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1. Introduction

A key interest in the analysis of security protocols consdraing able to verify formally and automati-
cally that a protocol meets its intended specificationss Bjpproach differs from the other main stream
of research in computer security, namely cryptanalysighait assumes perfect (i.e., unbreakable) cryp-
tographic algorithms and focuses on the properties thab@gol achieves. Formal analysis of security
protocols has permitted to find bugs in a variety of secunitytqols, including the Wide Mouthed Frog
Protocol [15].

The technique of model checking [5] has recently been us#ddagnsiderable success [3, 1, 23] to
verify properties such as authentication, integrity, segr anonymity, etc., of particular security proto-
cols. Typically, security protocols are analysed in terrfhieachability and, occasionally, in terms of full
temporal logic. While this is adequate in many instancesytiidation of particular properties, such as
anonymity, benefits from richer approaches. In particula, protocol of the dining cryptographers [4]
has been successfully analysed [16, 22] by considering pdeahand epistemic language. In this paper
we intend to make two contributions in this line. First, weggest an alternative, often more efficient,
formalisation of the Dining Cryptographer problem in terofsa network of communicating automata.
Second, we compare experimental results for variants efglotocol when analysed by two different
model checking techniques: ordered binary decision diagrand SAT-based bounded model checking.
This comparison provides insight into different model dtieg technologies for the verification of the
security protocol under consideration.

From a technical point of view, we will be working on networddscommunicating automata to model
the protocol (Section 2). These will generate a branchimg tsemantics on which temporal, epistemic,
and correctness modal operators will be interpreted [18Jn&Section 3. This syntax will be used as
specification language for the properties to be checked ati®e5, by means of Vears [6, 17] and
MCMAS [12], two model checkers for deontic interpreted systen®, [fhased respectively on bounded
model checking (BMC) and ordered-binary decision diagré@BDD), techniques briefly summarised
in Section 4.

2. Semantics

This paper is concerned with the verification of the protaxfdhe Dining Cryptographers. This protocol
was modelled for verification purposes by R. van der MeydahkanSu in [16] by using synchronous
interpreted systems [9] with perfect recall. In [22] the fopl was extended to deontic interpreted
systems [13] to reason about (deliberate or otherwisepti@is in the execution of the protocol by
some participants.

In the present work we employ an automata-based approacecifieplly, we interpret formulae
of a logic to reason about time, knowledge, and correct dehawn traces generated by networks of
automata. Our choice is motivated by two reasons:

1. We show that an automata-based approach provides a rfiorergf(i.e., faster) framework for the
verification of protocols, as it can be seen by comparing éiselts in Section 5.3 with the results
presented in [22].
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2. It provides a common ground for the comparison of expemialeresults obtained using different
model checkers.

Notice that there are formulae that are satisfied in thigratevze encoding but not in the former one,
especially when reasoning about the temporal evolutionutdraata. Nevertheless, they epistemic
properties of the protocahre satisfied in both the encodings. A formal proof of the a&tatement is
not presented here as it is not essential for our task.

Formally, we proceed as follows. Since our aim is to analysémnts of the Dining Cryptographers
protocols where some participants may cheat, in line wigh 2], we define a notion afeonticautomata
by colouring the states as eithed or green we refer to [13] and related papers for an exploration of
these concepts. We assume that each agent in the systenmalifed by considering a number of
automata.

Definition 2.1. (Deontic automaton)
A deontic automaton is a tupld = (Act, L, s, T'), where

e Act is a finite set of actions,

e L = LY U L% s afinite set of states, which is divided into two disjointssef greenZ¢ and red
LR states,

e s ¢ [ istheinitial state,
e T'C L x Act x L is a transition relation.

A set of automata, called metwork of automatacan be composed into th@oduct automatorby a
standard multi-synchronisation approach: the transitibiat do not correspond to a shared action are in-
terleaved, whereas the transitions labelled by a shar@zhaate synchronised. A synchronised transition
is enabled if it is enabled in all the synchronising automatdditionally, two or more unsynchronised
transitions cannot be executed at the same time.

Definition 2.2. (Product automaton)
Given a network{ A1, ..., A, } of deontic automata, whetd; = (Act;, L;, s?,T;) for 1 < i < n, the
product automatomf the network is defined as a four-tuple= (Act, G, s°, T'), where

o Act =], Act; is afinite set of actions,

e G = GYUGR is afinite set of global states composed by two disjoint skgseen states

G9 =19 x --- x LY and of red state€™ = (L; x --- x L,) \ GY,
o sV =(s0,...,s%) € Gistheinitial state,

e T C Gx ActxGisatransition relation such th@tly, ... 1), a, (l},...,0))) € Tiff (Vi € A(a))
(li,a,1) € Tand(Vi € {1,...,n}\A(a)) l; =}, whereA(a) = {1 <i<n|aec Act}.

A global state is coloured green if it consists of green latates only. All the other global states are
coloured red. Moreover, a global stdi¢, ..., ![,) is the result of executing an actianat a global state
(l1,...,1,) iff for every automaton4, Whose set of actions containswe have(l;, a,l;) € T;, and for
all the remaining automata we ha&ée: l;.
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In what follows let/z(A) = {1,...,n} be the set of the automata indices.4f The product au-
tomaton extended with a labelling function is used as a mimd@hterpreting our specification language,
although we note that it will only be built symbolically dog the verification. In order to reason about
multi-agent systems we assume that automata of the netwpriesent agents. However, we do not
require a one to one correspondence between automata ant.adgestead, we assume that the be-
haviour of an agent can be modelled by several automata afettveork or, equivalently, by the product
automaton of these automata.

