Applications of model checking for multi-agent
systems: verification of diagnosability and
recoverability

Franco Raimondi
Department of Computer Science
University College London
London, UK

Charles Pecheur
Department of Computer Science and Engineering
Université catholique de Louvain
Louvain La Neuve, Belgium

Alessio Lomuscio
Department of Computer Science
University College London
London, UK

Abstract

This paper presents a practical application of model cimgcfor multi-agent
systems to the automatic verification of diagnosabilitysfria characterisation of
diagnosability in terms of epistemic properties of agestgven; then, experimen-
tal results are presented for preliminary investigatiorthe automatic verification
of diagnosability of Livingstone models.

1 Introduction

The last fifteen years have seen an increasing interest irsthefautomatidechniques

for the verification of complex systems, both for hardward software components.
The introduction ofsymbolictechniques (as in [6]) has enabled the development of
various model checkers, including SMV [20], SPIN [15], Nu8¥], and Verics [21].
Traditionally, these techniques and tools have been dpedlfortemporallogics only,

i.e. Computational Tree Logic (CTL) in the case of SMV and Ni& and Linear
Temporal Logic (LTL) for SPIN.

Recently, various extensions of model checking technignégools have been in-
vestigated for the verification of richer modal logics thatlude modal operators to
reason about time, knowledge, beliefs, and strategiesinBtance, [2] introduces the
logic ATL, an extension of CTL to reason about strategied,] presents MOCHA,
a symbolic model checker for ATL. The logic ATEL, an extemsif ATL with epis-
temic operators for multi-agent system, is presented ih [h4[3] the authors reason
about the verification of various aspects of agents, andrggemts a methodology for
reducing the problem of model checking agents to the prold&rerifying tempo-
ral models. Symbolic techniques for temporal-only logiasdalso been extended to
richer logics: the model checker Verics [21] uses SAT-baselniques for the verifi-
cation of temporal and epistemic properties of agents. Todainchecker MCK [12]
is based on ordered binary decision diagrams (OBDDs), appasts the verification
of epistemic and temporal properties for systems definechtarpgreted systems se-
mantics. Similarly, the tool MCMAS [23] uses OBDDs and altote reason about
time, knowledge, and correct behaviour of agents. The dpweént of these tools is
motivated by the interest in the automatic verification afimas scenarios in which it
seems more natural to reason about epistemic propertiesltifagent systems [28],
as in communication and security protocols.

The aim of this paper is to present another application ofehdecking for multi-
agent systems. In particular, we investigate lbagnosabilityandrecoverabilitycan
be expressed as temporal-epistespiecification patterndDiagnosability and recover-
ability properties of a system correspond, respectiveliheé feasibility of diagnosing
and recovering from faults in that system, given availaltlsesvable and controllable
variables (sensors and actuators). In this sense, theyadieybar forms of observabil-
ity/controllability properties found in classical conttheory. Diagnosability has been
studied by several authors in the domain of discrete sysfgBs26, 17, 16, 10, 8]
and timed systems [27]. In particular, [8], shows how diagaimlity properties can
be transformed into reachability properties on a derivedehcand be verified using
BDD- and SAT-based symbolic model checking in the NuSMV {G@al

These approaches differ from the one presented here in thegpresent diagnos-
ability by using epistemic and temporal propertiesagénts Following this, we use
a model checker for multi-agent systems (MCMAS [23]) to fyean example from
Livingstone, “a model-based health monitoring system ped at NASA Ames Re-
search Center” [22]. In this example we test diagnosakdlitg recoverability prop-
erties expressed as temporal-epistemic properties otagEuarther, we compare our
results with the ones obtained using NuSMV, a temporal-ordgel checker.

