accuracy than filtering, especially for small M .

In general, the accuracy plots for Setting (i) and Setting (ii) show a similar
pattern. However, there is a significant difference between Setting (i) and
Setting (ii). Let us consider the relative entropy reduction when we double
the number of intermediate frames, i.e. comparing Σ〈M,N〉 with Σ〈2M,N〉.
From Figure 6(a), one can clearly see that Setting (ii) benefits more from
the increased number of keyframes than Setting (i). This effect is especially
prominent for monocular SLAM. While all points are visible in all frames in
Setting (i), the scene overlap is larger for more closely placed keyframes in
Setting (ii). Increasing the number of observations per frame has a similar
impact on both settings (Figure 6(b)).

21

Monocular BA Stereo BA

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

1->2 2->4 4->8 8->16

e
n

tr
o

p
y
 r

e
d

u
c
ti
o

n
 i
n

 b
it
s

Setting (i), N=15
Setting (i), N=30
Setting (i), N=60

Setting (i), N=120
Setting (i), N=240
Setting (ii), N=15
Setting (ii), N=30
Setting (ii), N=60

Setting (ii), N=120
Setting (ii), N=240

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

1->2 2->4 4->8 8->16

e
n

tr
o

p
y
 r

e
d

u
c
ti
o

n
 i
n

 b
it
s

(a) Increasing number of keyframes M

Monocular BA Stereo BA

 0

 0.5

 1

 1.5

 2

15->30 30->60 60->120 120->240

e
n

tr
o

p
y
 r

e
d

u
c
ti
o

n
 i
n

 b
it
s

 0

 0.5

 1

 1.5

 2

15->30 30->60 60->120 120->240

e
n

tr
o

p
y
 r

e
d

u
c
ti
o

n
 i
n

 b
it
s

Setting (i), M=1
Setting (i), M=2
Setting (i), M=4
Setting (i), M=8

Setting (i), M=16
Setting (ii), M=2
Setting (ii), M=4
Setting (ii), M=8

Setting (ii), M=16

(b) Increasing number of observations N

Figure 6: Relative entropy reduction when (a) we double the number of intermediate
frames and (b) we double the number of observations. Note the difference between Setting
(i) (blue, connected lines) versus Setting (ii) (red, dotted lines).

22

Stereo BA: Monocular SLAM:

 2 4 8
 16

 15
 60

 120

 240

 2

 4

 6

E in bit

M

N

E in bit

 2 4 8
 16

 15
 60

 120

 240

 2

 4

 6

E in bit

M

N

E in bit

 2 4 8
 16

 15
 60

 120

 240

 2
 4
 6
 8

E in bit

M

N

E in bit

Setting (iii) BA, Setting (iii) Filter vs. BA, Set.(iii)

 4 8
 16

 15
 60

 120

 240

 2

 4

 6

E in bit

M

N

E in bit

 4 8
 16

 15
 60

 120

 240

 2

 4

 6

E in bit

M

N

E in bit

 4 8
 16

 15
 60

 120

 240

 2
 4
 6
 8

E in bit

M

N

E in bit

Setting (iv) Filter, Setting (iv) Filter vs. BA, Set.(iv)

Figure 7: Accuracy plots in terms of entropy reduction in bits. The stereo filter leads to
very similar result than stereo BA and is therefore not shown here.

The second error measure we use is the root mean square error (RMSE):

R =

√√√√1

k

k∑
k=0

∆t2k (24)

where k = 500 is the number of Monte Carlo trials. Compared to the entropy
reduction, this is a measure which is not relative but absolute. It is still
meaningful for non-Gaussian and non-zero-centred error distributions. The
RMSE for Setting (i) is illustrated in Figure 4(e,f). In the case that the error
distributions are zero-mean Gaussians, entropy reduction and RMSE behave
very similarly: they are anti-monotonic to each other. Our main reason for
concentrating on entropy reduction is to make our analysis comparable to
[48], in which the experiments were performed using covariance propagation
and other error metrics such as RMSE were not applicable.

