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Abstract

We introduce and investigate quantified interpreted system

a semantics to reason about knowledge and time in a first-
order setting. We provide an axiomatisation, which we show
to be sound and complete. We utilise the formalism to study
message passing systems (Lamport 1978; Fagin et al 1995) in
a first-order setting, and compare the results obtainedseth
available for the propositional case.

Introduction

The area of modal logic (Blackburn, van Benthem, and
Wolter 2007; Chagrov and Zakharyaschev 1997) has re-
ceived considerable attention in artificial intelligencesio
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temporal logic to predicate level. We apply this result in
the modeling of a class of computational structures nogmall
referred to as message passing systems (Lamport 1978). We
also show that known metatheoretical properties of message
passing systems (Fagin et al 1995) become validities in the
predicate logic here considered.

Our starting point is a number of results by Halpern, van
der Meyden, and others regarding the combination of time
and knowledge at propositional level (Fagin, Halpern, and
Vardi 1992; Meyden 1994) together with studies by, among
others, Hodkinson, Reynolds, Wolter, Zakharyaschev for
first-order temporal logic including both positive (Hod-
kinson, Wolter, and Zakharyaschev 2000; Reynolds 1996;
Wolter and Zakharyaschev 2002) and negative results
(Wolter 2000). In this note we also make use of our ini-
tial work in this direction (Belardinelliand Lomuscio 20&;7
2007b), where static (i.e., non-temporal) quantified epis-

the years. Research has pursued both fundamental theorettemic logics were axiomatised.

ical investigations (completeness, decidability, comiie
etc), as well as the use of modal formalisms in specifica-
tion and automatic system verification, as in model checking
(Clarke, Grumberg, and Peled 1999).

Among the most well-known formalisms are proposi-
tional modal logics for reasoning about knowledge, or
propositional epistemic logics (Fagin et al 1995; Meyer and
Hoek 1995). The typical epistemic language extends propo-
sitional logic by adding: modalities K; representing the
knowledge of agentin a groupA = {1,...,n} of agents.

Our motivation for the above comes from an interest in
reasoning about reactive, autonomous distributed systems
or multi-agent systems (MAS), whose high-level proper-
ties may usefully be modeled by epistemic formalisms suit-
ably extended to incorporate temporal logic. While tem-
poral epistemic logics are well understood at propositiona
level (Fagin et al 1995; Meyer and Hoek 1995), their useful-
ness has been demonstrated in a number of applications (se-
curity and communication protocols, robaotics), and model
checking tools have been developed for them (Gammie

For expressiveness purposes, epistemic logic has been ex-and van der Meyden 2004; Raimondi and Lomuscio 2007;

tended in several ways. In one direction, further modali-
ties have been added to the formalism (distributed knowl-
edge, common knowledge, belief, etc.) for representing the

knowledge shared in a group of agents. In another one, the Solanki, Cau, and Zedan 2006; Vigano 2007)).
epistemic language has been enriched with temporal oper-

ators under the assumption of a given model of time (e.g.,
linear or branching, discrete or continuous, etc.). In all

Dembinski et al 2003), still there is a growing need in
web-services, security, as well as other areas, to extend
these languages to first-order (see (Cohen and Dams 2007;
More-
over, a number of formalisms, includingD1I logics (Rao

and Georgeff 1991), th& QM L framework (Cohen, and
Levesque 1995), andOR.A (Wooldridge 2000), have put

these lines of work there is a tension between extending the forward agent theories that include the power of first-order
expressiveness of the language reflecting the system to bequantification. However, most of these contributions do not

modeled and retaining some useful theoretical properfies o
the formalism, such as decidability.

This tension is still present in the exercise conducted,here
where we aim at extending a combination of epistemic and
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address the issue of completeness, a core concern here.
In MAS applications the power of first-order logic is wel-

come every time agents’ knowledge is concerned with:

o Relational statement, as agenti; knows that message
was sent by to b, or formally

K1<P>Send(aa bv M)a



(where(P) is the diamond for past time);

Functional dependency and identigt: some future point
agent; will know that messagge is the encryption of mes-
sagey’ with keyk, formally

(F)EKi(p = enc(k, 1'));

An infinite domain of individuals, or a finite domain
whose cardinality cannot be bounded in advaragent
1 has to read an e-mail before deleting it

Yu(Delete(i, u) — (P)Read(i, 1));

A Quantified Temporal Epistemic Logic

In this section we extend to first-order the formalism of in-
terpreted systems, a class of structures introduced to Imode
the behaviour of multi-agent systems (Fagin et al 1995;
Meyer and Hoek 1995). In what follows we assume a finite
setA = {iy,...,i,} of agents.

Syntax

The first-order modal languagd®, contains individual vari-
ableszy, z2, . . ., n-ary functorsfy*, f3, ... andn-ary pred-
icative lettersP*, Py, ..., for n € N, the identity predi-

cate=, the propositional connectivesand—, the universal
guantifiery, the epistemic operatofs;, fori € A, the dis-
tributed knowledge operato®¢, for non-emptyG C A,
the future operatdF], and the past operatoP].

Definition 1 Terms and formulas in the languadg, are
defined in the Backus-Naur form as follows:

tu=a|fi(1)
¢u=Pr@) |t =t'|~¢|p — | Kip| Dcd|[Flp| [Plo| Ve

The formulaK ;¢ means &genti knowsg”, while Dg ¢
represents ¢ is distributed knowledge among the agents
in G", and [F|¢ (respectively{P]¢) stands for ¢ will al-
ways be trué(respectively % has always been trige The
symbolsL, A, V, <, 3, (F) (sometime in the future),P)
(sometime in the past) are defined as standard. The temporal
operators ']t (every future time including the present) and
[P]* (every past time including the present) can be defined
aso A [F¢ andg A [P]¢ respectively.

We refer to O-ary functors asndividual constants
c1,c2,... A closed termv is a term where no variable ap-
pears; closed terms are either constants or terms obtayned b
applying functors to closed terms.