The rest of the paper is organised as follows. In Section 2eview the model
checker MCMAS and its underlying semantics (deontic imetgd systems), the Liv-
ingstone system, and the concept of diagnosability in teaipoodels. In Section 3
we characterise diagnosability and recoverability in ®ohepistemic operators; we
present experimental results of our approach for an exafrgatethe Livingstone suite
in Section 4. We discuss the results and conclude in Section 5

Agent Sanpl eAgent
Lstate = {s0,sl,s2,s3};
Lgreen = {s0, s1, s2};
Action = {al, a2, a3};

Pr ot ocol :
s0: {al};
sl: {a2};
s2: {al, a3};
s3: {a2, a3};
end Protocol
Ev:

s2 if ((AnotherAgent. Action=a7);
s3 if Lstate=s2;
end Ev
end Agent

Figure 1: An ISPL program

2 Preliminaries

2.1 MCMAS and deontic interpreted systems

MCMAS [23, 24] is a model checker for the verification of temglp epistemic, and
correctness properties of agents. MCMAS extends to moreplpniogics the tra-
ditional model checking algorithms for CTL [9] and uses OBD[B] as an efficient
encoding technique. Agents are specified by using the ISRjulage (Interpreted Sys-
tems Programming Language). An example of an ISPL prograjivés in Figure 1.
We refer to [23] for the full syntax of ISPL.

An ISPL program is the description ofdeontic interpreted systemA deontic
interpreted system [11, 19] is a formal description of aetysbfn agents. Each agent
1 in the system is characterised by a private sébcdl states.; and by a set oéictions
Act;, that are performed publicly. The sét is partitioned into two disjoint sets: a
non-empty seG; of “green” (or correct) states and a getof “red” (or faulty) states.
Actions are performed in compliance with a given protocgir@ocolP; : L; — 24¢
for agenti is a function from local states afto actions ofi. Each agent evolves
by modifying its local state, as prescribed by an evolutionctiont; : L; x Lg x
Act — L;. In the previous definitionAct = Act; X ... x Act, x Actg denotes
the set of “joint” actions, and.g and Actg are, respectively, the local states and the
actions of a special agent, tle@vironmentwhich is used to model the environment
in which agents operate. Figure 1 describes an agent chessct by four local states
(sO, s1, s2, s3),three ofwhich are “green”; the agentin the figure is alldwe
perform three distinct actional, a2, a3), in compliance with the protocol. The
agent changes its local state to eitk@ror s3 if the relevant condition on the right
hand side of the expression in the description of the evmiiftinction is true, and does
not change its local state if none of the conditions is trugerts evolve synchronously:
at each time step, all agents satisfying some transitiodition change their local state

at the same time.

An elementg of the Cartesian product of the local states of the agentstland
environment is called global state We will denote withS = L; x ... x L, X Lg the
set of all possible global states. Given a set of initialegat C S, the protocols and
the evolution functions generate the seteschable global statedenoted withG.

Given a set of atomic propositionP, the labelling functiorh : AP — 2° returns
the set of global states in which a proposition is true. Fdismgiven a set of agents
¥ ={1,...,n}, we will denote a deontic interpreted system by the follapmple:

DIS = <(Gl, Ri, ACti, Pi, ti)ieE 5 (GE, RE, ACtE, PE, tE') ,I, h>

Logic formulae to reason about time, knowledge, and cotvebfviour of agents

can be evaluated on deontic interpreted systems. Conkieléoltowing language:

¢ = p|lwleVe|EXe|EGe|E(@Uy)| Kip | Ere| Cre | Dre | Ki ¢.

In the syntax above, € AP is an atomic propositior, X, EG, andEU are standard
branching time operators [9J;» expresses that agenknowsy, I' C X is a set of
agents,Erp, Cro, and Drp express, respectively, that everybody in a group knows
¢, thaty is common knowledge in a group, and thats distributed knowledge in a
group (we refer to [11] for more details). The operafof [19] is used to express the
knowledge of agentunder the assumption that aggns functioning correctly.

