
Fundamenta Informaticae 62 1–20 1

IOS Press

From bounded to unbounded model checking
for temporal epistemic logic∗

M. Kacprzak

Białystok University of Technology

Institute of Mathematics and Physics

15-351 Białystok, ul. Wiejska 45A, Poland

mdkacprzak@wp.pl

A. Lomuscio

Department of Computer Science

King’s College London, London WC2R 2LS, United Kingdom

alessio@dcs.kcl.ac.uk

W. Penczek†

Institute of Computer Science, PAS

01-237 Warsaw, ul. Ordona 21, Poland

penczek@ipipan.waw.pl

Abstract. This paper addresses the problem of verification of temporal epistemic properties of
multi-agent systems by means of symbolic model checking. An overview of the technique of
bounded model checking for temporal epistemic logic, and an analysis of some limitations of the
method are provided. An extension of this technique called unbounded model checking to solve
these limitations is explored. Similarities and differences of the two methods are explicitly exempli-
fied by the analysis of a scenario in the two formalisms.

∗The authors acknowledge support from the Polish National Committee for Scientific Research (a special grant supporting
ALFEBIITE), the Nuffield Foundation (grant NAL/00690/G), and EPSRC (GR/S49353/01).
†Address for correspondence: Institute of Computer Science, PAS, 01-237 Warsaw, ul. Ordona 21, Poland
Also affiliated with: Podlasie Academy, Institute of Informatics, Siedlce, Poland

1. Introduction

Verification of multi-agent systems [19] has recently become an active subject of research. In particular,
recent contributions [16, 17, 18] have focused on extending model checking tools and techniques usu-
ally employed for verification of reactive systems. Essentially, these study the satisfiability of a formula
representing a property of interest in the model representing all the computations of the multi-agent sys-
tem (MAS) under consideration. The iterative approaches to model checking (i.e., those based on the
explicit enumeration of all the possible states of computation) are known to suffer from the state explo-
sion problem. For this reason, methods based on symbolic representation are currently seen as the most
promising. In particular, the methods based on BDD’s [11], and SAT-checkers [1, 3] are constant focus
of research. Verification via BDD’s involves translating the model checking problem into operations on
Boolean functions represented in a concise and canonical way, whereas SAT-checkers are used for testing
satisfiability of formulas, encoding the model checking problem.

In the multi-agent paradigm particular emphasis is given to high-level concepts such as knowledge,
desires, and intentions of the agents. Because of this, work in MAS verification has focused on the
extension of traditional model checking methods to incorporate modalities describing information and
motivational attitudes of agents [2]. In particular, model checking algorithms for standard temporal logics
of discrete time (LTL [10] or branching time CTL [7]) have been extended by means of an epistemic
modality [16, 17, 18]. Specifically, the authors of this paper have suggested the use of the method of
bounded model checking (BMC) for verifying CTLK formulas describing temporal epistemic properties
of a MAS [13, 9]. CTLK combines branching temporal operators with epistemic ones like individual
knowledge, distributed knowledge, common knowledge, and everybody knowing [8]. BMC [3] consists
in translating the model checking problem of an existential CTLK formula (a formula containing only
existential modalities) into the problem of satisfiability of a propositional formula. In particular, the
BMC algorithm checks for a finite witness among all (possibly infinite) traces of the system satisfying
a given existential CTLK formula. While preliminary experimental results seem largely positive [9],
unfortunately, the BMC algorithm can only be used efficiently when one wants to check whether an
existential CTLK formula is true on a particular system, or whether a universal CTLK formula (one
containing only universal modalities) is false1. Unfortunately in the applications, it is sometimes the
case that one actually does want to check the validity of a universal formula. For example, in a multi-
agent security example, one might want to check that a particular fact p (perhaps representing the fact
that a particular secret shared key is valid) remains commonly known among the group Γ forever in the
future (represented as AGCΓp in CTLK). For the reasons above this sort of formulas are problematic in
BMC.

The aim of the present paper is to report preliminary results on a variation, still based on SAT-
translation, of the BMC approach in the context of temporal epistemic logic. This other method, called
unbounded model checking (UMC) has recently been proposed by McMillan [12] in the context of plain
temporal logic. To do this and to compare the results obtained under BMC and UMC we also extend the
BMC methodology to deal with the existential fragment of the logic CTLK extended by past modalities.

Like any SAT-based method, UMC is based on the translation of the model checking problem into
the satisfiability problem of a propositional formula. It differs from BMC in the encoding of the formula
to be checked while it still uses the same encoding for the transition relation of the model. UMC exploits

1In the BMC method checking the validity of a universal CTLK formula (or the unsatisfiability of an existential one) amounts
to checking the whole model thereby negating the main benefits of it.

the characterisation of the basic modalities in Quantified Boolean Formulas (QBF) and the algorithms
that translate QBF and fixed point equations over QBF into propositional formulas.

The rest of the paper is structured in the following way. Section 2 introduces interpreted system
semantics that provides a semantical basis for MAS and it is used in both methods. The logic CTLpK is
defined in Section 3. The bounded model checking method is introduced in Section 4. Section 5 discusses
unbounded model checking, a variation of bounded model checking. In Section 6 we exemplify the two
techniques, by discussing an example from the literature of MAS.

2. Interpreted systems semantics

We assume familiarity with interpreted system semantics [8]. This can be succinctly defined as follows.
Assume a set of agents A = {1, . . . , n}, a set of local states Li and possible actions Acti for each agent
i ∈ A, and a set Le and Acte of local states and actions for the environment. The set of possible global
states for the system is defined as G = L1 × · · · × Ln × Le, where each element (l1, . . . , ln, le) of G
represents a possible computational state for the whole system. In the following we shall consider the
environment component simply as another agent, so we shall consider tuples of n components. Further
assume a set of protocols Pi : Li → 2Acti , for i = 1, . . . , n, representing the functioning behaviour of
every agent, and a protocol Pe : Le → 2Acte for the environment. We can model the computation taking
place in the system by means of a transition function t : G×Act→ G, whereAct ⊆ Act1×· · ·×Actn×
Acte is the set of joint actions. Intuitively, given an initial state ι, the set of protocols, and the transition
function, we can build a (possibly infinite) structure that represents all the possible computations of the
system. Since in the description of the model checking method we do not consider actions and protocols
explicitly, we abstract from these, and use a successor relation to model the temporal evolution. In the
example of the final section we show how agents and protocols can be used explicitly.

Definition 2.1. (Models)
Given a set of agents A = {1, . . . , n} a temporal epistemic model (or simply a model) is a pair M =
(K,V) with K = (G,W, T,∼1, . . . ,∼n, ι), where

• G is the set of the global states for the system (henceforth called simply “states”),

• W is a set of reachable global states from ι, i.e., W = {s ∈ G | (ι, s) ∈ T ∗}2,

• T ⊆ G×G is a binary (successor) relation on G, such that, (∀s ∈ G)(∃s′ ∈ G)((s, s′) ∈ T),

• ∼i ⊆ G × G is an epistemic accessibility relation for each agent i ∈ A defined by s ∼i s
′ iff

li(s
′) = li(s), where the function li : G→ Li returns the local state of agent i from a global state

s, obviously ∼i is an equivalence relation,

• ι ∈W is the initial state,

• V : G −→ 2PVK is a valuation function for a set of propositional variables PVK such that
true ∈ V(s) for all s ∈ G. V assigns to each state a set of propositional variables that are assumed
to be true at that state.

