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Abstract. We present TCTLKD, a logic for knowledge, correctness and
real time. TCTLKD is interpreted on real time deontic interpreted sys-
tems, and extension to continuous time of deontic interpreted systems.
We exemplify the use of TCTLKD by discussing a variant of the “railroad
crossing system”.

1 Introduction

Logic has a long tradition in the area of formal theories for multi-agent systems
(MAS). Its role is to provide a precise and unambiguous specification language
to describe, reason about, and predict the behaviour of a system.

While in the early 80’s existing logical formalisms from other areas such
as philosophical logic, concurrency theory, etc., were imported with little of no
modification to the area of MAS, from the late 80’s onwards specific formalisms
have been designed, studied, and tailored to the needs of MAS. Of particular
note is the case of epistemic logic, or the logic of knowledge.

Focus on epistemic logics in MAS began with the use of the modal logic
system S5 developed independently by Hintikka [18] and Aumann [4] in formal
logic and economics respectively. This starting point formed the core basis of a
number of studies that appeared in the past 20 years, including formalisations
of group knowledge [13, 15, 19], combinations of epistemic logic with time[16, 17,
30], auto-epistemic logics [28, 31], epistemic updates [5, 22], broadcast systems
and hypercubes [12, 21], etc. Epistemic logic is no longer a remarkable special
case of a normal modal system, but has now become an area of study on its own
with regular thematic workshops and conferences.

In particular in applications, extensions of epistemic logic to represent also
temporal concepts are particularly useful as this allows to reason about the
temporal evolution of epistemic states, knowledge of a changing world, etc. Tra-
ditionally this is achieved by combining a temporal logic for discrete linear time
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[25–27] with the logic S5 for knowledge on a computationally grounded seman-
tics like interpreted systems [11]. Various classes of MAS (synchronous, asyn-
chronous, perfect recall, no learning, etc) can be identified in this framework,
and axiomatisations have been provided [14, 29]. More recently, combinations of
branching time logic CTL [6, 9, 10] with the epistemic logic S5 have been studied,
and axiomatisation provided [30].

All efforts above have focused on a discrete model of time, either in its linear
or branching versions. While this is useful and adequate in most applications,
certain classes of scenarios (notably robotics and networking) require a model
of time as a continuous flows of events. Indeed, in the area of timed-systems the
modal logic TCTL has been suggested as an adequate formalism to model real
time; axiomatisations and decidability results have been provided [1]. In this pa-
per we propose a logic (which we call TCTLKD) combining the temporal aspects
of TCTL with the epistemic notions defined by S5, as well as the correctness
notion defined in the logic KD45i−j [23].

Traditionally, the semantics of temporal epistemic logic is defined on variants
of interpreted systems to provide an interpretation to the epistemic modalities.
These use the notion of protocol to provide a basis for the action selection mech-
anism of the agents. Since we are working on real time, here we shall use the
finer grained semantics of timed-automata to model the agents’ evolution. We
then synchronise networks of timed-automata to provide a general model of a
MAS.

The rest of the paper is organised as follows. In Section 2 we define the
concept of interpreted systems on real time by taking the parallel composition
of timed-automata. In Section 3 we define the logic TCTLKD as an extension
to real time of the logic for knowledge and correctness as defined in [23, 24]. In
Section 4 we provide a case study analysis to demonstrate its use in applications.
We conclude in Section 5 by discussing related and future work on this subject.

2 Interpreted Systems over Real Time

Interpreted systems are traditionally defined as a set of infinite runs on global
states [11]. In this model each run is a discrete sentence of events. At each global
state, each agent selects an action according to a (possibly non-deterministic)
protocol. In this section we extend (discrete) interpreted systems to real time
interpreted systems in two aspects. First, we specify the agents’ behaviour by a
finer grained semantics: timed automata. Second, by means of parallel compo-
sition of timed automata, we define a class of interpreted systems operating on
real time.

We begin by recalling the concept of timed automata, as introduced in [2].
Timed automata are extensions of finite state automata with constraints on
timing behaviour. The underlying finite state automata are augmented with a
set of real time variables.



