
Verifying Temporal and Epistemic Properties of
Web service Compositions?

Alessio Lomuscio, Hongyang Qu, Marek Sergot, Monika Solanki

Department of Computing, Imperial College London, UK
E-mail: {alessio, hongyang, mjs, monika}@doc.ic.ac.uk

Abstract. Model checking Web service behaviour has remained limited to
checking safety and liveness properties. However when viewed as a multi
agent system, the system composition can be analysed by considering addi-
tional properties which capture the knowledge acquired by services during
their interactions. In this paper we present a novel approach to model
checking service composition where in addition to safety and liveness, epis-
temic properties are analysed and verified. To do this we use a specialised
system description language (ISPL) paired with a symbolic model checker
(MCMAS) optimised for the verification of temporal and epistemic modal-
ities. We report on experimental results obtained by analysing the compo-
sition for a Loan Approval Service.

1 Introduction

Web services are now considered as one of the key paradigms underlying appli-
cation integration. Several research efforts – both from industry and academia
– have addressed varied aspects of service composition including verification via
model checking. Most of the approaches [11,13] take BPEL [9] as the language for
development and use model checkers such as SPIN [6] and NuSMV [3] for check-
ing safety and liveness properties. These model checkers are limited to temporal
modalities in the scope of properties they can analyse. However as we argue be-
low, in addition to verifying temporal properties it is also necessary to predict and
verify the knowledge gained by services during the composition.

In this paper we propose an alternative yet complementary approach to veri-
fying service behaviour. As proposed by the W3C consortium: “ A Web service is
an abstract notion that must be implemented by a concrete agent. The agent is
the concrete piece of software or hardware that sends and receives messages.”, a
composition of Web services can be viewed as a multi agent system [12].

There is a tradition in the multi agent systems (MAS) community to use rich
logic-based languages to analyse the behaviour of agents in the system. In partic-
ular not only is temporal logic used but also, among others, epistemic (to reason
about knowledge of the processes), deontic (to reason about obligation of the pro-
cesses), cooperation (to reason about strategies of the agents) modalities. These

? The research described in this paper is partly supported by the European Commission
Framework 6 funded project CONTRACT (IST Project Number 034418).



logic-based languages can be used to specify formally and unambiguously the be-
haviour of the system. Recent developments in the verification of MAS via model
checking techniques [2,10] allow for the first time the verification of not only plain
temporal languages but also a variety of modalities describing the informational
and intentional state of the agents. In particular reasoning about the agents’ knowl-
edge is demonstrably of interest in a variety of applications, including coordination,
security, communication, fault-diagnosis, networking, etc. This work has not yet
been extended to the challenges of service composition. The aim of this paper is to
make a step in this direction. In particular in this paper we show how MCMAS [8]
can be used to model check rich specifications based on temporal-epistemic logic
representing compositions of web-services.

The rest of the paper is organised as follows. In Section 2 we introduce the
trace-based semantics of interpreted systems. Section 3 introduces a motivating
example and some of its key specifications. In Section 4 we introduce MCMAS, a
symbolic model checker for semantics of interpreted systems. The encoding of the
example in a specialised language is also shown in this section, its key properties are
checked automatically, and experimental results are discussed. We discuss related
work in Section 5 and conclude in Section 6.

2 Preliminaries

The first class citizen within an interpreted system as applied to Web services is
an agent that represents the concrete counterpart of a service in the composition.
Below we summarise the framework of interpreted systems [4] as implemented in
MCMAS. Every agent i (i ∈ {1, . . . , n}) is characterised by a finite set of local
states Li for the service and a finite set of actions Acti that the agent performs on
behalf of the service. A Protocol defines the actions that may be performed by an
agent in each of its local states and is defined as Pi : Li → 2Acti . The environment
is modelled as a special agent with a set of local states (Le), a set of actions (Ae)
and a protocol (Pe). The set of global states of the composition can be defined as
a non-empty subset of the Cartesian product L1×L2×L3 . . .×Ln×Le. A global
state of the system at a particular instant in time is therefore represented by a
tuple (l1, l2, . . . ln, le).

The evolution (transition) of the agents’ local states is described by a function
ti : Li × . . . × Ln × Le × Acti × . . . × Actn × Acte → Li that defines the next
local state of an agent given the current local state and the action(s) that are
performed in that state as per the protocol. The evolution of all the agents’ local
states describes a set of runs over the set of reachable states. It is assumed that
in every state the agents perform simultaneous actions. Note that some agents
may perform “null” actions. The evolution of the global states of the system is
described by a function t : S × Act → S where S = L1 × . . . × Ln × Le and
Act = Act1× . . .×Actn×Acte. Given a set I ⊆ S of possible initial global states,
the set G ⊆ S of reachable global states is generated by all possible runs of the
system. Finally, the definition includes a set of atomic propositions AP together
with a valuation function h : AP → S.