By t[y] (resp. ¢[y]) we mean thaf = y1,...,y, are all
the free variables in (resp. ¢); while t[i/t] (resp. [7/1])
denotes the term (resp. formula) obtained by substituting
simultaneously some, possibly all, free occurrenceg iof
t (resp.¢) with ¢’ = ¢4, ..., t,,, renaming bounded variables
if necessary.

e Quantification on agents (Lomuscio and Colombetti
1996): the child of any process knows which process
launched it

ViK chiae (P)Launch(i, child(i))

Furthermore, in the context of logics for knowledge it
is known that epistemic modalities can be combined with
guantifiers to express concepts such as knowleégeand
de dicto(Fitting, and Mendelsohn 1999; Hughes and Cress-
well 1996). For instance, an agenmight know that every
computation will eventually produce an output, thus having
the de dictoknowledge expressed by the following specifi-
cation:

Yeomp K; (F) 3y Output(comp,y)

but she might not know the actual output of every computa-
tion. Therefore, the followinge respecification:

Yeomp Jy K; (F) Output(comp,y)

would not be satisfied. From the examples above we con-
clude that quantification can significantly extend the espre
siveness of epistemic languages.

While the specifications above call for a first-order lan-
guage, we need to consider why one should use an undecid-
able language when a decidable one (propositional temporal
epistemic logic in our case) does a reasonable job already.
Although this is a sensible objection, we should stressithat
many practical applications, such as in model checking, we
are typically not so much concerned with the validity prob-
lem but with satisfaction in a given model, which is often
an easier problem, particularly for some classes of forsula
Additionally, recent research, including among othersqHo  Interpreted systems are widely used to model the behaviour
kinson, Wolter, and Zakharyaschev 2000; Sturm, Wolter, of MAS, in this subsection we extend these structures to
and Zakharyaschev 2000; 2002; Wolter and Zakharyaschev first-order. This extension can be performed in several ways
2001), has put forward useful decidable fragments of first- all leading to different results. For instance, we coulddnt
order modal logic, thereby opening the way for further ex- duce a domain of quantification for each agent and/or for
tensions. each computational state (see (Belardinelli and Lomuscio

We approach the problem by introducing quantified in- 2007a; 2007b) for a discussion of the static case). In this pa
terpreted systems, an extension to first-order of “staridard per we consider the simplest extension, obtained by adding
interpreted systems (Halpern, and Fagin 1989; Parikh and a single quantification domail common to all agents and
Ramanujam 1985), which are used to interpret a language states. We present further options in the conclusions.
for temporal epistemic logic including distributed knowl- More formally, for each agent € A in a multi-agent
edge. First, a sound and complete axiomatisation is pre- system we introduce a sét; of local stated;, ., ..., and
sented. Second, message passing systems, a basic framea setAct; of actionsa, o, .... We consider local states
work for reasoning about asynchronous systems (Lamport and actions for the environmentas well. The setS C
1978) are analysed in the light of the novel formalism, and L. x L; x ... x L, contains all possible global states of the
the results compared to the treatment in propositionatlogi  MAS, while Act C Act. x Act; x ... x Act, is the set of

Quantified Interpreted Systems



all possible joint actions. Note that some states may never
be reached and some joint actions may never be performed.
We also introduce a transition function Act — (S — S).
Intuitively, 7(a)(s) = s’ encodes that the agents can ac-
cess the global staté from s by performing the joint action

«a € Act. The transition function- defines the admissible
evolutions of the MAS. We say that the global states
reachable in one steftom s, ors < ¢, iff there isa € Act
such thatr(a)(s) = s’; while s’ is reachablefrom s iff

s <1 &', where<™ is the transitive closure of relation.

To represent the temporal evolution of the MAS we con-
sider the flow of timeT” = (T, <) defined as a weakly con-
nected, strict partial order, i.€1] is a non-empty set and
the relation< onT is irreflexive, transitive and weakly con-
nected: fom, n/, n” in T,

-ngn
-(n<n' An' <n”)— (n<n)
-(n<nAn<n”) - <n’"vn' <n vn =n")
-(n <nAn” <n) - <n"vn'<n vn =n")

The relation< can be thought of as the precedence re-
lation on the setl’ of moments in time. A run- over
(S, Act,T,T), whereS, Act, 7, and7 are defined as above,
is a function fromI" to S such that, < n’ impliesr(n) <*
r(n'). Intuitively, a run represents a possible evolution of
the MAS on the flow of time7".

We now define the quantified interpreted systems for the
language’,, as follows:

Definition 2 A quantified interpreted system, or QIS, over
(S, Act,7,T) is a triple P = (R, D, I) such thatR is a
non-empty set of runs ove.ﬁ‘ Act,T,T); Dis anon-empty
set of individuals ( f 2 is a k-ary function fromD* to D;
forr € R,n e T, I(P" rn)is ak-ary relation onD and
I(=,r,n)isthe equallty orD We denote b@ZS the class

of all quantified interpreted systems.

Note that individual constants as well as functorin
are interpreted rigidly, that is, their interpretationhis same
in every global state. Further, the present definition ofgua
tified interpreted systems covers the most intuitive formal
sations of time, as it includes, Z, Q, andR with a notion

(P?,r,m) = PE(E) iff (I7(t1),..., 1% (tx)) € I(P*,7,m)
(P?,r,m)Et=1¢ fI°() = I"(t’)
(P?,r,m) E iff (P, 7, m) £ ,
(PU7T7m)'=1/J—’1/Jlﬁ( ,7“//712%/ OI'(P rm)':/
(P?,r,m) E Ky iff ri(m)= Z(m)lmphes(P ,rom') e
(P?,r,m) E Dgy iff ri(m) =ri(m’) forallzGG

implies (73", r',m') E
(P?,r,m) | [Fl¢p  iff m < m' implies (P7,r,m’) =1
(73",7’, m) = [P]y  iff m > m/ implies (P7,r,m’) = ¢

(P?,r,m) EVzy iff foralla € D, (73”(2)7 r,m)

The truth conditions forl, A, Vv, <, 3, (F), and(P)
are defined from those above. In particular, the temporal
operatorgF|* and[P]* respect the intended semantics:

(P?,r,m) = [F]T¢ iff m < m/implies (P7,r,m') E ¢
(P2, r,m) = [P]T¢ iff m > m' implies (P?,r,m’) = 4

Aformula¢ € L, is said to barue at a point(r, m) iff it
is satisfied a{r, m) by everyo; ¢ is valid on a QISP iff it
is true at every point ifP; ¢ is valid on a clas< of QISiff
itis valid on every QIS irC.

