
Introduction Davison’s MonoSLAM The SceneLib Libraries Final Thoughts

Single-camera SLAM using the SceneLib
library

Paul Smith

Robotics Research Group Talk, Nov 2005



Introduction Davison’s MonoSLAM The SceneLib Libraries Final Thoughts

Outline

1 Introduction
The Camera as a Position Sensor
Visual SLAM

2 Davison’s MonoSLAM
Overview and Nomenclature
Extended Kalman Filter
Automatic Map Management
Performance

3 The SceneLib Libraries
Introduction
The Scene Library
The MonoSLAM Library
Applications using SceneLib

4 Final Thoughts
Final Thoughts



Introduction Davison’s MonoSLAM The SceneLib Libraries Final Thoughts

The Camera as a Position Sensor

Aim
Use a camera as a position sensor

Challenges

Monocular (no depth)
Unconstrained
High acceleration & large rotations
Usually want real-time localisation



Introduction Davison’s MonoSLAM The SceneLib Libraries Final Thoughts

Off-line Processing

DataDataData

Structure from motion
Typical Computer vision approach
Bundle adjustment over a long sequence
Applied to post-production, 3D model reconstruction.



Introduction Davison’s MonoSLAM The SceneLib Libraries Final Thoughts

Sequential Real-time Processing

Data Data

Simultaneous Localisation and Mapping (SLAM)
Typical robotics approach.
Building a long-term map by propagating and correcting
uncertainty
Mostly used in simplified 2D environments with specialised
sensors such as laser range-finders.



Introduction Davison’s MonoSLAM The SceneLib Libraries Final Thoughts

Classic Approaches to Visual SLAM

Davison, ICCV 2003
Traditional SLAM approach (Extended Kalman Filter)
Maintains full camera and feature covariance
Limited to Gaussian uncertainty only

Nistér, ICCV 2003
Structure-from-motion approach (Preemptive RANSAC)
Frame-to-frame motion only
Drift: No repeatable localisation



Introduction Davison’s MonoSLAM The SceneLib Libraries Final Thoughts

Classic Approaches to Visual SLAM

Davison, ICCV 2003
Traditional SLAM approach (Extended Kalman Filter)
Maintains full camera and feature covariance
Limited to Gaussian uncertainty only

Nistér, ICCV 2003
Structure-from-motion approach (Preemptive RANSAC)
Frame-to-frame motion only
Drift: No repeatable localisation



Introduction Davison’s MonoSLAM The SceneLib Libraries Final Thoughts

Recent Approaches to Visual SLAM

Pupilli & Calway, BMVC 2005
Traditional SLAM approach (Particle Filter)
Greater robustness: handles multi-modal cases
New features not rigorously initialised

Eade & Drummond, 2006
FastSLAM approach (Particle Filter/Kalman Filter)
Particle per camera hypothesis, Kalman filter for features
Allows larger maps: update O(M log N) instead of O(N2)



Introduction Davison’s MonoSLAM The SceneLib Libraries Final Thoughts

Recent Approaches to Visual SLAM

Pupilli & Calway, BMVC 2005
Traditional SLAM approach (Particle Filter)
Greater robustness: handles multi-modal cases
New features not rigorously initialised

Eade & Drummond, 2006
FastSLAM approach (Particle Filter/Kalman Filter)
Particle per camera hypothesis, Kalman filter for features
Allows larger maps: update O(M log N) instead of O(N2)



Introduction Davison’s MonoSLAM The SceneLib Libraries Final Thoughts

Outline

1 Introduction
The Camera as a Position Sensor
Visual SLAM

2 Davison’s MonoSLAM
Overview and Nomenclature
Extended Kalman Filter
Automatic Map Management
Performance

3 The SceneLib Libraries
Introduction
The Scene Library
The MonoSLAM Library
Applications using SceneLib

4 Final Thoughts
Final Thoughts



Introduction Davison’s MonoSLAM The SceneLib Libraries Final Thoughts

Davison’s MonoSLAM: Overview

Main features
Initialisation with known target
Extended Kalman Filter

’Constant velocity’ motion model
Image patch features with Active
Search

Automatic Map Measurement
Particle filter for initialisation of new
features



Introduction Davison’s MonoSLAM The SceneLib Libraries Final Thoughts

Nomenclature

The camera
The camera position state xp is its 3D
position and orientation

xp =

(
rW

qWR

)
=


x
y
z
q0
qx
qy
qz


The camera state xv contains xp plus
optional additional state information
(e.g. velocity and angular velocity)



