
Bounded Model Checking for Deontic

Interpreted Systems ?

Bożena Woźna1 and Alessio Lomuscio1 and Wojciech Penczek2

1 Department of Computer Science
King’s College London

Strand, London WC2R 2LS,UK
email: {bozena,alessio}@dcs.kcl.ac.uk

2 Wojciech Penczek
Institute of Computer Science, PAS

email: penczek@ipipan.waw.pl

Abstract. We propose a framework for the verification of specifica-
tion in multiagent systems by symbolic model checking. The language
CTLKD (an extension of CTL) allows for the representation of the tem-
poral evolution of epistemic states of the agents, as well as their cor-
rect and incorrect functioning behaviour. We ground our analysis on the
semantics of deontic interpreted systems. The verification approach is
based on an adaption of the technique of bounded model checking, a
mainstream approach in verification of reactive systems. We test our re-
sults on a typical communication scenario: the bit transmission problem
with faults.

1 Introduction

The task of software engineers is to design and deploy a computer system that
meets a particular set of specifications. This is by no means a trivial task. Only in
the past few months the problems with nasa’s and esa’s Mars exploration mis-
sions have made news showing how many unforeseen glitches even a thoroughly-
designed distributed system may encounter. In mission-critical software as well
as in particularly sensitive applications such as Internet protocols, the worldwide
electronic banking system, etc., software engineers are interested in analysing the
properties of software, and in particular in checking whether particular condi-
tions, from the basic ones of deadlock to more complex ones, hold for a particular
system.

The area of multiagent systems is also interested in a similar set of prob-
lems. Multiagent systems [15] are distributed systems in which the individual
processes, or agents, are autonomous entities that engage in social activities such
as coordination, negotiation, cooperation, etc. Since multiagent systems are au-
tonomous and social, their range of possible behaviours is even greater than the

? The authors acknowledge support from EPSRC (grant GR/S49353), and the Nuffield
Foundation (grant NAL/690/G).

one of traditional distributed systems. It follows from this that the issue of ver-
ification of the properties a system satisfies is just as important in multiagent
systems.

Software validation, i.e., the process of certifying that a piece of software sat-
isfies certain characteristics, is currently conducted by means of three main tech-
niques: testing, theorem proving, and model checking. Testing involves searching
the state-space of the possible inputs of a program looking for potentially prob-
lematic outputs. Theorem proving techniques are based on the representation
of a program by means of a system of formal logic; in its simplest instance,
checking whether a property is satisfied amounts to checking whether a formula
is a theorem of the logic that represents the program. Model checking [4] in
its mainstream approach involves representing all possible computational traces
of the program by means of a temporal model (appropriately represented) and
checking whether or not a temporal formula, representing the property to be
verified, holds in this model.

Software validation has in other words an intrinsic “deontic connotation”. It
amounts to checking whether the system under consideration behaves as it is
prescribed by its specification. But it should be noted that, in this approach,
this is a property that is external from the logical system. One could say, the
correct functioning behaviour of the system is a metalogical property of the logic
system representing the program. Differently from what happens in deontic logic,
deontic concepts here are not explicitly used in the logic to represent the system,
but they are built into the procedures that operate on the logic used to check
the system.

Although a range of systems have been verified by means of standard veri-
fication techniques, multiagent systems applications call for a refined approach.
Consider for example a number of automatic agents bidding for goods on an
electronic auction. There may be rules as to how these agents may conduct their
bidding, but it is often unfeasible and/or counterproductive to have many of
these rules hard-wired in the auction protocol itself. As designers of the auction
we may consider it beneficial that agents do not bid several times a second on the
same good not to have resulting denial-of-service problems at server-level, but it
seems difficult to enforce this when the agents are programmed by a variety of
software houses on which we have no control. Other examples from traditional
federated databases to more recent fault-control modules in mission-critical soft-
ware point to similar conclusions: it is important to reason about the properties
that hold in a system when the programs are functioning following their spec-
ification but also (and occasionally even more importantly) even they do not.
In other words not only we would like to check whether a system satisfies its
specification, but also we would like to derive the consequences resulting from
the system not behaving as intended. Different deontic logics have been used to
bring to the logical object level the distinction between correct (or ideal, norma-
tive, etc.) and incorrect states. In this paper we would like to take these ideas one
step further and provide a technique by means of which we can not not specify

2

but also automatically verify properties expressing compliance of a multiagent
system with respect to specifications.

To carry out this analysis we use the formal machinery of verification by
model checking, and in particular the one of Bounded Model Checking via SAT
transformation [3]. In verification by model checking one typically describes a
system S by means of a program in a language such as smv [12]. This descrip-
tion is then supplied to the model checker which produces the (appropriately
encoded) temporal model MS representing all the possible executions of system
S. To check whether a property P is satisfied in S one checks whether the tem-
poral model MS satisfies a formula φP representing P , i.e., MS |= φP . The key
problem in this approach is to manage the representation of the resulting model
MS . One of the techniques available to keep the approach feasible is bounded
model checking. This technique focuses on the attempt to discover faults in the
specification of the system. Rather than checking the whole state space for the
verification of the property, in bounded model checking one checks whether the
negation of the property is actually satisfied on a fraction of the model, thereby
producing a counterexample. Furthermore, the actual check is translated into a
standard propositional satisfiability problem by computing appropriate transla-
tion into propositional formulas representing both the truncated model and the
formula to be checked. By means of this approach subtle bugs in protocols for
reactive systems have been discovered. We refer to [1, 3, 5, 14] for more details.

While in reactive systems it is enough to model a system by means of a purely
temporal language, multiagent systems are defined following what is often re-
ferred to as the “intentional stance” [6]. In other words it is useful to describe
autonomous agents in terms of their knowledge, belief, intentions, social context,
etc. This implies that the model checking problem for multiagent systems can-
not simply be stated as one on temporal logic but that richer formalisms need
being used. In past research we have provided a model checking algorithm for a
branching time temporal-epistemic logic (CTLK) [13]. In this paper we extend
this work by providing a bounded model checking algorithm for a logic that
comprises knowledge and a deontic component representing correct functioning
behaviour of the system.

The paper is organised as follows. In Section 2, we fix the notation on the
semantics of deontic interpreted systems. In Section 3 we present the language
of CTLKD, an extension of CTLK, representing correct/incorrect functioning
behaviour of the agents. In Section 4 we present a bounded semantics definition
for satisfaction that we use in Section 5 to define the algorithm of bounded
model checking. In Section 6 we apply the formalism to an example close to the
multiagent systems literature: the bit transmission problem with faults.

