
Applications of model checking for multi-agent
systems: verification of diagnosability and

recoverability

Franco Raimondi
Department of Computer Science

University College London
London, UK

Charles Pecheur
Department of Computer Science and Engineering

Université catholique de Louvain
Louvain La Neuve, Belgium

Alessio Lomuscio
Department of Computer Science

University College London
London, UK

Abstract

This paper presents a practical application of model checking for multi-agent
systems to the automatic verification of diagnosability. First, a characterisation of
diagnosability in terms of epistemic properties of agents is given; then, experimen-
tal results are presented for preliminary investigations in the automatic verification
of diagnosability of Livingstone models.

1 Introduction

The last fifteen years have seen an increasing interest in theuse ofautomatictechniques
for the verification of complex systems, both for hardware and software components.
The introduction ofsymbolictechniques (as in [6]) has enabled the development of
various model checkers, including SMV [20], SPIN [15], NuSMV [7], and Verics [21].
Traditionally, these techniques and tools have been developed fortemporallogics only,
i.e. Computational Tree Logic (CTL) in the case of SMV and NuSMV, and Linear
Temporal Logic (LTL) for SPIN.



Recently, various extensions of model checking techniquesand tools have been in-
vestigated for the verification of richer modal logics that include modal operators to
reason about time, knowledge, beliefs, and strategies. Forinstance, [2] introduces the
logic ATL, an extension of CTL to reason about strategies, and [1] presents MOCHA,
a symbolic model checker for ATL. The logic ATEL, an extension of ATL with epis-
temic operators for multi-agent system, is presented in [14]. In [3] the authors reason
about the verification of various aspects of agents, and [4] presents a methodology for
reducing the problem of model checking agents to the problemof verifying tempo-
ral models. Symbolic techniques for temporal-only logics have also been extended to
richer logics: the model checker Verics [21] uses SAT-basedtechniques for the verifi-
cation of temporal and epistemic properties of agents. The model checker MCK [12]
is based on ordered binary decision diagrams (OBDDs), and supports the verification
of epistemic and temporal properties for systems defined on interpreted systems se-
mantics. Similarly, the tool MCMAS [23] uses OBDDs and allows to reason about
time, knowledge, and correct behaviour of agents. The development of these tools is
motivated by the interest in the automatic verification of various scenarios in which it
seems more natural to reason about epistemic properties of multi-agent systems [28],
as in communication and security protocols.

The aim of this paper is to present another application of model checking for multi-
agent systems. In particular, we investigate howdiagnosabilityandrecoverabilitycan
be expressed as temporal-epistemicspecification patterns. Diagnosability and recover-
ability properties of a system correspond, respectively, to the feasibility of diagnosing
and recovering from faults in that system, given available observable and controllable
variables (sensors and actuators). In this sense, they are particular forms of observabil-
ity/controllability properties found in classical control theory. Diagnosability has been
studied by several authors in the domain of discrete systems[25, 26, 17, 16, 10, 8]
and timed systems [27]. In particular, [8], shows how diagnosability properties can
be transformed into reachability properties on a derived model, and be verified using
BDD- and SAT-based symbolic model checking in the NuSMV tool[7].

These approaches differ from the one presented here in that we represent diagnos-
ability by using epistemic and temporal properties ofagents. Following this, we use
a model checker for multi-agent systems (MCMAS [23]) to verify an example from
Livingstone, “a model-based health monitoring system developed at NASA Ames Re-
search Center” [22]. In this example we test diagnosabilityand recoverability prop-
erties expressed as temporal-epistemic properties of agents. Further, we compare our
results with the ones obtained using NuSMV, a temporal-onlymodel checker.

The rest of the paper is organised as follows. In Section 2 we review the model
checker MCMAS and its underlying semantics (deontic interpreted systems), the Liv-
ingstone system, and the concept of diagnosability in temporal models. In Section 3
we characterise diagnosability and recoverability in terms of epistemic operators; we
present experimental results of our approach for an examplefrom the Livingstone suite
in Section 4. We discuss the results and conclude in Section 5.