Now, let Agt = {1,...,k} be a set of indices of agents. We define a functitis : Agt — 24,
which assigns to each agent the indices of the automatetlo&t represent its behaviour. Uet; : G —
[Ljcobsi) Ly fori = 1,..., k, be a function which for each global statef G returns the local state
of s for the agent, i.e., projectss on the components @Pbs(i). Notice that a single automaton &f
may be used for representing a part of the behaviour of seagemts. Intuitively, this means that agents
can observe and change the same fragments of a world. In steteato avoid the agents losing their
autonomy, we could require that they are represented byaiiptl automata whose appropriate actions
are synchronised; we do not insist on this for efficiency oeas

Interpreted systems [9] are commonly used to interpret teaipand epistemic modalities. Their
deontic extensions incorporate the idea of a correct fanttg behaviour of some or all the components
of systems examined. Following these ideas we define themofia model.

Definition 2.3. (Model)
Let Agt = {1,...,k} be a set of indices of agentd, = (Act, G, s, T) be a product automaton. A
(deontic) modeis a tupleM = (G, W, s°, TR, ~,~©, Obs, V), where:

e TR C G x G is a binary relation o7 such that(s, s’) € TR iff there existsa € Act such that
(s,a,s") €T,

e W is a set ofreachable global statefsom s°, i.e., W = {s € G | (s, s) € TR*}1,

e Obs : Agt — 214 is a function that assigns a nonempty set of indices of autnoaevery
agent,

o ~ = {~;}icaqgt, Where~; C W x W is anepistemic accessibility relaticior each agent € Agt
defined by:s ~; s iff loc;(s") = loc;(s),

o ~O= {NZQ}Z-GAgt, wherewlo C W x W is adeontic accessibility relatiofor each agent € Agt
defined by:s ~¢ s iff I;, € Ligj for everyl;; of loci(s') = (liy, -, 1i,),

e V: G — 2%V is avaluation functionfor a set of propositional variableB8) such thatrue €
V(s) for all s € G. V assigns to each state a set of propositional variables teéatssumed to be
true at that state.

Epistemic relations. Let ' C Agt. The union of"s accessibility relations is defined ast=
Uier ~i- By ~& we denote the transitive closure of!, whereasvP= (1, ~;. The above relations
are used to give semantics to the “everyone knows”, “comnmmvedge”, and “distributed knowledge”
modalities of the logic presented in [9].

T R* denotes the reflexive and transitive closured?.
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Computations paths. A computationin M is a maximal sequence = (s, s1, . . .) Of states such that
(si,si+1) € TR for eachi < |r| — 12, where|r| denotes the length of defined agr| = oo if 7 is
infinite and|7| = k + 1if sy is the last state of.

A k-computationis a prefix of lengthk of a computation. For a computation= (sg, s1,...), let
(k) = sg, andm = (so,...,sk), for eachk € IN. By II(s) we denote the set of all computations
starting ats in M, whereas by, (s) a set of all thek-computations starting at Moreover, letlN, =

IN\{0}.

3. The LogicCTLKD

We use the logic CTLKD to express properties of protocolds Tdyic is an extension dEomputational
Tree Logio(CTL) [8], introduced by Emerson and Clarke, enriched with ssade@pistemic operators [9]
and correctness operators [13]. This language enablesrepresent temporal flows of time, knowledge
of the agents, and what properties hold following the cdregecution of prescribed behaviour. We refer
to [14] for a detailed example on the use of this formalism.

Definition 3.1. (Syntax of CTLKD)
The set of CTLKD formulaeFORM is defined as follows:

az=p|-a|aVa|EXa|EGa|E(aUa) |Pia|Kga|Kia\ﬁra\gpa|Era
wherep € PV, i,j € {1,...,k},andl’ C {1,... k}.

Other modalities are derived as follows:
o EFa ¥ E(trueUa), AFa i -EG-a, A(aRp) déf —E(=aU-pf),

o AXu def -EX-a, O;a dof —-Pi—a, Rga def —\Kg—\a, K;a def -K;-a,

def

e Dra = —Dr—a, Cra def —Cr—a, Era def —Er—a.

The remaining boolean connectives are defined in the stdivday. Moreover,false Y true. The
formula P;« stands for "there exists a state where agerst functioning correctly andv holds”. As
customary the operatots, G stand for “at the next step”, and “forever in the future” resgively. The
Until operatorU, preciselyaUg, expresses that occurs eventually and: holds continuously until
then. The operatorK;, Dy, andCr denote knowledge of the agentdistributed knowledge, common
knowledge, and "everyone knows” in groliresp. A formulaO;a represents the fact that following all
correct executions of ageftx holds. Moreover, the operat&g expresses knowledge the agemtas
on the assumption that the agens functioning correctly. A formal interpretation of theB@mulae is
given below.

Definition 3.2. (Interpretation of CTLKD)

LetM = (G, W,s°, TR, ~,~%, Obs,V) be amodels ¢ W a stateyr a computation, and, 3 formulae
of CTLKD. M, s = a denotes that: is true at the state in the modelM. M is omitted, if it is implicitly
understood. The relatioe: is defined inductively as follows:

2By 0o — 1 we meamno.
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s = EXa iff 3w ell(s)n(l) E a,

s = EGa iff 37 ell(s) Vo< m < x| (M) F a,

SEE@US) it In € TI(s) Gy < m<in| 1) b= B and ¥y 7)) = ),
s = Pia iff 3’ eW (s~¢ s ands' = a),

s’:Kga iff e W (s standSNO s and s’ = «),

s = Ko iff 3As'eW (s~; s'ands E a),

s = Dra iff 3’ eW (s~F s ands | a),

s = Era iff 3 eW (s~F ands | ),

s = Cra iff 3’ e W (s ~K s and s’ = a).