2 Deontic Interpreted Systems

In this section we introduce deontic interpreted systems. These were defined in
[10] to represent and reason about correct functioning behaviour of multiagent
systems. They provide a semantics based on the computation states of the agents,

3

on which it is possible to interpret a deontic modality Oiφ, representing the fact
“in all correct functioning executions of agent i, φ holds”, as well as a traditional
epistemic modality Kiφ representing knowledge of φ by agent i, and standard
branching time temporal operators3. An axiomatisation of deontic interpreted
systems has been provided for the non-temporal fragment of the language; we
refer the interested reader to [11] for more details.

The following is reported to fix the notation only; more details can be found
in [10, 13]. Let PV be a set of propositional variables and A = {1, 2, . . . , n} be
a set of agents. Consider n non-empty sets L1, . . . , Ln of local states, one for
each agent of the system, and a set Le of local states for the environment. For
each agent i ∈ A, consider a set of possible action Acti and a set of protocols
Pi : Li → 2Acti representing the functioning behaviour of every agent, and
consider a function Pe : Le → 2Acte for the environment.

Further assume that for every agent, its set of local states can be divided into
allowed and disallowed states. We call these states green and red respectively. For
n agents and n+1 mutually disjoint and non-empty sets G1, . . . ,Gn,Ge we define
the set of all possible global states (S) as the Cartesian Product L1×. . .×Ln×Le,
such that L1 ⊇ G1, . . . , Ln ⊇ Gn, Le ⊇ Ge. Ge is called the set of green states
for the environment, and for any agent i, Gi is called the set of green states for
agent i. The complement of Ge with respect to Le (denoted by Re) is called the
set of red states for the environment, and respectively the complement Gi with
respect to Li (denoted by Ri) is called the set of red states for the agent i.

We can model the computation taking place in the system by means of a
transition function t : S×Act→ S, where Act ⊆ Act1× . . .×Actn×Acte is the
set of joint actions. Intuitively, given an initial state ι ∈ S, the sets of protocols,
and the transition function, we can build a (possibly infinite) structure that
represents all the possible computations of the system. Indeed, we will deal with
the systems, in which the state space consists of reachable global states only.
A state s ∈ S is reachable if there is a sequence of states (s0, . . . , sn) such that
s0, . . . , sn ∈ S, s0 = ι, sn = s, and for all i ∈ {0, . . . , n − 1} there exists an
action acti ∈ Act such that t(si, acti) = si+1, i.e., si+1 is the result of applying
the transition function t to the global state si, and a joint action acti. If each of
the components of acti is prescribed by the corresponding protocol Pj at lj(si),
for j ∈ A, then the resulting state will only contain green local states, otherwise
it may contain some red local states. For further considerations on this see [10].
In the following we abstract from the transition function, the actions, and the
protocols, and simply use the relation T , but it should be clear that this is
uniquely determined by the interpreted system under consideration.

Let li : S → Li be a function which returns the local state of agent i from a
global state. A deontic interperted system is defined as follows:

Definition 1. Given a set of agents A = {1, . . . , n}, the corresponding green
and red states, protocols, and transition function, a deontic interperted system
(or simply a model) is a tuple M = (DS, ι, T, RO

1 , . . . , R
O
n , R

K
1 , . . . , R

K
n ,V) where

3 Temporal operators were not actually used in [10] but this is a straightforward
extension.

4

– DS ⊆ S is a finite set of reachable global states for A,
– ι is an initial state,
– T ⊆ DS ×DS is a serial binary relation on DS (i.e., each state has at least

one T -successor),
– RO

i ⊆ DS × DS is a relation for each agent i ∈ A defined by: sRO
i s

′ iff
li(s

′) ∈ Gi
4,

– RK
i ⊆ DS × DS is a relation for each agent i ∈ A defined by: sRK

i s
′ iff

li(s
′) = li(s),

– V : DS −→ 2PV is a valuation function such that true ∈ V(s) for all s ∈ DS.
V assigns to each state a set of proposition variables that are assumed to be
true at that state.

By |M | we denote the number of states of M , whereas IN = {0, 1, 2, . . .}
indicates the set of natural numbers, and IN+ = {1, 2, . . .} the set of positive
natural numbers.

A computation inM is an infinite sequence π = (s0, s1, . . .) of states such that
(si, si+1) ∈ T for each i ∈ IN. For a computation π = (s0, s1, . . .), let π(k) = sk,
and πk = (s0, . . . , sk), for each k ∈ IN. In the rest of the paper we shall call πk a
k-computation. Moreover, a k−computation πk is a (k,l)-loop if (πk(k), πk(l)) ∈ T
for some 0 ≤ l ≤ k. We call πk simply a loop if there is an l ∈ IN with l ≤ k for
which πk is a (k,l)-loop. ByΠ(s) we denote the set of all the infinite computations
starting at s ∈M , whereas by Πk(s) the set of all the k−computations starting
at s.

3 The logic CTLKD

Here we fix syntax and semantics for CTLKD, an extension of CTL [7], intro-
duced by Emerson and Clarke, enriched with modal operators representing cor-
rect functioning behaviour, and standard epistemic operators [8]. The bounded
model checking problem of the temporal epistemic fragment of the language was
analysed in [13]

Definition 2 (Syntax of CTLKD). Let PV be a set of propositional variables
also containing the symbol true. The set of CTLKD formulas FORM is defined
inductively as follows:

• every member p of PV is a formula,
• if α and β are formulas, then so are ¬α, α ∧ β and α ∨ β,
• if α is formula, then so are EXα, EGα and EαUβ,
• if α is formula, then so are Piα, and Kiα, for i ∈ A.

Intuitivly, E means there exists a computation, Xα is true in a computation if
α is true at the second state of the computation, αUβ is true in a computation
if β is true at some state on the computation and always earlier α holds, and

4 Since each R
O

i only depends on the target state, for what pertains this component
we could have equally defined a model by means of green local states for agent i.

5

Gα is true in a computation if α is true at all the states of the computation.
We use the indexed modal operator Pi to represent the correctly functioning
circumstances of agent i. The formula Piα stands for “there is a state where
agent i is functioning correctly, and in which α holds”. We refer to [10, 11] for a
discussion of this notion. Moreover we use the indexed modality Ki to represent
the diamond of an epistemic operator for agent i [8]: Kiα stands for “agent i
considers possible that α”.

The derived basic modalities are defined as follows: EFα
def
= E(trueUα),

AXα
def
= ¬EX¬α, AFα

def
= ¬EG¬α, A(αRβ)

def
= ¬E(¬αU¬β), AGα

def
= ¬EF¬α,

Oiα
def
= ¬Pi¬α for i ∈ A, Kiα

def
= ¬Ki¬α for i ∈ A. Moreover, α→ β

def
= ¬α∨β.

The logic ECTLKD is the restriction of CTLKD such that the negation can
be applied only to elements of PV , i.e., ¬α is replaced by ¬p in the Definition 2.

