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Abstract. This paper presents complexity results for model checking formulae
of CTLK (a logic to reason about time and knowledge in multi-agent systems)
in concurrent programs. We apply these results to evaluate the complexity of
verifying programs of two model checkers for multi-agent systems: MCMAS and
Verics.

1 Introduction

Multi-agent systems (MAS) are a successful paradigm employed in the formalisation
of many scenarios [33, 34], including communication protocols, security protocols, au-
tonomous planning, etc. In many instances, MAS are modelled by means of multi-
modal logics with modal operators to reason about temporal, epistemic, doxastic, and
other properties of agents.

As MAS being modelled grow larger, however, automatic techniques are crucially
required for the formal verification of MAS specifications. Accordingly, various au-
thors have investigated the problem of verification for MAS [35, 3, 1, 13, 28, 18, 30]. In
particular, [35, 3, 1] reduce the problem of model checking MAS to the verification of
temporal-only models, while [28, 18, 30, 13] extend traditional model checking tech-
niques to the verification of MAS. Model checking [9] was traditionally developed for
the verification of hardware circuits using temporal logics. Various tools are available
for the verification of temporal logics [28, 23, 7, 16], and complexity results for model
checking temporal logics are well known [8, 31, 32, 19]. In contrast, model checking for
MAS is still in its infancy. In particular, to the best of our knowledge, the complexity of
model checking for MAS has been little explored [15].

In this paper we review various complexity results for temporal and multi-modal
logics and we investigate the complexity of model checking the logic CTLK in con-
current programs. The main result of this paper is presented in Section 3, where we
show that the problem of model checking formulae of CTLK in concurrent programs
is PSPACE-complete. This result allows to establish complexity results for the problem
of verifying MCMAS [22] and Verics [28] programs.

This paper is organised as follows. Temporal logics, model checking, and complex-
ity classes are briefly reviewed in Sections 2.1 – 2.3; Section 2.4 introduces the logic
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CTLK and presents some results for model checking extensions of temporal logics.
Section 3 contains the main result of this paper: the proof of PSPACE-completeness
for model checking CTLK in concurrent programs. Section 4 presents an application
of this result to the evaluation of the complexity of verifying programs for two tools,
MCMAS[22] and Verics [28]. We conclude in Section 5.

2 Notation and preliminaries

2.1 Temporal logics and model checking

CTL The language LCTL of Computational Tree Logic (CTL, [24, 9]) is defined over
a set of atomic formulae AP = {p, q, . . .} as follows:

ϕ ::= p|¬ϕ|ϕ ∨ ϕ|EXϕ|E[ϕUψ]|EGϕ.

The remaining temporal operators to express eventuality and universality can be derived
in standard way, for instance: EFϕ = E(>Uϕ), and AGϕ = ¬EF¬ϕ [17].

CTL formulae are interpreted in Kripke models. A Kripke model M for CTL is a
tuple M = (S,R, V, I) where S is a set of states, R ⊆ S × S is a serial transition
relation (the temporal relation), V : S → 2AP is an evaluation function, and I ⊆ S is
a set of initial states. A path π =< π0, π1, π2, · · · > of M is an infinite sequence of
states in S such that (πi, πi+1) ∈ R for all i ≥ 0.

Satisfiability of a CTL formula ϕ at a state s ∈ S of a given model M is defined
inductively as follows:

s |= p iff p ∈ V (s),
s |= ¬ϕ iff s 6|= ϕ,
s |= ϕ1 ∨ ϕ2 iff s |= ϕ1 or s |= ϕ2,
s |= EX(ϕ) iff there exists a path π such that π0 = s and π1 |= ϕ,
s |= E[ϕUψ] iff there exists a path π such that π0 = s and a k ≥ 0

such that πk |= ψ and πi |= ϕ for all 0 ≤ i < k,
s |= EG(ϕ) iff there exists a path π such that π0 = s and πi |= ϕ for all i ≥ 0.
We write M |= ϕ if ϕ is satisfied at all states of the Kripke model M (notice that

some authors write M |= ϕ when ϕ is satisfied in the set of initial states I of M ; the
two approaches are equivalent from a complexity point of view).