For propositions and the boolean connectives the relatios defined in the standard manner.

Definition 3.3. (Validity) A CTLKD formula ¢ is valid in M (denotedM [= ) iff M, s |= ¢, i.e.,p
is true at the initial state of the moda! .

The logicECTLKD is the existential restriction of CTLKD such that the negatcan be applied only
to elements ofPV, i.e., ~« is replaced by-p in the Definition 3.1. The logid CTLKD is the universal
restriction of CTLKD such that its language is defined ag | ¢ € ECTLKD}.

4. Symbolic verification of CTLKD

In this section we present two symbolic methods for the \a&iidn of properties of systems and proto-
cols. The first one uses SAT techniques; the second is baseidiered binary decision diagrams.

4.1. Bounded Model Checking

Bounded Model Checking (BMC) was originally introduced Yerification of the existential fragment
of the logicCTL [19], and then extended to ECTLK [18] and furtherR@ TLKD [24]. BMC is based
on the observation that some properties of a system can logegthever a part of its model only. In the
simplest case of reachability analysis, the approach stsisi an iterative encoding of a finite symbolic
computation as a propositional formula. The satisfiabiityhe resulting propositional formula is then
checked using an external SAT-solver. We present here the deéinitions of BMC forECTLKD, but
refer the reader to the literature cited above for more tetém order to restrict the semantics to a part
of the model we definé-models.

Definition 4.1. (k—model)

Let M = (G, W, s, TR, ~,~%, Obs,V) be a model an& € IN,. Thek—model for)M is defined as
a structureM;, = (W, s°, P, ~,~©, Obs, V"), whereP, is the set of all thé:-computations of\/ over
wW,i.e., P, = USGW Hk(S), andV’ = V‘W

We define the functiotoop : P, — 2N as:loop(t) = {l | 0 <1 < k and (n(k), ©(l)) € TR},
which returns the set of indicéf 7 for which there is a transition from(k) to (l).



Kacprzak, Lomuscio, Niewiadomski, Penczek, Raimondite3ZiIComparing BDD and SAT based techniques 7

Definition 4.2. (Bounded semantics)

Let M} be ak—model andw, 5 be ECTLKD formulae. My, s = « denotes thatv is true at the state
s of My. My is omitted if it is clear from the context. The relati¢a for modal operators is defined
inductively as follows:

s = EXa iff (3w e Pe(s)) n(1) = a,

s E EGa iff (37 e Py(s))(V0 < j < k)(n(j) E aandloop(m) # 0),

sEE@UB) iff  (3re Pu(s)(30 < j<k)(n(j) EBand(V0 < i< j)m(i) = ),
sk Kﬁa iff  (Im e Pu(s2))(30 < j < k)(n(j) E aands ~; 7(j) ands ~ 7(4)),
sEYa iff  (3r e Pu(s2))(30 < j < k)(n(j) = aands ~ 7(j)),

whereY € {P;,K;,Dr,Er,Cr} and~e {~9 ~; ~B ~E ~E1 resp.

Model checking over models can be reduced to model checkiagkemodels. The main idea of BMC
for ECTLKD is that we can checl over M, by checking the satisfiability of the propositional formula
[M, o == [M ‘/’vSO] & N @], , where the first conjunct represents (a part of) the modeéundnsider-
ation and the second a number of constraints that must Isfiedton M}, for ¢ to be satisfied. Once
this translation is defined, checking satisfiability of BETLKD formula can be done by means of a
SAT-checker. Typically, we start with := 1, test satisfiability for the translation, and incre@sey one
until either[M2="];, A [¢] v, becomes satisfiable, arreaches the maximal depth bf3.

We provide here some details of the translation. We begih thi¢ encoding of the transitions in the
system under consideration. We assube= ng U LR C {0,1}*, wherek; = [log,(|L;|)] and we
takek, + ... + k, = m. Moreover, letlz; be an<-ordered set of the indices of the bits of the local
states of each agentf the global states, i.elx; = {1,...,k1},..., [z, = {m —k, +1,...,m}.

Then, each global state= (s, ..., s,,) can be represented by = (w[1],...,w[m]) (which we shall
call aglobal state variablg where eachu[i] fori = 1,...,m is a propositional variable. A sequence
wo 4, - - -, wy,; Of global state variables is called a symbdticomputationy.

The propositional formule@M‘/’vSO]k, representing thé-computations in thé&-model, is defined as
follows:

[M#]), 1= Lo (wop) /\ /\ R(wij, wit1,5),

wherewg o andw; ; for0 < i < kandl < j < fk(cp) are global state variables, affith(w; j, w;t1,5)
is a formula encoding the transition relatidnR. [M%"vso]k encodes the initial state” by wp,po and
constrains thef, (¢)* symbolick-computations to be valié-computations in\/.

The next step of the algorithm consists in translatingE&@iI' LKD formula ¢ into a propositional
formula. Letw, v be global state variables. We need the following propasdtidormulae for the encod-
ing:

- p(w) encodes a propositiomof ECTLKD.