The logic ACTLKD is also the restriction of CTLKD such that its language
is defined as {¬ϕ | ϕ ∈ ECTLKD}. It is easy to see that ACTLKD consists of
the temporal formulas of the form: AXα, A(αRβ), AFα, Kiα and Piα.

Definition 3 (Semantics of CTLKD). Let M be a model, s be a state, and
α, β be formulas of CTLKD. M, s |= α denotes that α is true at the state s in the
model M . M is omitted, if it is implicitly understood. The relation |= is defined
inductively as follows:

s |= p iff p ∈ V(s), s |= ¬α iff s 6|= α,

s |= α ∨ β iff s |= α or s |= β, s |= α ∧ β iff s |= α and s |= β,

s |= EXα iff (∃π ∈ Π(s)) π(1) |= α,
s |= EGα iff (∃π ∈ Π(s))(∀m ≥ 0) π(m) |= α,

s |= E(αUβ) iff (∃π ∈ Π(s))(∃m ≥ 0) [π(m) |= β and (∀j < m) π(j) |= α],
s |= Piα iff ∃s′ ∈ DS (sRO

i s
′ and s′ |= α),

s |= Kiα iff ∃s′ ∈ DS (sRK
i s

′ and s′ |= α).

Definition 4 (Validity). A CTLKD formula ϕ is valid in a model
M = (DS, ι, T, RO

1 , . . . , R
O
n , R

K
1 , . . . , R

K
n ,V) (denoted M |= ϕ) iff M, ι |= ϕ, i.e.,

ϕ is true at the initial state of the model M .

4 Bounded Semantics for ECTLKD

In this section we give a bounded semantics for ECTLKD in order to define the
bounded model checking problem for ECTLKD, and to translate it subsequently
into a satisfiability problem. This formalism is an extension of the one presented
in [14].

Definition 5 (k−model). Let M = (DS, ι, T, RO
1 , . . . , R

O
n , R

K
1 , . . . , R

K
n ,V) be

a model and k ∈ IN+. A structure Mk = (DS, ι, Pk, R
O
1 , . . . , R

O
n , R

K
1 , . . . , R

K
n ,V)

is a k−model for M , where Pk is the set of all the k-computations of M , i.e.,
Pk =

⋃

s∈DS Πk(s).

Satisfaction for the temporal operators in the bounded case depends on whether
or not the computation π defines a loop, i.e., whether loop(π) 6= ∅, where loop
is defined below.

6

Definition 6. LetM = (DS, ι, T, RO
1 , . . . , R

O
n , R

K
1 , . . . , R

K
n ,V) be a model, Mk =

(DS, ι, Pk, R
O
1 , . . . , R

O
n , R

K
1 , . . . , R

K
n ,V) be a k−model for M , and π ∈ Pk. The

function loop : Pk → 2{0,...,k} is defined as:

loop(π) = {l | 0 ≤ l ≤ k and (π(k), π(l)) ∈ T }

The main reason for reformulating the semantics of the modalities in the
following definition in terms of elements of k−computations rather than elements
of DS or Π is to restrict the semantics to a part of the model.

Note that the interpretation of the temporal modalities on bounded semantics
is different from the one of Definition 3.

Definition 7 (Bounded semantics). Let Mk be a k−model and α, β be ECTLKD
formulas. Mk, s |= α denotes that α is true at the state s of Mk. Mk is omitted
if it is clear from the context. The relation |= is defined inductively as follows:
s |= p iff p ∈ V(s), for p ∈ PV, s |= ¬p iff p 6∈ V(s), for p ∈ PV,
s |= α ∨ β iff s |= α or s |= β, s |= α ∧ β iff s |= α and s |= β,

s |= EXα iff (∃π ∈ Pk(s)) π(1) |= α,
s |= EGα iff (∃π ∈ Pk(s))(∀0 ≤ j ≤ k)(π(j) |= α and loop(π) 6= ∅),
s |= E(αUβ) iff (∃π ∈ Pk(s))(∃0 ≤ j ≤ k)

(

π(j) |= β and (∀0 ≤ i < j)π(i) |= α
)

,

s |= Piα iff (∃π ∈ Pk(ι))(∃0 ≤ j ≤ k)
(

π(j) |= α and sRO
i π(j)

)

,
s |= Kiα iff (∃π ∈ Pk(ι))(∃0 ≤ j ≤ k)

(

π(j) |= α and sRK
i π(j)

)

.

The above extends to deontic modalities the bounded semantics of [14, 13].
As in [13] we note that the given Definition 1, the relations for the operator Pi

used above are constructed on the basis of the internal structure of the global
states of the system (i.e., they are defined on the basis of the local states of the
agents), and not by means of an ad-hoc construction by the modeller. Note also
that while the conditions for the temporal components require the states to be
reachable from the state in consideration, this is not the case for operators Pi

and Ki, where we consider whether or not there is a computation from the initial
state that results in a state that is related for agent i from the global state under
consideration. This guarantees reachability of such a state and corresponds to
the usual interpretation of the modalities in the non-bounded model.

The theoretical results proved in [13] for CTLK can easily be extended for
CTLKD.

Definition 8 (Validity for Bounded Semantics). An ECTLKD formula ϕ
is valid on a k-model Mk (denoted M |=k ϕ) iff Mk, ι |= ϕ.

Next, we describe how the model checking problem (M |= ϕ) can be reduced to
the bounded model checking problem (M |=k ϕ).

Lemma 1. Let M be a model, s be a state of M , and ϕ be an ECTLKD formula.
Then, the following two conditions hold:

a) Mk, s |= ϕ implies Ml, s |= ϕ, for l ≥ k,
b) Mk, s |= ϕ implies M, s |= ϕ.

7

Proof. Straightforward by induction on the length of ϕ.

Lemma 2. Let M be a model, ϕ be an ECTLKD formula, s be a state of M ,
and k = |M |. If M, s |= ϕ, then Mk, s |= ϕ.

Proof. By induction on the length of ϕ. The lemma follows directly for the
propositional variables and their negations.

Next, assume that the hypothesis holds for all the proper sub-formulas of ϕ.
If ϕ is equal to either α ∧ β or α ∨ β, then it is easy to check that the lemma
holds. Consider ϕ to be of the following forms:

• ϕ = EXα | EGα | E(αUβ). By induction hypothesis — see [14] page 139.
• ϕ = Piα. By definition, there is a state s′ in M such that li(s

′) ∈ Gi and
M, s′ |= α. By the inductive assumption, we have that Mk, s

′ |= α. Since s′

is reachable, it is reachable from ι in at most k steps as k = |M |. Thus, there
is a k−computation π ∈ Pk such that π(0) = ι and π(i) = s′ for some i ≤ k.
So, we have Mk, s |= Piα.
• ϕ = Kiα. By definition, there is a state s′ in M such that li(s) = li(s

′) and
M, s′ |= α. By the inductive assumption, we have that Mk, s

′ |= α. Since s′

is reachable, it is reachable from ι in at most k steps as k = |M |. Thus, there
is a k−computation π ∈ Pk such that π(0) = ι and π(i) = s′ for some i ≤ k.
So, we have Mk, s |= Kiα.