Model checking Model checking is the problem of establishing (possibly in automatic
way) whether or not a formulaϕ is satisfied on a given modelM . While this check may
be defined for a modelM of any logic, traditionally the problem of model checking has
been investigated mainly for temporal logics. Various tools have been developed for
temporal logics [23, 16, 7, 28]. Typically, a tool for temporal logic model checking pro-
vides a programming language to describe a Kripke model S and implements efficient
techniques for the automatic verification of formulae (see Section 2.3).

2.2 Turing machines and complexity classes

In this section we follow the presentation given in [29]. A k-string Turing machine (k ≥
1) is a tuple TM = (K,Σ, δ, s) where K is a set of states, Σ is a set of symbols (the



alphabet of TM ), δ is a transition function, and s ∈ K is an initial state. Additionally, a
Turing machine TM is equipped with k “heads” (one for each string) to read symbols
from a certain position on the string, signposted by a “cursor”. The transition function
δ : K × Σk → (K ∪ {h,′′ yes′′,′′ no′′}) × (Σ × {⇒,⇐,−})k is the program of the
machine and describes the evolution of the machine. The special symbols {⇒,⇐,−}
denote the direction of the cursor of TM , and {h,′′ yes′′,′′ no′′} are special halting
states for TM . At the beginning of a run, TM is provided with an input string x ∈ Σ∗

and the heads are at the beginning of each string. We refer to [29] for more details.
The output of a Turing machine TM on input x is denoted by TM(x), and it is

defined to be yes (resp. no) if TM halts on state yes (resp. no) on input x. If the
machine halts in state h, then TM(x) is defined to be the string on the last tape. A
language L ⊆ Σ∗ is decided by a Turing machine TM if, for all strings x ∈ L,
TM(x) = yes.

A k-string non-deterministic Turing machine is a tuple NTM = (K,Σ,∆, s),
where ∆ is a transition relation ∆ ⊆ K ×Σk × (K ∪ {h,′′ yes′′,′′ no′′}) × (Σ × {⇒
,⇐,−})k

A language L ⊆ Σ∗ belongs to the complexity class TIME(f(n)) if there exists a
deterministic Turing machine deciding L in time f(n). A language L ⊆ Σ∗ belongs
to the complexity class SPACE(f(n)) if there exists a deterministic Turing machine
deciding L in space f(n) [29]. NTIME and NSPACE are non-deterministic complexity
classes defined analogously for non-deterministic Turing machines.

Important complexity classes are L (logarithmic space), NL (non-deterministic log-
arithmic space), P (polynomial time), NP (non-deterministic polynomial time), PSPACE
(polynomial space). The following inclusions hold: L ⊆ NL ⊆ P ⊆ NP

⊆ PSPACE [29].

2.3 Model checking concurrent programs

In many practical instances, when using model checkers, states and relations of tem-
poral models are not listed explicitly. Instead, a compact description is usually given
for a model M . Various techniques are available to provide succinct descriptions (vari-
ables, program constructors, etc). In this paper we focus on concurrent programs [19].
Concurrent programs offer a suitable framework to investigate the complexity of model
checking when compact representations are used because, as exemplified in Section 4,
various techniques can reduced concurrent programs1.

Formally, a program is a tuple D =< AP,AC, S,∆, s0, L >, where AP is a set of
atomic propositions, AC is a set of actions, S is a set of states, ∆ : S × AC → S is
a transition function, s0 is the initial state, and L : S → 2AP is a valuation function.
Given n programs Di =< APi, ACi, Si, ∆i, s

0
i , Li > (i ∈ {1, . . . , n}), a concurrent

1 Notice that some authors [31] define the problem of establishing whether or not a formula
ϕ holds on a model whose description is given in a compact way with the term symbolic
model checking. On the other hand, other authors [25] define symbolic model checking to be a
technique that “avoids building a state graph by using Boolean formulas to represent sets and
relations.” To avoid confusion, we will refer to symbolic model checking in the latter, stricter
sense.



programDC =< APC , ACC , SC , ∆C , s
0
C , LC > is defined as the parallel composition

of the n programsDi, as follows:

– APC = ∪1≤i≤nAPi;
– ACC = ∪1≤i≤nACi;
– SC =

∏
1≤i≤n Si;

– (s, a, s′) ∈ ∆C iff

• ∀1 ≤ i ≤ n, if a ∈ ACi, then (s[i], a, s′[i]) ∈ ∆i, where s[i] is the i-th
component of a state s ∈ S.