Accuracy plots for the two motion cases with rotational components, Set-
ting (iii,iv), are shown in Figure 7. One can see that the result of Setting (iii)
is comparable to Setting (ii). This is not surprising since both settings lead to
a similar amount of scene overlap. Again, the two low accuracy cases 〈2, 15〉
and 〈2, 30〉 lead to unstable results and are excluded. For both rotational
cases, Setting (iii) and Setting (iv), the stereo filter approaches the accuracy
of stereo BA. However, for the difficult case, monocular vision in Setting (iv),

23

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0 0.1 0.2 0.3 0.4 0.5

R
M

S
E
 i
n
 m

distance in m

Gauss prior
Gauss prior (approx)

motion-only BA
 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0 0.1 0.2 0.3 0.4 0.5

co
m

p
u
ta

ti
o
n
a
l
co

st
 i
n
 s

distance in m

Gauss prior
Gauss prior (approx)

motion-only BA

(a) error (b) cost

Figure 8: Pose update given known map estimated by monocular filter.

the results are different. BA leads to significant better results than filtering.
Especially for a low number of frames, the performance of the filter is worse.
We only removed the very inaccurate case 〈2, 15〉, since it is not practical
to excluding all non-robust cases. Even for many features and frames, e.g.
〈16, 240〉, the error distributions are slightly heavy tailed. This low level of
robustness might also explain the slightly chaotic, non-monotonic behaviour
of the accuracy plots. Thus, conclusions drawn from Setting (iv) have to be
dealt with care.

6.3. The Cost and Accuracy of Motion-Only Estimation for Filter-SLAM

As described in Section 5.4, when performing filter-SLAM there are two
main options to perform motion-only estimation. Either one can do motion-
only BA by minimising Equation 6 or one can also consider the map un-
certainty. While motion-only BA is linear in the number of points N , pose
estimation using a Gaussian map prior is cubic in N due to the inversion of
innovation matrix S. In a approximated but much more efficient version of
this algorithm, the innovation matrix S and its inverse are only calculated
once. For stereo SLAM, we can usually measure the 3d points precisely so
that motion-only BA leads to accurate results. However, for a monocular
filter where the point depth is uncertain, it is beneficial to consider this
uncertainty explicitly (Figure 8(a)). Considering map uncertainty in pose
estimation leads to a significant increase in computation time (Figure 8(b)).
In the monocular filtering experiments, we use the approximated version of
the algorithm.

24

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0.008

15 30 60 120 240

co
st

 i
n
 s

number of points

BA
structure-only

motion-only

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

15 30 60 120 240

co
st

 i
n
 s

number of points

filter
pose update

covariance

(a) BA-SLAM (b) Filter-SLAM

Figure 9: Computational cost of monocular SLAM.

6.4. The Cost of Visual SLAM

Under the assumption that all points are visible in all frames, the cost of
BA is O(NM2 + M3), where the first term reflects the Schur complement,
while the second term represents the cost of solving the reduced linear sys-
tem [18]. The costs of structure-only and motion-only estimation are both
linear in the number of points. In filtering, the filter update is cubic in the
number of observations, which leads to O(MN3) for the whole trajectory.
The cost of pose update given a map is either linear or cubic (see previous
section). The cost of the whole SLAM pipelines for varying number of points
N are shown in Figure 9. Here we illustrate the case of M = 1, Setting (i)
and monocular SLAM.

6.5. Trade-off of Accuracy versus Cost

We would like to analyse the efficiency of BA and filtering for visual
SLAM by trading off accuracy against computational cost.4 First, we do
this using the combined accuracy/cost measure that we also employed in our
original analysis [48]. Thus, we evaluate visual SLAM using entropy by cost
in terms of bits per seconds (bps): E

c
. E is the amount of entropy reduction

as defined in Equation 23 and c is the average computational cost in seconds
of the whole SLAM pipeline. Corresponding plots are shown in Figure 10.
First one can see that BA seems to be in general more efficient than filtering.
Furthermore, there is a pattern that BA is especially efficient for small M ,
while filtering is only efficient for low accuracy (small M and small N).

4In order to assume the best case for filtering, we do not consider covariance estimation
and pose estimation given a known map. Thus, we compare the cost of joint BA updates
against the cost of the joint filtering steps for the whole trajectory.