The present definition of QIS is based on two assump-
tions. Firstly, the domai® of individuals is the same for ev-
ery agent, so all agents reason about the same objects. This
choice is consistent with thexternal account of knowledge
usually adopted in the framework of interpreted systems: if
knowledge is ascribed to agents by an external observer, i.e
the specifier of the system, it seems natural to focus on the
set of individuals assumed to exist by the observer. Sec-
ondly, the domainD is assumed to be the same for every
global state, i.e., no individual appears nor disappears in
moving from one state to another. This also can be justi-
fied by the external account of knowledge: all individuals
are supposed to be existing from the observer’s viewpoint.
However, either assumption can be relaxed to accommodate
agent-indexed domains as well as individuals appearing and
disappearing in the flow of time. We discuss further options
in the conclusions. Finally, it can be the case that D:
this means that the agents can reason about themselves, thei
properties, and relationships.

Expressiveness

of precedence among instants. Therefore, QIS are generalClearly, the languagg,, is extremely expressive. We can

enough to cover a wide range of cases, while still being in-
teresting for applications.

Now we assign a meaning to the formulasfyf in quan-
tified interpreted systems. Following standard notatica (F
gin et al 1995) a paifr,m) is apointin P. If r(m)
(leyl1, ..., 1) is the global state dt, m), thenr.(m) = [,
andr;(m) = [; are the environment's and ager# local
state at(r, m) respectively. We consider also the converse
relation> defined as > m iff m < n, and the partial order
<suchthath < miff n <morn=m.

Let o be an assignment from the variablesdp to the
individuals inD, the valuationl”(tz of a termt is defined
aso(y) fort =y, andI?(t) = I(f*)(I°(t1),...,17(tg)),
fort = f(t). A varianto (%) of an a55|gnmentr assigns
a € D tox and coincides witlr on all the other variables.

Definition 3 The satisfaction relation= for ¢ € L,,
(r,m) € P, and an assignmennt is defined as follows:

use it to specify the temporal evolution of agents’ knowl-
edge, as well as the knowledge agents have of temporal facts
about individuals. Both features are exemplified in the fol-
lowing specification:agent: will know that someone sent
him a message when he receives it

Vi, [F] (Rec(i, j, p) — K; (P) Send(j,i, 1)) (1)

In £,, we can also express thidtagent: receives a mes-
sage, then he will know that someone sent it to:him

Vu [F](37 Rec(i, j, p) — Ki 35" (P) Send(j', i, 1)) (2)

The latter specification is weaker than the former: (2) says
nothing about the identity of the sender, while (1) requires
thatthe receiver knows the identity of the sendeaurther, we
can express the fact that the existence of a sender is assumed
only at the time the message is sent:

Vu [F)(3j Rec(i, j. i) — K (P) 3j' Send(j',i, u))



In the section on message passing systems we provide | Taut every instance of classic propositional tautologids
further examples of the expressivenes£gf Most impor- M,P o=, o=
tantly, we will show that this expressiveness is attaineilevh 2'5t Sw _’Dd’m) — (He — Uy)
retaining completeness. Nec ¢iE¢ ¢
We conclude this paragraph by considering some relevant — Kid— o Dad = o
validities on the class of QIS. Given that the domain of quan- | g “[L{i(ﬁ — K-Kid —~Dgé — De—Dad
tification is the same in every global state, both the Barcan | p1 Do < K¢
formula and its converse are valid on the class of all QIS for | p2 Dg¢ — Dgr, forG C G’
all primitive modalities: FP é — [F](P)¢
PF — [P|(F
QIS = VoKig o Kivad W [(PTIb— ([PT3 v (F7)
QIS = VaDgé < DgVrg \éVConP \<1F><P>¢ — (P)pV @V (F)p)
X TP — ¢lx/t
QIS = ValFlp o [F]Vzo Gen 10) i w[f/[t]/:L ¢ — Vxp, wherex is not free ing
QIS | Va[Pl¢ < [PVag id t=1
Also, these validities are in line with the bird’s eye ap- gﬂggt ii i, - é;[g[cﬂf/tl]f]_:} ;[C[Cﬂ%f]%)

proach usually adopted in epistemic logic. However, should

we wish to do so, we can drop them by introducing quanti- By the definition above the operatak§ and D are S5
fied interpreted systems with varying domains. type modalities, while the futurg’] and pastP] operators
For what concerns identity, the following principles hold: are axiomatised as linear-time modalities. To this we add th
R — 4 " e / classic theory of quantification, consisting of postuldfas
3%? "i i - if = [,f;(ft :ttg) 3%? "i i z if = g;(ftitt?) andGen, which are both sound in our interpretation as we
QIS kEt=t — [Flt="t) QIS Et#t — [Fl(t#1t) are considering a unique domain of individuals. Finally, we
QISEt=t — [Pl(t=t) QISEt#l — |[P|t#?) have the axioms for identity.

We consider the standard definitionsgbof andtheo-
rem - ¢ means that € £, is a theorem in QKT.S5 A
formula¢ € L, is derivablein QKT.S5, from a setA of

These validities, which hold because of rigid designation,
are consistent with the external account of knowledge. How-
ever, should we require terms whose denotations depends on :
the epistemic states of agents, or change accordingly to theformulas, OrA = ¢, iff = ¢y A... A dn — ¢ for some
evolution of the MAS, we can consider introducifigxible 1,5 bn € Ai .

- ’ L . It can be easily checked that the axioms of QKT, 3%e
:erms r']n the Iangdua:jg? (Bellf_;lrdmelh an? homulgé:]q 200b7b)' valid on every QIS and the inference rules preserve validity
n such an extended formalism none of the validities above . )
holds whenevet and’ are flexible terms. As a consequence, we have the following soundness result:
Theorem 5 (Soundness)The system QKT.S5s sound for
The System QKT.S5 the classQZS of quantified interpreted systems.