To define the semantics of well-formed formulae, a standaifkdé modelM prs =
(W, Ry, ~1,...,~n, RY, ..., R h)is associated t®)I3, as follows:

e The setlV of possible worlds i€+ (the set of reachable statesiofs).

e Ry C W x W is a (serial) temporal relation. Two worlds andw’ are such
that R;(w, w’) iff there existsa € Act such thatt(w,a) = w’. The function
t is a “global” evolution function forDIS, defined asit(g,a) = ¢’ iff for all
i€ X, t;(li(g),a) =1li(¢'), andtg(lg(g),a) = lg(g") (wherel;(g) denotes the
i-th component of global statg corresponding to the local state of agént

e ~,; are epistemic relations, defined by considering the equafitocal states.
Two worldsw andw’ are such that; (w,w’) iff I;(w) = I;(w’) [11].

e RY are relations for correctness. Two worldsandw’ are such thaR? (w, w’)
iff I;(w') € G, [19].

e The labelling functiorh is defined as above.

Satisfiability is defined in\/p;s in the standard way. We refer to [24] for more
details, and we report only the satisfaction conditionsKerCr, Dr, andK:
Mprs,w E K;p iff forall w' € W, ~; (w,w’) implies Mprs,w = ¢,
Mpis,w = Cre iff forall w’ € W, [RE]*(w,w') implies
Mpis,w' | ¢, where[RE]* is the transitive closure of
the relationkf = (J ~;,
el
Mps,w = Dre iff forall w' € W, RR (w,w’) implies
MD]S,U}/ ’: ©, WhereR? = m ~iy
el
Mps,w = f{j e iff forall w' e W, ~; (w,w') andeO(w,w’) implies
Mprs,w' = ¢,

4

MCMAS takes as an input a description 0bdS using ISPL and builds a symbolic
representation ob/p;s. Formulae are provided to MCMAS via a text file, and verifi-
cation is performed by using algorithms based on OBDDs bymging fix-points and
comparing OBDDs. Using this technique various scenarioxéonmunication and
security protocols have been tested [24].

2.2 Livingstone and diagnosability

Livingstone is “a model-based health monitoring systemettgyed at NASA Ames
Research Center” [22]. Livingstone is responsible for tfegdosis and recovery of
systems. To this end, Livingstone “observes” the commairgngo a system and
“reads” the outputs, to build the best possible “picture”aoparticular system at a
given time.

Livingstone has been used for various modelling scenanokjding a propellant
production plant for Mars, the fuel feeding subsystem ofx¢-+generation space shut-
tle, and as a part of an Al-software called Remote Agent (RAjich is “a software
designed to operate space crafts with minimal human ass&st422] (RA flew the
experimental space craft DS1 between the 17th of May andlbiea? May 1999).

Models of Livingstone are described in a Java-like languzdled JMPL.Formal
verificationof Livingstone models can be performed via model checkingné&thod-
ology to translate Livingstone models into SMV models isaided in [22]. Also, a
software tool called npl 2snv is provided to perform the translation automatically.

Due to its specific tasks, one of the most important Livingsete properties that
may be verified is the possibility of performing a correéagnosisof a system. A
formal framework fordiagnosabilityis defined in [8]; adiagnosis conditioms defined
as a pair; Lcy of non-empty sets of states andc, of the system, whereg is a sepa-
rator for the two set of states meaning that the pair is a disigrcondition. Intuitively,
(c1Lco) is diagnosableff there are no two execution traces andms from the initial
state such that all the observables (commands and outpatsejjaal along the traces,
andm leads toc; andms to co. For instance, fault detection can be expressed in terms
of a diagnosis condition &g ault L fault). This means that there are no two traces
such that one trace leads to a faulty state, and the otherdo-danlty state. We refer
to [8] for more details.