25

Setting (i): Setting (ii):

 2 4 8 16

M

 15
 30

 60

 120

 240

N

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 2 4 8 16

M

 15
 30

 60

 120

 240

N

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2 4 8 16

M

 15
 30

 60

 120

 240

N

 0

 100

 200

 300

 400

 500

 600

 700

 800

(a) Stereo BA (c) Mono BA (e) Monocular BA

 2 4 8 16

M

 15
 30

 60

 120

 240

N

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 2 4 8 16

M

 15
 30

 60

 120

 240

N

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2 4 8 16

M

 15
 30

 60

 120

 240

N

 0

 100

 200

 300

 400

 500

 600

 700

 800

(b) Stereo Filter (d) Monocular Filter (f) Monocular Filter

Figure 10: Accuracy/cost measure in bits per second (bps).

Finally, we contrast error with cost in common plots in Figure 11. Each
curve shows the error and cost for a constant number of frames M and
varying number of observations N . For the lowest number of frames (bold
curves), we also show results for N = 480. In these plots the bottom left
corner is the desired area, where we find the highest accuracy and lowest
computational cost. For all four settings, we can observe that BA is clearly
inferior to filtering. Furthermore, we see that for Setting (i) it is always
preferable to choose the lowest number of frames. This is still the case for
sideways motion BA with partial scene overlap (Setting (ii-iii)) — except
for the monocular, low-robustness cases (M = 2, and N ∈ {15, 30}) which
are not shown in the plots. However, for filtering (Setting (ii-iii)), there is
actually a cross-over. In order to reach high accuracy, it seems desirable
to increase the number of keyframes M . The monocular Setting (iv), low
parallax and low scene-overlap, is the most challenging one. The inaccurate
case M = 4 results in a RMSE greater than 0.02m and is therefore not shown.
Here, BA outperforms filtering by magnitudes, but increasing M helps the
filter. To summarise, it is usually a good strategy to increase the number of

26

 0.002

 0.004

 0.008

 0.001 0.01 0.1 1 10

R
M

S
E
 i
n
 m

cost in s

BA M=16
BA M=8
BA M=4
BA M=2
BA M=1

Filter M=16
Filter M=8
Filter M=4
Filter M=2
Filter M=1

 0.002

 0.004

 0.008

 0.001 0.01 0.1 1 10

R
M

S
E
 i
n
 m

cost in s

Stereo, Setting (i) Monocular, Setting (i)

 0.002

 0.004

 0.008

 0.001 0.01 0.1 1

R
M

S
E
 i
n
 m

cost in s

BA M=16
BA M=8
BA M=4
BA M=2

Filter M=16
Filter M=8
Filter M=4
Filter M=2

 0.002

 0.004

 0.008

 0.001 0.01 0.1 1

R
M

S
E
 i
n
 m

cost in s

Stereo, Setting (ii) Monocular, Setting (ii)

 0.002

 0.004

 0.008

 0.001 0.01 0.1 1

R
M

S
E
 i
n
 m

cost in s

BA M=16
BA M=8
BA M=4
BA M=2

Filter M=16
Filter M=8
Filter M=4
Filter M=2

 0.002

 0.004

 0.008

 0.001 0.01 0.1 1

R
M

S
E
 i
n
 m

cost in s

Stereo, Setting (iii) Monocular, Setting (iii)

 0.0005

 0.001

 0.002

 0.01 0.1 1

R
M

S
E
 i
n
 m

cost in s

BA M=16
BA M=8
BA M=4

Filter M=16
Filter M=8
Filter M=4

 0.002

 0.004

 0.008

 0.001 0.01 0.1 1

R
M

S
E
 i
n
 m

cost in s

Stereo, Setting (iv) Monocular, Setting (iv)

Figure 11: Error versus cost on a logarithmic scale.

27

points N . Increasing the number of keyframes M seems only to be sensible
if both following requirements are fulfilled: First, we use filtering instead of
BA, and thus there is significantly higher cost with respect to N compared
to M . Second, there is a varying scene overlap which can be maximised with
increasing M .

