
Robotics

Lecture 8: Simultaneous Localisation and
Mapping (SLAM)

See course website

http://www.doc.ic.ac.uk/~ajd/Robotics/ for up to

date information.

Andrew Davison
Department of Computing
Imperial College London

February 25, 2025



Simultaneous Localisation and Mapping

• A fundamental problem in mobile robotics, and providing some
solutions is one of the main successes of probabilistic robotics.

A body with quantitative sensors
moves through a previously unknown,

static environment, mapping it
and calculating its egomotion.

• When do we need SLAM?
• When a robot must be truly autonomous (no human input).
• When little or nothing is known in advance about the environment

(no prior map).
• When we can’t or don’t want to place artificial beacons, or use GPS.
• And when the robot actually needs to know where it is.

• In SLAM we build a map incrementally, and localise with respect to
that map as it grows and is gradually refined.



Features for SLAM

• Most SLAM algorithms make maps of natural scene features.

• Laser/sonar: wall segments, planes, corners, etc.

• Vision: salient point features, lines, textured surfaces.

• Features should be distinctive and easily recognisable from different
viewpoints to enable reliable matching (also called correspondence or
data association).



Propagating Uncertainty

• Because we must both map and localise at the same time SLAM
seems like a chicken and egg problem — but we can make progress
if we assume the robot is the only thing that moves.

• Main assumption in most SLAM systems: the world, (or at least a
large fraction of the mappable things in it) is static.

• With this assumption, we just go ahead and extend probabilistic
estimation (from just the robot state as in MCL) to the features of
the map as well. In SLAM we store and update a joint distribution
over the states of both the robot and the mapped world. . . and if the
data is good enough it just works.

• New features are gradually discovered as the robot explores so the
dimension of this joint estimation problem will grow.



Simultaneous Localisation and Mapping

A

B
C

(a) Robot start (zero uncertainty); first measurement of feature A.



Simultaneous Localisation and Mapping

(b) Robot drives forwards (uncertainty grows).



Simultaneous Localisation and Mapping

(c) Robot initialises B and C: they inherit its uncertainty + a little more.



Simultaneous Localisation and Mapping

(d) Robot drives back towards starting position (uncertainty grows more).



Simultaneous Localisation and Mapping

(e) Robot re-measures A; a mini loop closure! Uncertainty shrinks.



Simultaneous Localisation and Mapping

(f) Robot re-measures B; note that uncertainty of C also shrinks.



SLAM with Joint Gaussian Uncertainty

• The most common and efficient way to represent the
high-dimensional probability distributions we need to propagate in
SLAM is as a joint Gaussian distribution. Updates can be made via
the Extended Kalman Filter.

• PDF represented with state vector and covariance matrix.

x̂ =


x̂v
ŷ1
ŷ2
...

 , P =


Pxx Pxy1 Pxy2 . . .
Py1x Py1y1 Py1y2 . . .
Py2x Py2y1 Py2y2 . . .
...

...
...


• The state vector contains the robot state and all the feature states.

xv is robot state, e.g. (x , y , θ) in 2D; yi is feature state, e.g. (X ,Y )
in 2D.



SLAM Using Active Vision

• Stereo active vision; 3-wheel robot base.

• Automatic fixated active mapping and measurement of arbitrary
scene features.

• Sparse mapping.

• https://youtu.be/SGWHoeeXtRQ

https://youtu.be/Nfh_btvzbhs

https://youtu.be/SGWHoeeXtRQ
https://youtu.be/Nfh_btvzbhs


SLAM Using Active Stereo Vision

x

z

x

z

0

1



SLAM with Ring of Sonars

Newman, Leonard, Neira and Tardós, ICRA 2002
https://youtu.be/3oSo6uRBzqw

https://youtu.be/3oSo6uRBzqw


SLAM with a Single Camera

• Every time a feature point is detected in an image, it provides a
measurement of the angular direction of the feature relative to the
camera.



SLAM with a Single Camera: MonoSLAM

Davison, ICCV 2003; Davison, Molton, Reid, Stasse, PAMI 2007.
https://youtu.be/mimAWVm-0qA

https://youtu.be/mimAWVm-0qA


SLAM-Enabled Products and Systems

Dyson/iRobot/etc. ARKit/ARCore/etc.

Oculus/HoloLens/etc. DJI/Skydio/etc.

• Positioning and sparse/semi dense reconstruction now rather
mature. . . and enabling real products.

• https://youtu.be/wprOupEm-DE

• https://youtu.be/nrj3JE-NHMw

https://youtu.be/wprOupEm-DE
https://youtu.be/nrj3JE-NHMw


Limits of Metric SLAM

x

z

x

z

0

1

Purely metric probabilistic SLAM is limited to small domains due to:

• Poor computational scaling of probabilistic filters.

• Growth in uncertainty at large distances from map origin makes
representation of uncertainty inaccurate.