In this setting we can prove that in some circumstances satisfiability in the
|M |-bounded semantics is equivalent to the unbounded one.

Theorem 1. Let M = (DS, ι, T, RO
1 , . . . , R

O
n , R

K
1 , . . . , R

K
n ,V) be a model, ϕ be

an ECTLKD formula and k = |M |. Then, M |= ϕ iff M |=k ϕ.

Proof. Straightforward from Lemma 1 and Lemma 2 above.

Given that we reasoned on a bounded model of size |M | there is nothing sur-
prising about the results above. The rationale behind the method is that for
particular examples checking satisfiability of a formula can be done on a small
fragment of the model.

5 The BMC algorithm for ECTLKD

In this section we present a Bounded Model Checking (BMC) method for
ECTLKD. This is an extension of the method appearing in [13, 14]. This con-
struction first appeared in [14], and was then extended in [13] for the CTLK
case.

Definition 9. Let Mk = (DS, ι, Pk, R
O
1 , . . . , R

O
n , R

K
1 , . . . , R

K
n ,V) be a k-model

of M . We say that a structure M ′
k = (DS ′, ι, Pk

′, R′O
1 , . . . , R′O

n , R′K
1 , . . . , R′K

n ,V ′)
is a submodel of Mk if Pk

′ ⊆ Pk, States(Pk
′) ⊆ DS ′ ⊆ DS, R′O

i = RO
i ∩ (DS ′×

DS ′), for i ∈ A, R′K
i = RK

i ∩ (DS ′ × DS′), for i ∈ A, and V ′ = V|DS′ , where
States(Pk

′) defines the set of states reached in all computations in Pk
′, and

V|DS′ denotes the restriction of the interpretation function V to DS ′, a subset
of DS (upon which V is defined).

8

For technical reasons we allow for having states in DS′, which may not be reached
in Pk

′, but obviously all the states of DS ′ are reachable in Mk as DS ′ ⊆ DS.
The bounded semantics of ECTLKD over submodels M ′

k can still be defined
as for Mk (see Def. 7). Our present aim is give a bound for the number of k-
computations in M ′

k such that the validity of ϕ in Mk is equivalent to the validity
of ϕ in M ′

k.

Definition 10. Define a function fk : FORM→ IN as follows:

• fk(p) = fk(¬p) = 0, where p ∈ PV,
• fk(α ∨ β) = max{fk(α), fk(β)},
• fk(α ∧ β) = fk(α) + fk(β),
• fk(EGα) = (k + 1) · fk(α) + 1,
• fk(E(αUβ)) = k · fk(α) + fk(β) + 1,
• fk(Y α) = fk(α) + 1, for Y ∈ {EX,Ki,Pi}.

The function fk determines the number of k-computations of a submodel M ′
k

sufficient for checking an ECTLKD formula. Here we take this bound as given,
but we provide a proof of the adequacy of this in the next section.

The main idea is that we can check ϕ over Mk by checking the satisfiability
of a propositional formula [M,ϕ]k = [Mϕ,ι]k ∧ [ϕ]Mk

, where the first conjunct
represents (part of) the model under consideration and the second a number
of constraints that must be satisfied on Mk for ϕ to be satisfied. Once this
translation is defined, checking satisfiability of an ECTLKD formula can be
done by means of a SAT-checker. Although from a theoretical point of view the
complexity of this operation is no easier, in practice the efficiency of modern
SAT-checkers makes the process worthwhile in many instances. In this process,
an important decision to take is the size k of the truncation. We do not discuss
this issue in this paper, but we do point out the fact that there are heuristics
that can be developed for particular classes of examples [2].

A trivial mechanism, for instance, would be to start with k := 1, test satis-
fiability for the translation, and increase k by one either until [Mϕ,ι]k ∧ [ϕ]Mk

becomes satisfiable or k reaches |M |.

Definition 11. BMC algorithm for ECTLKD:

1. Let ϕ := ¬ψ (where ψ is an ACTLKD formula).
2. Set k := 1.
3. Select the k−model Mk.
4. Select the submodels M ′

k of Mk with |Pk
′| ≤ fk(ϕ).

5. Translate the transition relation of all the submodels M ′
k of Mk into a propo-

sitional formula [Mϕ,ι]k.
6. Translate ϕ over all M ′

k into a propositional formula [ϕ]Mk
.

7. Check the satisfiability of [M,ϕ]k := [Mϕ,ι]k ∧ [ϕ]Mk
.

8. If [M,ϕ]k is satisfiable then return M |= ϕ (i.e., M 6|= ψ) else set k := k+1.
9. If k = |M |+ 1, then return M 6|= ϕ (i.e., M |= ψ) else go to 3.

9

Now, we give details of this translation. We begin with the encoding of the
transitions in the interpreted system under consideration. Recall that the set of
reachable global states is DS ⊆

∏n
i=1 Li × Le, where Li ⊇ Gi for each agent

i ∈ A, and Le ⊇ Ge for the environment. We assume that Li = Gi ∪ Ri ⊆
{0, 1}gi×{0, 1}ri, where gi = dlog2(|Gi|)e, ri = dlog2(|Ri|)e, and Le = Ge∪Re ⊆
{0, 1}ge × {0, 1}re, where ge = dlog2(|Ge|)e, re = dlog2(|Re|)e. Let g1 + r1 . . .+
gn+rn+ge+re = m. Then, each global state s = (l1, . . . , ln, le) = (s[1], . . . , s[m])
can be represented by w = (w[1], . . . , w[m]) (which we shall call a global state
variable), where each w[i] for i = 1, . . . ,m is a propositional variable. Notice
that we distinguish between global states being sequences of binary digits and
their representations in terms of propositional variables w[i]. A finite sequence
(w0, . . . , wk) of global state variables is called a symbolic k−path. In general we
shall need to consider not just one but a number of symbolic k−paths. This
number depends on the formula ϕ under investigation, and it is returned as the
value fk(ϕ) of the function fk. We refer to [14] for more details. To construct
[M,ϕ]k, we first define a propositional formula [Mϕ,ι]k that constrains the fk(ϕ)
symbolic k-paths to be valid k-computations of Mk. For j ∈ {1, . . . , fk(ϕ)},
the j-th symbolic k−computation is denoted as w0,j , . . . , wk,j , where wi,j for
i ∈ {0, . . . , k} are global state variables.