2.1 Timed Automata.

Let X be a finite set of real variables, called clocks. The set of clock constraints
over X is defined by the following grammar:

cc := true | x ∼ c | cc ∧ cc,

where x ∈ X , c ∈ IN, and ∼ ∈ {≤, <, =, >,≥}. The set of all the clock constraints

over X is denoted by C(X ). A clock valuation on X is a tuple v ∈ IR
|X |
+ . The

value of the clock x in v is denoted by v(x). For a valuation v and δ ∈ IR+, v + δ

denotes the valuation v′ such that for all x ∈ X , v′(x) = v(x) + δ. Moreover,
let X ∗ be the set X ∪ {x0}, where x0 is a clock whose value is always 0, that
is, its value does not increase with time as the values of the other clocks. Then,
an assignment as is a function from X to X ∗, and the set of all the assignments
over X is denoted by A(X ). By v[as] we denote the valuation v′ such that for
all x ∈ X , if as(x) ∈ X , then v′(x) = v(as(x)), otherwise v′(x) = 0.

Let v ∈ IR
|X |
+ , the satisfaction relation |= for a clock constraint cc ∈ C(X ) is

defined inductively as follows:
v |= true,

v |= (x ∼ c) iff v(x) ∼ c,

v |= (cc ∧ cc′) iff v |= cc and v |= cc′.

For a constraint cc ∈ C(X ), by [[cc]] we denote the set of all the clock valuations

satisfying cc, i.e., [[cc]] = {v ∈ IR
|X |
+ | v |= cc}.

Definition 1 (Timed Automaton). A timed automaton is a tuple TA =
(Z, L, l0,X , E, I), where

– Z is a finite set of actions,
– L is a finite set of locations,
– l0 ∈ L is an initial location,
– X is a finite set of clocks,
– E ⊆ L × Z × C(X ) × A(X ) × L is a transition relation,
– I : L → C(X ) is a function, called a location invariant, which assigns to each

location l ∈ L a clock constraint defining the conditions under which TA can
stay in l.

Each element e of E is denoted by l
a,cc,as
−→ l′, where l is a source location, l′

is a target location, a is an action, cc is the enabling condition for e, and as is
the assignment for e.

In order to reason about systems represented by timed automata, for a set of
propositional variables PV, we define a valuation function VTA : L → 2PV , which
assigns propositions to the locations.

An instantaneous state of a TA is a pair (l, v), where l ∈ L and v ∈ IR
|X |
+ is a

clock valuation. The dense state space of a TA is a structure D(TA) = (Q, q0,→),

where Q = L× IR
|X |
+ is the set of all the instantaneous states, q0 = (l0, v0) with

v0(x) = 0 for all x ∈ X is the initial state, and → ⊆ Q × (Z ∪ IR+) × Q is the
transition relation, defined by action- and time-successors as follows:



– for a ∈ Z, (l, v)
a
→ (l′, v′) iff (∃cc ∈ C(X ))(∃as ∈ A(X )) such that l

a,cc,as
−→ l′ ∈ E,

v ∈ [[cc]],v′ = v[as] and v′ ∈ [[I(l′)]] (action successor),

– for δ ∈ IR+, (l, v)
δ
→ (l, v + δ) iff v + δ ∈ [[I(l)]] (time successor ).

For (l, v) ∈ Q, let (l, v) + δ denote (l, v + δ). A q-run ρ of a TA is a sequence

of instantaneous states: q0
δ0→ q0 + δ0

a0→ q1
δ1→ q1 + δ1

a1→ q2
δ2→ . . ., where

q0 = q ∈ Q, ai ∈ Z and δi ∈ IR+ for each i ≥ 0. A run ρ is said to be progressive
iff Σi∈INδi is unbounded. A TA is progressive if all its runs are progressive. For
simplicity of presentation, we consider only progressive timed automata. Note
that progressiveness can be checked as in [33].