2T ∗ denotes the reflexive and transitive closure of T .

Note that in the definition above we include both all possible states and the subset of reachable states.
The reason for this follows from having past modalities in the language, which are defined over any
possible global state so that a simple fixed point semantics for them can be given. Still, note that, if
required, it is possible to restrict the range of the past modalities to reachable states only by insisting that
the target state is itself reachable from the initial state.

By |M| we denote the number of states of M, by IN = {0, 1, 2, . . .} the set of natural numbers and
by IN+ = {1, 2, . . .} the set of positive natural numbers.

Epistemic relations. We extend the concepts of private knowledge and introduce group knowledge
in the usual way [8]. Let Γ ⊆ A. Given the epistemic relations for the agents in Γ, the union of Γ’s
accessibility relations defines the epistemic relation corresponding to the modality of everybody knows:
∼E

Γ =
⋃

i∈Γ ∼i. ∼C
Γ denotes the transitive closure of∼E

Γ , and corresponds to the relation used to interpret
the modality of common knowledge. The relation used to interpret the modality of distributed knowledge
is given by taking the intersection of the relations corresponding to the agents in Γ, ∼D

Γ =
⋂

i∈Γ ∼i. We
refer to [8] for an introduction to these concepts.

Computations. A computation in M is a possibly infinite sequence of states π = (s0, s1, . . .) such that
(sm, sm+1) ∈ T for eachm ∈ IN. Specifically, we assume that (sm, sm+1) ∈ T iff sm+1 = t(sm, actm),
i.e., sm+1 is the result of applying the transition function t to the global state sm, and a joint action
actm. All the components of actm are prescribed by the protocols Pi, i ∈ A, when evaluated on the
corresponding local states of sm. In the following we abstract from the transition function, the actions,
and the protocols, and simply use T , but it should be clear that this is uniquely determined by the
interpreted system under consideration. In interpreted systems terminology a computation is a part of a
run. A k-computation is a computation of length k. For a computation π = (s0, s1, . . .), let π(k) = sk,
and πk = (s0, . . . , sk), for each k ∈ IN. By Π(s) we denote the set of all the infinite computations
starting at s in M, whereas by Πk(s) the set of all the k-computations starting at s.

3. Computation Tree Logic of Knowledge with Past (CTLpK)

Interpreted systems are traditionally used to give a semantics to an epistemic language enriched with
temporal connectives based on linear time [8]. Here we use CTL by Emerson and Clarke [7] as our
basic temporal language and add an epistemic and past component to it. We call the resulting logic
Computation Tree Logic of Knowledge with Past (CTLpK).

Definition 3.1. (Syntax of CTLpK)
Let PVK be a set of propositional variables containing the symbol true and let A be a set of agents
{1, . . . , n}. The set of CTLpK formulas FCTLpK is defined inductively as follows:

• every member p of PVK is a formula,

• if α and β are formulas, then so are ¬α, α ∧ β and α ∨ β,

• if α and β are formulas, then so are AXα, AGα and A(αUβ),

• if α is formula, then so are AYα and AHα,

• if α is formula, then so is Kiα, for i ∈ A,

• if α is formula, then so are DΓα, CΓα, and EΓα, for Γ ⊆ A.

The remaining basic modalities are defined by derivation as follows:

• EFα
def
= ¬AG¬α, EPα

def
= ¬AH¬α, EZα

def
= ¬AZ¬α, for Z ∈ {X,Y},

• Kiα
def
= ¬Ki¬α, DΓα

def
= ¬DΓ¬α, CΓα

def
= ¬CΓ¬α, EΓα

def
= ¬EΓ¬α.

Moreover, α ⇒ β
def
= ¬α ∨ β, α ⇔ β

def
= (α ⇒ β) ∧ (β ⇒ α), and false

def
= ¬true. We omit the

subscript Γ for the epistemic modalities if Γ = A, i.e., Γ is the set of all the agents. As customary X,G
stand for respectively “at the next step”, and “forever in the future”. Y,H are their past counterparts
“at the previous step”, and “forever in the past”. The operator U stands for Until; the formula αUβ,
expresses the fact that β eventually occurs and that α holds continuously until then. In what follows, we
define two fragments of CTLpK. The universal fragment, called ACTLpK, and the existential fragment,
called ECTLpK. Both are used to express properties of a MAS.

The logic ACTLpK is the restriction of CTLpK such that negation can be applied only to elements
of PVK ; the definition of the language FACTLpK is identical to Definition 3.1 except for ¬p replacing ¬α
in the second itemised paragraph. The logic ECTLpK is the restriction of CTLpK such that its language
is defined as FECTLpK= {¬ϕ | ϕ ∈ FACTLpK}. It is easy to see that ECTLpK modal formulas can be
written as positive Boolean combinations of: EXα, EYα, E(αUβ), EGα, EPα, Kiα, DΓα, CΓα, and
EΓα. Obviously, all the propositional formulas over PVK are in the language of ECTLpK.

Definition 3.2. (Interpretation of CTLpK)
Let M be a model, s ∈ G be a state, π be a computation, and α, β be formulas of CTLpK. M, s |= α

denotes that α is true at the state s in the model M. M is omitted, if it is implicitly understood. The
relation |= is defined inductively as follows:

s |= p iff p ∈ V(s), s |= α ∨ β iff s |= α or s |= β,

s |= ¬α iff s 6|= α, s |= α ∧ β iff s |= α and s |= β,

s |= AXα iff ∀π ∈ Π(s) π(1) |= α,

s |= AGα iff ∀π ∈ Π(s) (∀m≥0 π(m) |= α),

s |= A(αUβ) iff ∀π ∈ Π(s) (∃m≥0 [π(m) |= β and ∀j<m π(j) |= α]),

s |= AYα iff ∀s′ ∈ G(if (s′, s) ∈ T, then s′ |= α),

s |= AHα iff ∀s′ ∈ G(if (s′, s) ∈ T ∗, then s′ |= α),

s |= Kiα iff ∀s′ ∈W (if s ∼i s
′, then s′ |= α),

s |= DΓα iff ∀s′ ∈W (if s ∼D
Γ s′, then s′ |= α),

s |= EΓα iff ∀s′ ∈W (if s ∼E
Γ s′, then s′ |= α),

s |= CΓα iff ∀s′ ∈W (if s ∼C
Γ s′, then s′ |= α).

Definition 3.3. (Validity) A CTLpK formula ϕ is valid in M = (K,V) (denoted M |= ϕ) iff M, ι |= ϕ,
i.e., ϕ is true at the initial state of the model M.