Let SV be a set of state variables, SF be a set of propositional formulas over
SV , and let lit : {0, 1}×SV → SF be a function defined as follows: lit(0, p) = ¬p
and lit(1, p) = p. Moreover, let greeni : SVm → SVgi , for i = 1, . . . , n, e be a
function which returns the sequence of state variables encoding the green states
of the i-th agent or environment, and let Idxi and Idxe be sets of the indexes
of the bits of the local states of each agent i and environment in the global
states. Furthermore, let w, v be global state variables. We define the following
propositional formulas:

– Is(w) :=
∧m

i=1 lit(s[i], w[i]).
This formula encodes the state s of the model, i.e., s[i] = 1 is encoded by
w[i], and s[i] = 0 is encoded by ¬w[i].

– p(w) is a formula overw[1], . . . , w[m], which is true for a valuation (s1, . . . , sm)
∈ {0, 1}m of (w[1], . . . , w[m]) iff p ∈ V((s1, . . . , sm)), where p ∈ PV .
This formula encodes a proposition p ∈ PV.

– H(w, v) :=
∧m

i=1 w[i]⇔ v[i].
This formula represents logical equivalence between global state encodings,
representing the fact that they represent the same state.

– HPi(w) :=
∨

l∈Gi
(
∧gi

j=1 lit(l[j], greeni(w)[j])).
This formula encodes an accessibility of a global state in which agent i is
running correctly.

– HKl(w, v) :=
∧

i∈Idxl
w[i]⇔ v[i].

This formula represents logical equivalence between l-local state encodings,
representing the fact that they represent the same local state, i.e., the local
state in the two states is the same.

– TR(w, v) is a formula over the propositions w[1], . . . , w[m], v[1], . . . , v[m],
which is true for a valuation (s1, . . . , sm) of (w[1], . . . , w[m]) and a valuation
(s′1, . . . , s

′
m) of (v[1], . . . , v[m]) iff ((s1, . . . , sm), (s′1, . . . , s

′
m)) ∈ T .

10

– Lk,j(l) := TR(wk,j , wl,j),
This formula encodes a backward loop connecting the k-th state to the l-th
state in the symbolic k−computation j, for 0 ≤ l ≤ k.

The propositional formula [Mϕ,ι]k, representing the transitions in the k-model,
is given by the following definition.

Definition 12 (Unfolding of Transition Relation).
Let M = (DS, ι, T, RO

1 , . . . , R
O
n , R

K
1 , . . . , R

K
n ,V) be a model, k ∈ IN+ be a bound,

and ϕ be an ECTLKD formula. The propositional formula [Mϕ,ι]k is defined as
follows:

[Mϕ,ι]k := Iι(w0,0) ∧

fk(ϕ)
∧

j=1

k−1
∧

i=0

TR(wi,j , wi+1,j)

where w0,0, and wi,j for 0 ≤ i ≤ k and 1 ≤ j ≤ fk(ϕ) are global state variables.
[Mϕ,ι]k encodes the initial state ι by w0,0 and constrains the fk(ϕ) symbolic
k-paths to be valid k-computations in Mk.

The next step of the algorithm consists in translating an ECTLKD formula ϕ
into a propositional formula.

Definition 13 (Translation of ECTLKD formulas). Let a model Mk with
initial state ι, and an ECTLKD formula ϕ be given. We inductively define the

translation of ϕ at state wm,n into the propositional formula [ϕ]
[m,n]
k as follows:

[p]
[m,n]
k := p(wm,n),

[¬p]
[m,n]
k := ¬p(wm,n),

[α ∧ β]
[m,n]
k := [α]

[m,n]
k ∧ [β]

[m,n]
k ,

[α ∨ β]
[m,n]
k := [α]

[m,n]
k ∨ [β]

[m,n]
k ,

[EXα]
[m,n]
k :=

∨fk(ϕ)
i=1

(

H(wm,n, w0,i) ∧ [α]
[1,i]
k

)

,

[EGα]
[m,n]
k :=

∨fk(ϕ)
i=1

(

H(wm,n, w0,i) ∧ (
∨k

l=0 Lk,i(l)) ∧
∧k

j=0[α]
[j,i]
k

)

,

[E(αUβ)]
[m,n]
k :=

∨fk(ϕ)
i=1

(

H(wm,n, w0,i) ∧
∨k

j=0

(

[β]
[j,i]
k ∧

∧j−1
t=0 [α]

[t,i]
k

)

)

,

[Plα]
[m,n]
k :=

∨fk(ϕ)
i=1

(

Iι(w0,i) ∧
∨k

j=0

(

[α]
[j,i]
k ∧ HPl(wj,i)

)

)

,

[Klα]
[m,n]

k :=
∨fk(ϕ)

i=1

(

Iι(w0,i) ∧
∨k

j=0

(

[α]
[j,i]
k ∧ HKl(wm,n, wj,i)

)

)

.

The meaning of the translations above can be intuitively reconstructed from
the definition of propositional formulas presented earlier. For example, the for-

mula [EXα]
[m,n]
k expresses the condition that there exists a sub-path starting

from wm,n in which the first point w0,i in this computation satisfies α. For

[Plα]
[m,n]
k we insist on the existence of a point wj,i in which agent l is in a green

local state, and that it is accessible from the initial state by some computation.

For [Klα]
[m,n]

k we insist on the existence of a point wj,i in which agent l is in
the same local state, and that it is accessible from the initial state by some
computation.

11

Given the translations above, we can now check ϕ over Mk by checking the

satisfiability of the propositional formula [Mϕ,ι]k∧ [ϕ]Mk
, where [ϕ]Mk

= [ϕ]
[0,0]
k .

The translation presented above is shown to be correct and complete in the next
section.

6 Correctness of the translation

In this section we prove the correctness of the translation of the model checking
problem into the SAT-problem as given by Definition 12.

Lemma 3. Mk, s |= ϕ iff there is a submodel M ′
k of Mk with |Pk

′| ≤ fk(ϕ) such
that M ′

k, s |= ϕ.

Proof. (=>) By structural induction on ϕ. The lemma follows directly for the
propositional variables and their negations.

Assume that the hypothesis holds for all the proper sub-formulas of ϕ.

• ϕ = α ∨ β | α ∧ β. Straightforward.
• ϕ = EXα | EGα | E(αUβ). By induction hypothesis — see [14] page 143.
• Let ϕ = Piα. If Mk, s |= Piα, then by definition: (∃π ∈ Pk)

(

π(0) = ι and

∃0≤j≤k(sRO
i π(j)) and π(j) |= α)

)

. By the inductive assumption there is a
submodelM ′

k = (DS ′, ι, Pk
′, R′O

1 , . . . , R′O
n , R′K

1 , . . . , R′K
n ,V ′) ofMk such that

|Pk
′| ≤ fk(α) and M ′

k, π(j) |= α.
Consider a submodel M ′′

k = (DS ′′, Pk
′′, R′′O

1 , . . . , R′′O
n , R′′K

1 , . . . , R′′K
n , ι,V ′′)

of Mk, where Pk
′′ = Pk

′ ∪ {π} and DS′′ = States(Pk
′′) ∪ {s}. Since π

belongs to Pk
′′, by the construction of M ′′

k and the definition of the bounded
semantics, we have that M ′′

k , s |= Piα and |Pk
′′| ≤ fk(ϕ) = fk(α) + 1.