2.2 Parallel Composition of Timed Automata

In general, we will model a multi-agent system by taking several timed automata
running in parallel and communicating with each other. These concurrent timed
automata can be composed into a global timed automaton as follows: the tran-
sitions of the timed automata that do not correspond to a shared action are
interleaved, whereas the transitions labelled with a shared action are synchro-
nised.

There are many different definitions of parallel composition. We use a multi-
way synchronisation, requiring that each component that contains a communi-
cation transition (labelled by a shared action) has to perform this action.

Let TAi = (Zi, Li, l
0
i , Ei,Xi, Ii) be a timed automaton, for i = 1, . . . , m. To

define a parallel composition of m timed automata, we assume that Li ∩Lj = ∅
for all i, j ∈ {1, . . . , m}, and i 6= j. Moreover, by Z(a) = {1 ≤ i ≤ m | a ∈ Zi}
we denote a set of timed automata containing an action a.

Definition 2 (Parallel Composition). The parallel composition of m timed
automata TAi is a timed automaton TA = (Z, L, l0, E, X, I), where Z =

⋃m
i=1 Zi,

L =
∏m

i=1 Li, l0 = (l01, . . . , l
0
m), X =

⋃m
i=1 Xi, I(l1, . . . , lm) =

∧m
i=1 Ii(li), and a

transition ((l1, . . . , lm), a, cc, as, (l′1, . . . , l
′
m)) ∈ E iff (∀i ∈ Z(a)) (li, a, cci, asi, l

′
i) ∈

Ei, cc =
∧

i∈Z(a) cci, as =
⋃

i∈Z(a) asi, and (∀j ∈ {1, . . . , m} \ Z(a)) l′j = lj .

Note that in the above any automaton is allowed to set a value of any clock,
including the ones associated with other agents.

Let PVi be a set of propositional variables containing the symbol true, VTAi
:

Li → 2PVi be a valuation function for the ith automaton, where i ∈ {1, . . . , m},
and PV =

⋃m
i=1 PVi. Then, the valuation function VTA : L → 2PV for the par-

allel composition of m timed automata, is defined as follows VTA((l1, . . . , lm)) =⋃m
i=1 VTAi

(li).

2.3 Real Time Deontic Interpreted System

In line with much literature in multi-agent systems, we use interpreted systems
as a semantics for a temporal epistemic language. For this, we need to adapt
them to work on real time: this is why we take timed automata as the underlying



modelling concept (as opposed to the standard protocols of interpreted systems).
To define real time deontic interpreted systems, we first partition the set of clock
valuations as in [1].

Let TA be a timed automaton, C(TA) ⊆ C(X ) be a non-empty set containing
all the clock constrains occurring in any enabling condition used in the transi-
tion relation E or in a state invariant of TA. Moreover, let cmax be the largest
constant appearing in C(TA). For σ ∈ IR, frac(σ) denotes the fractional part of
σ, and bσc denotes its integral part.

Definition 3 (Equivalence of clock valuations). For two clock valuations
v and v′ in IRn

+,we say that v ' v′ iff for all x, y ∈ X the following conditions
are met:

1. v(x) > cmax iff v′(x) > cmax;
2. if v(x) ≤ cmax and v(y) ≤ cmax then

a.) bv(x)c = bv′(x)c,
b.) frac(v(x)) = 0 iff frac(v′(x)) = 0, and
c.) frac(v(x)) ≤ frac(v(y)) iff frac(v′(x)) ≤ frac(v′(y)).

The equivalence classes of the relation ' are called zones, and denoted by Z,
Z ′ and so on.

Now we are ready to define a Real Time Deontic Interpreted System, which
will be for the logic presented in the next section semantics.

Let AG be a set of m agents, where each agent is modelled by a timed
automaton TAi = (Zi, Li, l

0
i , Ei,Xi, Ii), for i ∈ {1, . . . , m}. Moreover, assume, in

line with [23, 24], that for every agent, its set Li of local locations is partitioned
into “allowed”, denoted by Gi, and “disallowed” locations, denoted by Ri and
defined by Ri = Li \ Gi. We shall call these locations green and red respectively.
Further, assume that the parallel composition TA = (Z, L, l0, E, X, I) of all the
agents is given1, and that li : Q → Li is a function that returns the location
of agent i from a global state. Then, a real time deontic interpreted system is
defined as follows.