In this section we provide a sound and complete axioma- Now we show that the axioms in QKT.S%re not only nec-
tisation of quantified interpreted systems. This resulinsho  essary, but also sufficient to prove all validities Q& S.
that, even though languads is highly expressive, QIS pro-

vide a perfectly adequate semantics for it. This also opens Kripke Models

the possibility of developing automated verification meth- - Aithough quantified interpreted systems are useful for mod-
ods for the formalism. We first prove the completeness of eling MAS, for showing that QKT.S5is complete with re-
the first-order multi-modal system QKT.S%ith respect to spect toQZS we introduce an appropriate class of Kripke
Kripke models. The proof presented here is an extension of ygdels (Blackburn, van Benthem, and Wolter 2007; Cha-
(Gabbay, Hodkinson, and Reynolds 1993), where complete- groy and Zakharyaschev 1997), which are more suitable for

ness of afirst-order temporal language on weakly-connected theoretical investigations, namely, the completenessfpro
partial orders was presented. Then, by means of a map from

Kripke models to QIS, the completeness of QKT,Sth Def_lnltlon 6 A Kripke model, oK -model, for the Iang_uage

respect taQZs follows. L, isatupleM = '<W, {~i}tica, <,D,I)suchthatV is a
The system QKT.S5is a first-order multi-modal ver- ~ Non-empty set; foi € A, ~; is an equivalence relation on

sion of the propositional systests combined with a linear 'V < is @ weakly connected, strict partial order 6f; D

temporal logic. Although tableaux proof systems and natu- 'S & non-empty set of |nd|V|du2I$(f.) is a k-ary function

ral deduction calculi are more suitable for automated theo- oM D to D; for w € W, I(P¥, w) is ak-ary relation on

rem proving, Hilbert-style systems are easier to handle for 1> @ndI(=,w) is the equality orD. The class of all Kripke

the completeness proof. Hereafter we list the postulates of M0dels is denoted by.

QKT.S5,. Note that=- is the inference relation between for- Further, the satisfaction relati¢a for an assignment is

mulas, while[ is a placeholder for any primitive modality  inductively defined as follows:

in £,, (both temporal and epistemic). (M7 w) b= PR iff (17(t), ., 17 (t)) € T(P*,w)

Definition 4 The system QKT.$5%n £,, contains the fol- M w) Et=t" iff I°@t)=I°(t)

lowing schemes of axioms and inference rules: (M w) E iff (M7, w) £



(M7, w) = — @'iff (M7, w) b= ¢ or (M7, w) =1

(M7 w) E[Fly  iff w<w implies(M?,w’) ¢

(M?,w) = [Pl iff w>w' implies(M7,w') =

(M, w) E Ko iff w~; w implies(M®,w') E

(M?,w) | D iff (w,w’) € ;e ~i implies(M?,w') =1
(M, w) £ Vay  iff forall a € D, (M), w) =

We formally compare Kripke models to quantified inter-
preted systems by means of a map X — QZS. Let
M = (W, {~;}ica,<,D,I) be a Kripke model. For ev-
ery equivalence relation;, for w € W, let the equiva-
lence clasgw]., = {w' | w ~; w'} be a local state for
agenti; while W is the set of local states for the environ-
ment. Let(WV, <) be the irreflexive, transitive and weakly
connected flow of time. Then defing M) as the triple
(R, D, Iy, whereR contains the rum such thatr(w) =
(W, [W]ey,y - .., [W]w,) forw € W, D is the same as i,
andI’(P*, r,w) = I(P*, w). The structurgy(M) is a QIS
that satisfies the following result:

Lemma 7 Foreveryg € L,,w € W,
M7 w) =¢ i (gM)%,rw) ¢

wherer is the only run ing(M). We refer to the appendix
for a proof of this lemma.

Completeness

We show that the system QKT.$% complete by extend-
ing to first-order the proof for the propositional syst&isy?

in (Fagin, Halpern, and Vardi 1992), together with the com-
pleteness proof for the first-order temporal logic discdsse
in (Gabbay, Hodkinson, and Reynolds 1993). The relevance
of our result consists in showing that these two methods can
be combined together to prove an original completeness re-
sult, as long as there is no interaction between epistendic an
temporal modalities. Note that an independent completenes
proof for S52 appeared in (Meyer and Hoek 1992).

More formally, we show that if QKT.S5does not prove
aformulag € L, then the canonical modah @K T-55 for
QKT.S5, does not pseudo-validate It is not guaranteed
that pseudo-validity (as defined below) coincides withrplai
validity, but by results in (Fagin, Halpern, and Vardi 1992;
Gabbay, Hodkinson, and Reynolds 1993) fraetf2 X T-55x
we can obtain akK-model M* such that M@KT-55»
pseudo-validates iff M™ = ¢, and completeness follows.

In order to prove the first part of the completeness result
we rely on two lemmas: thsaturation lemmand thetruth
lemma whose statements require the following definitions:
let A be a set of formulas id,,,

A is consistentff A ¥ 1;

A ismaximal iff forevery¢ € £,,, ¢ € Aor—¢ € A;

A is max-consiff A is consistent and maximal;

Aisrich iff 3x¢ € A = ¢[z/c] € A, for somec € L,,;
A is saturatediff A is max-cons and rich.

Assume that QKT.S5 does not provep, then the set
{—¢} is consistent, and by the saturation lemma belev}
can be extended to a saturated set:

Lemma 8 (Saturation (Hughes and Cresswell 1996))
If A is a consistent set of formulas id,,, then it can

be extended to a saturated sHt of formulas on some
expansionl;! obtained by adding an infinite enumerable
set of new individual constants 19, .

Now we introduce the canonical model for QKT,S5
Note thatp™ (A) is the set of non-empty sets of agents.

Definition 9 (Canonical model) The canonical model for
QKT.S5, on the languag€,,, with an expansiod;}, is a tu-
ple M@ETL-S5n — (W {R;} e avp+(a), <, D, I) such that:

- W is the set of saturated sets of formulas(;

- forie A, w,w’ € W, wR;w' iff {¢ | K;¢ € w} Cw'

- for non-emptyG C A, wRgw' iff {¢ | Dgé € w} C w';

- forw,w’ e W,w < w'iff {¢| [F]¢ € w} Cuw';

- D is the set of equivalence clasdes = {v' | v = v’ €
w}, for each closed term € £F;

- Il [ok]) = [ (or, - o)
- ([v1], .-+, [vk]) € I(P*,w) iff PF(vy,...,0%) € w.