• if a 6∈ ACi, then s[i] = s′[i];

– LC(s) = ∪iLi(s[i]).

(in the remainder, we will drop the subscript C when this is clear from the context)
CTL formulae can be interpreted in a (concurrent) programD by using the standard

Kripke semantics for CTL formulae in a modelM = (S,R, V ). Indeed, the set of states
S of M can be taken to be set of states S of D, the temporal relation R can be defined
by ∆, and the evaluation function V can be defined by L (we refer to [19] for more
details). By slight abuse of notation, we will sometimes refer to the programsDi and to
D with the term “Kripke models”.

Summary of known results for temporal logics model checking Traditionally, the
complexity of temporal logics model checking has been investigated assuming that
models are given explicitly. In this approach, complexity is given as a function of the
size of the model and of the size of the formula. Known results are reported in Table 1.

Logic Complexity
CTL [8, 31] P-complete

LTL [32] PSPACE-complete
CTL* [8, 32] PSPACE-complete

µ-calculus [19] MC∈ NP ∩ co-NP

Table 1. The complexity of model checking for some temporal logics.

The complexity of model checking concurrent programs against CTL specifications
is investigated in [19]; the authors analyse first the program complexity of model check-
ing, i.e., the complexity of model checking as a function of the size of the model only
(with a fixed formula). Results are presented in Table 2.

Based on these results, the authors of [19] employ automata-based techniques to
evaluate the complexity of model checking as a function of the size of the formula
and the sum of the sizes of the concurrent programs constituting D. Their results are
presented in Table 3.



Logic Program complexity
CTL NLOGSPACE-complete

CTL* NLOGSPACE-complete
µ-calculus P-complete

Table 2. Program complexity of model checking for some temporal logics in concurrent pro-
grams.

Logic Program complexity Complexity
CTL PSPACE-complete PSPACE-complete

CTL* PSPACE-complete PSPACE-complete
µ-calculus EXPTIME-complete EXPTIME

Table 3. Program complexity and complexity of model checking for some temporal logics.

2.4 CTLK

CTLK is an extension of CTL with epistemic operators [10]. Well-formed CTLK

formulae are defined by the following grammar:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | EXϕ | EGϕ | E[ϕUψ] | Kiϕ.

The formulaKiϕ expresses the fact that agent i knows ϕ.
CTLK formulae can be interpreted in a Kripke model M = (W,Rt,∼1, . . . ,

∼n, V ) where W is a set of states, Rt ⊆ S × S is a serial transition relation (the
temporal relation), ∼i⊆ S × S are equivalence relations (the epistemic relations), and
V : S → 2AP is an evaluation function for a given set AP of atomic propositions.
Formulae are interpreted in a standard way, by extending the interpretation of CTL
formulae of Section 2.1 with the following:

M,w |= Kiϕ iff for all w′ ∈ W , ∼i (w,w′) implies M,w′ |= ϕ,
Notice that CTLK is a multi-dimensional logic obtained by the fusion (or inde-

pendent join) [12, 2] of CTL with S5
n, where n is the number of distinct epistemic

modalities.
CTLK formulae can be interpreted in concurrent programs: the temporal operators

of CTLK are interpreted as in [19], while epistemic operators are evaluated by defin-
ing epistemic accessibility relations based on the equivalence of the components of the
states of a concurrent program (a similar approach can be found in [10]). Specifically,
let D =< AP,AC, S,∆, s0, L > be a concurrent program obtained by the parallel
composition of n programs Di =< APi, ACi, Si, ∆i, s

0
i , Li > (i ∈ {1, . . . , n}). No-

tice that a state s ∈ S is a tuple (s1, . . . , sn) such that, for all i ∈ {1, . . . , n}, si ∈ Si.
We define two states s = (s1, . . . , sn) and s′ = (s′1, . . . , s

′
n) to be related via the

epistemic accessibility relation ∼i iff si = s′i, i.e., two states of S are related via the
epistemic relation ∼i iff the i-th components of the two states are identical.



Known results about model checking temporal-epistemic logics An upper bound
for “explicit” model checking formulae on Kripke models is given by the following
theorem.

Theorem 1. ([10], p.63) Consider a Kripke model M = (W,R1, . . . , Rn, V ) for a
normal modal logic (e.g. S5

n, K, etc.) and a formula ϕ. There is an algorithm that,
given a model M and a formula ϕ, determines in time O(|M | × |ϕ|) whether or not
M |= ϕ.