Notice that the past component of CTLpK does not contain the modality Since, which is a past coun-
terpart of modality Until denoted by U. Extending the logic by Since is possible, but complicates the
semantics, so this is not discussed in this paper.

In the the next two sections we introduce two methods for verifying symbolically that temporal
epistemic formulas hold in a model.

4. Bounded model checking for CTLpK

In this section we introduce an algorithm for bounded model checking for ECTLpK. BMC works by
translating both the model and the formula to be checked into propositional formulas. The satisfaction
of their conjunction is then checked by an efficient SAT-solver. BMC is particularly efficient when
the analysis involves looking for faults in protocols whose key properties are expressed as ACTLpK
formulas. As it will be clear by the end of this section, the algorithm checks increasingly larger but finite
and bounded models in an attempt to verify the negation of the universal formula in consideration. To
present the algorithm we first need to define satisfaction on bounded models. We shall then present the
translations into propositional formulas, and the algorithm itself.

4.1. Bounded semantics for ECTLpK

In this subsection we give a bounded semantics for CTLpK in order to define the bounded model check-
ing problem for ECTLpK, and to translate it subsequently into a satisfiability problem. This formalism
is an extension to past modalities of the one presented in [13]. The main idea of the bounded semantics
consists in using the notion of k-computation to interpret a formula on a finite fraction of the model.
Moreover, the translation of the existential path quantifier is restricted to finitely many computations3 ;
this is known to be sufficient [14, 13]. Below, we define a k-model and the function, which is used to
check whether a k-computation is a loop, i.e., represents an infinite computation.

Definition 4.1. (k−model)
Let M = (K,V) be a model. A k−model for M is a structure Mk = ((G,W,Pk ,∼1, . . . ,∼n, ι),V),
where Pk with k ∈ IN+ is the set of all the k-computations of M, i.e., Pk =

⋃

s∈G Πk(s). The function
loop: Pk → 2IN is defined as: loop(π) = {l | 0 ≤ l ≤ k and (π(k), π(l)) ∈ T}.

Satisfaction for the temporal formulas EGα in the bounded case depends on whether or not the k-
computation π defines a loop, i.e., whether loop(π) 6= ∅.

Note that the interpretation of the temporal modalities on bounded semantics is defined for ECTLpK
and is different from the one of Definition 3.2.

Definition 4.2. (Bounded semantics)
Let Mk be a k−model and α, β be formulas of ECTLpK. Mk, s |= α denotes that α is true at the state
s of Mk. Mk is omitted if it is clear from the context. The relation |= is defined inductively as follows:

3The number of the computations depends on k and the formula to be translated.

s |= p iff p ∈ V(s),

s |= ¬p iff p 6∈ V(s),

s |= α ∧ β iff s |= α and s |= β,

s |= α ∨ β iff s |= α or s |= β,

s |= EXα iff ∃π ∈ Pk

(

π(0) = s and π(1) |= α
)

,

s |= EGα iff ∃π ∈ Pk

(

π(0) = s and ∀0≤j≤kπ(j) |= α and loop(π) 6= ∅
)

,

s |= E(αUβ) iff ∃π ∈ Pk

(

π(0) = s and ∃0≤j≤k

(

π(j) |= β and ∀0≤i<jπ(i) |= α
))

,

s |= EYα iff ∃π ∈ Pk

(

π(k) = s and π(k − 1) |= α
)

,

s |= EPα iff ∃π ∈ Pk

(

π(k) = s and ∃0≤j≤kπ(j) |= α
)

,

s |= Kiα iff ∃π ∈ Pk

(

π(0) = ι and ∃0≤j≤k

(

π(j) |= α and s ∼i π(j)
))

,

s |= DΓα iff ∃π ∈ Pk

(

π(0) = ι and ∃0≤j≤k

(

π(j) |= α and s ∼D
Γ
π(j)

))

,

s |= EΓα iff ∃π ∈ Pk

(

π(0) = ι and ∃0≤j≤k

(

π(j) |= α and s ∼E
Γ
π(j)

))

,

s |= CΓα iff ∃π ∈ Pk

(

π(0) = ι and ∃0≤j≤k

(

π(j) |= α and s ∼C
Γ
π(j)

))

.

The above extends to past modalities the bounded semantics of [13]. It is easy to notice that the bounded
semantics of the past modalities is similar to their forward counterparts up to the inverse of the transi-
tion relation. In this setting we can prove that in some circumstances satisfiability in the |M|-bounded
semantics is equivalent to the unbounded one.

Theorem 4.1. (Correctness for BMC)
Let M = ((G,W, T,∼1, . . . ,∼n, ι),V) be a model, ϕ be an ECTLpK formula and k = |M|. Then,
M, ι |= ϕ iff Mk, ι |= ϕ.

Proof:
[sketch] By induction on the length of ϕ. The lemma follows directly for the propositional variables and
their negations. Next, assume that the hypothesis holds for all the proper sub-formulas of ϕ. If ϕ is equal
to either α∧ β or α ∨ β, then it is easy to check that the lemma holds. Consider ϕ to be of the following
forms:

• ϕ = EXα | EGα | E(αUβ) | Kiα | EΓα | EΓα | CΓα. By induction hypothesis — see [13] page
173.

• For ϕ = EYα, the proof is similar to the case of EXα,

• For ϕ = EPα, the proof is similar to the case of E(trueUα).
ut

Given that we reasoned on a bounded model of size |M| there is nothing surprising about the results
above. The rationale behind the method is that for particular examples checking satisfiability of a formula
can be done on a small fragment of the model, i.e., k much smaller than |M| suffices.

4.2. The BMC algorithm for ECTLpK

Having defined bounded semantics above, we here present the encodings of the formulas and of the
model to be checked, that are required by the algorithm. This is an extension of the method of [13].
The main idea is that we can check ϕ over Mk by checking satisfiability of a propositional formula

[M, ϕ]k = [Mϕ,ι]k ∧ [ϕ]Mk
, where the first conjunct represents (part of) the model under consideration

and the second a number of constraints that must be satisfied on Mk for ϕ to be satisfied. Once this
translation is defined, checking satisfiability of an ECTLpK formula can be done by means of a SAT-
checker. Details of this translation are provided below starting from the encoding of the transitions in the
interpreted system under consideration.

Let M = (K,V) with K = (G,W, T,∼1, ...,∼n, ι). Recall that the set of global states G = ×n
i=1Li

is the Cartesian product of the set of local states (here we treat the environment as one of the agents).
We assume Li ⊆ {0, 1}

ni , where ni = dlog2(|Li|)e and let n1 + . . .+nn = m, i.e., every local state
is represented by a sequence consisting of 0’s and 1’s. Moreover, let Di, for i = 1, . . . n, be a set of the
indexes of the bits of the local states of the agent i in the global states, i.e., D1 = {1, . . . , n1}, . . . , Dn =
{m−nn +1, . . . ,m}. Next, let PV be a set of fresh propositional variables disjoint with PVK and FPV

be a set of propositional formulas over PV .
Furthermore, let w = (w[1], . . . , w[m]), where w[i] ∈ PV for each i = 1, . . . ,m, be a global state

variable. Global state variables are used for encoding global states. We use elements of G as valuations4

of global state variables in formulas of FPV . For example w[1]∧w[2] evaluates to true for the valuation
q = (1, . . . , 1), and it evaluates to false for the valuation q = (0, . . . , 0). A finite sequence (w0, . . . , wk)
of global state variables is called a symbolic k−path. In general we shall need to consider not just one
but a number of symbolic k−paths. This number depends on the formula ϕ under investigation, and it is
returned as the value fk(ϕ) of the function fk, defined below.