If QKT.S5, t/ ¢, then by the saturation lemma there is
a saturated seb O {—¢}, so the setV of possible worlds
is non-empty. Sincd’, 4 and5 are axioms of QKT.S5
the variousR; and Rs are equivalence relations. More-
over, fromD1 and D2 it follows that Ry;, is equal toR;
andRg C ;o Ri. However, in generaRe # (. Ri
(Fagin, Halpern, and Vardi 1992). On the other hand, the
relation< is transitive and weakly connected by axioms
WConF, WConP. By FP, PF the relationw > w' de-
fined as{¢ | [P]¢ € w} C w' is the converse ok. How-
ever, < might not be irreflexive (Gabbay, Hodkinson, and
Reynolds 1993).

These remarks give theationale for introducing the
pseudo-satisfaction relati¢a?, defined ag= but for the dis-
tributed knowledge operatd? (in what follows we simply
write M for M@ET-55n);

(M7, w) EP Dgy  iff wRgw' implies (M7, w") EP 4

We state theruth lemmafor the pseudo-satisfaction rela-
tion = and refer to (Fagin, Halpern, and Vardi 1992) for a
proof.

Lemma 10 (Truth lemma) Letw e M, € L 0 (y;) = [vi],
(M, w) =P olg) it [g/v] € w

We remarked that the canonical modef might not sat-
isfy ;e Ri = Rg. However, by applying the techniques
in (Fagin, Halpern, and Vardi 19921 can be unwound to
get ak-model M’ in such a way thakg = (), R: and
the same formulas hold. We refer to the appendix for a proof
of the following lemma.

Lemma 11 For everyy € L},
My iff MEPY
In conclusion, if QKT.S§ ¥ ¢, then the canonical model
M pseudo-satisfies¢ by lemma 10. By lemma 11 we ob-
tain that theK -model M’ does not validate.
Note that the relatior:’ on W’ might not be irreflexive, as
< onW is not such. However, we can apply the techniques

in (Gabbay, Hodkinson, and Reynolds 1993) to construct an
irreflexive K -model M from M’ such that:



Lemma 12 For everyy) € L,
MF Y iff M Ey

Also in this case we refer to the appendix for a proof.
By lemma 12 we conclude that th€-model M™ fal-
sifies the unprovable formul@a. Therefore, the following

completeness result holds:

Theorem 13 (Completeness)rhe system QKT.§5%s com-
plete for the clas&’ of Kripke models.

In order to prove completeness for the cla@gS con-
sider the quantified interpreted syst@@\1™). In lemma 7
we showed that\it | ¢ iff g(M™) | ¢, henceg(M™)
satisfies-¢. As a result, we have the following implications
and a further completeness result:

IS¢ = K¢ = QKT.S5,+ ¢

Theorem 14 (Completeness)he system QKT.$5s com-
plete for the clas®ZS of quantified interpreted systems.

By combining together the soundness and complete-

We introduce a sefict of actionsaq, as, ..., and a set
M sg of messages,, u2, - . . For each agente A, we con-
sider a sef:; of initial eventsinit(i, ), and a set'nt; of
internal eventsni(i,«). We define the local statg for
agenti as ahistory over 3J;, Int; and M sg, that is, a se-
quence of events whose first element is¥ip and whose
following elements either belong tmt; or are events of the
form send(i, j, u), rec(i,j,u) forj € A, p € Msg. In-
tuitively, init(i, o) represents the event wheagent: per-
forms the initial actionx, send(i, j, 1) represents the event
whereagent: sends messageto j, while the meaning of
rec(i, 7, p) is thatagenti receives messagefromj. Finally,
int(i, «) means thaagent: performs the internal action.

A global states € S is a tuple(l.,!l1,...,l,), where
l1,...,1, are local states as above, ahdcontains all the
eventsiny,...,l,. In what follows we assume that the nat-
ural numbersN as the flow of time. This choice implies
that we cannot provide a complete characterisation of MPS
in this formalism, as first-order temporal logic Binis unax-
iomatisable (Gabbay, Hodkinson, and Reynolds 1993), Still
we can express a number of interesting properties of MPS in

ness theorems we can compare directly the axiomatisation the language.,, .

QKT.S5, and QIS, so we state our main result:
Corollary 15 (Soundness and Completenessh formula

Arunr over(S,N) is a function from the natural numbers
Nto S such that:

¢ € L, is valid on the clas®ZS of quantified interpreted MP1 r;(m) is a history ovei;, Int; and M sg;

systems ift is provable in QKT.Sh.

Message Passing Systems as QIS

MP2 for every eventec(i, j, 1) in r;(m) there exists a corre-

sponding eventend(j, i, p) in rj(m).

MP3 r;(0) is a sequence of length one (the initial state

In this section we model message passing systems (Fagin et init(i, o)), andr;(m + 1) is either identical to-; (m) or

al 1995; Lamport 1978) in the framework of QIS. A message
passing system (MPS) is a MAS in which the only external

results from appending an eventitgm).

actions for the agents are message exchanges, specifically Th€ last specification MP4 has inyasimplifying purpose
sending and receiving messages. This setting is common in @nd does not restrict our analysis:
the study of a variety of distributed systems, well beyored thvP4 All events in a given agent’s history are distinct. Aniige

realms of MAS and Al. Indeed, any synchronous or asyn-
chronous networked system can be seen as an MPS.

The notion of time is crucial for the analysis of the or-
dering of events in MPS. As remarked in (Lamport 1978), a
message: can be said to have been sent (received) before
message.’ if u was sent (respectively received) at an ear-
lier time thany’. We can of course specify this condition
in terms of an external global clock. However, maintaining
synchronicity in a distributed system is known to be costly.
An alternative is to study asynchronous MPS (or AMPS),
where only internal clocks exist and agents can work at ar-
bitrary rates relative to each other.