2



Agent SampleAgent
Lstate = {s0,s1,s2,s3};
Lgreen = {s0,s1,s2};
Action = {a1,a2,a3};
Protocol:
s0: {a1};
s1: {a2};
s2: {a1,a3};
s3: {a2,a3};

end Protocol
Ev:
s2 if ((AnotherAgent.Action=a7);
s3 if Lstate=s2;

end Ev
end Agent

Figure 1: An ISPL program

2 Preliminaries

2.1 MCMAS and deontic interpreted systems

MCMAS [23, 24] is a model checker for the verification of temporal, epistemic, and
correctness properties of agents. MCMAS extends to more complex logics the tra-
ditional model checking algorithms for CTL [9] and uses OBDDs [5] as an efficient
encoding technique. Agents are specified by using the ISPL language (Interpreted Sys-
tems Programming Language). An example of an ISPL program isgiven in Figure 1.
We refer to [23] for the full syntax of ISPL.

An ISPL program is the description of adeontic interpreted system. A deontic
interpreted system [11, 19] is a formal description of a system ofn agents. Each agent
i in the system is characterised by a private set oflocal statesLi and by a set ofactions
Acti, that are performed publicly. The setLi is partitioned into two disjoint sets: a
non-empty setGi of “green” (or correct) states and a setRi of “red” (or faulty) states.
Actions are performed in compliance with a given protocol: aprotocolPi : Li → 2Acti

for agenti is a function from local states ofi to actions ofi. Each agent evolves
by modifying its local state, as prescribed by an evolution functionti : Li × LE ×
Act → Li. In the previous definition,Act = Act1 × . . . × Actn × ActE denotes
the set of “joint” actions, andLE andActE are, respectively, the local states and the
actions of a special agent, theenvironment, which is used to model the environment
in which agents operate. Figure 1 describes an agent characterised by four local states
(s0, s1, s2, s3), three of which are “green”; the agent in the figure is allowed to
perform three distinct actions (a1, a2, a3), in compliance with the protocol. The
agent changes its local state to eithers2 or s3 if the relevant condition on the right
hand side of the expression in the description of the evolution function is true, and does
not change its local state if none of the conditions is true. Agents evolve synchronously:
at each time step, all agents satisfying some transition condition change their local state

3



at the same time.
An elementg of the Cartesian product of the local states of the agents andthe

environment is called aglobal state. We will denote withS = L1× . . .×Ln ×LE the
set of all possible global states. Given a set of initial statesI ⊆ S, the protocols and
the evolution functions generate the set ofreachable global state, denoted withG.

Given a set of atomic propositionsAP , the labelling functionh : AP → 2S returns
the set of global states in which a proposition is true. Formally, given a set of agents
Σ = {1, . . . , n}, we will denote a deontic interpreted system by the following tuple:

DIS =
〈
(Gi, Ri, Acti, Pi, ti)i∈Σ

, (GE , RE , ActE , PE , tE) , I, h
〉
.

Logic formulae to reason about time, knowledge, and correctbehaviour of agents
can be evaluated on deontic interpreted systems. Consider the following language:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | EXϕ | EGϕ | E(ϕUψ) | Kiϕ | EΓϕ | CΓϕ | DΓϕ | K̂j
i ϕ.

In the syntax above,p ∈ AP is an atomic proposition,EX,EG, andEU are standard
branching time operators [9],Kiϕ expresses that agenti knowsϕ, Γ ⊆ Σ is a set of
agents,EΓϕ,CΓϕ, andDΓϕ express, respectively, that everybody in a group knows
ϕ, thatϕ is common knowledge in a group, and thatϕ is distributed knowledge in a
group (we refer to [11] for more details). The operatorK̂

j
i [19] is used to express the

knowledge of agenti under the assumption that agentj is functioning correctly.
To define the semantics of well-formed formulae, a standard Kripke modelMDIS =

(W,Rt,∼1, . . . ,∼n, R
O
1 , . . . , R

O
n , h) is associated toDIS , as follows:

• The setW of possible worlds isG (the set of reachable states ofDIS ).