We adopt the syntactical constructs and semantic model for the interpretation
of temporal-epistemic formulae in interpreted systems as presented in [8] to anal-
yse composite Web services. Of particular interest to us is the formula Kiϕ for
expressing epistemic properties. The formula is read as “Agent i knows ϕ”. Epis-
temic properties capture knowledge that the agents and their environment acquire
as the system evolves. Verification of epistemic properties ensures the correctness
of this knowledge at various states within the system as interaction progresses. In
terms of verification via model checking, in our approach, this can be defined as
establishing whether or not Ms � Kiϕ. We can also verify complex specifications
like KiKjϕ which informally expresses “Agent i knows that agent j knows ϕ”.

3 A Motivating Example

Loan Requester Agent

Loan Approval Agent

i
n
v
o
k
e
 

invokeLoan
Request()
amt >10,000

getSuccessgetReject

acknack

invokeLoan
Request()
amt <10,000

setLoanRequest

S1

S0

S4

S2

S3

S5

receiveRequest

checkSuccess checkFail

sendReject

t0

t1

t2 t3

t4 t5

sendOffer

Loan Expert Agent

invokeRiskAssessment

invokeLoanExpert

sendReject

sendOffer 

receiveLoan
Request1()
amt <10,000

receiveLoan
Request2()
amt >10,000

invokeRiskAssessment

sendOffer 

checkRequest checkRequest

W0

W1 W2

W3 W4

W5 W6

W7

W10W8

sendReject

W11

sendSuccess

receiveOffer

W9

W12

nack

sendFail

W13

ack

sendReject

Fig. 1. Protocols for Agents in the Loan Approval Service

We take as our reference example a composition of services for Loan Approval
as outlined in the WSBPEL specification [9]. Figure 1 shows the interaction proto-
cols for the various services. At a high level of abstraction, these protocols can be
viewed as individual BPEL representations of the processes. For simplicity in this
paper, we do not model explicit communication between the agents. We assume
that the underlying network for sending and receiving messages is reliable, com-
munication is synchronous and message delivery is instantaneous. Asynchronous



communication can be easily modelled by allowing the agents to “wait” or do
“nothing”. It is also possible in our framework to model channels as environment
for the agents in the systems and reason about their correct behaviour for e.g. co-
ordination and synchronisation. However in this paper we abstract from modelling
these.

3.1 Formalisation

We represent the above example using the formalism of interpreted systems. In
order to verify a system with MCMAS, we need to translate the system into a
model written in ISPL, which includes the following components:

– The definition of agents which describes the local behaviour of every agent,
such as states, actions and protocols.

– The global evaluation function of the system which define atomic propositions
held over global states, the combinations of local states.

– The local initial state of agents.
– Specifications to be checked. They are expressed as temporal-epistemic formu-

lae.

In the example, we define four agents “Loan Requester (LRA)”, “Loan Service
(LSA)”,“Risk Assessor (RAA)” and “Loan Expert (LEA)”. Each of them is mod-
elled using their local states, local actions, protocols and transition functions.

For example, for the LRA the local states are {s0, s1, s2, s3, s4, s5}. The set of
actions for the LRA includes setLoanRequest, invokeLoanRequest1, invokeLoanRe-
quest2, ack, nack, nothing, return1, among which invokeLoanRequest1 represents a
request with amount less than 10,000 GBP, invokeLoanRequest2 one with amount
greater than 10,000 GBP, nothing is just a dummy action (corresponding to no-
op) and return1 is used to move to the initial state. The Protocol function in the
definition explicitly specifies possible actions at each state: for example, at state
s1, only invokeLoanRequest1, invokeLoanRequest2 are possible. If no action can be
enabled, nothing is assigned to the state.

Finally the evolution function defines the behaviour of the agent, i.e., when and
how the agent moves to another state. For example, LRA proceeds to the state s1 if
and only if it is in the state s0 and executes the action setLoanRequest. In addition,
the agent can jump to other states without firing a “local” action. This is done by
following actions of other agents. For instance, LRA moves to state s3 from state
s2 when agent LSA executes action sendFail. In this way, we can easily model
synchronisation between agents. A typical scenario of synchronisation is when an
agent sends a request to another and the latter has to receive it. Moreover, this
mechanism allows us to reduce the total number of actions and thus the number of
Boolean variables needed to encode the system which speeds up the verification.
Asynchronous communication can be easily modelled as explained earlier. The
Loan Service may choose not to receive the request sent by the Loan requester
till the send operation is complete. In this case, the transition of the Loan service
from state w0 to state w1 happens only after the transition invokeLoanRequest1
of the loan requester from state s1 to state s2.



As observed, the evolution function provides a simple means of modelling co-
ordination and synchronisation/asynchronisation between agents for the purposes
of the paper. It also allows us to reduce complexity, while focusing on our core
objective of verifying temporal-epistemic properties. More elaborate models of co-
ordiantion and synchronisation are possible but will not be presented here.