The time complexity for model checking fusion (independent join) of logics can be
derived using the following theorem [11]:

Theorem 2. Let M = (W,R1, R2, V ) be a model for the fusion of two logics L1

and L2, and ϕ a formula of L1 ⊕ L2 (where ⊕ denotes the fusion of two logics). The
complexity of model checking for L1 ⊕ L2 on input ϕ is:

O(m1 +m2 + n · n) +

2∑

i=1

((O(k) +O(n)) · CLi
(mi, n, k))

where mi = |Ri|, n = |W |, k = |ϕ|, and CLi
is the complexity of model checking for

logic Li, as a function of mi, n and k.

The following lower bound can be shown:

Lemma 1. Model checking is P-hard for the logic K, for D, and for any normal logic
obtained by fusion (aka independent join), in which one of the components is either K,
or D, or CTL.

Proof. Following the approach of [31] for CTL, by reduction of a P-complete problem
to model checking. Consider SAM2CVP (synchronous alternating monotone fanout 2
circuit value problem [14]). Any circuit can be reduced to a Kripke model for K or
for D (but not to models for other logics, such as T, where accessibility relations are
constrained). Consider then the formula ϕ = 323 . . .231. The circuit evaluate to 1
iff M,w0 |= ϕ.

The lemma above gives an immediate P-completeness result for the logic CTLK

with common knowledge. Indeed, a P-time algorithm is provided in [26] for model
checking epistemic operators and common knowledge in S5

n, and CTL is known to be
P-complete (see Table 1).

3 The complexity of model checking CTLK in concurrent
programs

Similarly to temporal logics, model checkers for multi-modal logics accept a “com-
pact” description of Kripke models. In this section we present a proof for the PSPACE-
completeness of the problem of model checking CTLK in concurrent programs; this
result will be employed in Section 4 to investigate the complexity of existing tools.



Following the approach of Section 2.3, we will analyse the complexity of model
checking a concurrent program D =< AP,AC, S,∆, s0, L > obtained by the parallel
composition of n programsDi =< APi, ACi, Si, ∆i, s

0
i , Li >.

We first introduce some lemmas that will be used in the proof of the main theorem.
Lemma 3 states that, if the formula EGϕ is true at a state s of a model M , then ϕ is
true on a path of length |M | starting from s and vice-versa. Corollary 4 states that, if
E[ϕUψ] is true at a state s of a modelM , then there is a state s′ on a path starting from
s at a distance not greater than |M | from s, in which s′ |= ψ, and such that ϕ holds in
all states from s to s′. Moreover, we report three well known theorems, as variations of
these will be used in the proof of Theorem 7.

Theorem 3. Given a Kripke model M = (S,R, V, I) for CTL, a state s ∈ S, and a
formula ϕ, M, s |= EGϕ iff there exists a path π starting from s of length |π| ≥ |M |
s.t. M,πi |= ϕ for all 0 ≤ i ≤ |M |.

Proof. If M, s |= EGϕ, then there exists a path π from s such that, for all i ≥ 0,
M,πi |= ϕ; as the relation R is serial, this path is infinite (so, obviously, |π| ≥ |M |).

Conversely, if there is a path π from s of length |π| ≥ |M |, then such a path must
necessarily include a backward loop. As M,πi |= ϕ for all i in this loop, it suffices to
consider the (infinite) trace generated by this loop to obtain a (semantical) witness for
M, s |= EG.

Theorem 4. Given a Kripke model M = (S,R, V, I) for CTL, a state s ∈ S, and
two formulae ϕ and ψ, M, s |= E[ϕUψ] iff there exists a path π starting from s s.t.
M,πi |= ψ for some i ≤ |M |, and M,πj |= ϕ for all 0 ≤ j ≤ i.

Proof. If M, s |= E[ϕUψ], by the definition of the until operator, there must exist a
state s′ in which ψ holds, and ϕ holds in every state from s to s′. Moreover, the state s′

cannot be at a “distance” greater than |M | from s.
The other direction is obvious.