Definition 4 (Real Time Deontic Interpreted System). A real time de-
ontic interpreted system is a tuple Mc = (D(TA),∼K

1 , . . . ,∼K
m, RO

1 , . . . , RO
m,Vc),

where

– D(TA) is a dense state space for TA.
– ∼K

i ⊆ Q×Q is a relation defined by (l, v) ∼K
i (l′, v′) iff li((l, v)) = li((l

′, v′))
and v ' v′, for each agent i. Obviously ∼K

i is an equivalence relation.
– RO

i ⊆ Q × Q is a relation defined by (l, v)RO
i (l′, v′) iff li((l

′, v′)) ∈ Gi, for
each agent i.

– Vc : Q → 2PV is a valuation function that extends VTA as follows Vc((l, v)) =
VTA(l), i.e., Vc assigns the same propositions to the states with the same
locations.

1 Note that the set L, which defines all the possible global locations, is defined as the
Cartesian product L1 × . . . × Lm, such that L1 ⊇ G1, . . . , Lm ⊇ Gm.



3 The Logic TCTLKD

In this section, we formally present the syntax and semantics of a real time
computation tree logic for knowledge and correctness (TCTLKD), which extends
the standard TCTL [1], the logic for real time, by means of modal operators for
knowledge and correctness.

The language generalises classical propositional logic, and thus it contains the
standard propositional connectives ¬ (not) and ∨ (or); the remaining connectives
(∧ (and), → (implies), ↔ (if, and only if)) are assumed to be introduced as
abbreviations in the usual way. With respect to real time temporal connectives,
we take as primitives UI (for “until within interval I”), and GI (for “always
within interval I”); the remaining operators (FI (for “eventually within interval
I”) and RI (for “release within interval I”)) are assumed to be introduced as
abbreviations in the usual way. The language also contains two path quantifiers:
A (for “for all the runs”) and E (for “there exists a run”). Further, we assume
a set AG of m agents, and we use the indexed modalities Ki, Oi, and K̂j

i to
represent the knowledge of agent i, the correct functioning circumstances of
agent i, and the knowledge of agent i under assumption of correct functioning
of agent j, respectively. Furthermore, we use the indexed modalities DΓ , CΓ to
represent distributed and common knowledge in a group of agents Γ ⊆ AG, and
we use the operator EΓ to represent the concept “everybody in Γ knows”.

3.1 Syntax of TCTLKD

We assume a set PV of propositional variables, and a finite set AG of m agents.
Furthermore, let I be an interval in IR+ with integer bounds of the form [n, n′],
[n, n′), (n, n′], (n, n′), (n,∞), and [n,∞), for n, n′ ∈ IN. The set of TCTLKD
formulas is defined inductively as follows:

• every member p of PV is a formula,
• if α and β are formulas, then so are ¬α, α ∨ β, EGIα, and E(αUIβ),
• if α is formula, then so are Kiα, K̂j

iα, and Oiα, for i, j ∈ AG,
• if α is formula, then so are DΓ α, CΓ α, and EΓ α, for Γ ⊆ AG.

The other basic temporal, epistemic,and correctness modalities are defined
as follows:

• EFIϕ
def
= E(trueUIϕ),

• AFIϕ
def
= ¬EGI(¬ϕ),

• AGIϕ
def
= ¬EFI(¬ϕ),

• A(αUIβ)
def
= ¬E(¬βUI (¬β ∧ ¬α)) ∧ ¬EGI(¬β),

• A(αRIβ)
def
= ¬E(¬αUI¬β),

• E(αRIβ)
def
= ¬A(¬αUI¬β),

• Kiα
def
= ¬Ki¬α, Oiα

def
= ¬Oi¬α, K̂j

iα
def
= ¬K̂j

i¬α,

• DΓ α
def
= ¬DΓ¬α, CΓ α

def
= ¬CΓ¬α, EΓ α

def
= ¬EΓ¬α.