Definition 4.3. (Function fk)
Define a function fk : FECTLpK → IN as follows:

• fk(p) = fk(¬p) = 0, where p ∈ PVK ,

• fk(α ∨ β) = max{fk(α), fk(β)},

• fk(α ∧ β) = fk(α) + fk(β),

• fk(Zα) = fk(α) + 1, for Z ∈ {EX,EY,EP,Ki,DΓ,EΓ},

• fk(CΓ) = fk(α) + k,

• fk(EGα) = (k + 1) · fk(α) + 1,

• fk(E(αUβ)) = k · fk(α) + fk(β) + 1.

We refer to [14, 13] for more details. To construct [M, ϕ]k , we first define a propositional formula [Mϕ,ι]k
that constrains the fk(ϕ) symbolic k-paths to be valid k-computations of Mk. For 1 ≤ j ≤ fk(ϕ), the
j-th symbolic k−computation is denoted as w0,j, . . . , wk,j , where wi,j for i ∈ {0, . . . , k} are global state
variables.

Let lit: {0, 1} × PV → FPV be a function defined as follows: lit(0, p) = ¬p and lit(1, p) = p, and
w, v be two global state variables. We define the following propositional formulas:

• Is(w) :=
∧m

i=1 lit(si, w[i]).

This formula encodes the state s = (s1, . . . , sm) of the model, i.e., si = 1 is encoded by w[i], and
si = 0 is encoded by ¬w[i].

4We identify 1 with true and 0 with false.

• p(w) is a formula over w[1], . . . , w[m], which is true for a valuation (s1, . . . , sm) ∈ {0, 1}m of
(w[1], . . . , w[m]) iff p ∈ V((s1, . . . , sm)), where p ∈ PVK .

This formula encodes the proposition p of ECTLpK.

• H(w, v) :=
∧m

i=1 w[i]⇔ v[i].

This formula represents logical equivalence between global state encodings, representing the fact
that they represent the same state.

• Hl(w, v) :=
∧

i∈Dl
w[i]⇔ v[i].

This formula represents logical equivalence between l-local state encodings, representing the fact
that they represent the same local state, i.e., the local state in the two states is the same.

• T (w, v) is a formula over the propositions w[1], . . . , w[m], v[1], . . . , v[m], which is true for a
valuation (s1, . . . , sm) of (w[1], . . . , w[m]) and a valuation (s′1, . . . , s

′
m) of (v[1], . . . , v[m]) iff

((s1, . . . , sm), (s′1, . . . , s
′
m)) ∈ T .

• Lk,j(l) := T (wk,j, wl,j),

This formula encodes a backward loop connecting the k-th state to the l-th state in the symbolic
k−computation j, for 0 ≤ l ≤ k.

The translation of [Mϕ,ι]k, representing the transitions in the k-model is given by the following definition.

Definition 4.4. (Unfolding of Transition Relation)
Let Mk = ((G,W,Pk ,∼1, ...,∼n, ι),V) be the k−model of M, and ϕ be an ECTLpK formula. The
propositional formula [Mϕ,ι]k is defined as follows:

[Mϕ,ι]k := Iι(w0,0) ∧
∧

1≤j≤fk(ϕ)

k−1
∧

i=0

T (wi,j, wi+1,j)

where w0,0, and wi,j for 0 ≤ i ≤ k and 1 ≤ j ≤ fk(ϕ) are global state variables.

[Mϕ,ι]k constrains the fk(ϕ) symbolic k-paths to be valid k-computations in Mk.

The next step of our algorithm is to translate an ECTLpK formula ϕ into a propositional formula.

Definition 4.5. (Translation for BMC)
Let ι be the initial state of the model and [ϕ]

[m,n]
k denote the translation of an ECTLpK formula ϕ at

wm,n to a propositional formula.

[p]
[m,n]
k := p(wm,n),

[¬p]
[m,n]
k := ¬p(wm,n),

[α ∧ β]
[m,n]
k := [α]

[m,n]
k ∧ [β]

[m,n]
k ,

[α ∨ β]
[m,n]
k := [α]

[m,n]
k ∨ [β]

[m,n]
k ,

[EXα]
[m,n]
k :=

∨

1≤i≤fk(ϕ)

(

H(wm,n, w0,i) ∧ [α]
[1,i]
k

)

,

[EGα]
[m,n]
k :=

∨

1≤i≤fk(ϕ)

(

H(wm,n, w0,i) ∧
∨k

l=0 Lk,i(l) ∧
∧k

j=0[α]
[j,i]
k

)

,

[E(αUβ)]
[m,n]
k :=

∨

1≤i≤fk(ϕ)

(

H(wm,n, w0,i) ∧
∨k

j=0

(

[β]
[j,i]
k ∧

∧j−1
t=0 [α]

[t,i]
k

)

)

,

[EYα]
[m,n]
k :=

∨

1≤i≤fk(ϕ)

(

H(wm,n, wk,i) ∧ [α]
[k−1,i]
k

)

,

[EPα]
[m,n]
k :=

∨

1≤i≤fk(ϕ)

(

H(wm,n, wk,i) ∧
∨k

j=0[α]
[j,i]
k

)

,

[Klα]
[m,n]
k :=

∨

1≤i≤fk(ϕ)

(

Iι(w0,i) ∧
∨k

j=0

(

[α]
[j,i]
k ∧ Hl(wm,n, wj,i)

)

)

,

[DΓα]
[m,n]
k :=

∨

1≤i≤fk(ϕ)

(

Iι(w0,i) ∧
∨k

j=0

(

[α]
[j,i]
k ∧

∧

l∈ΓHl(wm,n, wj,i)
)

)

,

[EΓα]
[m,n]
k :=

∨

1≤i≤fk(ϕ)

(

Iι(w0,i) ∧
∨k

j=0

(

[α]
[j,i]
k ∧

∨

l∈ΓHl(wm,n, wj,i)
)

)

,

[CΓα]
[m,n]
k := [

∨

1≤i≤k(EΓ)iα]
[m,n]
k .

Given the translations above, we can now check ϕ over Mk by checking satisfiability of the propo-
sitional formula [Mϕ,ι]k ∧ [ϕ]

[0,0]
k . The translation presented above can be shown to be correct and

complete. The proof is a generalisation of the proof of Theorem 2 of [13] to the past modalities EY and
EP. The reader can easily see that the proof for EYϕ is similar to the EXϕ case, whereas the proof for
EP is similar to the E(trueUϕ) case.