The proof of Theorem 7 requires a procedure for establishing whether or not two
states s, s′ ∈ S of a Kripke model M are connected via a temporal path. Moreover,
the same proof requires a procedure to convert a non-deterministic Turing machine into
a deterministic one. Both problems are in fact instances of the same problem: reacha-
bility of two nodes in a graph. Formally, given a graph G and two nodes (x, y) ∈ G,
REACHABILITY is the problem of establishing whether there is a path from x to y or
not. The following known theorems are related to REACHABILITY.

Theorem 5. (Savitch’s Theorem) REACHABILITY ∈ SPACE(log2(n)).

Corollary 1. ([29], p.150) NSPACE(f(n)) ⊆ SPACE(f 2(n)).

Notice that, by Corollary 1, NPSPACE = PSPACE.

Theorem 6. ([29], p.153) NSPACE(f(n)) = co − NSPACE(f(n)).

We are now ready to provide a proof for the main claim of this section:



Theorem 7. Symbolic model checking for CTLK is PSPACE-complete.

Proof. Proof idea: Given a formula of ϕ of CTLK and a concurrent program D, we
define a non-deterministic polynomially-space bounded Turing machine T that halts
in an accepting state iff ¬ϕ is satisfiable in D (i.e. iff there exists a state s ∈ S s.t.
D, s |= ¬ϕ). Based on this, we conclude that the problem of model checking is in
co-NPSPACE. From this, considering Corollary 1 and Theorem 6, we conclude that
symbolic model checking for CTLK is PSPACE-complete (the lower bound being
given by the complexity of symbolic model checking CTL).

Proof details: T is a multi-string Turing machine whose inputs are D and ϕ. T
operates “inductively” on the structure of the formula ϕ (see also [6] for similar ap-
proaches), by calling other machines (“sub-machines”) dealing with a particular logical
operator. The input of T includes the states of the program Si (1 ≤ i ≤ n), the tran-
sition relations, the evaluation functions and all the other input parameters of each ∆i.
This information can be stored on a single input tape, separated by appropriate delim-
iters. The formula ϕ is negated, and then it stored on the same tape. The following is a
description of the “program” of T .

The machine T starts by guessing a state s and by verifying that s is reachable from
the initial state; if it is not, the machine halts in a “no” state. The algorithm of Theorem 5
can be used here, but notice that a polynomial amount of space is needed to store a state
of D (as it is the product of states of Di); this algorithm uses the transition relations
∆i encoded in the input tapes to verify reachability. In the remainder of this proof, we
assume that whenever a new state is “guessed”, it is also checked for reachability from
the initial state.

The computation proceeds recursively on the structure of ¬ϕ = ψ by calling one
of the machines described below. Each machine accepts a state s and a formula, and
returns either 0 (the formula is false in s) or 1 (the formula is true in s). Notice that each
machine can call any other machine. The following is a description of the formula-
specific machines:

– The machine Tp for atomic formulae simply checks whether or not the state is in
L(s); if it is, then the machine returns 1. Otherwise, it returns 0.

– The machine T¬ for formulae of the form ψ = ¬ψ′ calls the appropriate machine
for ψ′ and returns the opposite.

– The machine T∨ for disjunction of the form ψ = ψ′∨ψ′′ first calls the machine for
ψ′, and then for ψ′′, and returns the appropriate result.

– The machine TEX for formulae of the form ψ = EX(ϕ′) is as follows: Consider
the machine that guesses a state s′ ∈ S, checks whether it is reachable with a
temporal transition from s, and then calls the sub-machine for ϕ′ (if s′ is not reach-
able, the machine halts in a “no” state). Notice that this sub-machine will return
1 iff it can “guess” an appropriate successor where ϕ′ holds, and it uses at most
a polynomial amount of space. By Corollary 1, it is possible to build a determin-
istic machine based on this non-deterministic machine returning either 0 or 1 in
polynomial space; TEX is taken to be this “deterministic” machine.

– The machine TEG for formulae of the form ψ = EG(ϕ′) is as follows: consider a
machine executing the following loop:



s-now = s;
counter = 0;
do
guess a state s’;
check that s’ is reachable from s-now;

if s’ is not reachable, return 0;
if (f does not hold in s’) then

return 0;
else

s-now = s’;
end if
if (counter > |M|)

return 1;
else

counter = counter + 1;
end if

end do

Based on Lemma 3, this machine guesses a path of length greater than |M | (this
value can be computed by considering the size of the input) in which ϕ′ holds.
When (and if) such a path is found, the machine returns 1 (notice that this machine
uses a polynomial amount of space and always halts). By Corollary 1, it is possible
to build a deterministic machine TEG in PSPACE that returns 1 iff there exists a
path of length greater than |M | in which ϕ′ holds.