A temporal-only model checker, like NuSMV, can be used ferfitrmal verifica-
tion of diagnosability [8]. The key idea is to build two copief the system, and to
constrain the observable variables of both copies to bel egireg the tools provided
by the model checker (e.g., using th&lVAR construction in NuSMV). Effectively,
a copy of the system may be denoted witlist and the other copy withwi n. In
this case, fault detection can be expressed by the CTL famGl(—(test.mode =
faulty A twin.mode # faulty)). To allow for the verification of diagnosability, the
translator from JMPL to SMV has been extended with an optioautput an SMV
file with “twin” modules. Using this techniqueliagnosabilityhas been verified in a
number of examples (see [8] for more details).

3 Diagnosability as an epistemic specification

In many specification examples, instead of using tempoadéaties only, it is at times
easier to reason about higher order properties such as &dge/ For instanceliag-
nosabilitycan be naturally expressed by ascribing a form of knowledgediagnoser:
a diagnoser is able to diagnose a conditjonlc.) iff the diagnoser always knows
whether—c; or —cs.

This last sentence can be expressed formally in the frankewfodeontic inter-
preted systems and can be automatically verified in MCMAS 3ystem in which
diagnosability needs to be verified may be modelled by mebasleontic interpreted
system, in which the diagnosér is a particular agent that stores in its local states the
outputs and the commands; the original system may be maddejleanother agent,
“observed” by the diagnoser. Thus, diagnosability can h@essed by the formula
AG(Kp(—c1) V Kp(—cz2)), where the knowledge operator forces the observable vari-
ables to remain unchanged. Notice that this definition isvadgnt to the definition of
diagnosis provided in Section 2.2 but, instead of relyingtarin” models, it is based
solely on one model, and analysed in terms of the episterojuoguties of the diagnoser.

Deontic interpreted systems allow also to reason aboutegpis properties of a
group of agents. In particuladjstributed knowledgé a groupI is the knowledge
that the group has if every agentlin‘shares” his knowledge with the other agents of
I'. This allows for a generalisation of the concept of diaghdgp. Let A C X be a
subset of the set of agents; intuitively,is a set of diagnosers, and each diagnoser in
A is responsible for the monitoring of a particular aspectef $ystem (i.e. a part of
the outputs, or a part of the commands), while ignoring timeaiader. We say that a
condition(¢; Leg) is diagnosable by groufi iff AG(Da(—c¢1) V Da(—e2)).

__ Correctness can also be introduced when reasoning abowtedge: the operator
K expresses what agehknows, under the assumption that aggfs working cor-
rectly. The concept of knowledge under the assumption afecbbehaviour can be
extended easily to the concept of distributed knowledgegnoaip under the assump-
tion of correct behaviour of another group. We will use therapor D to denote the
distributed knowledge of groufd, assuming that agents ihare working correctly. In
this way, it is possible to reason abaliagnosability under the assumption of correct
behaviour We will provide an example of its application in Section 4.

3.1 \Verification of recoverability

Recoverability is the ability of a system to recover from sotfaulty” state. The aim
of this section is to provide a formal description of propestsuch as “the diagnoser
knows that, assuming that the server will operate in normatltions, the server will
recover from its current faulty state”.

Instead of using the accessibility relatioR§, correct behaviour can also be char-
acterised in terms dbcal propositiong19] (local propositions have been used in a
similar way in [13] for the verification of epistemic propieg using a temporal-only
model checker). Ley; € AP be a proposition which is true only in the green states
of agenti. Then, for any deontic interpreted systdniS, the following equivalence

holds: N
Mpis = K ¢ < Ki(g; — ¢)-

Let f € AP be a proposition denoting some faulty state, andslée a formula de-
noting some desired states of affairs. Then, the ability diagnoserA to diagnose
recoverability fromf on a deontic interpreted systeBvS, assuming “normal” oper-
ating conditions for the agents Il can be expressed as

Mpis = f — DA(=E; U (T A —p)]).

In the previous expressioll; = A\ g; is a boolean expression composed by the con-
el
junction of the local proposition glenoting correct behavifor agents il". Intuitively,
the “until” part of the formula states that there is no “catietemporal path from
“faulty” states which will not reach a state in whigh holds. This fact, in turn, is
distributed knowledge between the diagnosers.
Section 4 provides an example for the verification of diaghdiy of recoverabil-

ity.