• Rt ⊆ W ×W is a (serial) temporal relation. Two worldsw andw′ are such
thatRt(w,w

′) iff there existsa ∈ Act such thatt(w, a) = w′. The function
t is a “global” evolution function forDIS , defined as:t(g, a) = g′ iff for all
i ∈ Σ, ti(li(g), a) = li(g

′), andtE(lE(g), a) = lE(g′) (whereli(g) denotes the
i-th component of global stateg, corresponding to the local state of agenti).

• ∼i are epistemic relations, defined by considering the equality of local states.
Two worldsw andw′ are such that∼i (w,w′) iff li(w) = li(w

′) [11].

• RO
i are relations for correctness. Two worldsw andw′ are such thatRO

i (w,w′)
iff li(w′) ∈ Gi [19].

• The labelling functionh is defined as above.

Satisfiability is defined inMDIS in the standard way. We refer to [24] for more
details, and we report only the satisfaction conditions forKi, CΓ,DΓ, andK̂j

i :
MDIS , w |= Kiϕ iff for all w′ ∈ W , ∼i (w,w′) impliesMDIS , w

′ |= ϕ,
MDIS , w |= CΓϕ iff for all w′ ∈ W , [RE

Γ
]∗(w,w′) implies

MDIS , w
′ |= ϕ, where[RE

Γ
]∗ is the transitive closure of

the relationRE
Γ

=
⋃

i∈Γ

∼i,

MDIS , w |= DΓϕ iff for all w′ ∈ W ,RD
Γ

(w,w′) implies
MDIS , w

′ |= ϕ, whereRD
Γ

=
⋂

i∈Γ

∼i,

MDIS , w |= K̂
j
i ϕ iff for all w′ ∈ W , ∼i (w,w′) andRO

j (w,w′) implies
MDIS , w

′ |= ϕ,

4



MCMAS takes as an input a description of aDIS using ISPL and builds a symbolic
representation ofMDIS . Formulae are provided to MCMAS via a text file, and verifi-
cation is performed by using algorithms based on OBDDs by computing fix-points and
comparing OBDDs. Using this technique various scenarios for communication and
security protocols have been tested [24].

2.2 Livingstone and diagnosability

Livingstone is “a model-based health monitoring system developed at NASA Ames
Research Center” [22]. Livingstone is responsible for the diagnosis and recovery of
systems. To this end, Livingstone “observes” the commands given to a system and
“reads” the outputs, to build the best possible “picture” ofa particular system at a
given time.

Livingstone has been used for various modelling scenarios,including a propellant
production plant for Mars, the fuel feeding subsystem of a next-generation space shut-
tle, and as a part of an AI-software called Remote Agent (RA),which is “a software
designed to operate space crafts with minimal human assistance” [22] (RA flew the
experimental space craft DS1 between the 17th of May and the 21st of May 1999).

Models of Livingstone are described in a Java-like languagecalled JMPL.Formal
verificationof Livingstone models can be performed via model checking. Amethod-
ology to translate Livingstone models into SMV models is described in [22]. Also, a
software tool calledjmpl2smv is provided to perform the translation automatically.

Due to its specific tasks, one of the most important Livingstone’s properties that
may be verified is the possibility of performing a correctdiagnosisof a system. A
formal framework fordiagnosabilityis defined in [8]; adiagnosis conditionis defined
as a pairc1⊥c2 of non-empty sets of statesc1 andc2 of the system, where⊥ is a sepa-
rator for the two set of states meaning that the pair is a diagnosis condition. Intuitively,
(c1⊥c2) is diagnosableiff there are no two execution tracesπ1 andπ2 from the initial
state such that all the observables (commands and outputs) are equal along the traces,
andπ1 leads toc1 andπ2 to c2. For instance, fault detection can be expressed in terms
of a diagnosis condition as(fault⊥¬fault). This means that there are no two traces
such that one trace leads to a faulty state, and the other to a non-faulty state. We refer
to [8] for more details.