• Data Association (matching features) gets hard at high uncertainty.



Large Scale Localisation and Mapping

Local Metric Place Recognition Global Optimisation
Practical modern solutions to large scale mapping follow a
metric/topological approach which approximates full metric SLAM. They
need the following elements:

• Local metric mapping to estimate trajectory and make local maps.

• Place recognition, to perform ‘loop closure’ or relocalise the robot
when lost.

• Map optimisation/relaxation to optimise a map when loops are
closed.



Global Topological: ‘Loop Closure Detection’

• One very effective way to detect when an ‘old’ place is revisited is to
save images at regular intervals and use an image retrieval approach
(where each image is represented using a Visual Bag of Words which
has very much the same character as our invariant sonar descriptors).

• Angeli et al., IEEE Transactions on Robotics 2008.

• https://youtu.be/uxYdig5FP90

https://youtu.be/uxYdig5FP90


Pure Topological SLAM
• In fact we can make an interesting SLAM system using only place
recognition. Topological SLAM with a graph-based representation.

• We simply keep a record of places we have visited and how they
connect together, without any explicit geometry information.

• Adapted to symbolic planning and navigation.

Figure: Topological representation



Indoor Topological Map



Adding Metric Information to the Graph Edges

• The edges between linked nodes are annotated with relative motion
information; could be from local mapping or purely incremental
information like odometry or visual odometry.

• Apply pose graph optimisation (relaxation) algorithm, which
computes the set of node positions which is maximally probable
given both the metric and topological constraints.

• Pose graph optimisation only has an effect when there are loops in
the graph.



Map Relaxation: Good Odometry, One Loop Closure



Simple Large-Scale SLAM: RATSLAM

Milford and Wyeth, 2007.
http://www.youtube.com/watch?v=-0XSUi69Yvs

• Very simple ‘visual odometry’ gives rough trajectory.

• Simple visual place recognition provides many loop closures.

• Map relaxation/optimisation to build global map.

http://www.youtube.com/watch?v=-0XSUi69Yvs


Unified Probabilistic Representation: Factor Graphs

A factor graph is a probabilistic graphical model which represents the
factorisation structure of problems like SLAM. Each factor (dot) is the
likelihood of one measurement, which depends on a subset of the
variables (circles) in the graph.



Unified Probabilistic Representation: Factor Graphs

The general definition of a Gaussian factor is:

fs(x) = Ke−
1
2 [(zs−hs (xs ))

⊤Λs (zs−hs (xs ))]

Here zs is the measurement represented by this factor, and hs is a model
of how the measurement depends on a subset of variables xs . Matrix Λs is
the precision (inverse covariance) of the measurement. K is a constant.
The total likelihood of all measurements is the product of all the factors:

p(x) =
∏
s

fs(xs)



Factor Graph Inference

To ‘solve’ a factor graph, we want to find the most probable values of the
variables x given all of the measurements; or more general the marginal
probability distributions over those variables.

p(x) =
∏
s

fs(xs)

There are various techniques for factor graph inference, which usually
take advantage of the graph sparsity structure, and have different
advantages, e.g.:

• Global batch optimisation (e.g. bundle adjustment in computer
vision)

• Incremental filtering and marginalisation (e.g. Extended Kalman
Filter in MonoSLAM and many early SLAM methods).

• Incremental piece-wise optimisation (iSAM, etc.)

• Distributed inference via Gaussian Belief Propagation.



More Accurate Large-Scale Monocular SLAM: ORB-SLAM

ORB-SLAM: Tracking and Mapping Recognizable Features.
Raul Mur-Artal and Juan D. Tardos, arXiv:1502.00956 (2015)
https://www.youtube.com/watch?v=8DISRmsO2YQ

• Very accurate ‘visual odometry’ trajectory.

• Visual place recognition based on 2D image features with binary
descriptors for very fast matching.

• Bundle adjustment optimisation for global consistency.

https://www.youtube.com/watch?v=8DISRmsO2YQ


ElasticFusion: Reliable Room-Scale Dense Mapping

• Maps a scene with millions of surfels and handles small loop closures
using deformation.

• Relies on a depth camera and GPU processing.

• https://youtu.be/XySrhZpODYs

https://youtu.be/XySrhZpODYs


More Information about SLAM

If you want to find out more about SLAM there is plenty of good
information and open source software available online; e.g.:

• Visual/monocular SLAM: ORB-SLAM, LSD-SLAM, OKVIS,
SceneLib2, PTAM, DWO, VINS-mono.

• Dense SLAM: KinectFusion, ElasticFusion, BundleFusion.

• Pose Graph Optimisation: g2o, Ceres, GTSAM.

• Place recognition: FAB-MAP.

• SLAM meets Deep Learning: DeepFactors, iMAP, iLabel,
SemanticFusion