- H(w,v) represents logical equivalence between global state ergod

(i.e., representing the same global state).

3The upper limitis|W|.
“The functionf, determines the number étcomputations sufficient for checking &CTLKD formula, see [24] for more
detalils.
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- HP;(w,v) encodes the set all global states in which agesirunning correctly.
- HK;(w,v) represents logical equivalence betwedacal state encodings,
(i.e., representing the sanwocal state).
- Ly, j(1) encodes a backward loop connecting hth state to thé-th state in the symbolic
k—computatiory, for0 <1 < k.
The translation ofy at statew,, , into the propositional formulgy
translation of selected formulas only):

]mn]

is as follows (we give the

EXal™ = VP (Hwmwo) A T,

EBCal™™ = VEY (H(wnan,wos) A (Vi Lia) A AJ olalf),

EBUAN™™ = VI (B, wos) A Vs (B2 A AZ L),

[Pra] " = VEP (Lowo)) A VAo (10F A HP (Wi w;0))).

Rl ™= VP (Lelwn) A VE (0P A HE (w0050 A
HPt(wm,n,wj,l-))),

[Kia]"" = VI (Lo(wos) A Vi (08! A HE (s w5,) ).

Given the translations above, we can now cheakver M, by checking the satisfiability of the proposi-

tional formula[A1#°];, A [©ln,, where[p]a, = [@]f’ol. The translation above is shown in [24] to be
correct and complete.

4.2. \Verification via ordered binary decision diagrams

Boolean formulae may be manipulated efficiently using addsinary decision diagram®#gDDs). To
understand the idea behind boolean formulae manipulasorg@BDDS, consider the boolean function
a A (bV c). Representing this boolean function using a truth tablelevoequire 8 lines. Using a differ-
ent approach, the truth value of this function may be represeby a directed graph, as exemplified in
Figure 1 (a). Under certain assumptions (most notably, bgdithe order of the variables in the graph),
this graph can be simplified into the graph pictured on Fidguf®). This “reduced” representation is
called theoBDD of the boolean function. Besides offering a compact reprasien of boolean func-
tions, oBDDs of different functions can be composed efficiently. In [Rjcgithms are provided for the
manipulation and composition aBDDs and their complexity is investigated.

OBDDs are routinely used in the model checking of systems spddifjeneans of formulae of CTL,
a logic used to reason about branching time [11]. Here stdtdse model and relations are represented
by means of propositional formulae. A CTL formula is idemifiwith a set of states: the states of the
model satisfying the formula. As a set of states can be repted as a propositional formula, each CTL
formula can be characterized by a propositional formulac8wparing this set with the set of reachable
states (or with the set of initial states) represented a®kebho function, it is possible to establish whether
or not a formula holds in a given model. Thus, the problem oflei@hecking for CTL is reduced to the
comparison of propositional formulae which, in turn, arpresented using@BDDS. The computation
of these boolean formulae operates by composiB@Ds, or by computing fix-points of operators on
0BDDs; we refer to [11] for the details.

We summarise below the algorithm for the verification of temgb, epistemic, and correctness
modalities for MAS presented in [22], which extends theitradal model checking techniques for the
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[o] [o] [o] [o] [o] 1]

(€Y (b)

Figure 1. oBDD representation fo@ A (b V ¢)

logic CTL. To reduce the problem of model checking for thesedalities to a comparison of boolean
formulae we proceed as follows. The number(i) of propositional variables required to encode the
local states of an ageritis nv(i) = [loga|L;||. Similarly, to encode the agent actions, the number
na(i) of propositional variablesy; required isna(i) = [log2|Act;|]. Thus, a global state can be en-
coded as a propositional vectar;, . ..,vy), whereN = > nv(i). An actiona € Act can be encoded

as a propositional vectdquy, ..., wyr), whereM = > na(i). In turn, a propositional vector can be

identified with a propositional formula, representedz by ajooction of literals, i.e., a conjunction of
propositional variables or their negation. In this way, aafelobal states (or actions) can be expressed
as the disjunction of the propositional formulae encodiagheglobal state in the set. Having encoded
local states, global states, and actions by means of ptopwdi formulae, all the remaining parame-
ters can be expressed as boolean functions, too. Indeedtratigtion relation can be translated into
propositional formulae. The set of initial states is eagifinslated, too. In addition to the parameters
presented above, the algorithm for model checking preddméw requires the definition of boolean
functionsRZK(s, s') (one for each agent) representing the epistemic accegsielation, the definition

of n boolean functionsRZ-O(s, s') representing the accessibility relations for the corressnoperator, and
the definition of a boolean functioR; (s, s’) representing the temporal transitions. The boolean fancti
Ry(s,s’) can be obtained from the transition relatidtR by quantifying over actions. This quantifica-
tion can be translated into a propositional formula usingsgudction (see [5] for a similar approach to
boolean quantification). The set @fachablestates is also needed by the algorithm: thé/Benf reach-
able global states can be expressed symbolically by a pitepped formula, and it can be computed as
the fix-point of the operator(Q) = I(s) vV 3s'(R:(s’, s) A Q(s')). The fix-point ofr can be computed
by iterating fromr(()) as standard (see [5]).

The algorithmS AT (¢) presented below computes the set of global states (expressa proposi-
tional formula) in which a formulg holds, denoted by,]. The following are input parameters for the
algorithm:

- the propositional variable@y, ..., vy ) and(ws, ..., wyr) for states and actions;

- the functionV(p) returning the set of global states in whiglnolds.