We have all ingredients in place to give the algorithm for bounded model checking for ECTLpK.

Definition 4.6. (BMC algorithm for ECTLpK)
procedure BMC(ϕ,M), where ϕ is an ECTLpK formula

k:==1,

while k ≤ |M|
Translate the transition relation of the k−computations of Mk

into a propositional formula [Mϕ,ι]k;

Translate ϕ over Mk into a propositional formula [ϕ]
[0,0]
k ;

if [M, ϕ]k := [Mϕ,ι]k ∧ [ϕ]
[0,0]
k is satisfiable return (true,Mk);

k:== k + 1;

return false

The algorithm above has been implemented and experimental results appear very encouraging [9].
The problem of the algorithm above is that its range of applicability is limited to ECTLpK formulas.
In MAS this is a limitation as universal formulas to be checked do appear in applications. To solve this
problem we present the method below.

5. Unbounded model checking for CTLpK

In this section we present the method of unbounded model checking (UMC) for verifying the whole
language of CTLpK by means of SAT-translation. The method is an extension to temporal epistemic
logic of the original paper by McMillan [12] that deals with CTL only.

The method of UMC differs from BMC in the encoding of the formulas, while it shares with BMC
the encoding of the states and the transition relation of the model. It exploits the characterisation of
the basic modalities in Quantified Boolean Formulas (QBF) and algorithms that translate QBF and fixed
point equations over QBF to propositional formulas. To present this we first introduce fixed point char-
acterisations for formulas of CTLpK.

5.1. Fixed-point characterisation of CTLpK

In this subsection we show how the set of states satisfying a CTLpK formula can be characterised as a
fixed point of an appropriate function. We adapt definitions given in [4].

Let M = ((G,W, T,∼1, . . . ,∼n, ι),V) be a model. Notice that the set 2G of all subsets of G
forms a lattice under the set inclusion ordering. Each element G′ of the lattice can also be thought of as a
predicate on G, where the predicate is viewed as being true for exactly the states inG ′. The least element
in the lattice is the empty set, which we also refer to as false, and the greatest element in the lattice is
the set G, which we sometimes write as true. A function τ mapping 2G to 2G is called a predicate
transformer. A set G′ ⊆ G is a fixed point of a function τ : 2G → 2G if τ(G′) = G′.

Whenever τ is monotonic, i.e., P ⊆ Q implies τ(P) ⊆ τ(Q), it has the least fixed point de-
noted µZ.τ(Z) and the greatest fixed point denoted νZ.τ(Z). When τ(Z) is also

⋃

-continuous, i.e.,
P1 ⊆ P2 ⊆ . . . implies τ(

⋃

i Pi) =
⋃

i τ(Pi) then µZ.τ(Z) =
⋃

i≥0 τ
i(false). When τ(Z) is also

⋂

-continuous, i.e., P1 ⊇ P2 ⊇ . . . implies τ(
⋂

i Pi) =
⋂

i τ(Pi) then νZ.τ(Z) =
⋂

i≥0 τ
i(true) (see

[15]).
In order to obtain fixed point characterisations of the modal operators, we identify each CTLpK

formula α with the set 〈α〉M of states in M at which this formula is true, formally 〈α〉M = {s ∈ G |
M, s |= α}. If M is known from the context we omit the subscript M. Furthermore, we define functions
AX,AY,EΓ from 2G to 2G as follows:

• AX(Z) = {s ∈ G | for every s′ ∈ G if (s, s′) ∈ T, then s′ ∈ Z},

• AY(Z) = {s ∈ G | for every s′ ∈ G if (s′, s) ∈ T, then s′ ∈ Z},

• EΓ(Z) = {s ∈ G | for every s′ ∈ G if (ι, s′) ∈ T ∗ and s ∼E
Γ s′, then s′ ∈ Z}.

Observe that 〈AXα〉 = AX(〈α〉), 〈AYα〉 = AY(〈α〉), 〈EΓα〉 = EΓ(〈α〉). Then, the following
temporal and epistemic operators may be characterised as the least or the greatest fixed point of an
appropriate monotonic (

⋂

-continuous or
⋃

-continuous) predicate transformer.

• 〈AGα〉 = νZ.〈α〉 ∩AX(Z),

• 〈A(αUβ)〉 = µZ.〈β〉 ∪ (〈α〉 ∩AX(Z)),

• 〈AHα〉 = νZ.〈α〉 ∩AY(Z),

• 〈CΓα〉 = νZ.EΓ(〈α〉 ∩ Z).

The first three equations are standard (see [6], [4],), whereas the fourth one is defined analogously taking
account that ∼C

Γ is the transitive closure of ∼E
Γ .

5.2. The UMC method for CTLpK

We now present the method of UMC for CTLpK. In order to have a more succinct notation for complex
operations on Boolean formulas, we use Quantified Boolean Formulas (QBF), an extension of proposi-
tional logic by means of quantifiers ranging over propositions. In BNF: α ::= p | ¬α | α ∧ α | ∃p.α |
∀p.α. The semantics of the quantifiers is defined as follows:

• ∃p.α iff α(p← true) ∨ α(p← false),

• ∀p.α iff α(p← true) ∧ α(p← false),

where α ∈ QBF, p ∈ PV and α(p← ψ) denotes substitution with the formula ψ of every occurrence of
the variable p in formula α. The notation ∀v.α, where v = (v[1], . . . , v[m]) is a vector of propositional
variables, is used to denote ∀v[1].∀v[2] . . . ∀v[m].α.

We also need formulas in conjunctive normal forms. A formula is in conjunctive normal form (CNF)
if it is a conjunction of zero or more clauses where by a clause we mean a disjunction of zero or more
literals, i.e., propositional variables as well as the negations of these.

Our aim is to translate CTLpK formulas into propositional formulas. Specifically, for a given
CTLpK formula β we compute a corresponding propositional formula [β]M(w) over a global state vari-
able w, which encodes those states of the model M that satisfy the formula. Operationally, we work
outward from the most nested sub-formulas. In other words, to compute [Oα]M(w), where O is a modal-
ity, we work under the assumption of already having computed [α]M(w). The formula [AXα]M(w) is
equivalent to QBF formula ∀v.(T (w, v) ⇒ [α]M(v)). Similar equivalences we can obtain for formulas
AYα,Kiα,DΓα,EΓα. Thus, to calculate the actual translations we use either the fixed point or the QBF
characterisation of CTLpK formulas together with three basic algorithms. The first one, implemented
by the procedure forall [12], is used for formulas Zα such that Z ∈ {AX, AY, Ki, DΓ, EΓ}. This proce-
dure eliminates the universal quantifier from a QBF formula representing a CTLpK formula, and returns
the result in a conjunctive normal form. The second algorithm, implemented by the procedure gfpZ , is
applied to formulas Zα such that Z ∈ {AG,AH, CΓ}. This procedure computes the greatest fixed point.
For formulas of the form A(αUβ) we use the third procedure, called lfpAU , which computes the least
fixed point. In so doing, given a formula β we obtain a propositional formula [β]M(w) such that β is
valid in the model M iff the propositional formula [β]M(w) ∧ Iι(w) is satisfiable, i.e., ι ∈ 〈β〉M. Below,
we formalise the above discussion.