7. Discussion

We have shown that filter-SLAM can indeed reach the accuracy of BA
for moderately difficult motion patterns and scene structures (Setting (i-iii)),
even if we only filter sparse keyframes. In general, increasing the number of
points N leads to a significant increase in accuracy, while increasing the num-
ber of frames M primarily establish robustness. Once a level of robustness is
reached, a further increase of M has only a minor effect. This shows that the
greater efficiency of BA compared to filtering for local SLAM is primarily a
cost argument: The cost of BA is linear in N , whereas the cost of filtering
is cubic in N . For the sharp forward turn (Setting (iv)) using monocular
vision, our analysis is slightly different. It illustrates the known problem of
Gaussian filters. Since measurement Jacobians are not re-linearised, the ac-
curacy can significantly decrease compared to BA. Note, however, that the
amount of insight we can gain from Setting (iv) is limited. It might be pos-
sible to find a better filter parametrisation/implementation which can deal
significantly better with this low parallax case. Setting (iv) is merely added
as an illustrative example that accuracy of filtering can be inferior to BA,
even for very short trajectories. Here, the dominance of BA compared to
filtering is primarily an accuracy argument.

The greater cost of a filtering wrt. BA is mainly due to the fact that we
represent uncertainties explicitly. In this work, we focused on the SLAM-
backend and we did not analyse the accuracy and cost of feature tracking.
Instead, we assumed that a perfect data association is given. On the one
hand, the availability of the covariance can facilitate features tracking [38, 10,
4]. On the other hand, modern tracking techniques such as variational optical
flow [52] do not require covariances, and are very effective. For the SLAM-
backend, it does not seem beneficial to propagate uncertainties explicitly.
Thus, one should only calculate covariances if one needs them elsewhere.

In addition, we did not focus on all aspects of SLAM in our analysis. We
intentionally did not consider large-scale SLAM and loop-closing since these
issues have been intensively studied in the past. A SLAM frameworks which

28

works reliably locally, whether it is BA or filtering, can easily be applied to
a large scale problems using methods such as sub-mapping or graph-based
global optimisation. Furthermore, it was shown recently that loop-closing
can be solved efficiently using appearance-based methods [41, 8] which can
be formulated independently from metric SLAM systems. Thus, we assume
in our analysis that the choice between BA and filtering is not relevant at
this global level.

7.1. Rao-Blackwellised Particle Filters for Visual SLAM

In our analysis, we concentrated on Gaussian filters and BA. Other ap-
proaches for SLAM are based on Rao-Blackwellised particle filters (RBPF) [35]
such as Sim et al.’s stereo framework [47] and Eade and Drummond’s monoc-
ular framework [16]. Eade and Drummond superseded the RBPF framework
with their filter-based sub-mapping approach [17]. We believe that particle
filters are a wasteful way of representing distributions which are unimodal
and approximately Gaussian. Still, an elaborate comparison of RBPFs to
BA would be an interesting topic for future work.

7.2. Middle Ground between BA and Filtering

While we focussed on the two extreme cases, there is a broad middle
ground between filtering and BA.5 Let us reconsider the three properties
of our filter concept defined in Section 3. While all three properties are
inherently coupled for the EKF, information filters can deal with them inde-
pendently. Let us lift property 2: Indeed, if we never marginalise out past
poses and invisible features, we keep the corresponding information matrix
relatively sparse, thus leading to the class of exactly sparse information fil-
ters [19]. Imagine the corresponding Markov random field: In general, all
point obervations are connected to several poses: the anchor pose and the
observer poses. However, no point is directly connected to a point and no
pose is connected to a pose. This leads to a similar, but slightly different
sparseness structure than standard BA. In BA the corresponding Jacobian
has one frame block and one point block per row (=observation), while the
Jacobian of our sparse filter has several frame blocks and one point block per

5Strictly speaking, the Gauss-Newton filter, which we used in the comparison, is already
one step towards BA. Some poses — the anchor poses A1, ..., Ak — are not marginalised
out; so their means get constantly re-estimated. In addition, the current pose Ti does not
have a motion prior and is therefore ’bundle adjusted’.

29

row. Still, the point block of the information matrix remains block-diagonal,
the Schur-Complement would be applicable, and the algorithmic complexity
would decrease to the level of BA. However, their are two caveats. First, if
we compute the covariance Σ = Λ−1, the performance benefit would vanish.
Thus, we do not have cheap access to the covariance (= forfeit property 3),
and therefore lose the main advantage of Gaussian filters. Second, the Ja-
cobians are only linearised once and the update of the information matrix
remains additive. Thus, this exactly sparse filter remains inferior to BA.

