Combining fault injection and model checking to verify
fault tolerance in multi-agent systems

Jonathan Ezekiel
Department of Computing
Imperial College London
jezekiel@doc.ic.ac.uk

ABSTRACT

The ability to guarantee that a system will continue to oper-
ate correctly under degraded conditions is key to the success
of adopting multi-agent systems (MAS) as a paradigm for
designing complex agent based fault tolerant systems. In or-
der to provide such a guarantee, practically usable tools and
techniques for verifying fault tolerant MAS architectures are
urgently required. In this paper we address this requirement
by combining automatic fault injection with model check-
ing to verify fault tolerance in MAS. We present a generic
method to mutate a model of a correctly behaving system
into a faulty one, and show how the mutated model can
be used to reason about fault tolerance, which includes re-
covery from faults. The usefulness of the proposed method
is demonstrated by injecting automatically a fault into a
sender-receiver protocol, and verifying temporal and epis-
temic specifications of the protocol’s fault tolerance using
the MCMAS model checker.

Categories and Subject Descriptors

D.2.4 [Software/Program Verification]: Model Check-
ing

General Terms

Verification

Keywords

Model checking, fault tolerance, fault injection, epistemic
logic

1. INTRODUCTION

The multi-agent systems (MAS) paradigm [22] has been
employed successfully in several disciplines based on systems
in which the core components, or agents, autonomously in-
teract with one another, engaging in communication, negoti-
ation, coordination, etc. One of the reasons MAS formalisms
have been adopted in many scenarios is the availability of
rich modal logics to analyse the behaviour of agents, includ-
ing the ability to reason about the knowledge of agents [8].

Cite as: Combining fault injection and model checking to verify fault
tolerance in multi-agent systems, Jonathan Ezekiel, Alessio Lomuscio,
Proc. of 8th Int. Conf. on Autonomous Agents and Multia-
gent Systems (AAMAS 2009), Decker, Sichman, Sierra and Castel-
franchi (eds.), May, 10-15, 2009, Budapest, Hungary, pp. XXX-XXX.
Copyright (©) 2009, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

Alessio Lomuscio
Department of Computing
Imperial College London

alessio@doc.ic.ac.uk

To date, several fault tolerant architectures for MAS have
been proposed (see, e.g., [9, 11]), which allow the system
to continue to operate correctly under degraded conditions,
such as the event of a failure within one or more of the
agents. Strategies such as replicating agents [9] are used to
ensure overall system tolerance to agent failures. However,
the development of practically usable tools and techniques
for certifying the correct behaviour of fault tolerant MAS
architectures is urgently required if the MAS paradigm is to
be widely employed in real-world applications.

Formal methods and, in particular, model checking [7] are
becoming increasingly popular for verifying the correct be-
haviour of systems (see, e.g., [2, 5]). Recently, a number of
tools have been developed by applying fault injection [13]
to a correctly behaving system and using model checking
to verify correct operation of that system under degraded
conditions [1, 2, 3, 14]. Tools that allow automation when
injecting faults into the system model are particularly at-
tractive to non-experts in verification, due to the high level
of usability implied by the automatic nature of both the
fault injection and verification process [2]. Unfortunately,
due to their modelling formalisms and use of only tempo-
ral logic [21] for writing specifications, these tools are not
directly applicable for verifying MAS.

In this paper we begin to develop usable tools for certi-
fying the correct behaviour of fault tolerant MAS architec-
tures by proposing and demonstrating a method for verifying
fault tolerance in MAS. The method discussed combines au-
tomatic fault injection with the ability to use both temporal
and epistemic logic [22] to write specifications for verifying
fault tolerance. We ground this work on the MCMAS model
checker [17], a model checker tailored to MAS specifications.

To combine automatic fault injection with MCMAS we in-
troduce a general method for mutating a MAS model of cor-
rect behaviour by injecting commonly occurring faults into
it. We then suggest a way in which temporal logic specifica-
tions of correctness for the MAS model can be extended to
reason about the correct and faulty behaviours of the sys-
tem, for the purposes of verifying fault tolerance, including
recoverability i.e., recovery from faults. To move towards a
usable method for verifying fault tolerance in MAS we in-
ject automatically faults into a MAS program, and show how
fault tolerant properties of the bit-transmission protocol can
be analysed.