In what follows we show how both (synchronous) MPS
and AMPS can be thought of as particular classes of QIS
satisfying a finite number of specifications expressed in the
first-order modal languagé,,. Further, we analyse in de-
tail the agents’ knowledge about the ordering of events in
AMPS. Our main result consists in showing that the charac-
terisation of AMPS at propositional level given as a metathe
orem (specifically, in (Fagin et al 1995), Proposition 4)4.3
can naturally be cast as a formuladp, which turns out to
be a validity on the class of QIS we introduce. While the
basic details are given below, we refer to (Fagin et al 1995),
sections 4.4.5-6, for more details on MPS.

can never perform the same action twice in a given run.

By MP1 the local states of each agent records her initial
state, the messages she has sent or received, as well as the
internal actions she has taken. MP2 guarantees that any re-
ceived message was actually sent, while MP3 specifies that
at each step at most a single event occurs to any agent. Fi-
nally, MP4 is not essential, but it simplifies proofs as we do
not have to distinguish different occurrences of the samme ac
tion by, for example, time-stamping actions. We will usathi
constraint throughout the present section without expfici
mentioning it.

We now define message passing QIS (MPQIS) as a partic-
ular class of quantified interpreted systefis= (R, D, I),
whereR is a non-empty set of runs satisfying the constraints
MP1-4 above,D contains the agents id, the actions in
Act, the messages i sg, and the events,, es, . .., and]
is an interpretation fo£,,. We assume that our language has
terms and predicative letters for representing the objacts
the domainD and the relations among them. In particular,
e1, eo, ... are metaterms ranging over events; for instance,
Veg|e] is a shorthand for

Vi, j, i glsend(i, j, p)] Aplrec(i, , w)] A glinit (i) A lint (i, )]

where¢[t] means that the termoccurs in the formula.



We use the same notation for the objects in the modeland  Moreover, Prec(e,e’,i) can be defined as an anti-
the syntactic elements, the distinction will be clear by the symmetric, linear, discrete order on the events-ifm),
context. where with each non-final point is associated an immediate

For the specification of MPS it is useful to intro- successor, thatis, it is also anti-symmetric and total:
duce a predicative constantf for happenssuch that / s I _

(P, r,m) = H(e,i) iff the evente occurs to agent Ve, (Prec(e, ;i) A Pree(e's e,1) = (e =€) (5)
at timem in run r, i.e., r;(m) is the result of append- . , R . .
ing e to r;(m — 1). We write H(e) as a shorthand Ve,e' (H'ed(e,i) A H'ed(e',i) — Prec(e,e’,i) V Prec(e’, e, 1))

for 3iH(e,i). By definition of the environment's local ) : . . ©6)
state, (P?,r,m) = H(e) iff e occurs at timem in run and each non-final point has an immediate successor:
r. Also, we introduce the predicatd’ed(e, ) for hap- Ve, e'(Prec(e, e’ i) — e’ (Prec(e,e”,i)A

penedas <P>+.H(e,i), andH’ed(e) : HiH’ed(e,i).' Fi- /\_‘EEI”(P’I’ec(B,eHI,i) A P’I’ec(em,en,i))))(7)
nally, Sent(i, j, u), Recd(i, 3, ), Init(i, o), andInt(i, «) ] o . ] .

are shorthands foH'ed(send(i, j, it)), H'ed(rec(i, j, 1)), We defineLinDisc(Prec(e, €, i)) as the conjum/:tlpn_ of
H'ed(init(i, o)), andH'ed(int (i, o)) respectively. (3)-(7) above, expressing that the relatiBnec(e, ¢’, i) is

Let us now explore the range of specifications that can @ linear, discrete order where every non terminal event has a
be expressed in the formalism. A property often required is successor. Also, we define the first event as the minimal one
channel reliability We express this by stating that every sent  With respect taPrec(e, €', i), that is,
message is eventually received. According to the definition Fst(e,i) == Ve/(H'ed(¢',i) — Prec(e, ¢, 1))
of message passing QIS, it is possible that a message is lost i _ . L
during a run of the system. We can force channel reliability the first event is provably unique as the order on histories is

by requiring the following specification on MPQIS: itotal. We formally define the specifications MP1-4 as fol-
ows:
Vi, j, p(Sent(i, j, ) — (F)* Recd(3, i, 1)) MPY1’ LinDisc(Prec(e,e’,i))A

Another relevant property of MPQIS conceraisthenti- Aae(Fft(m)_A Jafe = m_it(i’ O‘)?)A o
cation if agenti has received a messagefrom agent;, NVe(H'ed(e, i) A ~F'st(e,) — 3j, o, ule = int(i, @)V
theni knows thatu had actually been sent by This speci- Ve = send(i, j, 1) V e = rec(i, j, jt)))
fication can be expressed as: MP2’ Vi, j, n(Recd(i, j, r) — Sent(j, i, 1))

V3, M(Recd(i7j, p,) — KiSent(j’ i, u)) MP3’ <P>+([P]J_ A Je(H'ed(e, i) A Jale = init(a,i))A
. AVe' (H'ed(e',i) — €' =e)))A
Further, we may require that agents hpesfect recall AVe(H'ed(e, i) — ((PYH'ed(e,i)V

that is, they know everything that has happened to them: V(H(e,i) AV (H(e', 1) — ¢ = €))))

Ve(H'ed(e,i) — K;H'ed(e, 1)) MP4" H(e,i) — ([P]-H(e,i) A [F]-H(e,1))
Itis easy to show that by definition MPQIS satisfy authen- By MP1"the events in the local of agenare alinear, dis-
tication and perfect recall but not channel reliability. crete order, whose first elementis an initial event, and whos
We anticipated that the formalism of QIS is powerful following events are either send or receive events or iafern
enough for expressing the specifications MP1-4/p. events. According to MP2’ each local state trivially satis-

Moreover, we can reason about the knowledge agents havefies MP2. By MP3' there is a moment (the starting point)

this, we definePrec(e, ¢’, i) as a shorthand for: event, and for every event already happened, either it hap-
T pened at some point strictly in the past, or it is the single
H'ed(e',i) AN H'ed(e,i) A [P)T(H'ed(€',i) — H'ed(e, 1)) event which happened in the last round. Finally, by MP4’

each event happens only once in a given run, thus satisfying
MP4. MP1'-4’ are the basic specifications for MPQIS. We
underline that these specifications are defined by means of
only the predicative constaifi.
As we pointed out above, synchronicity is a costly as-
H'ed(e') A H'ed(e) A [P)T(H'ed(e') — H'ed(e)) sumption in terms of computational resources in MPS. This
remark prompts us to consider asynchronous MPS, where
Note that in the propositional language of (Fagin et al 1995) agents have no common clock. To make this informal defi-