Introduction Davison’s MonoSLAM The SceneLib Libraries Final Thoughts

Nomenclature

Features
Each feature y i is a 3D position vector

y i =

xi
yi
zi





Introduction Davison’s MonoSLAM The SceneLib Libraries Final Thoughts

Nomenclature

System State

x =


xv
y1
y2
...

 P =


Pxx Pxy1 Pxy2 . . .
Py1x Py1y1 Py1y2 . . .
Py2x Py2y1 Py2y2 . . .

...
...

...
. . .


PDF over camera and feature state is modelled as a single
multi-variate Gaussian and we can use the Extended
Kalman Filter.



Introduction Davison’s MonoSLAM The SceneLib Libraries Final Thoughts

Extended Kalman Filter: Prediction Step

Time Update
1 Estimate new location
2 Add process noise



Introduction Davison’s MonoSLAM The SceneLib Libraries Final Thoughts

Extended Kalman Filter: Prediction Step

Time Update
1 Estimate new location
2 Add process noise



Introduction Davison’s MonoSLAM The SceneLib Libraries Final Thoughts

Extended Kalman Filter: Prediction Step

Time Update
1 Estimate new location
2 Add process noise



Introduction Davison’s MonoSLAM The SceneLib Libraries Final Thoughts

Extended Kalman Filter: Prediction Step

Time Update
1 Project the state ahead

x̂new = f (x̂ , u)

2 Project the error covariance ahead

Pnew =
∂f
∂x

P
∂f
∂x

T
+ Q



Introduction Davison’s MonoSLAM The SceneLib Libraries Final Thoughts

Extended Kalman Filter: Motion models

Constant velocity
Assume bounded, Gaussian-distributed linear and angular
acceleration

xnew =


rW

new
qWR

new
vW

new
ωR

new

 = f (x , u) =


rW +

(
vW + V W

)
∆t

qWR × q
((

ωR + ΩR)
∆t

)
vW + V W

ωR + ΩR





Introduction Davison’s MonoSLAM The SceneLib Libraries Final Thoughts

Extended Kalman Filter: Update Step

Measurement Update
1 Measure feature(s)
2 Update positions and uncertainties



Introduction Davison’s MonoSLAM The SceneLib Libraries Final Thoughts

Extended Kalman Filter: Update Step

Measurement Update
1 Measure feature(s)
2 Update positions and uncertainties



Introduction Davison’s MonoSLAM The SceneLib Libraries Final Thoughts

Extended Kalman Filter: Update Step

Measurement Update
1 Measure feature(s)
2 Update positions and uncertainties



Introduction Davison’s MonoSLAM The SceneLib Libraries Final Thoughts

Extended Kalman Filter: Update Step

Measurement Update
1 Make measurement z to give the innovation ν

ν = z − h (x̂)

2 Calculate innovation covariance S and Kalman gain W

S =
∂h
∂x

P
∂h
∂x

T
+ R

W = P
∂h
∂x

T
S−1

3 Update estimate and error covariance

x̂new = x̂ + Wν

Pnew = P− WSWT



Introduction Davison’s MonoSLAM The SceneLib Libraries Final Thoughts

Measurement Step: Image Features and the Map

Feature measurements are the locations of
salient image patches.
Patches are detected once to serve as
long-term visual landmarks.
Sparse set of landmarks gradually accumulated and
stored indefinitely.



Introduction Davison’s MonoSLAM The SceneLib Libraries Final Thoughts

Measurement Step: Active Search

Active search within elliptical search regions defined by the
feature innovation covariance.
Template matching via exhaustive correlation search.



Introduction Davison’s MonoSLAM The SceneLib Libraries Final Thoughts

Automatic Map Management

Initialise system from a few known features.
Add a new feature if number of visible features drops below
a threshold (e.g. 12).
Choose salient image patch from a search box in an
underpopulated part of the image.