Definition 5.1. (Translation for UMC)
Given a model M and a CTLpK formula φ, the propositional translation [φ]M(w) is inductively defined
as follows:

• [p]M(w) :=
∨

s∈〈p〉 Is(w), for p ∈ PVK,

• [¬α]M(w) := ¬[α]M(w),

• [α ∧ β]M(w) := [α]M(w) ∧ [β]M(w),

• [α ∨ β]M(w) := [α]M(w) ∨ [β]M(w),

• [AXα]M(w) := forall
(

v, (T (w, v) ⇒ [α]M(v))
)

,

• [AYα]M(w) := forall
(

v, (T (v, w) ⇒ [α]M(v))
)

,

• [Kiα]M(w) := forall
(

v, ((Hi(w, v) ∧ ¬ gfpAH(¬Iι(v)))⇒ [α]M(v))
)

,

• [DΓα]M(w) := forall
(

v, ((
∧

i∈ΓHi(w, v) ∧ ¬ gfpAH(¬Iι(v)))⇒ [α]M(v))
)

,

• [EΓα]M(w) := forall
(

v, ((
∨

i∈ΓHi(w, v) ∧ ¬ gfpAH(¬Iι(v)))⇒ [α]M(v))
)

,

• [AGα]M(w) :=gfpAG([α]M(w)),

• [A(αUβ)]M(w) :=lfpAU ([α]M(w), [β]M(w)),

• [AHα]M(w) :=gfpAH([α]M(w)),

• [CΓα]M(w) :=gfpCΓ
([α]M(w)).

The algorithm forall, given a propositional formula α and a set of variables v[1], ..., v[m], constructs
a formula χ equivalent to α and eliminates quantified variables on the fly. It is sufficient since χ is in
conjunctive normal form. The description of this procedure is given below.

procedure forall(v, α), where v = (v[1], ..., v[m]) and α is a propositional formula

let φ = UCNF (α), χ = true, and A = ∅
repeat

if φ contains false, return χ

else if conflict

analyse conflict and backtrack

else if Aφ is total

build a blocking clause c′

remove literals of form v[i] or ¬v[i] from c′

add c′ to φ and χ

else

choose a literal l such that l 6∈ A and ¬l 6∈ A and add l to A

Initially the algorithm assumes an empty assignment A, a formula χ to be true and φ to be a CNF
formula, denoted UCNF (α), which is unsatisfiable if and only if α is valid. The construction ofUCNF (α)
is standard (e.g. see [12]) and we do not give it here. First, the procedure finds a satisfying assignment
for φ. The search of an appropriate assignment is based on the Davis-Putnam-Logemann-Loveland
approach [5] which makes use of two techniques: Boolean constraint propagation (BCP) and conflict-
based learning (CBL). The first builds an assignment Aφ which is an extension of the assignment A and
is implied by A and φ. Next BCP determines the consequence of Aφ. The following three cases may
occur:

1. A conflict exists, i.e., there exists a clause in φ such that all of its literals are false in Aφ. So, the
assignment A can not be extended to a satisfying one. If a conflict is detected the CBL finds the reason
for the conflict and tries to resolve it. Information about the current conflict may be recorded as clauses,
which are then added to the formula φ without changing its satisfiability. The algorithm then backtracks,
i.e., it changes assignment A by withdrawing one of the previous decisions.
2. A conflict does not exist and Aφ is total, i.e., the satisfying assignment is obtained. In this case
we generate a new clause which is false in the current assignment Aφ (i.e., rules out the satisfying
assignment) and whose complement characterises a set of assignments falsifying the formula α. This
clause is called a blocking clause. The construction of this clause is given in [12]. Next the blocking
clause is deprived of the variables either of the form v[i] or the negation of these and then what remains
is added to the formulas φ and χ and the algorithm again tries to find a satisfying assignment for φ.
3. The first two cases do not apply. Then, the procedure makes a new assignment A by giving a value to
a selected variable.
On termination, when φ becomes unsatisfiable, χ is a conjunction of the blocking clauses and precisely
characterises ∀v.α.

Theorem 5.1. Let α be a propositional formula and v = (v[1], . . . , v[m]) be a vector of propositions,
then the QBF formula ∀v.α is logically equivalent to the CNF formula forall(v, α).

The proof of the above theorem follows from the correctness of forall algorithm (see [12]).
The algorithms gfp and lfp are based on the standard procedures computing fixed points.

procedure gfpAG([α]M(w)), where α is an CTLpK formula

let Q(w) = [true]M(w), Z(w) = [α]M(w)
while ¬(Q(w)⇒ Z(w)) is satisfiable

let Q(w) = Z(w),
let Z(w) =forall(v, (T (w, v) ⇒ Z(v))) ∧ [α]M(w)

return Q(w)

The procedure gfpAH is obtained by replacing in the above Z(w) = forall(v, (T (w, v) ⇒ Z(v))) ∧
[α]M(w) with Z(w) = forall(v, (T (v, w)⇒ Z(v))) ∧ [α]M(w). Similarly, the procedure gfpCΓ

is ob-
tained by replacing Z(w) = [α]M(w) with Z(w) = forall

(

v, ((
∨

i∈ΓHi(w, v) ∧¬gfpAH(¬Iι(v)))⇒
[α]M(v))

)

and Z(w) =forall(v, (T (w, v) ⇒Z(v)))∧ [α]M(w) withZ(w) =forall(v, ((
∨

i∈ΓHi(w, v)
∧¬gfpAH(¬Iι(v)))⇒ (Z(v) ∧ [α]M(v)))).

procedure lfpAU ([α]M(w), [β]M(w)),
where α, β are CTLpK formulas

let Q(w) = [false]M(w), Z(w) = [β]M(w)
while ¬(Z(w)⇒ Q(w)) is satisfiable

let Q(w) = Q(w) ∨ Z(w),
let Z(w) =forall(v, (T (w, v) ⇒ Q(v))) ∧ [α]M(w)

return Q(w)

Theorem 5.2. (Correctness of UMC for CTLpK)
Let M be a model and ϕ be a CTLpK formula. Then, M |= ϕ iff [ϕ]M(w) ∧ Iι(w) is satisfiable.

Proof:
[Sketch]

By induction on the length of ϕ. The theorem follows directly for the propositional variables. Next,
assume that the hypothesis holds for all the proper sub-formulas of ϕ. If ϕ is equal to either ¬α, α ∧ β,
or α ∨ β, then it is easy to check that the theorem holds. Consider ϕ to be of the following forms:

• ϕ = Kiα. Then,M, s |= Kiα iff for every state s′ ∈ G if (ι, s′) ∈ T ∗ and s ∼i s
′, then M, s′ |= α.