The rest of the paper is structured as follows. In Section 2
we provide the background on model checking, interpreted
systems and MCMAS, and model checking faulty behaviour.
In Section 3 we introduce our proposed method of automatic

fault injection including failure modes, generic MAS model
extension via fault injection, and reasoning about faults. In
Section 4 we apply the method to a bit-transmission proto-
col example, illustrate the functionalities of a compiler that
we developed for automatic fault injection, and verify fault
tolerance. In Section 5 we discuss the related work and in
Section 6 we conclude and put forward future work.

2. BACKGROUND

Model checking [7] is a widely adopted technique for sys-
tems verification. In model checking the system consid-
ered for verification S is represented by a logical model Mg
which encodes the behaviour of the system as computational
traces. In this approach a specification of a property P is
expressed by means of a logical formula ¢p. The model
checker establishes whether or not Mg satisfies pp (formally,
M E ¢p). The satisfaction relation is implemented as a deci-
sion procedure, the automatic nature of which makes model
checking attractive for the purpose of verification [7].

Model checking tools that are used for reactive systems
such as SPIN [12], SMV [4], and NuSMV [6] express pp
as a temporal logic formula [21]. Model checking tools for
multi-agent systems such as MCMAS [17], Verics [20] and
MCK [10] facilitate a richer way of expressing ¢ p by using a
number of different modal logics including temporal, ATL,
and epistemic logics [22]. In particular, epistemic logic can
be used to reason about the knowledge of the agents over
time.

2.1 Interpreted systems and MCMAS

The modelling of MAS is typically conducted by using
interpreted systems [8]. We summarise the framework of
interpreted systems as presented in [8] to model MAS. Each
agent ¢ € {1, -+ ,n} in the system is characterised by a finite
set of local states L; and by a finite set of actions Act;.
Actions are performed in compliance with a protocol P; :
L; — 24 gpecifying which actions may be performed in
a given state. In this formalism, the environment in which
agents “live” may be modelled by means of a special agent E.
Associated with E are a set of local states Lg, a set of actions
Actg, and a protocol Pg. A tuple g = (l1, - ,ln,lg) €
Ly x---xLyxLg wherel; € L; for each i and each lg € Lg,
is a global state and describes the system at a particular
instant of time.

The evolution of the agents’ local states is described by a
function t; : L; X Ly X Acty X -+ X Acty, X --- Actg — Li,
which returns a local state (the “next” local state) for agent ¢
given the “current” local state of the agent, the “current” lo-
cal state of the environment and all the agents’ actions. Sim-
ilarly the evolution of the environment’s local states is de-
scribed by a function tg : Lg X Acty X+ -+ X Actn, X+ - - Actg —
Lg. It is assumed that in every state, agents evolve simul-
taneously. The evolution of the global states of the sys-
tem is described by a function t : S X Act — S, where
SCLiX-++XLy,xLg,and Act C Act1 X -+ X Acty, X Actg.
The function t is defined as t(g,a) = ¢’ iff for all 4,¢;(1;(g), a)
= 1;(¢g") and tg(lg(g),a) = lg(g’"), where I;(g) denotes the
i-th component of global states g (corresponding to the local
state of agent 7). Given a set I C S of possible initial global
states a set G C S of reachable global states is generated
by all possible runs of the system. Finally, the definition
includes a set of atomic propositions AP together with a
valuation function V- C AP x S. We define an interpreted

system as the tuple:
IS = ((Li, Acti, Pi,ti)ieqa,... ny, (L, Actp, PE,tg),1,V)

The syntactical constructs and the semantic model that
are presented in [17] are adopted for the interpretation of
temporal-epistemic formulae in interpreted systems. Specif-
ically, we consider the following syntax defining our specifi-
cation language:

pu=p|op|oVe| EXep | AGe | E(pUy) | Kip

In the grammar above p € AP is an atomic proposition; EX
is a temporal operator expressing that there exists a next
state in which ¢ holds; AG is a temporal operator expressing
that in all runs ¢ holds globally; E(pUv) is a temporal
operator expressing that there exists a run in which ¢ holds
until ¢ holds; K;¢ expresses that agent i knows ¢ [8].

1S is associated to a model Mg = (W, R¢,~1,--+ ,~n, L)
that can be used to interpret any formula ¢. The set of
possible worlds W is the set G of reachable global states.
The temporal relation Ry € W x W relating two worlds (i.e.,
two global states) is defined by considering the temporal
transition t. Two worlds w and w’ are such that R;(w,w")
iff there exists a joint action a € Act such that t(w,a) =
w’, where t is the transition relation of IS. The epistemic
accessibility relations ~;C W x W are defined by considering
the equality of the local components of the global states.
Two worlds w,w’ € W are such that w ~; w’ iff l;(w) =
I;(w") (i-e., two worlds w and w’ are related via the epistemic
relation ~; when the local states of agent i in global states w
and w’ are the same [8]). The labelling relation L C APx W
is equivalent to the valuation relation V.