3.2 Semantics of TCTLKD

Let AG be a set of m agents, where each agent is modelled by a timed automaton
TAi = (Zi, Li, l

0
i , Ei,Xi, Ii), for i = {1, . . . , m}, TA = (Z, L, l0, E, X, I) be their

parallel composition, and Mc = (Q, q0,→,∼K
1 , . . . ,∼K

m, RO
1 , . . . , RO

m,Vc) be a

real time deontic interpreted system. Moreover, let ρ = q0
δ0→ q0 + δ0

a0→ q1
δ1→

q1 + δ1
a1→ q2

δ2→ . . . be a run of TA such that δi > 0 for i ∈ IN, and let fTA(q)
denote the set of all such q-runs of TA. In order to give a semantics to TCTLKD,
we introduce the notation of a dense path πρ corresponding to run ρ. A dense
path πρ corresponding to ρ is a mapping from IR to a set of states such that
πρ(r) = si + δ for r = Σi

j=0δj + δ with i ≥ 0 and 0 ≤ δ < δi. Moreover, as

usual, we define the following epistemic relations: ∼E
Γ =

⋃
i∈Γ ∼i, ∼C

Γ = (∼E
Γ )+

(the transitive closure of ∼E
Γ ), and ∼D

Γ =
⋂

i∈Γ ∼i, where Γ ⊆ AG.

Definition 5 (Satisfaction of TCTLKD).
Let Mc, q |= α denote that α is true at state s in the model Mc. Mc is omitted,

if it is implicitly understood. The relation |= is defined inductively as follows:

q0 |= p iff p ∈ Vc(q0),
q0 |= ¬ϕ iff q0 6|= ϕ,
q0 |= ϕ ∨ ψ iff q0 |= ϕ or q0 |= ψ,
q0 |= ϕ ∧ ψ iff q0 |= ϕ and q0 |= ψ,

q0 |= E(ϕUIψ) iff (∃ ρ ∈ fTA(q0))(∃r ∈ I)
h

πρ(r) |= ψ and (∀r′ < r) πρ(r
′) |= ϕ

i

,

q0 |= EGIϕ) iff (∃ ρ ∈ fTA(q0))(∀r ∈ I) πρ(r) |= ϕ,
q0 |= Kiα iff (∀q′ ∈ Q)((q0 ∼K

i q′) implies q′ |= α),
q0 |= Oiα iff (∀q′ ∈ Q)(q0R

O
i q

′) implies q′ |= α),

q0 |= K̂j
iα iff (∀q′ ∈ Q)((q0 ∼K

i q′ and q0R
O
j q′) implies q′ |= α),

q0 |= DΓα iff (∀q′ ∈ Q)((q0 ∼D
Γ q′) implies q′ |= α),

q0 |= EΓα iff (∀q′ ∈ Q)((q0 ∼E
Γ q′) implies q′ |= α),

q0 |= CΓα iff (∀q′ ∈ Q)((q0 ∼C
Γ q′) implies q′ |= α).

Intuitively, the formula E(αUIβ) holds at a state q0 in a real time deontic
interpreted system Mc if there exists a run starting at q0 such that β holds in
some state in time interval I , and until then α always holds. The formula EGIα

holds at a state q0 in a real time deontic interpreted system Mc if there exists a
run starting at q0 such that α holds in all the states on the run in time interval
I . The formula Kiα holds at state q0 in a real time deontic interpreted system
Mc if α holds at all the states that are indistinguishable for agent i from q0. The
formula Oiα holds at state q0 in a real time deontic interpreted system Mc if α

holds at all the states where agent i is functioning correctly. The formula K̂j
i α

holds at state q0 in a real time deontic interpreted system Mc if α holds at all
the states that agent i is unable to distinguish from the actual state q0, and in
which agent j is functioning correctly. The formula EΓ α holds at state q0 in a
real time deontic interpreted system Mc if α is true in all the states that the
group Γ of agents is unable to distinguish from the actual state q0. Note that
EΓ α can be defined by

∧
i∈Γ Kiα. The formula CΓ α is equivalent to the infinite



conjunction of the formulas Ek
Γ α for k ≥ 1. So, CΓ α holds at state q0 in a real

time deontic interpreted system Mc if everyone knows α holds at q0, everyone
knows that everyone knows α holds at q0, etc. The formula DΓ α holds at state
q0 in a real time deontic interpreted system Mc if the “combined” knowledge
of all the agents in Γ implies α. We refer to [1, 11, 23] for more details on the
operators above.