A temporal-only model checker, like NuSMV, can be used for the formal verifica-
tion of diagnosability [8]. The key idea is to build two copies of the system, and to
constrain the observable variables of both copies to be equal using the tools provided
by the model checker (e.g., using theINVAR construction in NuSMV). Effectively,
a copy of the system may be denoted withtest and the other copy withtwin. In
this case, fault detection can be expressed by the CTL formulaAG(¬(test.mode =
faulty ∧ twin.mode 6= faulty)). To allow for the verification of diagnosability, the
translator from JMPL to SMV has been extended with an option to output an SMV
file with “twin” modules. Using this technique,diagnosabilityhas been verified in a
number of examples (see [8] for more details).

5



3 Diagnosability as an epistemic specification

In many specification examples, instead of using temporal properties only, it is at times
easier to reason about higher order properties such as knowledge. For instance,diag-
nosabilitycan be naturally expressed by ascribing a form of knowledge to a diagnoser:
a diagnoser is able to diagnose a condition(c1⊥c2) iff the diagnoser always knows
whether¬c1 or¬c2.

This last sentence can be expressed formally in the framework of deontic inter-
preted systems and can be automatically verified in MCMAS. The system in which
diagnosability needs to be verified may be modelled by means of a deontic interpreted
system, in which the diagnoserD is a particular agent that stores in its local states the
outputs and the commands; the original system may be modelled by another agent,
“observed” by the diagnoser. Thus, diagnosability can be expressed by the formula
AG(KD(¬c1)∨KD(¬c2)), where the knowledge operator forces the observable vari-
ables to remain unchanged. Notice that this definition is equivalent to the definition of
diagnosis provided in Section 2.2 but, instead of relying on“twin” models, it is based
solely on one model, and analysed in terms of the epistemic properties of the diagnoser.

Deontic interpreted systems allow also to reason about epistemic properties of a
group of agents. In particular,distributed knowledgein a groupΓ is the knowledge
that the group has if every agent inΓ “shares” his knowledge with the other agents of
Γ. This allows for a generalisation of the concept of diagnosability. Let ∆ ⊆ Σ be a
subset of the set of agents; intuitively,∆ is a set of diagnosers, and each diagnoser in
∆ is responsible for the monitoring of a particular aspect of the system (i.e. a part of
the outputs, or a part of the commands), while ignoring the remainder. We say that a
condition(c1⊥c2) is diagnosable by group∆ iff AG(D∆(¬c1) ∨D∆(¬c2)).

Correctness can also be introduced when reasoning about knowledge: the operator
K̂

j
i expresses what agenti knows, under the assumption that agentj is working cor-

rectly. The concept of knowledge under the assumption of correct behaviour can be
extended easily to the concept of distributed knowledge in agroup under the assump-
tion of correct behaviour of another group. We will use the operatorD̂Γ

∆
to denote the

distributed knowledge of group∆, assuming that agents inΓ are working correctly. In
this way, it is possible to reason aboutdiagnosability under the assumption of correct
behaviour. We will provide an example of its application in Section 4.

3.1 Verification of recoverability

Recoverability is the ability of a system to recover from some “faulty” state. The aim
of this section is to provide a formal description of properties such as “the diagnoser
knows that, assuming that the server will operate in normal conditions, the server will
recover from its current faulty state”.

Instead of using the accessibility relationsRO
i , correct behaviour can also be char-

acterised in terms oflocal propositions[19] (local propositions have been used in a
similar way in [13] for the verification of epistemic properties using a temporal-only
model checker). Letgi ∈ AP be a proposition which is true only in the green states
of agenti. Then, for any deontic interpreted systemDIS , the following equivalence

6



holds:
MDIS |= K̂

j
i ϕ⇔ Ki(gj → ϕ).

Let f ∈ AP be a proposition denoting some faulty state, and letϕ be a formula de-
noting some desired states of affairs. Then, the ability of adiagnoser∆ to diagnose
recoverability fromf on a deontic interpreted systemDIS , assuming “normal” oper-
ating conditions for the agents inΓ, can be expressed as

MDIS |= f → D∆(¬E[Γi U (Γi ∧ ¬ϕ)]).