Introduction Davison’s MonoSLAM The SceneLib Libraries Final Thoughts

Monocular Feature Initialisation with Depth Particles

A new feature has unknown depth
1 Populate the line with 100 particles, spaced uniformly

between 0.5m and 5m from the camera.
2 Match each particle in successive frames to find probability

of that depth.
3 When depth covariance is small,



Introduction Davison’s MonoSLAM The SceneLib Libraries Final Thoughts

Monocular Feature Initialisation with Depth Particles

A new feature has unknown depth
1 Populate the line with 100 particles, spaced uniformly

between 0.5m and 5m from the camera.
2 Match each particle in successive frames to find probability

of that depth.
3 When depth covariance is small,



Introduction Davison’s MonoSLAM The SceneLib Libraries Final Thoughts

Monocular Feature Initialisation with Depth Particles

A new feature has unknown depth
1 Populate the line with 100 particles, spaced uniformly

between 0.5m and 5m from the camera.
2 Match each particle in successive frames to find probability

of that depth.
3 When depth covariance is small,



Introduction Davison’s MonoSLAM The SceneLib Libraries Final Thoughts

Monocular Feature Initialisation with Depth Particles

A new feature has unknown depth
1 Populate the line with 100 particles, spaced uniformly

between 0.5m and 5m from the camera.
2 Match each particle in successive frames to find probability

of that depth.
3 When depth covariance is small,



Introduction Davison’s MonoSLAM The SceneLib Libraries Final Thoughts

Monocular Feature Initialisation with Depth Particles

A new feature has unknown depth
1 Populate the line with 100 particles, spaced uniformly

between 0.5m and 5m from the camera.
2 Match each particle in successive frames to find probability

of that depth.
3 When depth covariance is small,



Introduction Davison’s MonoSLAM The SceneLib Libraries Final Thoughts

Monocular Feature Initialisation with Depth Particles

A new feature has unknown depth
1 Populate the line with 100 particles, spaced uniformly

between 0.5m and 5m from the camera.
2 Match each particle in successive frames to find probability

of that depth.
3 When depth covariance is small,



Introduction Davison’s MonoSLAM The SceneLib Libraries Final Thoughts

Monocular Feature Initialisation with Depth Particles

A new feature has unknown depth
1 Populate the line with 100 particles, spaced uniformly

between 0.5m and 5m from the camera.
2 Match each particle in successive frames to find probability

of that depth.
3 When depth covariance is small,



Introduction Davison’s MonoSLAM The SceneLib Libraries Final Thoughts

Monocular Feature Initialisation with Depth Particles

A new feature has unknown depth
1 Populate the line with 100 particles, spaced uniformly

between 0.5m and 5m from the camera.
2 Match each particle in successive frames to find probability

of that depth.
3 When depth covariance is small,



Introduction Davison’s MonoSLAM The SceneLib Libraries Final Thoughts

Monocular Feature Initialisation with Depth Particles

A new feature has unknown depth
1 Populate the line with 100 particles, spaced uniformly

between 0.5m and 5m from the camera.
2 Match each particle in successive frames to find probability

of that depth.
3 When depth covariance is small, convert to Gaussian.



Introduction Davison’s MonoSLAM The SceneLib Libraries Final Thoughts

Feature initialisation

New features need adding to the state vector and
covariance matrix.

Increasing the state size dynamically

xnew =


xv
y1
y2
y i



P =


Pxx Pxy1 Pxy2 Pxx

∂y i
∂xv

T

Py1x Py1y1 Py1y2 Py1x
∂y i
∂xv

T

Py2x Py2y1 Py2y2 Py2x
∂y i
∂xv

T

∂y i
∂xv

Pxx
∂y i
∂xv

Pxy1
∂y i
∂xv

Pxy2
∂y i
∂xv

Pxx
∂y i
∂xv

T
+

∂y i
∂hG

RL
∂y i
∂hG

T





Introduction Davison’s MonoSLAM The SceneLib Libraries Final Thoughts

Feature deletion

Delete a feature if more than half of attempted
measurements fail.