A TCTLKD formula ϕ is satisfiable if there exists a real time deontic in-
terpreted system Mc = (Q, q0,→, ∼K

1 , . . . ,∼K
m, RO

1 , . . . , RO
m,Vc) and a state q

of Mc, such that Mc, q |= ϕ. A TCTLKD formula ϕ is valid in Mc (denoted
Mc |= ϕ) if Mc, q

0 |= ϕ, i.e., ϕ is true at the initial state of the model Mc.
Note that the “full” logic of real time (TCTL) is undecidable [1]. Since real

time deontic interpreted systems can be shown to be as expressive as the seman-
tics in [1], and the fusion [7] between TCTL, S5 for knowledge [11], and KD45i−j

for the deontic dimension [23] is a proper extension of TCTL, it follows that
problem of satisfiability for the TCTLKD logic will be also undecidable. Still,
it is easy to observe that given a TCTLKD formula ϕ and a real time deontic
interpreted system Mc, the problem of deciding whether Mc |= ϕ is decidable.
This result is our motivation for introducing TCTLKD. We are not interested
in using the whole class of real time deontic interpreted systems, but only to
study particular examples by means of this logic. We exemplify this in the next
section.

4 Applications

One of the motivations for developing the formalism presented in this paper is
that we would like to be able to analyse what epistemic and temporal properties
hold, when agents follow or violate their specifications while operating on real
time.

As an example of this we discuss the Railroad Crossing System (RCS) [20],
a well-known example in the literature of real-time verification. Here we analyse
the scenario not only by means of temporal operators but also by means of
epistemic and correctness modalities. The system consists of three agents: Train,
Gate, and Controller running in parallel and synchronising through the events:
“approach”, “exit”, “lower”, and “raise”.

Let us start by considering what we call the correct RCS, as modelled by
timed automata (Figure 1). The correct RCS operates as follows. When Train
approaches the crossing, it sends an approach signal to Controller, and enters the
crossing between 300 and 500 seconds from this event. When Train leaves the
crossing, it sends an exit signal to Controller. Controller sends a signal lower to
Gate exactly 100 seconds after the approach signal is received, and sends a raise
signal within 100 seconds after exit. Gate performs the transition down within
100 seconds of receiving the request lower, and responds to raise by moving up
between 100 and 200 seconds.

Assume the following set of propositional variables: PV = {p, q, r, s}. The
proposition p represents the fact that an approach signal was sent by Train,
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Fig. 1. Agents Train, Gate, and Controller for the correct RCS system.

q that Train is on the cross, r that Gate is down, and s that Controller sent
the signal lower to Gate. A real time deontic interpreted system MRCS can be
associated with the correct RCS as follows. For the sets L1 = {t0, t1, t2, t3},
L2 = {g0, g1, g2, g3}, and L3 = {c0, c1, c2, c3} of locations for Train, Gate, and
Controller respectively, the set of “green” locations and the dense state space
for RCS are defined by G1 = L1, G2 = L2, G3 = L3, and D(RCS) = L1 ×L2 ×
L3 × R3, respectively. The valuation functions for Train (VTrain : L1 → 2PV),
Gate (VGate : L2 → 2PV), and Controller (VCont : L3 → 2PV) are defined as
follows:

– VTrain(t1) = {p}, VTrain(t2) = {q}, and VTrain(t0) = VTrain(t3) = ∅.
– VGate(g2) = {r}, and VGate(g0) = VGate(g1) = VGate(g3) = ∅.
– VCont(c2) = {s}, and VCont(c0) = VCont(c1) = VCont(c3) = ∅.