In the previous expression,Γi =
∧

i∈Γ

gi is a boolean expression composed by the con-

junction of the local proposition denoting correct behaviour for agents inΓ. Intuitively,
the “until” part of the formula states that there is no “correct” temporal path from
“faulty” states which will not reach a state in whichϕ holds. This fact, in turn, is
distributed knowledge between the diagnosers.

Section 4 provides an example for the verification of diagnosability of recoverabil-
ity.

4 Diagnosability with MCMAS

Two different definitions of diagnosability have been provided in Section 2.2 and Sec-
tion 3: the former using “twin” models, and the latter using an epistemic characteri-
sation. In the Livingstone framework, a “twin model” can be obtained automatically
by using thejmpl2smv tool, and the twin model can be verified by using the model
checker NuSMV.

To compare this approach with the verification of diagnosability as an epistemic
property, we consider the translation of a Livingstone model into a deontic interpreted
system expressed in the syntax of the tool MCMAS. We analyse atest example from
Livingstone: a circuit composed by a cascade of circuit breakers, a source, and LEDs.
The circuit is represented in Figure 2.

Each circuit breaker is allowed to be in one of the following states:on, off,
tripped, blown, ufault. on andoff are “green” states.tripped is a re-
settable fault,blown is a non recoverable fault, andufault denotes an unknown
fault. A Controller sends (arbitrary) commands to the circuit breakers, and a Diagnoser
reads the commands and the outputs as defined in the Livingstone model.

Various assumptions can be made while modelling this example as a deontic in-
terpreted systemDIS1. Here we will consider the following (other variations on this
example are available from [23]):

• Each circuit breaker is an agent; each led is an agent; the source is an agent.

• For each circuit breaker, we assume the existence of a commander agent allowed
to send random commands to the circuit breakers.

• We assume the existence of two diagnosers: the first can see the output of the
source, the second can see the LEDs.

7



led1

source cb1

cb2

cb3

cb4

cb6

cb7

cb5

led4

led3

led2

Figure 2: Livingstone example: a circuit

Tool Time OBDDs vars
MCMAS 2.39sec 90
NuSMV 10.47sec 235

Table 1: Average verification results

Due to space limitations we refer to the files available online for the full ISPL code of
the example.

As an example of diagnosability, we check that the diagnoserobtained by consider-
ing the distributed knowledge of the two diagnosers is not able to detect faults correctly,
i.e. the formulaAG(D∆(faulty)∨KD(¬faulty)) is false (herefaulty=

∨
fi is a propo-

sition denoting that some componenti of the circuit is not working correctly and∆ is
the group composed by the two diagnoser agents for the outputand the LEDs). This is
because, under our assumptions, the diagnoser is not able todistinguish between “cor-
rect” off states and faulty states. The same result can be obtained by using the twin
model of the circuit and by verifying it using NuSMV. The experimental results for this
example and this formula are reported in Table 1.

As an example of recoverability we can check that the following is not true under
our assumptions:

MDIS1
6|= faulty→ D∆(¬E[g cb U (g cb ∧ ¬led on)]).

In the previous expressiong cb is a formula true in the green states of the circuit
breakers, and it is obtained by considering the conjunctionof the local propositions
expressing correct behaviour for all the circuit breakers.The propositionled on de-
notes a state in which LEDs are on. Intuitively, the diagnoser is not able to diagnose
recoverability because circuit breakers may be in an unrecoverable faulty state, and the
diagnoser cannot distinguish it from recoverable states.

Verification of this last formula took the same amount of timeand memory than the
previous example.