4 Diagnosability with MCMAS

Two different definitions of diagnosability have been pomd in Section 2.2 and Sec-
tion 3: the former using “twin” models, and the latter usingepistemic characteri-
sation. In the Livingstone framework, a “twin model” can Hdetained automatically
by using thg npl 2snv tool, and the twin model can be verified by using the model
checker NuSMV.

To compare this approach with the verification of diagndégtas an epistemic
property, we consider the translation of a Livingstone nhagtte a deontic interpreted
system expressed in the syntax of the tool MCMAS. We analytssteexample from
Livingstone: a circuit composed by a cascade of circuit kees a source, and LEDs.
The circuitis represented in Figure 2.

Each circuit breaker is allowed to be in one of the followingtass: on, of f,
tripped, blown, ufault. onandoff are “green” statestri pped is a re-
settable faultpl own is a non recoverable fault, and aul t denotes an unknown
fault. A Controller sends (arbitrary) commands to the dirbteakers, and a Diagnoser
reads the commands and the outputs as defined in the Livimgetodel.

Various assumptions can be made while modelling this exampla deontic in-
terpreted systen®[S;. Here we will consider the following (other variations oristh
example are available from [23]):

e Each circuit breaker is an agent; each led is an agent; thees@ian agent.

e For each circuit breaker, we assume the existence of a codenagent allowed
to send random commands to the circuit breakers.

e We assume the existence of two diagnosers: the first can semuthut of the
source, the second can see the LEDs.

cb4— ledl

cbh2
/ ™~ cb5— led2
source—— c¢hl
\ / cb6 — led3
cbh3

\ ch7— led4

Figure 2: Livingstone example: a circuit

Tool Time OBDDs vars
MCMAS | 2.39sec a0
NuSMV | 10.47sec| 235

Table 1: Average verification results

Due to space limitations we refer to the files available anfor the full ISPL code of
the example.

As an example of diagnosability, we check that the diagnalsttined by consider-
ing the distributed knowledge of the two diagnosers is nte sthdetect faults correctly,
i.e. the formuladG (D (faulty) v K p (—faulty)) is false (herdaulty=\/ f; is a propo-
sition denoting that some componeérdf the circuit is not working correctly and is
the group composed by the two diagnoser agents for the oaypithe LEDs). This is
because, under our assumptions, the diagnoser is not atliltitgyuish between “cor-
rect” of f states and faulty states. The same result can be obtainesifyy the twin
model of the circuit and by verifying it using NuSMV. The exjpeental results for this
example and this formula are reported in Table 1.

As an example of recoverability we can check that the foltmyis not true under
our assumptions:

Mpis, W faulty — Da(—E[g-cb U (g-cb A —led_on))).

In the previous expressiog.cb is a formula true in the green states of the circuit
breakers, and it is obtained by considering the conjunatiotine local propositions
expressing correct behaviour for all the circuit breakdise propositioled_on de-
notes a state in which LEDs are on. Intuitively, the diagnés@ot able to diagnose
recoverability because circuit breakers may be in an uwezable faulty state, and the
diagnoser cannot distinguish it from recoverable states.

Verification of this last formula took the same amount of tiamel memory than the
previous example.

5 Discussion and conclusion

Table 1 shows that the use of the epistemic characterisatidimgnosability may re-
duce the number of boolean variables needed for encodingytem symbolically.
Also, thanks to the more compact representation, verifindt faster with MCMAS.
However, the comparison of Table 1 does not take into acceamdus differences
between MCMAS and NuSMV. The most relevant difference is diegnosers in MC-
MAS do not haveperfect recall[11], i.e. they cannot “remember” past observations;
on the contrary, diagnosability using “twin models” is Vil under the assumption
of perfect recall. It is still possible to consider a form @fdunded” recall for agents
by modifying the structure of local states in MCMAS, but we diot investigate this
issue further. When “perfect recall” is needed, MCK [12] npapvide a better veri-
fication tool for Livingstone models because it implemergdgct recall natively, but
for a limited class of formulae.