- the set of initial state$, encoded as a propositional formula;

- the set of reachable statdés, encoded as a propositional formula;

- the boolean functio?; encoding the temporal transition;
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- n boolean functions encoding the accessibility relatiens
- n boolean functions encoding the accessibility relatiegs
The algorithm is as follows:

SAT () {
 Is a proposition: returi¥(y);
@ is -y returnG \ SAT (¢1);
Yis 1 A pa: returnSAT (1) N SAT (2);
pis EXp1: return SATgx (p1);
pisE(p1Ups): returnSATry (¢1, ¢2);
pIisEGp;: returnSATwc(v1);
@ isK;pi: returnS AT (o1, 1);
@is Kl returnS AT (1,1, 7);
pis O;p1: returnSATo(p1,1);
pisEppr: returnSATg(p1,T);
@ isDr;: returnSATh (o1, T);
pisCrepi: returnSATe (1, T);

}

In the algorithm above§ ATyx, SATrq, SATgy are the standard procedures for CTL model check-
ing [11], in which the temporal relation iR; and, instead of temporal states, global states are consid-
ered. We refer to [21] for the definition of the proceduredTk (p, ), SATku(v1,1,7), SATo(p, 1),
SATg(e,T'), SATH(p,I'), andSAT:(p,T'). The algorithmS AT can be used to verify whether or not
a formulay holds in a model by comparing two sets of states: theSs€f'(p) and the set of reachable
stateslV. As sets of states are expresse@asDs, verification in a model is reduced to the comparison
of theoBDDs for SAT(¢) and foriV.

5. Dining Cryptographers: modelling, encoding and experinental results

5.1. Protocol description

Anonymous broadcasting of information is an important éssusecurity. The Dining Cryptographers
(DC) protocaol is a protocol to maintain anonymity in broastea information. It was introduced by
D. Chaum. The original wording from [4] is reported below.

"Three cryptographers are sitting down to dinner at theivéaite three-star restaurant. Their waiter
informs them that arrangements have been made with theardiitotel for the bill to be paid anony-
mously. One of the cryptographers might be paying for dinoret might have been NSA (U.S. National
Security Agency). The three cryptographers respect edwr’stright to make an anonymous payment,
but they wonder if NSA is paying. They resolve their uncetyafairly by carrying out the following
protocol:

Each cryptographer flips an unbiased coin behind his mentwden him and the cryptographer
on his right, so that only the two of them can see the outconaeh Eryptographer then states aloud
whether the two coins he can see—the one he flipped and theiotedtthand neighbor flipped—fell on



Kacprzak, Lomuscio, Niewiadomski, Penczek, Raimondite3ZiComparing BDD and SAT based techniques 11

the same side or on different sides. If one of the cryptogeeplis the payer, he states the opposite
of what he sees. An odd number of differences uttered at tie iladicates that a cryptographer is
paying; an even number indicates that NSA is paying (asguthat dinner was paid for only once). Yet
if a cryptographer is paying, neither of the other two leaars/thing from the utterances about which
cryptographer it is”

The same protocol can be run also for a number of cryptograpiyeater than three (see [4]). In
line with literature in security here we consider a variataf the protocol in which we assume that some
cryptographers may be faulty (or may deliberately be tryiodreak the protocol). In particular, we
allow them to say the opposite of what they are supposecetottey can choose to behave correctly or
to cheat when announcing the values of the coins they seenégrotocol is called Cheating Dining
Cryptographers (CDC) protocol. In the next section we dis@ncoding and verification of this protocol.

5.2. Encoding of the CDC protocol

In this section we model the protocol differently from whaegented in [16, 10, 22]. While the for-
malism of interpreted systems is used there, here we deedheltransitions to a finer level, and use
asynchronously communicating automata. This descriptianore convoluted and less intuitive, but as
we show below it offers considerable advantages in termdfigiency. It further allows to present a
comparison of different approaches for its verification.

To formalise the protocol we assume that all the events sactom tosses, determining who is
paying and the utterances of the cryptographers can ocdurrinrather then simultaneously. Moreover,
instead of enumerating all the possible outcomes of cosset etc., we generate these implicitly using
automata that execute independently, and finally synchiranin order to communicate the result. The
aim of the DC protocol is to assure that at the end of the runyessyptographer knows whether it was
the NSA or one of cryptographers who paid for dinner. Furtiane, if a cryptographer paid, then none
of the other cryptographers knows who it was. In the case o€ @tocol we add an assumption that
the above properties hold only when all agents behave dbyrec

Concretely, we proceed as follows. In the general casee tagrn; andny, automata modelling
cheating and honest cryptographers, respectively. Amaation for the honest cryptographdy; (i =
n1 + 1,...,n1 + ng) hash states with the meaning intuitively explained by their lab® (the initial
state),seeEqual seeDifferent saidEqual, and saidDifferent. If the cryptographer can cheat, then
the automatond; (i = 1,...,n1) has two additional statedieEqual and lieDifferent. The above
mentioned automata model what every cryptographer sayend@py on the coins he sees.

Moreover, there are = nq + ny automatad; (i = n + 1,...,2n) determining who is paying for
the dinner. Each of them has three state@he initial state)paid;_,,, andnotPaid_,,. These automata
synchronize in order to select at most one cryptographer pays: this automaton moves to the state
paid, whereas the remaining automata reach the statBaid In particular, if the NSA is paying, all
the automatad; ( = n + 1...,2n) reach the stateotPaid_,,. After determining who pays, every
automaton communicates the outcome to the respectiveogrgmher.