Another option is to follow the approach of Sibley et al. [45] and partially
lift property 1. We represent some variables using a Gaussian, while others
are represented as in BA. In particular, it is sensible to deal with a sliding
window of the last current poses using batch processing. All corresponding
observations are saved, no uncertainties are maintained and the Jacobains are
constantly re-linearised. We represent variables outside this sliding window
using a Gaussian distribution, assuming they are well estimated so no further
re-linearisation is necessary. This sliding window approach basically performs
BA for local motion estimates, and is therefore covered by our our analysis.

Typically in BA-SLAM and opposed to filtering, the SLAM problem is
solved from scratch each time a new note is added to the graph. Kaess
et al. [25] introduced a framework for incremental BA using variable reorder-
ing and just-in-time reliniearization. For large scale mapping, this framework
can have a lower computational cost than batch BA. However, it remains un-
clear whether there is a signifiacnt performance benefit for local SLAM.

8. Conclusion

In this paper, we have presented a detailed analysis of the relative merits
of filtering and bundle adjustment for real-time visual SLAM in terms of
accuracy and computational cost. We performed a series of experiments
using Monte Carlo simulations for motion in local scenes. Compared to
our previous work [48], we lifted several assumptions by considering partial
scene overlap, full SLAM pipelines including monocular bootstrapping and
feature initilisation, and stereo SLAM. Nevertheless, our conclusion remains:
In order to increase the accuracy of visual SLAM it is usually more profitable
to increase the number of features than the number of frames. This is the
key reason why BA is more efficient than filtering for visual SLAM. Although
this analysis delivers valuable insight into real-time visual SLAM, there is
space for further work. In this analysis we assumed known data association.

30

However, the accuracy of a SLAM backend such as BA is highly coupled
with the performance of the visual frontent – the feature tracker. A detailed
analysis of this coupling would be worthwhile.

9. Acknowledgements

This research was supported by the European Research Council Start-
ing Grant 210346, the Spanish MEC Grant DPI2009-07130 and EU FP7-
ICT-248942 RoboEarth. We are grateful to our close colleagues at Imperial
College London and the Universidad de Zaragoza for many discussions.

Appendix A. Entropy Reduction

The differential entropy of a Gaussian X = 〈µX ,ΣX〉 is defined as:

H(X) =
1

2
log2((2πe)

N det(ΣX)) (A.1)

Now, the difference between two Gaussians X = 〈µX ,ΣX〉, Y = 〈µY ,ΣY 〉
can be described using the difference of entropy:

E(X, Y) := H(X)−H(Y) (A.2)

If H(X) > H(Y) this can be seen as a entropy reduction measure: How
much more accuracy do we gain, if we do Y instead of X. It holds that

E(X, Y) = H(X)−H(Y) (A.3)

=
1

2
log2((2πe)

N det(ΣX))− 1

2
log2((2πe)

N det(ΣY)) (A.4)

=
1

2
log2

(
det(ΣX)

det(ΣY)

)
. (A.5)

For numerical stability, the natural logarithms of the absolute values the
determinants of ΣX and ΣY are calculated directly, subtracted and nor-
malised afterwards:

E(X, Y) =
1

2 ln(2)
(ln | det(ΣX)| − ln | det(ΣY)|) (A.6)

Here, we use that the determinant of a covariance matrix is always positive.

31

[1] A. Azarbayejani and A. P. Pentland. Recursive estimation of motion,
structure, and focal length. IEEE Transactions on Pattern Analysis and
Machine Intelligence (PAMI), 17(6):562–575, 1995.

[2] B.M. Bell and F.W. Cathey. The iterated Kalman filter update as
a Gauss-Newton method. IEEE Transactions on Automatic Control,
38(2):294–297, 1993.

[3] A. Chiuso, P. Favaro, H. Jin, and S. Soatto. Structure from motion
causally integrated over time. IEEE Transactions on Pattern Analysis
and Machine Intelligence (PAMI), 24(4):523–535, 2002.

[4] M. Chli and A. J. Davison. Active Matching for visual tracking. Robotics
and Autonomous Systems, 57(12):1173 – 1187, 2009. Special Issue ‘Inside
Data Association’.

[5] J. Civera, A. J. Davison, and J. M. M. Montiel. Inverse depth
parametrization for monocular SLAM. IEEE Transactions on Robotics
(T-RO), 24(5):932–945, 2008.