The valuation function VRCS : L1×L2×L3 → 2PV , for the RCS system, is built
as follows: VRCS(l) = VTrain(l1) ∪ VGate(l2) ∪ VCont(l3), for all l = (l1, l2, l3) ∈
L1×L2×L3. Thus, according to the definition of the real time deontic interpreted
system, the valuation function VMRCS

: L1 × L2 × L3 × R3 → 2PV of MRCS is
defined by VMRCS

(l, v) = VRCS(l).
Using the TCTLKD logic, we can specify properties of the correct RCS sys-

tem that cannot be specified by standard propositional temporal epistemic logic.
For example, we consider the following:

AG[0,∞](p → KController(AF[300,∞]q)) (1)

AG[0,∞]KTrain(p → AF[0,200]r) (2)

KController(s → AF[0,100]r) (3)

Formula (1) states that forever in the future if an approach signal is sent by
agent Train, then agent Controller knows that in some point after 300 seconds
later Train will enter the cross. Formula (2) states that forever in the future agent
Train knows that, if it sends an approach signal, then agent Gate will send the
signal down within 200 seconds. Formula (3) states that agent Controller knows
that if it sends an lower signal, then agent Gate will send the signal down within
100 seconds.



All the formulas above can be shown to hold on MRCS on the initial state.
We can also check that the following properties do not hold on MRCS .

AG[0,∞](p → KController(AF[0,300]q)) (4)

KTrain(AG[0,∞)EF[10,90]s) (5)

KController(s → AF[0,50]r) (6)

Formula (4) states that forever in the future if an approach signal is sent
by agent Train, then agent Controller knows that at some point in the future
within 300 seconds Train will enter the crossing. Formula (5) states that agent
Train knows that always in the future it is possible that within interval [10, 90]
the gate will be down. Formula (6) states that agent Controller knows that if
it sends the lower signal, then agent Gate will send the signal down within 50
seconds.

Let us now consider a variant of the RCS system described above, and let us
assume that agent Controller is faulty. Let us assume that because of a fault the
signal lower may not be sent in the specified interval, and the transition to the
faulty state c2 my be triggered. We are allowing for Controller to recover from
the fault once in c2 by means of the action lower (see Figure 2).
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Fig. 2. Agents Train, Gate, and Controller for the faulty RCS system.

We examine the scenario by considering the following set of propositional
variables: PV = {p, q, r, s, crash}. The propositions p, q, r, and, s have the same
meaning as in the case of the correct RCS system; the proposition crash rep-
resents the fact that Train is on the cross and Gate is still open. A real time
deontic interpreted system MRCS can be associated with the faulty RCS system
as follows2.

For the sets L1 = {t0, t1, t2, t3}, L2 = {g0, g1, g2, g3}, and L3 = {c0, c1, c2, c3,

c2, crash} of locations for Train, Gate, and Controller, the set of “green” loca-
tions are defined by G1 = L1, G2 = L2, G3 = {c0, c1, c2, c3}, respectively. The

2 Note that the names of the mathematical objects we use to represent the faulty RCS
are the same as the ones employed previously for the correct RCS. Given that these
appear in different contexts we trust no confusion arises.



dense state space for RCS is defined by D(RCS) = L1 × L2 × L3 × R3. The
valuation functions for Train (VTrain), Gate (VGate), and Controller (VCont) are
defined as follows:

– VTrain : L1 → 2PV , and VTrain(t1) = {p}, VTrain(t2) = {q}, and VTrain(t0) =
VTrain(t3) = ∅.

– VGate : L2 → 2PV , and VGate(g0) = VGate(g1) = VGate(g3) = ∅, and
VGate(g2) = {r}.

– VCont : L3 → 2PV , and VCont(c0) = VCont(c1) = VCont(c3) = VCont(c2) = ∅,
VCont(c2) = {s}, and VCont(crash) = {crash}.

The valuation functions VRCS : L1 × L2 × L3 → 2PV , and VMRCS
: L1 × L2 ×

L3 ×R3 → 2PV are defined in the same way as in the correct version of the RCS
system.

Using TCTLKD, we can specify the following properties of the faulty RCS
system. These can be checked to hold on the real time deontic interpreted system
for the faulty RCS.