Intuitively, s satisfies Kiα iff any state s′ which is reachable from the initial state and is in epistemic
relation ∼i with the state s, satisfies α. Assume two global variables w and v representing states
s and s′ respectively. Then, based on the inductive assumption that M, s′ |= α iff [α]M(v) is
true for the valuation (s′1, . . . , s

′
m) of (v[1], . . . , v[m]) and s′ is reachable from the initial state

iff the formula ¬gfpAH(¬Iι(v)) is true for the valuation (s′1, . . . , s
′
m) of (v[1], . . . , v[m]), we

obtain that s satisfies Kiα iff the following QBF formula ∀v.(¬gfpAH(¬Iι(v)) ∧ Hi(w, v) ⇒
[α]M(v)) is true for the valuation (s1, . . . , sm) of (w[1], . . . , w[m]). So, M |= Kiα iff M, ι |=
Kiα iff ∀v.(¬gfpAH (¬Iι(v)) ∧ Hi(w, v) ⇒ [α]M(v)) is true for the valuation (ι1, . . . , ιm) of
(w[1], . . . , w[m]) iff the propositional formula forall(v,¬gfpAH (¬Iι(v)) ∧Hi(w, v)⇒ [α]M(v))
is true for the valuation (ι1, . . . , ιm) of (w[1], . . . , w[m]). The last equivalence follows from
Theorem 5.1. Consequently M, ι |= Kiα iff [Kiα]M(w) is true for the valuation (ι1, . . . , ιm) of
(w[1], . . . , w[m]) iff [Kiα]M(w) ∧ Iι(w) is satisfiable.

• ϕ = AXα | AYα | EΓα | DΓα. The above formulas can be characterised by QBF formulas, so
the proof is analogous to the former case.

• ϕ = AGα | AHα | CΓα | A(αUβ). The proof is based on the fixed point characterisations of the
formulas and correctness of the procedures computing fixed points.

ut

Next, we give an algorithm for unbounded model checking of CTLpK.

Definition 5.2. (UMC algorithm for CTLpK)
procedure UMC (ϕ,M,w), where ϕ be a CTLpK formula, an w be a state variable

Compute the propositional formula [ϕ]M(w);
Compute the propositional formula Iι(w);
if [ϕ]M(w) ∧ Iι(w) is satisfiable return true
else return false

6. Example of Train, Gate and Controller

In this section we exemplify the procedure above by discussing the scenario of the train controller system
(adapted from [17]). The system consists of three agents: two trains (agents 1 and 3), and a controller
(agent 2). The trains, one Eastbound, the other Westbound, run on a circular track. At one point, both
tracks need to go through a narrow tunnel. There is no room for both trains to be in the tunnel at the same

a5

WAIT2

TUNNEL1 TUNNEL2

AWAY1 AWAY2

RED

GREENWAIT1

TRAIN1 TRAIN2CONTROLLER

a1 a4

a2

a3 a6

Figure 1. The local transition structures for the two trains and the controller

time, so the trains must avoid this to happen. There are traffic lights on both sides of the tunnel, which
can either be red or green. Both trains are equipped with a signaller, that they use to send a signal when
they approach the tunnel. The controller can receive signals from both trains, and controls the colour of
the traffic lights. The task of the controller is to ensure that the trains are never both in the tunnel at the
same time. The trains follow the traffic lights signals diligently, i.e., they stop on red.

We can model the example above with an interpreted system as follows. The local states for the
agents are:

• Ltrain1
= {away1, wait1, tunnel1},

• Lcontroller = {red, green},

• Ltrain2
= {away2, wait2, tunnel2}.

The set of possible global states is defined as G = Ltrain1
× Lcontroller × Ltrain2

.
Let ι = (away1, green, away2) be the initial state. We assume that the local states are numbered

in the following way: away1 := 1, wait1 := 2, tunnel1 := 3, red; = 4, green := 5, away2 := 6,
wait2 := 7, tunnel2 := 8 and the agents are numbered as follows: train1 := 1, controller := 2,
train2 := 3. Thus we assume a set of agents A to be the set {1, 2, 3}.

Let Act = {a1, ..., a6} be a set of joint actions. For a ∈ Act we define the preconditions pre(a),
postconditions post(a), and the sets agent(a) containing the numbers of the agents that may change
local states by executing a.

• pre(a1) = {1}, post(a1) = {2}, agent(a1) = {1},

• pre(a2) = {2, 5}, post(a2) = {3, 4}, agent(a2) = {1, 2},

• pre(a3) = {3, 4}, post(a3) = {1, 5}, agent(a3) = {1, 2},

• pre(a4) = {6}, post(a4) = {7}, agent(a4) = {3},

• pre(a5) = {5, 7}, post(a5) = {4, 8}, agent(a5) = {2, 3},

• pre(a6) = {4, 8}, post(a6) = {5, 6}, agent(a6) = {2, 3}.

In our formulas we use the following two propositional variables in−tunnel1 and in−tunnel2 such that
in−tunnel1 ∈ V(s) iff ltrain1

(s) = tunnel1, in−tunnel2 ∈ V(s) iff ltrain2
(s) = tunnel2, for s ∈ G.

We now encode the local states in binary form in order to use them in the model checking technique.
Given that agent train1 can be in 3 different local states we shall need 2 bits to encode its state; in
particular we shall take: (0, 0) = away1, (1, 0) = wait1, (0, 1) = tunnel1. Similarly for the agent
train2: (0, 0) = away2, (1, 0) = wait2, (0, 1) = tunnel2. The modelling of the local states of the
controller requires only one bit: (0) = green, (1) = red. In view of this a global state is modelled by 5
bits. For instance the initial state ι = (away1, green, away2) is represented as a tuple of 5 0’s. Notice
that two first bits of a global state encode local states of agent 1, the third bit encodes local states of agent
2, and two remaining bits encode local states of agent 3. Hence, the sets of labels of bits represented
local states are the following: D1 = {1, 2}, D2 = {3}, D3 = {4, 5}.

Let w = (w[1], ..., w[5]), v = (v[1], ..., v[5]) be two global state variables. We define the following
propositional formulas over w and v:

• Iι(w) :=
∧

j∈D1∪D2∪D3
¬w[j],

this formula encodes the initial state,

• Hl(w, v) :=
∧

j∈Dl
w[j]⇔ v[j], for l = 1, 2, 3,

the formula Hl(w, v) for l = 1, 2, 3, represents logical equivalence between local states of agent l
at two global states represented by variables w and v,

• p1(w) := ¬w[1] ∧ ¬w[2], p2(w) := w[1] ∧ ¬w[2], p3(w) := ¬w[1] ∧ w[2], p4(w) := w[3],
p5(w) := ¬w[3], p6(w) := ¬w[4] ∧ ¬w[5], p7(w) := w[4] ∧ ¬w[5], p8(w) := ¬w[4] ∧ w[5],

the formula pj(w) for j = 1, . . . , 8 encodes the local state j.