8



5 Discussion and conclusion

Table 1 shows that the use of the epistemic characterisationof diagnosability may re-
duce the number of boolean variables needed for encoding thesystem symbolically.
Also, thanks to the more compact representation, verification is faster with MCMAS.
However, the comparison of Table 1 does not take into accountvarious differences
between MCMAS and NuSMV. The most relevant difference is that diagnosers in MC-
MAS do not haveperfect recall[11], i.e. they cannot “remember” past observations;
on the contrary, diagnosability using “twin models” is verified under the assumption
of perfect recall. It is still possible to consider a form of “bounded” recall for agents
by modifying the structure of local states in MCMAS, but we did not investigate this
issue further. When “perfect recall” is needed, MCK [12] mayprovide a better veri-
fication tool for Livingstone models because it implements perfect recall natively, but
for a limited class of formulae.

Also, NuSMV implements features that are not present in MCMAS, such as fair-
ness conditions, invariants (INVAR), generation of counter-examples, and verifica-
tion via bounded model checking. While limited only to a certain class of formulae,
bounded model checking has been proven significantly more effective for the verifica-
tion of diagnosability than OBDD-based techniques [8]. In this line, it may be worth
investigating the feasibility of using Verics [18] in the verification of Livingstone mod-
els.

Another disadvantage of MCMAS is that its ISPL input language is not well suited
for the description of hardware components, such as the circuit of the example above.
The description of a system using ISPL is based on agents, andeach agent has only a
(single) set of local states; moreover, agents may perform “actions”, while there is no
concept of actions in JMPL, and there is no clear correspondence between “actions”
and “states”. Consequently, the translation from a Livingstone model into the syntax of
MCMAS has to be performed manually, and in some circumstances the translation may
be cumbersome. On the contrary, the translation from JMPL toSMV can be performed
automatically using the tooljmpl2smv.

Nevertheless, using MCMAS allows for the expression of morecomplex specifica-
tion patterns, in what seems to be a more natural way. In parallel with diagnosability,
recoverabilitycan also be expressed in MCMAS, whereas there does not seem tobe a
simple way of expressing diagnosability of recoverabilitywith temporal-only formulae.

In general, MCMAS and other model checkers for multi-agent systems may pro-
vide more usable tools for system designers. In this paper wehave investigated pre-
liminary applications of model checking multi-agent systems for the verification of
diagnosability and recoverability, and we believe that various areas may benefit from
a multi-agent approach to verification, when model checkersfor multi-agent systems
will reach the maturity of their temporal-only counterparts.

References

[1] R. Alur, T. Henzinger, F. Mang, S. Qadeer, S. Rajamani, and S. Tasiran. MOCHA:
Modularity in model checking. InProceedings of the 10th International Confer-

9



ence on Computer Aided Verification (CAV’98), volume 1427 ofLNCS, pages
521–525. Springer-Verlag, 1998.

[2] R. Alur, T. A. Henzinger, and O. Kupferman. Alternating-time temporal logic.
Journal of the ACM, 49(5):672–713, 2002.

[3] M. Benerecetti, F. Giunchiglia, and L. Serafini. Model checking multiagent sys-
tems.Journal of Logic and Computation, 8(3):401–423, 1998.

[4] R. H. Bordini, M. Fisher, C. Pardavila, and M. Wooldridge. Model checking
agentspeak. In J. S. Rosenschein, T. Sandholm, W. Michael, and M. Yokoo, ed-
itors, Proceedings of the Second International Joint Conference on Autonomous
Agents and Multi-agent systems (AAMAS-03), pages 409–416. ACM Press, 2003.

[5] R. E. Bryant. Graph-based algorithms for boolean function manipulation.IEEE
Transactions on Computers, 35(8):677–691, 1986.

[6] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L.J. Hwang. Sym-
bolic model checking:1020 states and beyond.Information and Computation,
98(2):142–170, 1992.

[7] A. Cimatti, E. M. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri,
R. Sebastiani, and A. Tacchella. NUSMV2: An open-source tool for sym-
bolic model checking. InProceedings of the 14th International Conference on
Computer Aided Verification (CAV’02), volume 2404 ofLNCS, pages 359–364.
Springer-Verlag, 2002.

[8] A. Cimatti, C. Pecheur, and R. Cavada. Formal verification of diagnosability via
symbolic model checking. InProceedings of IJCAI03, 2003.