– The machine TEU for formulae of the form ψ = E[ϕ′Uψ′′] is as follows. Consider
the machine executing this code:

s-now = s;
counter = 0;
do
if ( psi’’ holds in s-now) then

return 1;
else

if ( psi’ does not hold in s-now) then
return 0;

else
guess a state s’;
check that s’ is reachable from s-now;

if s’ is not reachable return 0;
s-now = s’;
counter = counter + 1;

end if
end if
if ( counter > |M| )

return 0;
end if

end do



This machine implements the idea of Corollary 4: it tries to find a state s′ in which
ψ′′ holds and which is at a distance not greater than |M | from s. As in the previous
cases, the machine is non-deterministic, it uses a polynomial amount of space, and
it always halts; thus, by Corollary 1, a deterministic machine TEU can be built that
uses only a polynomial amount of space.

– The machine TK for formulae of the form ψ = Kiϕ
′ is as follows. Consider a sub-

machine that guesses a state s′ ∈ S, checks whether it is reachable with an epis-
temic transition from s (i.e. it checks whether the i-th component of the two states
are equal), and then calls the sub-machine for ¬ϕ′. Notice that this sub-machine
will return 1 iff it can “guess” a appropriate successor where ¬ϕ′ holds, and it uses
at most a polynomial amount of space. By Corollary 1, it is possible to build a de-
terministic machine TK based on this non-deterministic machine returning either 0
(if a state in which ¬ϕ holds is reachable form s), or 1 (if no such state exists) in
polynomial space.

Each of the machines above uses at most a polynomial amount of space, and there
are at most |ϕ| calls to this machines in each run of T . Thus, T uses a polynomial
amount of space. ut

Notice that this proof differs from the proof of PSPACE-completeness for symbolic
model checking CTL presented in [19]. The authors of [19] investigate the complexity
of various automata and apply these results to the verification of branching time logics.
Unfortunately, it does not seem that their technique can easily extended to epistemic
modalities. Thus, the proof above provides an alternative proof of the upper bounds for
symbolic model checking CTL, which can be easily extended to CTLK.

4 Applications

MCMAS [22] and Verics [28] are two tools for the automatic verification of multi-agent
systems via model checking. Both tools allow for the verification of CTLK formulae
in Kripke models. MCMAS uses interpreted systems [10] to describe Kripke models in
a succinct way. Verics employs networks of automata. Both approaches can be reduced
to concurrent programs, and vice-versa; thus, Theorem 7 allows to establish PSPACE-
completeness results for the problem of verifying MCMAS and Verics programs.

4.1 The complexity of model checking MCMAS programs

MCMAS [22] is a symbolic model checker for interpreted systems. Interpreted sys-
tems [10] provide a fine grain semantics for temporal and epistemic operators, based
on a system of agents. Each agent is characterised by a set of local states, by a set
of actions, by a protocol specifying the actions allowed in each local state, and by an
evolution function for the local states. MCMAS accepts as input a description of an in-
terpreted system and builds a symbolic representation of the model by using Ordered
Binary Decision Diagrams (OBDDs, [4]). We refer to [10, 22, 30] for more details. An
excerpt of a sample input file for MCMAS is reported in Figure 1.



Agent SampleAgent
Lstate = {s0,s1,s2,s3};
Lgreen = {s0,s1,s2};
Action = {a1,a2,a3};
Protocol:

s0: {a1};
s1: {a2};
s2: {a1,a3};
s3: {a2,a3};

end Protocol
Ev:

s2 if ((AnotherAgent.Action=a7);
s3 if Lstate=s2;

end Ev
end Agent

Fig. 1. MCMAS input file (excerpt).

An interpreted systems described in MCMAS can be reduced to a concurrent pro-
gram: each agent is associated with a program Di =< APi, ACi, Si, ∆i, s

0
i , Li >,

where ACi is the set of actions for agent i, Si is the set of local states for agent i, and
the evolution function∆i is the one provided for the agent.