Furthermore, we introduce automatad; (i = 2n + 1,...,3n) that model flipping coins. Each
of them has three state$: (the initial state),head_»,,, andtail;, _5,. These automata first determine
the result of the flipping, independently of other automataj next they synchronise with the appro-
priate automata what corresponds to communicating theomédo cryptographers — as a result, every
cryptographer enters the stateeEquabr seeDifferent
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Finally, we have one automatody,, ., which models the counter of “different” among the utterance
This automaton also starts from the initial st@tand then in turn registers what the cryptographers said
and how many differences currently there are. In order tohi, it synchronises with the automata
modelling cryptographers; it terminates either in theeséatenor odd

The total number of the automatads + 1. We set all the states of automata to be green with the
exception of the statdeEqual andlieDifferent (i = 1,...,n1).

An instance of the protocol with two honest and one cheatmgtographer is pictured in Figures
2—-6. The network consists @b automata: three representing which coins cryptographemssee and
what they say (Fig. 4 and 5), three determining who pays (R)g.three modelling the tosses (Fig.
3), and one playing the role of the counter of “different” ittawances (Fig. 6). The above automata
are composed into the product automatérwith the initial states® = (0,0,0,0,0,0,0,0,0,0). The
global actions, the global states, and the transitionicgladre built according to Definition 2.2. The
automatonA is turned into the modeéll with a valuation functior) defined over a set of the propositions
PV = {paidy, paids, paids, even, odd} as follows:

° paidi S V((ll, ce ,llo)) iff l3+,‘ = paidi, for: = 1, 2,3,
o cven € V((ly,..., o)) iff 19 = even,

e odd € V((ll, Ceey llO)) iff {10 = odd.

Furthermore, we introduce a set of three agefitg = {1, 2,3} representing the three cryptographers:
one cheating and two honest. The behaviour of every agertégrapher) is modelled by the following
automata: one determining what he can see and say, one detgyiwhether he pays, two modelling
tosses, and one modelling the counter. So, the funalinis defined as follows:

e Obs(1) ={1,4,7,8,10},
o Obs(2) = {2,5,8,9,10},

o Obs(3) = {3,6,7,9,10}.

We now present a possible computation of the system. At thmbimg, the automata modelling tosses
execute the action'sl, 2, h3 in turn. These actions set the random results of coin to3$esefore, after
three steps the global stat& = (0,0, 0,0, 0,0, head , heada, heads, 0) is reached. Next, the automata
determining who pays for dinner execute the synchroniséidrag0 indicating that the agency pays, so
the global state of the model i§ = (0,0, 0, not Paid, , not Paidy, not Paids, heady , heads, heads, 0).
Next, the cryptographers see the results of coin tossesaafidad them says whether he sees equal or dif-
ferent sides of coins. Finally, the counter counts the nurobdifferences. Assuming that the cheating
cryptographer does not cheat in this run, the final stateisfttenario, after executing transitions, is
(saidEqualy, saidEquals, said Equals, not Paidy, not Paidy, not Paids, head; , heady, heads, even).

In the general case aof cryptographers, the maximum number of fired transitionsgisa¢ to4n + 1.
This number is callethe maximal depth of the model
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prop: paid3
Figure 2. The automatdy, As, Ag determining
who pays for dinner

prop: even prop: odd
Figure 5. The automatad; modelling what the cheating Figure 6. The automatonl;; modelling the
cryptographer can see and say counter of differences in the utterances
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Symbol ‘ Formula ‘ Model ‘ Valid ‘
Formy | AG(odd A —paidy = Ki(V,_y__, paid;)) Mpc, Yes
Formy | AG(odd A —paidy = \/;,_, _, Ki(paid;)) Mpc, No
Formsg AG(—paid; = Ki(V,_y , paid;)) Mpe, No
Formy AG(even =KL Ay, —paid;)) M¢pe, Yes

peey Tl

Table 1. The tested formulae

5.3. Experimental results

In this section we present the verification results for salvproperties of the protocols DC and CDC
— for n agents. The models are denofteigh, andMchCn respectively, the latter including only one
cheating cryptographer. The presented tests were pertbone workstation equipped with the AMD
Athlon XP+ 2400 MHz processor and 2 GB RAM running under Fadonux.

5.3.1. BMC: Verifying CDC with Ver ics

The verification system Vers has been used to perform the experiments with BMCicgd6, 17]

is a verification tool for real-time and multi-agent systenfisoffers three complementary methods of
model checking: SAT-based Bounded Model Checking (BMC)-8ased Unbounded Model Checking
(UMC), and an on-the-fly verification while constructing thst models of systems. The theoretical
background for its implementation has been presented erakpapers [7, 19, 25].

All the tested formulae are listed in Table 1. In order to jdeva better intuition behind the properties
they express, the formulas are given in the universal forowéier, notice that BMC handles universal
formulae indirectly by looking for counterexamples to theegations (i.e., the existential formulae). The
results of verification are presented in Table 2 where thebmirof cryptographersn), the length of the
symbolic paths k), the time and the memory used for BMC translations (BMJ[sBMC[MB]) and
the time of SAT verification (SAT[sec]) as well as the numbkthe generated variables (Vars) and the
clauses (Clauses) are given.

The first three properties are checked for the DC protoaal, Wwithout cheating cryptographers. The
formula Form; expresses Chaum’s property which states that always wleenumber of differences
is odd and the first cryptographer has not paid for the dirther he knows that another cryptographer
paid for dinner. The formulaForm, has been tested over two symbolic paths.