For a ∈ Act let Ba :=
⋃

i∈A\agent(a) Di be the set of the labels of the bits that are not changed by the
action a, then

• T (w, v) :=
∨

a∈Act

(
∧

j∈pre(a) pj(w) ∧
∧

j∈post(a) pj(v) ∧
∧

j∈Ba
(w[j]⇔ v[j])

)

∨
(
∧

a∈Act

∨

j∈pre(a) (¬pj(w)) ∧
∧

j∈D1∪D2∪D3
(w[j]⇔ v[j])).

Intuitively, T (w, v) encodes the set of all couples of global states s and s′ represented by variables
w and v respectively, such that s′ is reachable from s, i.e., either there exists a joint action which
is available at s and s′ is the result of execution a at s or there is not such action and s′ equals
s. Notice that the above formula is composed of two parts. The first one encodes the transition
relation of the system whereas the second one adds self-loops to all the states without successors.
This is necessary in order to satisfy the assumption that T is total.

Consider the following two formulas:

• α1 ≡ AG(in−tunnel1 ⇒ Ktrain1
(¬in−tunnel2)) and

• α2 ≡ AG(¬in−tunnel1 ⇒ (¬Ktrain1
in−tunnel2 ∧ ¬Ktrain1

(¬in−tunnel2))).

The first formula expresses that when the agent train1 is in the tunnel, it knows the agent train2 is not in
the tunnel. The second formula expresses that when the agent train1 is away from the tunnel, it does not
know whether or not the agent train2 is in the tunnel. The translations of α1 and α2 into propositional
formulas are the following5:

• [α1]M (w) = true,

• [α2]M (w) = ¬w[1] ∨ ¬w[2].

Since the conjunctions [α1]M (w) ∧ Iι(w) and [α2]M (w) ∧ Iι(w) are satisfiable both formulas are valid
in the model.

Notice that α1 is an ACTLpK formula, so it can be verified using both the methods BMC and UMC,
whereas α2 can be only verified using UMC.

7. Conclusions

Formal methods in multi-agent systems have traditionally been associated with specifications. Recently,
verification of multi-agent systems has become an active area of research. In this paper we have reported
the extension to epistemic notions of two SAT-based techniques, BMC, and UMC, for verification of
reactive systems.

The framework described in the previous sections allows us to verify the temporal epistemic proper-
ties of MAS. In principle, by means of BMC and UMC on CTLpK we can check formulas representing:

• Private and group knowledge of a MAS about a changing world,

• Temporal evolution of knowledge in a MAS,

• Any combination of the above.

Each of the two methods has advantages and disadvantages.

BMC is limited to the verification of properties expressed by existential CTLpK formulas (or the fal-
sification of properties expressed by universal ones). Moreover the method cannot be applied for
checking formulas with “mixed formulas” like, for example, AGKiα or CΓEFα. On the positive
side the verification step can be performed on a part of the model only, which may have critical
influence on the efficiency and feasibility of the approach.

UMC has no restriction on the syntax of formulas to be verified. However, as the encoding of the full
transition relation is used for computing fixed points, the feasibility of this depends on the number
of iterations that are required.

For verifying existential CTLpK properties BMC and UMC can be viewed as two complementary
methods, which should be run in parallel in order to increase the probability of a successful verification.

Our initial investigation looks promising both in terms of possible experimental results, and in terms
of possible extension to other modalities dealing with different informational, motivational, or normative
aspects of multi-agent systems. This is left for further work.

5For simplicity, we show only formulas equivalent to propositional formulas obtained after the execution of the algorithms gfp

and forall.

References

[1] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic model checking without BDDs. In Proc. of the 5th
Int. Conf. on Tools and Algorithms for the Construction and Analysis of Systems (TACAS’99), volume 1579
of LNCS, pages 193–207. Springer-Verlag, 1999.

[2] R. H. Bordini, M. Fisher, C. Pardavila, and M. Wooldridge. Model checking agentspeak. In J. S. Rosenschein,
T. Sandholm, W. Michael, and M. Yokoo, editors, Proceedings of the Second International Joint Conference
on Autonomous Agents and Multi-agent systems (AAMAS-03), pages 409–416. ACM Press, 2003.

[3] E. Clarke, A. Biere, R. Raimi, and Y. Zhu. Bounded model checking using satisfiability solving. Formal
Methods in System Design, 19(1):7–34, 2001.

[4] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. The MIT Press, Cambridge, Massachusetts,
1999.

[5] M. Davis, G. Logemann, and D. Loveland. A machine program for theorem proving. Journal of the ACM,
5(7):394–397, 1962.

[6] E. A. Emerson and E. M. Clarke. Characterizing correctness properties of parallel programs using fixpoints.
In Proc. of the 7th Int. Colloquium on Automata, Languages and Programming (ICALP’80), volume 85 of
LNCS, pages 169–181. Springer-Verlag, 1980.

[7] E. A. Emerson and E. M. Clarke. Using branching-time temporal logic to synthesize synchronization skele-
tons. Science of Computer Programming, 2(3):241–266, 1982.

[8] R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi. Reasoning about Knowledge. MIT Press, Cambridge,
1995.

[9] A. Lomuscio, T. Łasica, and W. Penczek. Bounded model checking for interpreted systems: Preliminary
experimental results. In Proc. of the 2nd NASA Workshop on Formal Approaches to Agent-Based Systems
(FAABS’02), volume 2699 of LNAI, pages 115–125. Springer-Verlag, 2003.

[10] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems. Springer-Verlag, 1992.

[11] K. L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, 1993.

[12] K. L. McMillan. Applying SAT methods in unbounded symbolic model checking. In Proc. of the 14th Int.
Conf. on Computer Aided Verification (CAV’02), volume 2404 of LNCS, pages 250–264. Springer-Verlag,
2002.

[13] W. Penczek and A. Lomuscio. Verifying epistemic properties of multi-agent systems via bounded model
checking. Fundamenta Informaticae, 55(2):167–185, 2003.

[14] W. Penczek, B. Woźna, and A. Zbrzezny. Bounded model checking for the universal fragment of CTL.
Fundamenta Informaticae, 51(1-2):135–156, 2002.

[15] A. Tarski. A lattice-theoretical fixpoint theorem and its applications. Pacific Journal of Mathematics, 5:285–
309, 1955.

[16] W. van der Hoek and M. Wooldridge. Model checking knowledge and time. In Proc. of the 9th Int. SPIN
Workshop (SPIN’02), volume 2318 of LNCS, pages 95–111. Springer-Verlag, 2002.

[17] W. van der Hoek and M. Wooldridge. Tractable multiagent planning for epistemic goals. In Proc. of the
1st Int. Conf. on Autonomous Agents and Multi-Agent Systems (AAMAS’02), volume III, pages 1167–1174.
ACM, July 2002.

[18] R. van der Meyden and H. Shilov. Model checking knowledge and time in systems with perfect re-
call. In Proc. of the 19th Conf. on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS’99), volume 1738 of LNCS, pages 432–445. Springer-Verlag, 1999.

[19] M. Wooldridge. An introduction to multi-agent systems. John Wiley, England, 2002.