Reducing the state size dynamically


xv
y1
y2
y3

 →

xv
y1
y3



Pxx Pxy1 Pxy2 Pxy3

Py1x Py1y1 Py1y2 Py1y3

Py2x Py2y1 Py2y2 Py2y3

Py3x Py3y1 Py3y2 Py3y3

→
Pxx Pxy1 Pxy3

Py1x Py1y1 Py1y3

Py3x Py3y1 Py3y3





Introduction Davison’s MonoSLAM The SceneLib Libraries Final Thoughts

Example Sequence



Introduction Davison’s MonoSLAM The SceneLib Libraries Final Thoughts

What Enables It To Run In Real-time?

Timings

Image loading and administration 1ms
Image correlation searches 2ms
Kalman Filter update 1ms
Feature initialisation search 3ms
Graphical rendering 5ms
Total 12ms

Easily manages 30Hz processing on a 3.4GHz desktop PC
using C++, Linux, OpenGL

Main time-saving features
Automatic map management criteria to maintain a
sufficient but sparse map
Active search guided by uncertainty



Introduction Davison’s MonoSLAM The SceneLib Libraries Final Thoughts

What Enables It To Run In Real-time?

Timings

Image loading and administration 1ms
Image correlation searches 2ms
Kalman Filter update 1ms
Feature initialisation search 3ms
Graphical rendering 5ms
Total 12ms

Easily manages 30Hz processing on a 3.4GHz desktop PC
using C++, Linux, OpenGL

Main time-saving features
Automatic map management criteria to maintain a
sufficient but sparse map
Active search guided by uncertainty



Introduction Davison’s MonoSLAM The SceneLib Libraries Final Thoughts

Outline

1 Introduction
The Camera as a Position Sensor
Visual SLAM

2 Davison’s MonoSLAM
Overview and Nomenclature
Extended Kalman Filter
Automatic Map Management
Performance

3 The SceneLib Libraries
Introduction
The Scene Library
The MonoSLAM Library
Applications using SceneLib

4 Final Thoughts
Final Thoughts



Introduction Davison’s MonoSLAM The SceneLib Libraries Final Thoughts

The SceneLib Libraries

A complete basic Davison MonoSLAM system
Written in standard C++
Three libraries and an application

SceneLib A generic SLAM library. Base classes for
motion models, features, measurements and
the Kalman Filter.

SceneImproc Image processing for MonoSLAM
(i.e. feature detection and correlation)

MonoSLAM Specific motion and feature-measurement
models for single-camera SLAM, and a
control class.

MonoSLAMGlow Application based on GLOW/GLUT
library which uses the libraries.



Introduction Davison’s MonoSLAM The SceneLib Libraries Final Thoughts

Obtaining the SceneLib libraries

All files available from the Active Vision CVS repository
Will also need VW34 library (soon to be VW35)

Getting and building files from CVS
cvs -d/data/lav-local/common/cvsroot co VW34
cvs -d/data/lav-local/common/cvsroot co SceneLib
cvs -d/data/lav-local/common/cvsroot co MonoSLAMGlow
cd VW34
./bootstrap
./configure
make
cd ../SceneLib
./configure
make
cd ../MonoSLAMGlow
make



Introduction Davison’s MonoSLAM The SceneLib Libraries Final Thoughts

Running the MonoSLAMGlow application

Running MonoSLAMGlow
./scenerob

Comment out -D_REALTIME_ in Makefile to use
previously saved image sequence



Introduction Davison’s MonoSLAM The SceneLib Libraries Final Thoughts

SceneLib Documentation

Making and viewing documentation
cd SceneLib
make docs
firefox html/index.html

See also SceneLib/Docs/models.tex.



Introduction Davison’s MonoSLAM The SceneLib Libraries Final Thoughts

The Scene library

Scene is a generic SLAM library.

Main Scene classes
Scene_Single Stores the full system state and manages

features.
Feature Stores and manages a feature’s state vector and

covariances
Motion_Model Base class for all motion models.
Feature_Measurement_Model Base class for all feature and

measurement models.
Sim_Or_Rob Base class for something that can make

measurements.
Kalman Friend class of Scene_Single that implements a

Kalman filter.