[6] J. Civera, O. Grasa, A. J. Davison, and J. M. M. Montiel. 1-point
RANSAC for EKF filtering. Application to real-time structure from
motion and visual odometry. Journal of Field Robotics, 27(5):609–631,
2010.

[7] L. A. Clemente, A. J. Davison, I. Reid, J. Neira, and J. D. Tardós.
Mapping large loops with a single hand-held camera. In Proceedings of
Robotics: Science and Systems (RSS), 2007.

[8] M. Cummins and P. Newman. Highly scalable appearance-only SLAM
— FAB-MAP 2.0. In Proceedings of Robotics: Science and Systems
(RSS), 2009.

[9] A. J. Davison. Real-time simultaneous localisation and mapping with a
single camera. In Proceedings of the International Conference on Com-
puter Vision (ICCV), 2003.

[10] A. J. Davison. Active search for real-time vision. In Proceedings of the
International Conference on Computer Vision (ICCV), 2005.

32

[11] A. J. Davison, N. D. Molton, I. Reid, and O. Stasse. MonoSLAM: Real-
time single camera SLAM. IEEE Transactions on Pattern Analysis and
Machine Intelligence (PAMI), 29(6):1052–1067, 2007.

[12] M. Deans and M. Herbert. Experimental comparison of techniques for
localization and mapping using a bearing-only senser. Experimental
Robotics VII, pages 395–404, 2001.

[13] F. Dellaert. Square root SAM. In Proceedings of Robotics: Science and
Systems (RSS), 2005.

[14] P. Dyer and S. McReynolds. Extension of square-root filtering to in-
clude process noise. Journal of Optimization Theory and Applications,
3(6):444–458, 1969.

[15] E. Eade. Monocular Simultaneous Localisation and Mapping. PhD the-
sis, University of Cambridge, 2008.

[16] E. Eade and T. Drummond. Scalable monocular SLAM. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2006.

[17] E. Eade and T. Drummond. Monocular SLAM as a graph of coalesced
observations. In Proceedings of the International Conference on Com-
puter Vision (ICCV), 2007.

[18] C. Engels, H Stewénius, and D. Nistér. Bundle adjustment rules. In
Proceedings of Photogrammetric Computer Vision, 2006.

[19] R. M. Eustice, H. Singh, and J. J. Leonard. Exactly sparse delayed state
filters. In Proceedings of the IEEE International Conference on Robotics
and Automation (ICRA), 2005.

[20] J. Gallier. Geometric Methods and Applications for Computer Science
and Engineering. Springer-Verlag, 2001.

[21] C. G. Harris and J. M. Pike. 3D positional integration from image
sequences. In Proceedings of the Alvey Vision Conference, pages 233–
236, 1987.

[22] R. Hartley and A. Zisserman. Multiple View Geometry in Computer
Vision. Cambridge University Press, second edition, 2004.

33

[23] Y. Jeong, D. Nister, D. Steedly, R. Szeliski, and I.S. Kweon. Pushing
the envelope of modern methods for bundle adjustment. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 1474–1481, 2010.

[24] S.J. Julier and K. Jeffrey Uhlmann. A counter example to the theory
of simultaneous localization and map building. In IEEE International
Conference on Robotics and Automation, 2001.

[25] M. Kaess, H. Johannsson, R. Roberts, V. Ila, J. Leonard, and F. Del-
laert. iSAM2: Incremental smoothing and mapping using the Bayes tree.
International Journal of Robotics Research (IJRR), 2012. To appear.

[26] M. Kaess, A. Ranganathan, and F. Dellaert. iSAM: Incremental smooth-
ing and mapping. IEEE Transactions on Robotics (T-RO), 24(6):1365–
1378, 2008.

[27] G. Klein and D. W. Murray. Parallel tracking and mapping for small
AR workspaces. In Proceedings of the International Symposium on Mixed
and Augmented Reality (ISMAR), 2007.

[28] G. Klein and D. W. Murray. Parallel tracking and mapping on a camera
phone. In Proceedings of the International Symposium on Mixed and
Augmented Reality (ISMAR), 2009.

[29] K. Konolige and M. Agrawal. FrameSLAM: From bundle adjustment
to real-time visual mapping. IEEE Transactions on Robotics (T-RO),
24:1066–1077, 2008.