Itfollows that(P?,r,m) = Prec(e, ¢, 1) iff eventse and
¢’ both occur to agentby roundm of runr, ande occurs no
later thane’ in . Also, the orderingPrec(e, ¢’) is defined
as:

Prec(e, e’) is assumed as a primitive proposition. nition precise, we follow once more (Fagin et al 1995). First
We can express that the events in a sidie) are par- we say that a sét” of histories isprefix closedf whenever
tially ordered by specifying thaPrec(e, ¢’) is a reflexive h € V, every non-empty prefix ot is in V as well. Then,
and transitive relation on the set of past events: we consider the following constraint for AMPQIS:
Ve (H'ed(e) — Prec(e, e)) (3) MP5 The setR of runs in an AMPQIS includeall runs satis-

fying MP1-4 such that the local states of agebélong to
Ve,e',e"” (Prec(e,e’) A Prec(e’,e") — Prec(e,€”)) (4) V;, for some prefix closed s&f of histories.



This constraint implies that at round of a runr, each
agent: considers possible that any other aggrtas per-
formed only a proper subset(m) of the actions listed in
rj(m).

We can now prove the main result of this section: Propo-
sition 4.4.3 in (Fagin et al 1995) can be restated as a walidit
on the class of AMPQIS. We do not provide the full state-
ment here, but we note that this metatheoretical result can
be restated as a formula in the first-order modal language
L,. We introduce a relation gfotential causalitypetween
events, as first discussed in (Lamport 1978). This relation

the first-order languagg,,. Retaining completeness seems
noteworthy given the known difficulties of these formalisms

Further, we used this formalism to reason about message
passing systems, a mainstream framework to reason about
asynchronous systems. In particular, we compared the re-
sults obtained at first-order with what was already known at
propositional level, and observed that some propertidsdn t
latter setting become formal validities in the former.

Still, further work seems to be needed in this line of re-
search. First, it seems interesting to relax the assumption
the domain of quantification, and admit a different domain

is intended to capture the intuition that evenmnight have
caused even. Fix a subset of A, the relation— holds
between events, ¢’ at a point(r, m) iff both e ande’ occur
by roundm in the runr, and

D;(s) for each agent and for each global state In such

a framework we should check how to modify the complete-

ness proof for QKT.S5to accommodate varying domains.
Moreover, we aim at extending the temporal fragment of

our language with theext(O) anduntil U operators. Com-
pleteness results are available for varimenodidragments

of such a language (Wolter and Zakharyaschev 2002), and
for the fragment with0O) over the rational numbers (Mey-
den 1994). It is yet to be checked whether these results
extend to first-order languages with epistemic operators as
well. Also, we would like to analyse relevant classes of QIS,
such assynchronou®IS and QIS withperfect recall We
have sound and complete axiomatisations for these struc-
tures at propositional level (Fagin et al 1995), but it is not
clear whether these results extend to first-order.

1. forsomei, j € G, €’ is areceiveevent anct is the corre-
spondingsendevent, or

2. for somei € G, events, ¢’ are both inr;(m) and either
e = ¢’ ore comes earlier tha#' in r;(m), or

3. forsome:”, we have that —¢ ¢’ ande” —¢ ¢’ hold at
(r,m).

Note that— is a partial order on events, it is also anti-
symmetric by MP4. We can say that two eveats’ are
concurreniff e v/4¢ ¢’ ande’ v~ e. Intuitively, the relation
—¢ holds between eventsande’ iff it is possible for event
e to causally affect event’. Two events are concurrent if
neither can affect the other. We say tiBf, r,m) = e —¢
e’ if e —¢ €’ holds at(r, m).

Now we prove that the potential causality relation; is
the closest we can come in AMPS to an ordering of events,
thatis, even if the agents @ could combine all their knowl-
edge of the ordePrec(e, ¢’) on events, they could not de-
duce any more about this ordering than is implied by the
relation—¢. This is due to the fact that the delivery of mes-
sages can be arbitrarily delayed in AMPS, and the agents
might be unaware of this because of asynchronicity. We re-
fer to the appendix for a detailed proof.
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Appendix
Lemma 7 Foreveryy € £,,,w € W,

M7 w) o it (g(M)7,rw) = ¢

Proof. The proof of this lemma is by induction on the
length of the formulap. The base of induction fop =
Pk(t) or ¢ = (t = t') follows by definition of the interpre-
tationI’ in g(M). The inductive cases for the propositional
connectives are straightforward.

For¢ = Ko, (M7,w) E ¢ iff for all v ~; w,
(Mo, ) E o, iff for ri(w) = ri(w), (9(M)7,r,w)
¢, by definition of » and induction hypothesis, iff
(g(M)7,7,0) | 6.

The inductive cases for the other modal operators can be
shown similarly.

Lemma 11For everyy € L},
M it MEP Y

Proof. We first show that if the canonical mod#H
pseudo-validates € L, then there is a tree-like structure
M* which pseudo-validates as well. Then, fromM* we
can obtain &-model M’ satisfying lemma 11.

In order to defineM* we need few more definitions.
Let w,w’ be worlds inW, a path fromw to v’ is a se-
quence{ws, l1,wa,la, ..., lx—1,ws) such that (1w = wy
andw’ = wy; (2) wy,...,wr € W; (3) eachl; is either an
agent or a set of agents; (4);, w; 1) € Ry;.

The reduction of a path (wq, i1, ws, 42, ..., %k—1,wk)
is obtained by replacing each maximal consecutive sub-
sequence(wg, iq, Wqt1, bg41, - - -, ir—1,Wr) Wherei, =
ig+1 = ... = ir—1 by (wy,iq, wr). A path is said to be
reduceds it is equal to its reduction.

Given the canonical modelt = (W, R, <, D, I), we de-
fine a structureM* = (W*, R*, <* D, I*) and a surjective
functionh : W* — W such that (i)M* is a tree, that is,
for w,w’ € W* there is at most one reduced path franto
w'; (ii) wRiw' implies h(w)R;h(w'); (i) wREw' implies
h(w)Rgh(w'); (iv) w <* w' implies h(w) < h(w'); (V)
{ay,...,ax) € I*(P* w)iff (a1,...,a) € I(P*, h(w)).