Introduction Davison’s MonoSLAM The SceneLib Libraries Final Thoughts

The Scene library

The main Scene classes are completely generic:
Scene_Single stores the ’robot’ state vector xv ,

covariance Pxx and a list of Features.
Feature stores a feature state vector y i , it’s

covariances Pxv yi , Pyi yi and Pyi yj (∀j < i).
Kalman updates the state given measurements via

Sim_Or_Rob.
The Motion_Model and Feature_Measurement_Model
classes access and interpret the state.
Classes in MonoSLAM derived from these base classes
make the application specific.



Introduction Davison’s MonoSLAM The SceneLib Libraries Final Thoughts

Motion model classes

A Motion_Model knows how to perform the state update
x̂vnew = f v (x̂v , u)

It stores no state itself

Motion_Model

TwoD_Motion_Model ThreeD_Motion_Model

Impulse_ThreeD_Motion_Model Zero_ThreeD_Motion_Model

OneD_Motion_Model

Main functions
func_fv_and_dfv_by_dxv(xv,u,delta_t) Calculates the new

camera state x̂vnew and Jacobian ∂f v
∂xv

func_Qi(xv, u, delta_t) Calculates the covariance Qi of the
process noise.



Introduction Davison’s MonoSLAM The SceneLib Libraries Final Thoughts

Feature measurement classes

A Feature_Measurement_Model knows how to manage a
feature’s state and predict a measurement hi = h (y i , xp)

It stores no state itself
Subclassed into two special types:
Fully_Initialised_Feature_Measurement_Model A

complete feature in the SLAM map.
Partially_Initialised_Feature_Measurement_Model A

feature currently being initialised.

Feature_Measurement_Model

Fully_Initialised_Feature_Measurement_Model

Fully_Init_Wide_Point_Feature_Measurement_Model

Partially_Initialised_Feature_Measurement_Model

Line_Init_Wide_Point_Feature_Measurement_Model



Introduction Davison’s MonoSLAM The SceneLib Libraries Final Thoughts

Fully-initialised Features

A Fully_Initialised_Feature_Measurement_Model
understands the state of a full feature and determines how
it is measured.
It stores no state itself.

Main functions
func_hi_and_dhi_by_dxp_and_dhi_by_dyi(yi, xp) Calculates

the expected measurement vector hi and its
Jacobians ∂hi

∂xp
and ∂hi

∂y i
.

func_Ri(hi) Calculates the measurement noise Ri .
visibility_test(xp, yi, xp_orig, hi) Decides whether a feature

should be measured.
func_Si(Pxx, Pxyi, Pyiyi, dhi_by_dxv, dhi_by_dyi, Ri)

Calculates the innovation covariance Si .



Introduction Davison’s MonoSLAM The SceneLib Libraries Final Thoughts

Partially-initialised Features

A Partially_Initialised_Feature_Measurement_Model
handles a feature which still has some free parameters λ.
Each partially-initialised feature references a
FeatureInitInfo
FeatureInitInfo stores a vector of Particles representing
possible λs and their probabilities.
A Partially_Initialised_Feature_Measurement_Model can
convert its feature into a fully-initialised feature.



Introduction Davison’s MonoSLAM The SceneLib Libraries Final Thoughts

Partially-initialised Features

Main functions
func_hpi_and_dhpi_by_dxp_and_dhpi_by_dyi(yi, xp, lambda)

Calculates the expected measurement vector hi
and its Jacobians, given values of the free
parameters λ.

func_Ri(hi) Calculates the measurement noise Ri .
visibility_test(xp, yi, xp_orig, hi) Decides whether a feature

should be measured.
func_Si(Pxx, Pxyi, Pyiyi, dhi_by_dxv, dhi_by_dyi, Ri)

Calculates the innovation covariance Si .
func_yfi_and_dyfi_by_dypi_and_dyfi_by_dlambda(ypi, lambda)

Converts a partially-initialised into a fully-initialised
feature.