The formulaForms states that always when the number of differences is oddhenfirst cryptog-
rapher has not paid for dinner, then he knows the cryptognaptno paid for dinner. This formula is
obviously not true in the model because, following the protpnone of the cryptographers can possess
such an information. lbdd holds, then the first cryptographer knows that one of thetogaphers has
paid but he does not know which one. In this case the numbemalbslic paths is equal ta.

The formulaF orms states that it is always true that if the first cryptographes hot paid for dinner,
then he knows that some other cryptographer pays. Sinceptbjgerty is true only if the number of
differences is odd, the formula is not true in the model. s tase one symbolic path suffices to check
that the formula-Formg is true. Moreover this property can be checked on a very sdegith of the
symbolic path. This example shows that BMC is very powerfiiduch cases.
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Formula ‘ n ‘ k ‘ BMClsec] ‘ BMC[MB] ‘ SAT[sec] ‘ Vars Clauses
3 13 0.69 7.06 267.67 21922 67855
Form, 4 17 1.33 9.80 3010.89 40107 60200
5 21 2.11 13.45 19729.38 62637 194244
6 25 3.08 19.25 87224.75 90959 281919
3 13 1.5 10.53 84.98 44450 140017
Formsy 4 17 5.19 26.41 730.72 139015 442119
5 21 13.59 58.18 4019.71 335877 1070691
6 25 31.1 123.00 31675.79 | 706087 2250907
100 1 3.75 22.17 0.12 96561 284528
Forms 500 1 109.16 436.09 3.98 2082111 | 6220764
1000 1 499.20 1889.8 19.34 8164166 | 24441422
3 13 0.72 7.19 1602.18 23050 71323
Formy 4 17 1.40 10.56 30979.78 41815 129693
5 21 2.19 14.14 106624.84 65038 201664

Table 2. The results of verification of DC and CDC usingiger

The formulaFormy4 says that the-th cryptographer knows that always when the first cryptphea
behaves correctly and the number of differences is evem iioge of the cryptographers is a payer.
Unlike the other properties it is verified in the model witheocheating cryptographer. Observe that
in such a model the formulaG(even = K, (A\;—; _, —paid;)) is not valid since the even number
of differences does not ensure that NSA paid for dinner. dtoee, the operatolf(}l is used instead of
K, in Formy. Now, the formuIaR;(/\i:L”m —paid;) expresses that agentknows that none of the
cryptographers paid provided the agéndoes not cheat. This change makes the whole property true.
The formula—Form4 has been tested on two symbolic paths of the maximal length équal to the
maximal depth of the model).

We should underline that BMC method is usually applied tockimg satisfiability of existential
formulae, i.e., for checking that a universal formula doeshold. In the present case, however, since all
the computations of CDC model are finite, checking validityioiversal formulae is also possible. But,
such tests must be performed on the whole model (in particuldhe paths of maximal length), thereby
invalidating the main BMC idea of finding counter-examplethaut exploring the whole model. This
is the main cause of a longer time of verification for the gipeoperties.

5.3.2. OBDD: Verifying CDC with MCMAS

Now, we present the experimental results obtained withmAs — a tool that implements the OBDD-
based algorithms presented in Subsection I@MAS is released under the terms of the GNU General
Public License (GPL) and it is available for download [20].

In MCMAS, multi-agent systems are described using the language (BRdrpreted Systems Pro-



16 Kacprzak, Lomuscio, Niewiadomski, Penczek, Raimonate3ZiComparing BDD and SAT based technigues

Agent SampleAgent
Lstate = {s0,s1,s2,s3};
Lgreen = {s0,s1,s2};
Action = {al,a2,a3};
Protocol:

s0: {al};
s1: {a2};
s2: {al,a3};
s3: {a2,a3};
end Protocol
Ev:
s2 if ((AnotherAgent.Action=a7);
s3 if Lstate=s2;
end Ev
end Agent

Figure 7. ISPL example

gramming Language). Figure 7 gives a short example of thiguage. We refer to the files available
online [20] for the full syntax of ISPL. Formulae to be chedlae provided at the end of the specification
file, using an intuitive syntax.

A given network of communicating automata can be encodedjubke language ISPL by associating
each automaton to an agent (in the sense@fAS); synchronisation is achieved mcMAS using the
appropriate evolution function for the agentscMAS can implement the functio®bs for a network of
automata by taking the distributed knowledge of a set ofraata (encoded as agents). The encoding
of the protocol of the dining Cryptographers using a netwafrieutomata, as presented in the previous
Section, is available for download [20].

Following standard conventions, we define the size of a sysig W | + |R|, where|W | is the size
of the state space an®)| is the size of the relations. In our case, we defiiig as the number all the
possible combinations of local states and actions.