4 Model Checking The Loan Approval Composition

MCMAS [8] is an OBDD based symbolic Model Checker for Multi Agent Systems.
In addition to temporal modalities MCMAS allows the verification of epistemic,
correctness and cooperation modalities. Input to the model checker is defined in
ISPL. The evaluation function in ISPL maps atomic propositions to states, which
specifies for every atomic proposition the set of states in which the proposition
holds. For example the proposition loanApproved holds if the loan requester is in
state s4 or it is in state s5.

We check the following epistemic properties: (1) if the loan request is approved
by LAA, then LRA knows the fact that LSA knows that the request of LRA has low
risk; (2) if the amount of the loan requested is greater than 10,000, the customer
knows that his request will be directed to a Loan Expert. They are formalised as
follows:

AF loanApproved → (amountLess10000 → KLRAKLSALowRisk1)
∧(amountGreater10000 → KLRAKLSALowRisk2)

AF amountGreater10000 → KLRAexpertInvoked

We also tested two CTL formulae: AF (loanFail∨ loanSucceed), which stands
for eventually in all paths, a loan request would fail or succeed, i.e., LSA must make
decision for every load request, and AF amountGreater10000 → EF loanReject
which means that for all paths in which the loan amount is greater than 10,000
GBP, the request would fail in some paths.

MCMAS used 13 Boolean variable to encode local states, 12 for actions. It
returned the result immediately, as the model is not complex. It is obvious that
the four properties are true for the model. It is easy to produce a false property as
well, for example, change “EF” into “AF” in the fourth formula. Due to space re-
strictions we do not present the complete ISPL code for the example; it is available
on request.

5 Related Work

Several research efforts have addressed the problem of model checking Web ser-
vice specification, however to the best of our knowledge this is one of the first
papers to address the verification of epistemic properties of agents that repre-
sent Web services. Pistore et al [11] present a technique based on “Planning as
Model Checking” for planning under uncertainty for composition and monitoring



of BPEL4WS processes. The Model checking approach uses the MBP Planner [1].
Fu et al [5] presents a framework where BPEL specifications are translated to an
intermediate representation, using guarded automata as XPath expressions. This
is followed by the translation of the intermediate representation to a verification
language “Promela”, input language of the model checker SPIN. Hu Huang et
al [7] presents an approach using the BLAST model checker to verify the process
models of OWL-S

6 Conclusions

In this paper we show that along with temporal modalities, epistemic properties
for agents representing the services can be verified. We use the symbolic model
checker MCMAS and verify temporal-epistemic properties for Loan Approval com-
position. As part of our future work we intend to investigate the explicit modelling
of coordination and synchronisation between agents which are abstracted in this
paper.

References

1. P. Bertoli, A. Cimatti, M. Pistore, M. Roveri, and P. Traverso. MBP: a model based
planner. In In Proc. of the IJCAI’01, 2001.

2. R. Bordini, M. Fisher, C. Pardavila, W. Visser, and M. Wooldridge. Model checking
multi-agent programs with CASP. In (CAV’03), volume 2725 of LNCS, pages 110–
113. Springer-Verlag.

3. A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri. NuSMV: A new symbolic
model verifier. In Proc. CAV’99, pages 495–499.

4. R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi. Reasoning about Knowledge.
MIT Press, Cambridge, 1995.

5. X. Fu, T. Bultan, and J. Su. Analysis of interacting BPEL web services. In WWW’04,
pages 621–630. ACM Press.

6. G. J. Holzmann. The model checker SPIN. IEEE Trans. on Software Eng., 23(5):279–
295, 1997.

7. Hai Huang, Wei-Tek Tsai, Raymond Paul, and Yinong Chen. Automated model
checking and testing for composite web services. In ISORC ’05, pages 300–307 IEEE
Computer Society.

8. A. Lomuscio and F. Raimondi. MCMAS: A model checker for multi-agent systems.
TACAS’06, volume 3920, pages 450–454. Springer Verlag.

9. OASIS Web service Business Process Execution Language (WSBPEL) TC. Web
service Business Process Execution Language Version 2.0, 2007.

10. W. Penczek and A. Lomuscio. Verifying epistemic properties of multi-agent systems
via bounded model checking. Fundamenta Informaticae, 55(2):167–185, 2003.

11. Marco Pistore, F. Barbon, Piergiorgio Bertoli, D. Shaparau, and Paolo Traverso.
Planning and monitoring web service composition. In AIMSA, pages 106–115, 2004.

12. M. Wooldridge. An introduction to multi-agent systems. John Wiley, England, 2002.
13. X. Fu T. Bultan and J. Su. Conversation Protocols: A Formalism for Specification

and Verification of Reactive Electronic Services. In CIAA’03, pages 188–200.