Also, NuSMV implements features that are not present in MGVi8uch as fair-
ness conditions, invariant$ KVAR), generation of counter-examples, and verifica-
tion via bounded model checking. While limited only to a aértclass of formulae,
bounded model checking has been proven significantly méeetafe for the verifica-
tion of diagnosability than OBDD-based techniques [8]. His tine, it may be worth
investigating the feasibility of using Verics [18] in therifecation of Livingstone mod-
els.

Another disadvantage of MCMAS is that its ISPL input langaiagnot well suited
for the description of hardware components, such as thaitwEthe example above.
The description of a system using ISPL is based on agentsaatdagent has only a
(single) set of local states; moreover, agents may perfa@ctions”, while there is no
concept of actions in JMPL, and there is no clear correspmelbetween “actions”
and “states”. Consequently, the translation from a Livinge model into the syntax of
MCMAS has to be performed manually, and in some circumsttheetranslation may
be cumbersome. On the contrary, the translation from JIMEAMY can be performed
automatically using the toglnpl 2snmv.

Nevertheless, using MCMAS allows for the expression of nooraplex specifica-
tion patterns, in what seems to be a more natural way. Inlphvéth diagnosability
recoverabilitycan also be expressed in MCMAS, whereas there does not sdesato
simple way of expressing diagnosability of recoverabikitth temporal-only formulae.

In general, MCMAS and other model checkers for multi-aggsteams may pro-
vide more usable tools for system designers. In this papdrave investigated pre-
liminary applications of model checking multi-agent sysgefor the verification of
diagnosability and recoverability, and we believe thaioas areas may benefit from
a multi-agent approach to verification, when model checf@arsulti-agent systems
will reach the maturity of their temporal-only countergart

References

[1] R. Alur, T. Henzinger, F. Mang, S. Qadeer, S. Rajamard, arirasiran. MOCHA:
Modularity in model checking. IProceedings of the 10th International Confer-

ence on Computer Aided Verification (CAV’'98plume 1427 ofLNCS pages
521-525. Springer-Verlag, 1998.

[2] R. Alur, T. A. Henzinger, and O. Kupferman. Alternatitigie temporal logic.
Journal of the ACM49(5):672-713, 2002.

[3] M. Benerecetti, F. Giunchiglia, and L. Serafini. Modekcking multiagent sys-
tems.Journal of Logic and Computatio®(3):401-423, 1998.

[4] R. H. Bordini, M. Fisher, C. Pardavila, and M. WooldridgéModel checking
agentspeak. In J. S. Rosenschein, T. Sandholm, W. MichaetlMa Yokoo, ed-
itors, Proceedings of the Second International Joint ConferemcAwutonomous
Agents and Multi-agent systems (AAMAS;p3apges 409-416. ACM Press, 2003.

[5] R. E. Bryant. Graph-based algorithms for boolean fumtthanipulation|EEE
Transactions on Computer35(8):677-691, 1986.

[6] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and LJ. Hwang. Sym-
bolic model checking:10%° states and beyondnformation and Computatign
98(2):142-170, 1992.

[7] A. Cimatti, E. M. Clarke, E. Giunchiglia, F. Giunchiglid. Pistore, M. Roveri,
R. Sebastiani, and A. Tacchella. USMV2: An open-source tool for sym-
bolic model checking. IProceedings of the 14th International Conference on
Computer Aided Verification (CAV'02yolume 2404 olLNCS pages 359-364.
Springer-Verlag, 2002.

[8] A. Cimatti, C. Pecheur, and R. Cavada. Formal verificattddiagnosability via
symbolic model checking. IRroceedings of IJCAIQ2003.