We defineW* by induction. LetW; be W, and de-
fine W;;, , as the set of worlds,, ; ., such thatw € W},
w’ € W andl is an agent or group of agents. Lt* =
Uren Wi, then defingr : W — W by letting h(w) = w,
forw € Wi and h(vy,i,w) = w', forw € W). Fur-
ther, R is the reflexive, symmetric and transitive closure
of the relation defined fow,w’ € W* if W' = vy, 1w,
for somew” € W, andh(w)R;h(w’); while <* is the re-
lation defined forw, w’ € W* if h(w) < h(w'). Finally,
I*(P*,w) = I(P* h(w)). By results in (Fagin, Halpern,
and Vardi 1992)M* andh satisfy (i)-(v) above. In particu-
lar, we can show the following:

Proposition 17 Forw € W*, v € L,
(M w) EP 4y il (M7, h(w)) B ¢



Finally, we make use of the structuret* to define a
K-model M’ such that lemma 11 holds. Definet’ =
(W' R',<', D', I') as follows:

o W =W+ <'=<*,D'=D*"andl' = I*;
e R} is the transitive closure a®; U |, R

Since the variou; and R, are reflexive, transitive and
symmetric,R; is an equivalence relation. We state the fol-
lowing result aboutM’ and refer to (Fagin, Halpern, and
Vardi 1992) for further details.

Proposition 18 For w € W',y € L},
M7 w) E iff (M7, w) EP ¢

In conclusion, The canonical modél pseudo-validates
¥ € L, if and only if M* pseudo-validates by propo-
sition 17, iff by proposition 18 thé&-model M’ validates).

Lemma 12For everyy € L,
MYy i M

Proof. Let W = {w € W' | w £’ w} be the set of
irreflexive worlds inM’ and define the equivalence relation
monW"={we W | w< w}asw =~ ws iff w; <" wsy
andwy <’ w;. For every=-equivalence class, define a
mapa() from the realsR ontoa such that for every € a,

p € Rthere ares, t € R and

e s<p<t;

e a(s) =w = a(t).

This can be done as every-equivalence class contains at
most2™° saturated sets of formulas.

Further, forw € W' we set{w}(0) = w. Now we
define theK-model M ™, whereW ™ = {({w},0) | w €
Wl U{(a,p) | ais a~-equivalence clasg € R} is the
set of possible worlds. The order™ on W is such that
(a,p) <* (b,s) i
e a # bandthere are, € a, w, € bandw, <’ wy; Or
e g=bandp < s.

The relation< ™ is a weakly connected, strict partial order
onW*, in particular<™ is irreflexive. Also, the relatiof;"
onW+ such thata, p) R/ (b, s) iff a(p)R;b(s) is an equiva-
lence relation as?; is such. Finally, the domaib* is equal
to D', andI ™ is such thatuy, ..., u) € IT(P*, (a,p)) iff
(ur,...,ux) € I'(P*,a(p)).

It is straightforward to check th&tM ™7, (a, p)) = v iff
(M, a(p)) E ¢, so the lemma follows.

Lemma 16 The following validity holds in the class of AM-
PQIS satisfying the specifications MP1-5 above:

AMPQIS E Ve, ((e —¢€') < DgPrec(e,e'))

Proof. = Assume(P?,r,m) = e —¢g €. If ¢/ isa
receiveevent ande is the correspondingendevent, then
ri(m) = ri(m’) for all i € G implies (P7,r',m’') E
H'ed(e) N H'ed(e') A [P]T(H'ed(e') — H'ed(e)). In
fact, for allm” < m/, (P?,r',m") = Recd(i,j,p) —
Sent(j,i, u) by MP2'. Thus,(P?,r,m) = DgPrec(e, €).

If e, ¢’ are both inr;(m) and eithere = ¢’ or e comes
earlier thane’ in r;(m), thenri(m’) = r;(m) implies
(Po,r",m’) = H'ed(e) N H'ed(e') N\ [P]T(H'ed(e') —
H'ed(e)), then(P?,r,m) = K,;Prec(e,e’). By D1 and
D2, (P°,r,m) = DgPrec(e,€).

If there exists some” such that —¢ ¢” ande”’ —¢ €,
then without loss of generality we assume that-¢ ¢”
and ¢’ +—g € for either case 1 or 2 above, in both
cases(P?,r,m) = DgPrec(e,e’) N DgPrec(e”,e').
This means that;(m) = ri(m’) for all i € G implies
(P, r",m’) [P]T(H'ed(e”) —  H'ed(e)) A
[P]*(H'ed(e') — H'ed(e")). By distributivity and tran-
sitivity, (P7,r',m’) = [P]T(H'ed(e’) — H'ed(e)). Thus,
(P?,r,m) = DgPrec(e, ).

< Assume that(P?,r,m) = H(e) A H(e') but
(P?,r,m) [~ e —¢g €. The events, ¢ must be dis-
tinct. Moreover, if they both appear in(m), for some
i, by hypothesis there must be somé < m such that
(P?,r,m/) = H(e') N =H(e). Thus, (P%,r,m) [
D¢ Prec(e, e).

If e ande’ appear in the local states of distinct agents
then consider the minimab,, suchthat’ € r;(m./). If e ¢
rj(me) we are done. Otherwise, consider the minimal
such thae € r;(m.). We define a rum’ such thae —¢ €”
implies thate” occurs(m.. —m.) + 1 round later i’ than
in . Specifically, for each agerit, if there is noe” such
thate —¢ ¢ thenr},(m) = ri(m) for everym. Otherwise,
let m. be the minimal round such that € r(m.), then
definer’ as follows:

rr(m) form < mer
Tk(me// — 1) for Mer <M < Merr + (me/ — me)
re(m — (me — me)) former + (Mmer — me) < m

TR(m) =

We can show that’ is well defined, and’ € P by MP5.
Finally, for alli € G, r;(m) = ri(m + (me — me) + 1)
and(P?,r',me) = H(e') A —H(e). Thus,(P?,r,m) F
D¢ Prec(e, €').