In the formalism of interpreted systems an agent’s evolution function may depend
on the other agents’ actions. Thus, we modify the definition of a concurrent program
D =< AP,AC, S,∆, s0, L > obtained by the composition of n programs Di (one for
each agent), as follows:

– AP = ∪1≤i≤nAPi,
– AC =

∏
1≤i≤nACi,

– S =
∏

1≤i≤n Si,
– (s, a, s′) ∈ ∆ iff ∀1 ≤ i ≤ n, (s[i], a, s′[i]) ∈ ∆i,
– L(s) = ∪iLi(s[i]).

Notice that, instead of taking the union, AC is now the Cartesian product of the
agents’ actions ACi, and the transition function is modified accordingly. Thus, given
an interpreted system and a CTLK formula ϕ described in the formalism of MCMAS,
it is possible to obtain a concurrent program D of size equal to the original MCMAS

description (modulo some constant), so that the Turing machine T defined in Section 3
can be employed to perform model checking of ϕ. Hence, we conclude that model
checking MCMAS programs is in PSPACE.

Conversely, the problem of model checking a formula ϕ in the parallel composition
of n programs Di =< APi, ACi, Si, ∆i, s

0
i , Li > can be reduced to an MCMAS pro-

gram. Indeed, it suffices to introduce an agent for each program, whose local states are
Si and whose actions areACi. The transition conditions for the agent can be taken to be
∆i, augmented with the condition that a transition between two local states is enabled
if all the agents including the same action in ACi perform the transition labelled with
the particular action.



It is worth noticing that the actual implementation of MCMAS requires, in the worst
case, an exponential time to perform verification. Indeed, MCMAS uses OBDDs, and it is
known [5] that OBDDs may have a size which is exponential in the number of variables
used.

4.2 The complexity of model checking Verics programs

Verics [28] is a tool for the verification of various types of timed automata and for the
verification of CTLK properties in multi-agent systems. In this section we consider
only the complexity of verification of CTLK properties in Verics.

A multi-agent system is described in Verics by means of a network of (un-timed)
automata [20]: each agent is represented as an automaton, whose states correspond to
local states of the agent. In this formalism a single set of action is present, and automata
synchronise over common actions.

The reduction from Verics code to concurrent programs is straightforward: each
automaton is a program Di and no changes are required for the parallel composition
presented in Section 2.3, and similarly a concurrent program can be seen as a network
of automata. Thus, we conclude that the problem of model checking Verics programs is
PSPACE-complete.

Notice that the actual implementation of Verics performs verification by reducing
the problem to a satisfiability problem for propositional formulae. Similarly to MCMAS,
this reduction may lead to exponential time requirements in the worst case.

5 Conclusion

In this paper we have reviewed various results about the complexity of model checking
for temporal logics, both for “explicit” and for symbolic model checking. We have ex-
tended some of these results to richer logics for reasoning about knowledge and time.
In particular, we have presented Theorem 7 which provides a result for the complexity
of symbolic model checking CTLK. To the best of our knowledge, no other com-
plexity results for symbolic model checking temporal-epistemic logics are available,
with the exception of [26, 27]. The authors of [26, 27] investigate the complexity of
model checking for LTL extended with epistemic operators and common knowledge in
synchronous/asynchronous systems with perfect recall. Let LX,U,K1,...,Kn,C be the full
language of this logic. Complexity results are presented in Table 4. Intuitively, model
checking for these semantics is more complex than for the “standard” Kripke semantics
(also called “observational” semantics by the authors), because perfect recall causes
local states to be unbounded strings, thus “generating” an infinite set of worlds, upon
which model checking should be performed.

Our work differs from [26, 27] in analysing the problem of symbolic model checking
for the generic framework of concurrent programs, in which models are not described
explicitly: in turn, the generic result in Theorem 7 provides a concrete methodology to
investigate the complexity of verifying MCMAS and Verics programs.

Finally, the work presented here is similar in spirit to [15] where complexity results
for the verification of ATL against simple reactive modules are presented.



Language Complexity
LK1,...,Kn,C , synchronous PSPACE-hard
LK1,...,Kn,C , asynchronous undecidable
LX,K1,...,Kn,C , synchronous PSPACE-complete
LX,U,K1,...,Kn

, synchronous non-elementary
LX,U,K1,...,Kn,C , synchronous undecidable

Table 4. Complexity of MC for some perfect recall semantic.
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