• Let ϕ = Kiα. If Mk, s |= Kiα, then by definition:
(∃π ∈ Pk)

(

π(0) = ι and ∃0≤j≤k(sRK
i π(j)) and π(j) |= α)

)

. By induction
there is a submodel M ′

k = (DS ′, ι, Pk
′, R′O

1 , . . . , R′O
n , R′K

1 , . . . , R′K
n ,V ′) of Mk

such that |Pk
′| ≤ fk(α) and M ′

k, π(j) |= α.
Consider a submodel M ′′

k = (DS ′′, ι, Pk
′′, R′′O

1 , . . . , R′′O
n , R′′K

1 , . . . , R′′K
n ,V ′′)

of Mk, where Pk
′′ = Pk

′ ∪ {π} and DS′′ = States(Pk
′′) ∪ {s}. Since π

belongs to Pk
′′, by the construction of M ′′

k and the definition of the bounded
semantics, we have that M ′′

k , s |= Kiα and |Pk
′′| ≤ fk(ϕ) = fk(α) + 1.

(<=) The proof is straightforward.

From Lemma 3 we can now derive the following.

Corollary 1. M |=k ϕ iff there is a submodel M ′
k of Mk with |Pk

′| ≤ fk(ϕ)
such that M ′

k, ι |= ϕ.

Proof. It follows from Definition 8, and Lemma 3, by using s = ι.

Lemma 4. For each state s of M , the following condition holds: [Mϕ,s]k∧[ϕ]Mk

is satisfiable iff there is a submodel M ′
k of Mk with |Pk

′| ≤ fk(ϕ) such that
M ′

k, s |= ϕ.

12

Proof. (=>) Let [Mϕ,s]k ∧ [ϕ]Mk
be satisfiable. By the definition of the transla-

tion, the propositional formula [ϕ]Mk
encodes all the sets of k−computations of

size fk(ϕ) which satisfy the formula ϕ. By the definition of the unfolding of the
transition relation, the propositional formula [Mϕ,s]k encodes fk(ϕ) symbolic k-
paths to be valid k−computations ofMk. Hence, there is a set of k−computations
in Mk, which satisfies the formula ϕ of size smaller or equal to fk(ϕ). Thus, we
conclude that there is a submodel M ′

k of Mk with |Pk
′| ≤ fk(ϕ) and M ′

k, s |= ϕ.
The actual definition of M ′

k can be reconstructed from Definition 13 and Defi-
nition 12.

(<=) The proof is by induction on the length of ϕ. The lemma follows directly
for the propositional variables and their negations. Consider the following cases:

• For ϕ = α ∨ β, α ∧ β or the temporal operators the proof is like in [14].
• Let ϕ = Plα. If M ′

k, s |= Plα with |Pk
′| ≤ fk(Plα), then by Definition 7 we

have that there is a k−computation π such that π(0) = ι and
(∃j ≤ k) sRO

l π(j) and M ′
k, π(j) |= α. Hence, by induction we obtain that

for some j ≤ k the propositional formula [α]
[0,0]
k ∧ [Mα,π(j)]k is satisfiable.

Let ii = fk(α)+1 be the index of a new symbolic k−path which satisfies the
formula Iι(w0,ii). Therefore, by the construction above, it follows that the

propositional formula Iι(w0,ii) ∧
∨k

j=0

(

[α]
[j,ii]
k ∧HPl(wj,ii)

)

∧ [MPlα,s]k is
satisfiable. Therefore, the following propositional formula is satisfiable:
∨

1≤i≤fk(Plα)

(

Iι(w0,i) ∧
∨k

j=0

(

[α]
[j,i]
k ∧HPl(wj,i)

)

∧ [MPlα,s]k

)

.

Hence, by the definition of the translation of an ECTLKD formula, the above

formula is equal to the propositional formula [Plα]
[0,0]
k ∧ [MPlα,s]k.

• Let ϕ = Klα. If M ′
k, s |= Klα with |Pk

′| ≤ fk(Klα), then by Defini-
tion 7 we have that there is a k−computation π such that π(0) = ι and
(∃j ≤ k) sRK

l π(j) and M ′
k, π(j) |= α. Hence, by induction we obtain that

for some j ≤ k the propositional formula [α]
[0,0]
k ∧ [Mα,π(j)]k is satisfiable.

Let ii = fk(α) + 1 be the index of a new symbolic k−path which satisfies
the formula Iι(w0,ii). Therefore, by the construction above, it follows that

the propositional formula Iι(w0,ii) ∧
∨k

j=0

(

[α]
[j,ii]
k ∧ HKl(w0,0, wj,ii)

)

∧

[MKlα,s]k is satisfiable. Therefore, the following propositional formula is sat-
isfiable:
∨

1≤i≤fk(Klα)

(

Iι(w0,i) ∧
∨k

j=0

(

[α]
[j,i]
k ∧HKl(w0,0, wj,i)

)

∧ [MKlα,s]k

)

.

Hence, by the definition of the translation of an ECTLKD formula, the above

formula is equal to the propositional formula [Klα]
[0,0]
k ∧ [MKlα,s]k.

Theorem 2. Let M be a model, Mk be a k−model of M , and ϕ be an ECTLKD
formula. Then, M |=k ϕ iff [ϕ]Mk

∧ [Mϕ,ι]k is satisfiable.

Proof. Follows from Lemmas 3 and 4.

Corollary 2. M |=k ¬ϕ iff [ϕ]Mk
∧ [Mϕ,ι]k is unsatisfiable for k = |M |.

This concludes our analysis of the translation technique. We now give an example
to demonstrate how it can be put into practice.

13

7 Model checking the bit transmission problem with

faults

The bit-transmission problem [8] involves two agents, a sender S, and a receiver
R, communicating over a possibly faulty communication channel. S wants to
communicate some information—the value of a bit for the sake of the example—
to R. One protocol to achieve this is as follows [8]. S immediately starts sending
the bit to R, and continues to do so until it receives an acknowledgement from R.
R does nothing until it receives the bit; from then on it sends acknowledgements
of receipt to S. S stops sending the bit to R when it receives an acknowl-
edgement. Note that R will continue sending acknowledgements even after S

has received its acknowledgement. Intuitively S will know for sure that the bit
has been received by R when it gets an acknowledgement from R. R, on the
other hand, will never be able to know whether its acknowledgement has been
received since S does not answer the acknowledgement We refer to [8, 9] for
further discussion.