[30] R. Kuemmerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard.
g2o: A general framework for graph optimization. In Proceedings of the
IEEE International Conference on Robotics and Automation (ICRA),
2011.

[31] Jongwoo Lim, Marc Pollefeys, and Jan-Michael Frahm. Online environ-
ment mapping. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2011.

[32] R. Mahony and J.H. Manton. The geometry of the Newton method on
non-compact Lie groups. Journal of Global Optimization, 23(3):309–327,
2002.

34

[33] P. McLauchlan, I. Reid, and D. Murray. Recursive affine structure and
motion from image sequences. Proceedings of the European Conference
on Computer Vision (ECCV), 1994.

[34] C. Mei, G. Sibley, M. Cummins, P. Newman, and I. Reid. RSLAM: A
system for large-scale mapping in constant-time using stereo. Interna-
tional Journal of Computer Vision (IJCV), 94:198–214, 2011.

[35] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit. FastSLAM: A
factored solution to the simultaneous localization and mapping problem.
In Proceedings of the AAAI National Conference on Artificial Intelli-
gence, 2002.

[36] J. M. M. Montiel, J. Civera, and A. J. Davison. Unified inverse depth
parametrization for monocular SLAM. In Proceedings of Robotics: Sci-
ence and Systems (RSS), 2006.

[37] E. Mouragnon, M. Lhuillier, M. Dhome, F. Dekeyser, and P. Sayd. Real-
time localization and 3D reconstruction. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR),
2006.

[38] J. Neira and J. D. Tardós. Data association in stochastic mapping us-
ing the joint compatibility test. IEEE Transactions on Robotics and
Automation, 17(6):890–897, 2001.

[39] D. Nistér. An efficient solution to the five-point relative pose prob-
lem. IEEE Transactions on Pattern Analysis and Machine Intelligence
(PAMI), 26(6):756–777, 2004.

[40] D. Nistér, O. Naroditsky, and J. Bergen. Visual odometry. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2004.

[41] D. Nister and H. Stewenius. Scalable recognition with a vocabulary tree.
In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2006.

[42] T. Pietzsch. Efficient feature parameterisation for visual SLAM using
inverse depth bundles. In Proceedings of the British Machine Vision
Conference (BMVC), 2008.

35

[43] P. Pinies and J. D. Tardós. Large scale SLAM building conditionally
independent local maps: Application to monocular vision. IEEE Trans-
actions on Robotics (T-RO), 24(5):1094–1106, 2008.

[44] G. Sibley, L. Matthies, and G. Sukhatme. Bias reduction filter conver-
gence for long range stereo. In 12th International Symposium of Robotics
Research, 2005.

[45] G. Sibley, L. Matthies, and G. Sukhatme. A sliding window filter for
incremental SLAM. Unifying perspectives in computational and robot
vision, pages 103–112, 2008.

[46] G. Sibley, C. Mei, I. Reid, and P. Newman. Adaptive relative bundle
adjustment. In Proceedings of Robotics: Science and Systems (RSS),
2009.

[47] R. Sim, P. Elinas, M. Griffin, and J. J. Little. Vision-based SLAM
using the Rao-Blackwellised particle filter. In Proceedings of the IJCAI
Workshop on Reasoning with Uncertainty in Robotics, 2005.

[48] H. Strasdat, J. M. M. Montiel, and A. J. Davison. Real-time monocular
SLAM: Why filter? In Proceedings of the IEEE International Conference
on Robotics and Automation (ICRA), 2010.

[49] H. Strasdat, J. M. M. Montiel, and A. J. Davison. Scale drift-aware
large scale monocular SLAM. In Proceedings of Robotics: Science and
Systems (RSS), 2010.

[50] A.N. Tikhonov and V.I.A. Arsenin. Solutions of ill-posed problems. Win-
ston, Washington,DC, 1977.

[51] B. Triggs, P. McLauchlan, R. Hartley, and A. Fitzgibbon. Bundle ad-
justment — a modern synthesis. In Proceedings of the International
Workshop on Vision Algorithms, in association with ICCV, 1999.

[52] M. Werlberger, T. Pock, and H. Bischof. Motion estimation with non-
local total variation regularization. In Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR), 2010.

36