Introduction Davison’s MonoSLAM The SceneLib Libraries Final Thoughts

The MonoSLAM library

The MonoSLAM library provides
Specialisations of Scene base classes:

Impulse_ThreeD_Motion_Model and
ZeroOrder_ThreeD_Motion_Model motion models.
Fully_Init_Wide_Point_Feature_Measurement_Model and
Line_Init_Wide_Point_Feature_Measurement_Model.
Robot (derived from Sim_Or_Rob) to handle image feature
measurement.

A MonoSLAM class to provide the main interface.
Functions to draw the two graphical displays.



Introduction Davison’s MonoSLAM The SceneLib Libraries Final Thoughts

The MonoSLAM Class

The MonoSLAM class provides the basic SLAM
functionality

Main functions
GoOneStep(image, delta_t, currently_mapping_flag) Step the

system onto the next frame. (image is ignored,
and instead it must be set using
Scene_Single::load_new_image()).

The MonoSLAMInterface class provides full control and
feedback functions.

Main functions
GetScene() Get the Scene_Single class.
GetRobot() Get the Robot class.

plus >40 other Get() and Set() functions.



Introduction Davison’s MonoSLAM The SceneLib Libraries Final Thoughts

The MonoSLAMGlow Application

Failed match
Successful match

Unused feature



Introduction Davison’s MonoSLAM The SceneLib Libraries Final Thoughts

Other MonSLAM Applications



Introduction Davison’s MonoSLAM The SceneLib Libraries Final Thoughts

Live Demonstration



Introduction Davison’s MonoSLAM The SceneLib Libraries Final Thoughts

Outline

1 Introduction
The Camera as a Position Sensor
Visual SLAM

2 Davison’s MonoSLAM
Overview and Nomenclature
Extended Kalman Filter
Automatic Map Management
Performance

3 The SceneLib Libraries
Introduction
The Scene Library
The MonoSLAM Library
Applications using SceneLib

4 Final Thoughts
Final Thoughts



Introduction Davison’s MonoSLAM The SceneLib Libraries Final Thoughts

Final Thoughts: EKF-based Visual SLAM

Observations
The Davison visual SLAM system works!
It works reliably enough for a live demo.
It needs no real hidden tricks needed to make it work.

Discussion
Need more, better features to track

Faster initialisation (fewer particles?)
Use full-frame fast feature detection

Better initialisation: how do we deal with points at infinity?
Motion model: How do we get smoother, better tracks?
Loop closing



Introduction Davison’s MonoSLAM The SceneLib Libraries Final Thoughts

Final Thoughts: EKF-based Visual SLAM

Observations
The Davison visual SLAM system works!
It works reliably enough for a live demo.
It needs no real hidden tricks needed to make it work.

Discussion
Need more, better features to track

Faster initialisation (fewer particles?)
Use full-frame fast feature detection

Better initialisation: how do we deal with points at infinity?
Motion model: How do we get smoother, better tracks?
Loop closing



Introduction Davison’s MonoSLAM The SceneLib Libraries Final Thoughts

Final Thoughts: The SceneLib library

Observations
The SceneLib libraries are (reasonably) well-designed and
(reasonably) well-documented
They make it easy to write a Davison-style visual SLAM
application

Discussion
Are they useful to the Active Vision group?
Can we all use them and get the benefits in code sharing
that that will bring?
Can we at least all use the same nomenclature and
colours?



Introduction Davison’s MonoSLAM The SceneLib Libraries Final Thoughts

Final Thoughts: The SceneLib library

Observations
The SceneLib libraries are (reasonably) well-designed and
(reasonably) well-documented
They make it easy to write a Davison-style visual SLAM
application

Discussion
Are they useful to the Active Vision group?
Can we all use them and get the benefits in code sharing
that that will bring?
Can we at least all use the same nomenclature and
colours?


	Introduction
	The Camera as a Position Sensor
	Visual SLAM

	Davison's MonoSLAM
	Overview and Nomenclature
	Extended Kalman Filter
	Automatic Map Management
	Performance

	The SceneLib Libraries
	Introduction
	The Scene Library
	The MonoSLAM Library
	Applications using SceneLib

	Final Thoughts
	Final Thoughts