Experimental results for the verification MchCn are reported in Table 3. Differently from the
SAT-based Bounded Model Checking techniques presenteg atime results for model checking using
0BDDs are not affected by the structure of a formula being verifiggpically, the time required to
execute the algorithm presented in Figure 4.2 is a fractiorthe order of 0.1% - 0.5%) of the time
required for the construction of th@BDDs representing the temporal and epistemic relations, thefse
reachable states, etc. For this reason no formula is ireticatthe performance results of Table 3 — the
statistics reported refer to the verification of all formaila Table 1. Further, we verified the following:

AG((odd N\ —paidy) — AF(Kq(paids V paids) A —=Kj(paids) A =Ky (paids)))

This formula expresses the idea that, if the first cryptogesylid not pay for dinner and the number
of “different” utterances is odd, then eventually the firstpgtographer knows that either the second or
the third cryptographer paid for dinner; moreover, in thése, the first cryptographer does not know
which of these two is the payer (notice that this formula Baldhen the first cryptographer is behaving
correctly). Intuitively this entirely captures the specdfiion of the protocol.
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N. | Time[sec] | Memory[bytes] | BDDJ[vars] [W|

3 1 5281140 53 1.91E+07
4 4 6524788 69 1.48E+09
5 6 7229988 85 1.01E+11
6 424 56056516 101 6.48E+12
7 78 22589412 117 3.92E+14
8 8101 134174996 133 2.29E+16
9 508 39823892 149 1.29E+18
10 4841 60021380 165 7.15E+19
11 991 57448372 181 3.88E+21

Table 3. Experimental results withcMAS

5.4. Discussion and comparison with existing work

As mentioned at the beginning of Section 2, the protocol ef@ining Cryptographers has been mod-
elled in different ways by other authors [16, 22]. In part&ou[16] presents awBDD-based algorithm
for the verification of a particular class of interpretedtsyss (synchronous with perfect recall). The
properties are specified in linear time temporal logic egeshwith knowledge modalities. Their algo-
rithm accepts the class of formulae of the fot (K;p), where X* denotes a sequence btemporal
next step operatorX andp is a propositional variable. Meyden and Su show that thelprolof model
checking this class of formulae can be reduced to the vetitiitcaf the equivalence of Boolean formulae,
manipulated usingBDDS. This methodology is applied to the verification of the peol of the Dining
Cryptographers. However, the modelling appearing in [ substantially from the modelling pre-
sented in our paper: indeed, in synchronous systems wifegiaecall all the information about coin
tosses, utterances, etc., is stored in a special agergdch® environment. The remaining agents do not
have “local” states, but they are only alloweddibservethe environment, and to perform actions based
on their observations. This restriction, together withiting verification to a particular class of formu-
lae, results in a much smaller encoding. No tool is preseint¢th], but partial experimental results are
provided for the verification of formulae in examples with o0 cryptographers.

The toolMCcMAS is used in [22] to verify the protocol of the Dining Cryptogteers, but exploiting
a different encoding of the example. That encoding modetk eayptographer by a single agent, with
an additional agent for the environment. Such an encoditegsssefficient than the one we present here,
in that various parameters are repeated for each agentngtanice, the number of utterances is stored
separately in each agent, while the present approach emntbidenformation with a single automaton
representing the counter. It is clear that while [22] followhe formalism of interpreted systems to
the letter, the efficient decoupling presented here offpeed advantages. This fact is reflected in the
experimental results oficMAS: as shown in Table 3, we verified scenarios with upt@ryptographers,
while the encoding proposed in [22] allowed for the verifioatof 8 cryptographers only.

The differences with the other approaches can be also disdiet the level of the paper motivation.
While [16] and [22] show that the model checking of multi-ageystems is feasible, in this paper we
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focused on efficiency considerations. The semantics ofcggnous transition systems communicating
via shared actions enforces locality and thus reducesdtespaces. Further, locality enables an efficient
encoding, because Boolean formulas can compactly descoivgonents that do not execute shared
actions.

6. Conclusions and future work

In this paper we have presented a scenario of modelling ardéhobecking of the Dining Cryptogra-
phers protocol, in the presence of cheaters. In particukhave compared the performancevafMAS
and Vercs using a common representation based on a network of automata

Our experimental results, summarised in Tables 2 and 3t plaénfollowing picture: first, both
checkers were able to verify a variety of complex formulagextly and efficiently. SpecificallyyCMAS
calculates the (symbolic representation of the) whole mbdéore actually performing the checks. It
proves to be faster for many formulae and enables the vditicaf the full CTLKD syntax. On the
other hand, the experiments with W& confirmed that BMC is in general not complete and performs
best when finding shallow counterexamples. In this casanth@andle really large models. The overall
conclusion coincides with the usual considerations in the@tOBDD and BMC techniques complement
each other very well.

The presented approach could be further optimised if requifor instance one could reduce the
state space by enforcing a fixed order in the coin tosses. Widvexpect the experimental results to
benefit from this and from any further optimisation addedh@model checkers themselves

While our results are limited to these two model checkers each checker may benefit from ad-
ditional optimisation techniques, it seems to us that teselts may be generalised to the techniques
behind the checkers, i.e., BMC for Wles andoBDD for MCMAS.

In other words, what we have found is that depending on theetnachand one techniqgue may be
more efficient than the other. To check satisfaction on nmodplto a size of abouit0?° it seems that
MCMAS has an advantage. Checking satisfiabilitypof TLKD formulae only on large models is clearly
better handled by Vers.

A further novelty of this paper lies in the analysis of thetpmml in terms of deontic, epistemic and
temporal properties (as opposed to temporal propertieg).oiihis allows to represent violations (i.e.,
cheating) in the behaviour of the cryptographers in a nhtvegy. When comparing our approaches to
other available in the literature, we find that this considhéy simplifies the specifications to be checked
against, while still maintaining the feasibility of the nmeddchecking approach. We plan to continue
evaluating this approach by means of other protocols ofésteand to pursue ideas resulting from the
novel formalisation of the DC protocol presented here whedefing other security protocols so that
possible efficiency advantages may be replicated.
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