AG[0,∞]KTrainOController(p → AF[0,200]r) (7)

KTrainOController(p → AF[0,200]r) (8)

K̂Controller
Train (p → AF[0,200]r) (9)

AG[0,∞]KTrainOController(¬crash) (10)

AG[0,∞]K̂
Controller
Train (¬crash) (11)

AG[0,∞]K̂
Controller
Train (p → AF[0,100]s) (12)

Formula (7) states that forever in the future agent Train knows that whenever
agent Controller is functioning correctly, if Train sends the approach signal, then
agent Gate will send the signal down within 200 seconds. Formula (8) states that
agent Train knows that whenever agent Controller is functioning correctly, if the
approach signal was sent by Train, then at some point in the future, within 200
second, Gate will be down. Formula (9) states that agent Train knows that under
the assumption of agent Controller functioning correctly, if the approach signal
was sent by Train, then at some point in the future, within 200 second, Gate
will be down. Formula (10) states that always in the future agent Train knows
that whenever agent Controller is functioning correctly under no circumstances
there will be a situation in which Train is on the crossing and Gate is open.
Formula (11) states that always in the future agent Train knows that under the
assumption of agent Controller functioning correctly, under no circumstances
there will be a situation in which Train is on the crossing and Gate is open.
Formula (12) states that always in the future agent Train knows that under the
assumption of agent Controller functioning correctly, if the approach signal was
sent by Train, then at some point in the future, within 100 second, the signal
lower will be sent by Controller.

The following formulas can be checked not to hold on the faulty RCS.

KTrain(p → AF[0,200]r) (13)



AG[0,∞]KTrain(¬crash) (14)

AG[0,∞]KTrain(p → AF[0,100]s) (15)

The formula (13) states that agent Train knows that, if it sends the approach
signal, then at some point in the future, within 200 second, Gate will be down.
The formula (14) states that always in the future agent Train knows that under
no circumstances there will be a situation where Train is on the cross and Gate
is open. The formula (15) states that always in the future agent Train knows
that, if it sends the approach signal, then at some point in the future, within 100
second, the signal lower will be sent by Controller.

5 Conclusions

In the paper we have proposed TCTLKD, a real time logic for knowledge and
correctness. TCTLKD is a fusion of three well known logics: TCTL for real time
[1], S5 for knowledge [11], and KD45i−j for the correctness dimension [23].

Previous attempts of combinations of real time and knowledge have included
[3, 8, 32]. In [3] a technique for determining the temporal validity of shared data
in real-time distributed systems is proposed. The approach is based on a language
consisting of Boolean, epistemic, dynamic, and real-time temporal operators, but
the semantics for these is not defined. In [8] a fusion of the branching time tem-
poral logic (CTL) and the standard epistemic logic is presented. The semantics
of the logic is given over an interpreted system defined like in [11] with the differ-
ence of using runs defined from real numbers. This language is used to establish
sound and complete termination conditions for motion planning of robots, given
initial and goal states. [32] presents a framework for knowledge-based analysis
of clocks synchronisation in systems with real-time constraints. In that work a
relation of timed precedence as a generalisation of previous work by Lamport’s
is defined, and it is shown how (inherent) knowledge about timed precedences
can be applied to synchronise clocks optimally. Like in [8], the semantics consists
of runs that are functions over the real time. The epistemic relations defined in
this work assume that agents have perfect recall.

Our paper differs from the approaches above by considering quantitative
temporal operators such as EF[0,10] (meaning “possibly within 10 time units”),
rather than qualitative operators EF (meaning “possibly in the future”, but with
no bound), and by not forcing the agents to have perfect recall. In addition, the
logic TCTLKD also incorporates a notion of correctness of execution with respect
to specifications, a concept not tackled in previous works, and associates a set of
clocks to every agent not just to the system as a whole. While the satisfiability
problem for TCTLKD is undecidable, the TCTLKD model checking problem,
i.e., the problem of validity in a given model, is decidable. Given this, it seems
worthwhile to develop model checking methods for TCTLKD.
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