[9] E. M. Clarke, O. Grumberg, and D. A. Peleilodel Checking The MIT Press,
Cambridge, Massachusetts, 1999.

[10] L. Console, C. Picardi, and M. Ribaudo. Diagnosis arajdbsability using pepa.
In Proceedings of the European Conference on Artificial Iigetice pages 131—
136, Berlino, Germany, August 2000. IOS Press.

[11] R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Var8easoning about Knowledge
MIT Press, Cambridge, 1995.

[12] P. Gammie and R. van der Meyden. MCK: Model checking twgd of knowl-
edge. InProceedings of 16th International Conference on Compuiged\Verifi-
cation (CAV’04) volume 3114 of NCS pages 479-483. Springer-Verlag, 2004.

[13] W. van der Hoek and M. Wooldridge. Model checking knatge and time. In
SPIN 2002 — Proceedings of the Ninth International SPIN oo on Model
Checking of Softwarésrenoble, France, April 2002.

10

[14] W. van der Hoek and M. Wooldridge. Tractable multiagplanning for epis-
temic goals. In M. Gini, T. Ishida, C. Castelfranchi, and W.Jbhnson, editors,
Proceedings of the First International Joint ConferenceAurtonomous Agents
and Multiagent Systems (AAMAS'0gages 1167-1174. ACM Press, 2002.

[15] G. J. Holzmann. The model checker SPIREEE transaction on software engi-
neering 23(5), 1997.

[16] S. Jiang, Z. Huang, V. Chandra, and R. Kumar. A polyndraigorithm for
testing diagnosability of discrete event systetBEE Transactions on Automatic
Control, 46(8):1318-1321, August 2001.

[17] S. Jiang and R. Kumar. Failure diagnosis of discreteesgstems with linear-
time temporal logic fault specications, 2002. IEEE TramsAotomatic Control.

[18] A. Lomuscio, T. tasica, and W. Penczek. Bounded modektking for inter-
preted systems: preliminary experimental results. In MdHey, editorPro-
ceedings of FAABS, Iiyolume 2699 oL NCS Springer Verlag, 2003.

[19] A. Lomuscio and M. Sergot. Deontic interpreted systemStudia Logica
75(1):63-92, 2003.

[20] K. McMillan. The SMV system. Technical Report CMU-C2-431, Carnegie-
Mellon University, February 1992.

[21] W. Nabiatek, A. Niewiadomski, W. Penczek, A. Potrotand M. Szreter. Vets
2004: A model checker for real time and multi-agent systeinsProceedings
of the International Workshop on Concurrency, Specificatind Programming
(CS&P’04) volume 170 ofnformatik-Berichtepages 88—99. Humboldt Univer-
sity, 2004.

[22] C. Pecheur and R. Simmons. From Livingstone to SMV: Faruerification
of autonomous spacecrafts. Rroceedings of the First Goddard Workshop on
Formal Approaches to Agent-Based Systems (FAABSB)me 1871 of_ecture
Notes in Computer Sciencgpringer Verlag, April 2000.

[23] F. Raimondi and A. Lomuscio. MCMAS - A tool for verificati of multi-agent
systems. http://www.cs.ucl.ac.uk/staff/f.raimondi/M&S/.

[24] F. Raimondi and A. Lomuscio. Automatic verification olfti-agent systems
by model checking via OBDD’sJournal of Applied Logic2005. To appear in
Special issue on Logic-based agent verification.

[25] M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamolridaad D. Teneketzis.
Diagnosability of discrete-event systemlEEE Transactions on Automatic Con-
trol, 40(9):1555-1575, September 1995.

[26] M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamolmnidaed D. Teneketzis.
Failure diagnosis using discrete event moddlEEE Transactions on Control
Systems4(2):105-124, March 1996.

11

[27] Stavros Tripakis. Fault diagnosis for timed automét@roceedings of FTRTRET
2002.

[28] M. Wooldridge.Reasoning about Rational AgentdIT Press, 2000.

12