In this section we are interested in applying the machinery of bounded model
checking to verify a version of the scenario above where one agent does not
operate as it is supposed to. This version of the scenario was first described in
[10]. In particular we examine in detail only the possibility that R is faulty5.
Specifically, we shall consider in this section the possibility that R may send
acknowledgements without having received the bit. This is a simple example of
an agent not following its specification. This scenario can be analysed by means
of deontic interpreted systems. We report here briefly part of the analysis that
was conducted in [10], and then proceed to model check the example.

There are three active components in the scenario: a sender, a receiver, and
a communication channel. In line with the spirit of the formalism of (deontic)
interpreted systems, it is convenient to see sender and receiver as agents, and
the communication channel as the environment. Each of these can be modelled
by considering their local states 6. For the sender S, it is enough to consider four
possible local states and since we are not admitting the possibility of faults, its
local states are all green. They represent the value of the bit that S is attempting
to transmit, and whether or not S has received an acknowledgement from R.
We thus have: LS = GS = {0, 1, 0-ack, 1-ack}, RS = ∅. For the environment
it is enough to consider a singleton: LE = {·}. Moreover, we assume that all
local states of the environment are green, so we have: LE = GE, RE = ∅. It
remains to model the local states of the receiver R. Six different local states are
enough to capture the state of R: the value of the received bit, the circumstance
in which no bit has been received yet (represented by ε), the circumstance in
which R has sent an acknowledgement without having received the value of the

5 The possibility that S is faulty, and other combinations of faulty R, S and E, can
be treated in similar fashion.

6 Recall that, in order to apply the machinery of deontic interpreted systems we have
to split the set of local states of agent i into two disjoint sets: green (Gi) and red
(Ri), representing correct and incorrect functioning behaviour respectively.

14

bit (denoted by ε-ack), and the circumstance in which R has sent an acknowl-
edgement having received the value of the bit (represented by 0-ack and 1-ack).
So, the local states of R for this version of the problem are defined as follows:
LR = {0, 1, ε, 0-ack, 1-ack, ε-ack} with GR = {0, 1, ε,0-ack,1-ack},RR = {ε-ack}.

The set of actions available to the agents are as follows: ActS = {sendbit , λ},
ActR = {sendack , λ}, where λ stands for no action (‘no-op’). The actions ActE
for the environment correspond to the transmission of messages between S and
R on the unreliable communication channel. We will assume that the commu-
nication channel can transmit messages in both directions simultaneously, and
that a message travelling in one direction can get through while a message trav-
elling in the opposite direction is lost. The set of actions for the environment
is ActE = {↔, →, ←, −}, where ↔ represents the action in which the channel
transmits any message successfully in both directions, → that it transmits suc-
cessfully from S to R but loses any message from R to S, ← that it transmits
successfully from R to S but loses any message from S to R, and − that it loses
any messages sent in either direction.

The protocols the agents are running are as follows:

– PS(0) = PS(1) = {sendbit}, PS(0-ack) = PS(1-ack) = {λ},
– PR(0) = PR(1) = PR(0-ack) = PR(1-ack) = {sendack},
PR(ε) = PR(ε-ack) = {λ},

– PE(lE) = ActE = {↔, →, ←, −}, for all lE ∈ LE.

It should be straightforward to infer the transition system that is induced by
the informal description of the scenario we considered above together with the
local states and protocols defined above. We refer to [10] for further discussion.

We now encode the local states in binary form in order to use them in the
model checking technique. Since the sender S can be in 4 different local green
states we shall need 2 bits to encode its state; we take: (0, 0) = 0, (0, 1) = 1,
(1, 0) = 0-ack, (1, 1) = 1-ack. Since the receiver R can be in 5 different local green
states and in 1 different local red states, we shall need 3 + 1 bits to encode its
state; we take: (1, 0, 0; 0) = 0, (0, 1, 0; 0) = 1, (0, 0, 0; 0) = ε, (1, 1, 0; 0) = 0-ack,
(1, 1, 0; 1) = 1-ack, (1, 1, 1; 0) = ε-ack. The modelling of the environment E

requires only one bit: (0) = ·
In view of this, a global state is modelled by a byte: s = (s[1], s[2], s[3],

s[4], s[5], s[6], s[7]). For instance the initial state ι = (0, ε, ·) is represented as a
tuple of seven 0’s. If we want to represent it in terms of propositional variables,
we shall have to insist on the propositions encoding the state to be in the state
of false. In other words, we would encode the initial state as follows: Iι(w0,0) =
∧7

i=1 ¬w0,0[i].
Let PV = {bit = 0,bit = 1, recbit, recack}. We use the following interpre-

tation for the proposition variables in PV :

(M, s) |= bit = 0 if lS(s) = 0 or lS(s) = 0-ack,
(M, s) |= bit = 1 if lS(s) = 1 or lS(s) = 1-ack,
(M, s) |= recbit if lR(s) = 1 or lR(s) = 0 or lR(s) = 0-ack or lR(s) = 1-ack,
(M, s) |= recack if lS(s) = 1-ack or lS(s) = 0-ack.

15

Some properties we may be interested in checking for the example above are
the following:

1. AG
(

¬recack ∨KS

(

OR

(

KR(bit = 0) ∨KR(bit = 1)
))

)

2. OR(recack ∧ ¬
(

KR(bit = 0) ∨KR(bit = 1)
)

)

3. AG
(

OR

(

KS

(

KR(bit = 0) ∨KR(bit = 1)
))

)

4. A
(

OR

(

KR(bit = 0) ∨KR(bit = 1)
)

U recack
)

Property 1) says that forever in the future if an ack is received by S, then
S knows that in all the states where R is functioning correctly, R knows the
value of the bit. Property 2) states that in all the states where R is functioning
correctly S has received an acknowledgement and R does not know the value
of the bit. Property 3) says that forever in the future in all the states where R

is functioning correctly, S knows that R knows the value of the bit. Property
4) says that at one point at the future an ack is received by S and at all the
preceding points in time in all states where R was operating as intended R knew
the value of the bit.

The property 1 is true on the interpreted system in consideration, but the
properties 2, 3 and 4 are not. The formula 1 is an ACTLKD formula, so in order
to check it we shall have to encode the whole model. We can do this in the BMC
technique reported above, but, as mentioned already, the benefits of BMC are
most apparent when only a fraction of the model is generated. For example this
happens in formulas 2, 3 and 4 where we need to check validity of an ECTLKD
formula in the model. For the purposes of this paper we check validity of the
formula 3. The negated formula is:

ϕ := EF
(

PR

(

KS

(

KR¬(bit = 0) ∧KR¬(bit = 1)
))

)

The translation for the propositions used in ϕ is as follows: (bit = 0)(w) :=
(¬w[1] ∧ ¬w[2]) ∨ (w[1] ∧ ¬w[2]), which means that (bit = 0) holds at all the
global states with the first local state equal to (0, 0) or (1, 0). (bit = 1)(w) :=
(¬w[1] ∧ w[2]) ∨ (w[1] ∧ w[2]), which means that (bit = 1) holds at all the global
states with the first local state equal to (0, 1) or (1, 1).