[9] E. M. Clarke, O. Grumberg, and D. A. Peled.Model Checking. The MIT Press,
Cambridge, Massachusetts, 1999.

[10] L. Console, C. Picardi, and M. Ribaudo. Diagnosis and diagnosability using pepa.
In Proceedings of the European Conference on Artificial Intelligence, pages 131–
136, Berlino, Germany, August 2000. IOS Press.

[11] R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi.Reasoning about Knowledge.
MIT Press, Cambridge, 1995.

[12] P. Gammie and R. van der Meyden. MCK: Model checking the logic of knowl-
edge. InProceedings of 16th International Conference on Computer Aided Verifi-
cation (CAV’04), volume 3114 ofLNCS, pages 479–483. Springer-Verlag, 2004.

[13] W. van der Hoek and M. Wooldridge. Model checking knowledge and time. In
SPIN 2002 – Proceedings of the Ninth International SPIN Workshop on Model
Checking of Software, Grenoble, France, April 2002.

10



[14] W. van der Hoek and M. Wooldridge. Tractable multiagentplanning for epis-
temic goals. In M. Gini, T. Ishida, C. Castelfranchi, and W. L. Johnson, editors,
Proceedings of the First International Joint Conference onAutonomous Agents
and Multiagent Systems (AAMAS’02), pages 1167–1174. ACM Press, 2002.

[15] G. J. Holzmann. The model checker SPIN.IEEE transaction on software engi-
neering, 23(5), 1997.

[16] S. Jiang, Z. Huang, V. Chandra, and R. Kumar. A polynomial algorithm for
testing diagnosability of discrete event systems.IEEE Transactions on Automatic
Control, 46(8):1318–1321, August 2001.

[17] S. Jiang and R. Kumar. Failure diagnosis of discrete event systems with linear-
time temporal logic fault specications, 2002. IEEE Trans. on Automatic Control.

[18] A. Lomuscio, T. Łasica, and W. Penczek. Bounded model checking for inter-
preted systems: preliminary experimental results. In M. Hinchey, editor,Pro-
ceedings of FAABS II, volume 2699 ofLNCS. Springer Verlag, 2003.

[19] A. Lomuscio and M. Sergot. Deontic interpreted systems. Studia Logica,
75(1):63–92, 2003.

[20] K. McMillan. The SMV system. Technical Report CMU-CS-92-131, Carnegie-
Mellon University, February 1992.

[21] W. Nabiałek, A. Niewiadomski, W. Penczek, A. Półrola,and M. Szreter. VerICS

2004: A model checker for real time and multi-agent systems.In Proceedings
of the International Workshop on Concurrency, Specification and Programming
(CS&P’04), volume 170 ofInformatik-Berichte, pages 88–99. Humboldt Univer-
sity, 2004.

[22] C. Pecheur and R. Simmons. From Livingstone to SMV: Formal verification
of autonomous spacecrafts. InProceedings of the First Goddard Workshop on
Formal Approaches to Agent-Based Systems (FAABS), volume 1871 ofLecture
Notes in Computer Science. Springer Verlag, April 2000.

[23] F. Raimondi and A. Lomuscio. MCMAS - A tool for verification of multi-agent
systems. http://www.cs.ucl.ac.uk/staff/f.raimondi/MCMAS/.

[24] F. Raimondi and A. Lomuscio. Automatic verification of multi-agent systems
by model checking via OBDD’s.Journal of Applied Logic, 2005. To appear in
Special issue on Logic-based agent verification.

[25] M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, and D. Teneketzis.
Diagnosability of discrete-event systems.IEEE Transactions on Automatic Con-
trol, 40(9):1555–1575, September 1995.

[26] M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, and D. Teneketzis.
Failure diagnosis using discrete event models.IEEE Transactions on Control
Systems, 4(2):105–124, March 1996.

11



[27] Stavros Tripakis. Fault diagnosis for timed automata.In Proceedings of FTRTFT,
2002.

[28] M. Wooldridge.Reasoning about Rational Agents. MIT Press, 2000.

12