The translation for the equality of the R-local states is as follows:HKR(w, v) =
∧6

i=3 w[i]⇔ v[i], and the translation of an accessibility of a global state in which
R is running correctly is as follows: HPR(v) = (v[3] ∧ ¬v[4]) ∨ (¬v[3] ∧ v[4]) ∨
(¬v[3]∧¬v[4]). The translation of the equality of the S-local states is as follows:

HKS(w, v) =
∧2

i=1 w[i]⇔ v[i].

We calculate that fk(ϕ) = 5 for all k ∈ IN+ (see Definition 10), so we
need to exploit five symbolic k−paths. To proceed with the translation, the first
thing we need to translate is the initial state ι = (0, ε, ·), where ι is binary
represented by (0, . . . , 0). With the representation above this will be encoded by

the propositional formula Iι(w0,j) :=
∧7

i=1 ¬w0,j [i], for 0 ≤ j ≤ 5.

16

The next step is to translate the transitions T (wi,j , wi+1,j); for simplicity we
report only on one transition for the case k = 1, and in particular only on the for-
mula T (w0,1, w1,1) representing the first transition of the first path. The remain-
ing formulas are T (w0,2, w1,2), T (w0,3, w1,3), T (w0,4, w1,4) and T (w0,5, w1,5).

To encode the whole example we should model all the transitions for all the
k’s starting from k := 1. We do not do it here. Let us now encode the formula
ϕ we would like to check.

[ϕ][0,0]
1 :=

∨5
i=1

(

H(wm,n, w0,i) ∧
∨k

j=0[PR

(

KS

(

KR¬(bit = 0) ∧KR¬(bit = 1)
))

]
[j,i]
k

)

Next:
[PR

(

KS

(

KR¬(bit = 0) ∧KR¬(bit = 1)
))

]
[j,i]
k :=

∨5
i=1

(

Iι(w0,i) ∧
∨k

j=0

(

HPR(wj,i) ∧ [KS

(

KR¬(bit = 0) ∧KR¬(bit = 1)
)

]
[j,i]
k

)

)

Next:
[KS

(

KR¬(bit = 0) ∧KR¬(bit = 1)
)

]
[j,i]
k :=

∨5
i=1

(

Iι(w0,i) ∧
∨k

j=0

(

[
(

KR¬(bit = 0) ∧KR¬(bit = 1)
)

]
[j,i]
k ∧ HKS(wm,n, wj,i)

)

)

Next:
[
(

KR¬(bit = 0)∧KR¬(bit = 1)
)

]
[j,i]
k = [KR¬(bit = 0)]

[j,i]
k ∧ [KR¬(bit = 1)]

[j,i]
k

Next:
[KR¬(bit = 0)]

[j,i]
k :=

∨5
i=1

(

Iι(w0,i) ∧
∨k

j=0

(

[¬(bit = 0)]
[j,i]
k ∧ HKR(wm,n, wj,i)

)

)

[KR¬(bit = 1)]
[j,i]
k :=

∨5
i=1

(

Iι(w0,i) ∧
∨k

j=0

(

[¬(bit = 1)]
[j,i]
k ∧ HKR(wm,n, wj,i)

)

)

Next:
[¬(bit = 0)]

[j,i]
k := ¬(bit = 0)(wj,i) and [¬(bit = 1)]

[j,i]
k := ¬(bit = 1)(wj,i).

Checking that the bit transmission protocol satisfies the temporal deontic
formula above can now be done by feeding a SAT solver with the propositional
formula generated in this method. This would produce a solution, thereby prov-
ing that the propositional formula is satisfiable.

8 Conclusions

In this paper we extended the methodology of bounded model checking for
CTLK, presented in [13] by adding the deontic notion of correct functioning
behaviours of the agents. This notion was explored in [10, 11].

Future work include an implementation of the algorithm presented here and
a careful evaluation of experimental results to be obtained.

References

1. N. Amla, R. Kurshan, K. McMillan, and R. Medel. Experimental analysis of
different techniques for bounded model checking. In Proc. of TACAS’03, volume
2619 of LNCS, pages 34–48. Springer-Verlag, 2003.

2. A. Biere, A. Cimatti, E. M. Clarke, O. Strichman, and Y. Zhu. Bounded Model
Checking. In Advances in Computers, volume 58. Academic Press, 2003. pre-print.

17

3. E. Clarke, A. Biere, R. Raimi, and Y. Zhu. Bounded model checking using satisfi-
ability solving. Formal Methods in System Design, 19(1):7–34, 2001.

4. E. M. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.
5. F. Copty, L. Fix, R. Fraer, E. Giunchiglia, G. Kamhi, A. Tacchella, and M. Vardi.

Benefits of bounded model checking at an industrial setting. In Proc. of CAV’01,
volume 2102 of LNCS, pages 436–453. Springer-Verlag, 2001.

6. D. Dennet. The Intentional Stance. MIT Press, 1987.
7. E. A. Emerson and E. M. Clarke. Using branching-time temporal logic to synthesize

synchronization skeletons. Science of Computer Programming, 2(3):241–266, 1982.
8. R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi. Reasoning about Knowledge.

MIT Press, Cambridge, 1995.
9. J. Y. Halpern and L. D. Zuck. A little knowledge goes a long way: Knowledge-

based derivations and correctness proofs for a family of protocols. Journal of the

ACM, 39(3):449–478, 1992.
10. A. Lomuscio and M. Sergot. Violation, error recovery, and enforcement in the bit

transmission problem. In Proceedings of DEON’02, London, May 2002. Elsevier.
Journal of Applied Logic, 2:93-116, 2004.

11. A. Lomuscio and M. Sergot. Deontic interpreted systems. Studia Logica, 75, 2003.
12. K. McMillan. The SMV system. Technical Report CMU-CS-92-131, Carnegie-

Mellon University, February 1992.
13. W. Penczek and A. Lomuscio. Verifying epistemic properties of multi-agent systems

via bounded model checking. Fundamenta Informaticae, 55(2):167–185, 2003.
14. W. Penczek, B. Woźna, and A. Zbrzezny. Bounded model checking for the universal

fragment of CTL. Fundamenta Informaticae, 51(1-2):135–156, 2002.
15. M. Wooldridge. An introduction to multi-agent systems. John Wiley, England,

2002.

18