Formulae can be interpreted in M;gs in a standard way [7,
18, 8] as follows. Let m = (wo, w1, - - -) be an infinite sequence
of global states such that for all ¢, R¢(w;, wit1), and let 7(4)
denote the i-th world of the sequence (notice that, following
standard conventions we assume that the temporal relation
is serial and thus all computation paths are infinite). We
write (M, w) F ¢ to represent that a formula ¢ is true at a
world w in a Kripke model M, associated with an interpreted
system IS. Satisfaction is defined as follows.

(M,w)Ep iff (p,w) €L,
(M, w) E —p iff M FE o,
(M,w) F @1 Vea iff either M E @1 or M E @2,
(M,w) EEXyp iff there exists a path 7 such that
7(0) = w, and (M, x(1)) F g,
(M,w) E AGy iff for all paths we have that
7(0) = w, and (M, (1)) F ¢,
for all « > 0,

(M,w) E E(pUy) iff there exists a path m such that
7(0) = w, and there exists k > 0
and (M, (j)) F ¢ such that
(M, (k) E o and (M, 7(j)) £ o
forall 0 < j <k,

(M,w) E K;p iff for all w’ € W, w ~; w’ implies
(M,w") E .

We say that a formula ¢ is true in the model and we write
ME ¢ if (M,w) FE ¢ for all w € W. Similarly to [8], we say
that a formula ¢ is true in an interpreted system I.S, and we
write IS F ¢, if M F . A formula is true in an interpreted
system if it is true in the associated Kripke model.

MCMAS [17] provides ISPL as an input language for mod-
elling a MAS and expressing (amongst others) temporal and
epistemic formulas as specifications of the system. ISPL pro-
grams are closely related to interpreted systems; specifically

each ISPL program describes an interpreted system. The
model checking algorithm in MCMAS allows these specifi-
cations of the system to be automatically verified.

2.2 Model checking and faults

Traditionally, temporal logic model checking has been ap-
plied to provide assurances about the correct behaviour of
the system. However, in safety-critical systems analysis
there is also an interest in injecting faulty behaviour and
analysing both the correct and faulty behaviours of systems
by means of model checking [1, 2, 3, 14].

Reasoning about faulty behaviour is also a recent topic in
MAS (see e.g., [16, 15, 19]). Faulty behaviour of MAS has
been modelled and reasoned about for systems such as trans-
mission protocols [19] and web services [15, 16]. However, an
automatic method for injecting faulty behaviour into MAS
has not yet been developed, meaning that faulty behaviour
must be introduced by hand when modelling a system.

Despite the previous research in the area of model check-
ing faulty behaviour, specifications for reasoning about fault
tolerance are still not yet well defined. For this reason, as
well as providing a manner in which faults can be automat-
ically injected into MAS, in this paper we also extend the
topic of using temporal logic to reason about correct and
faulty behaviours of the system.

3. AUTOMATIC FAULT INJECTION

To provide a usable tool for verifying fault tolerant be-
haviour, automatic fault injection consists in taking a de-
scription of a correct system model and allowing faults to
be automatically injected into the system in order to create
a mutated faulty model. In a MAS oriented context, given
a description of an interpreted system IS we wish to de-
rive an extended faulty system IST* that contains the orig-
inal behaviours of IS as well as some mutated behaviours.
We begin defining this extension by looking at the types
of common faults that occur in systems, which have been
previously defined as failure modes in [2, 14].

3.1 Failure modes

Failure modes describe behaviour relating to component
failures. Common types of failures in components include
random, stuck at or inverted faults [2, 14]. Failure modes
can also be used to capture the persistence of faults, such
as occurring in every step of the evolution of the system, a
fixed number of steps, or intermittently [14].

For the purposes of developing an automatic method for
injecting faults into MAS, we consider the common types of
component failures as the starting point for defining failure
modes. Consider the case where agent A has a variable Var
representing only two possible local states 0 and 1, i.e., La
= {0,1}. We define three faults that can be injected into
the agent on this variable to alter the local states. Inverting
the value of Var (so that state 0 becomes state 1 and vice
versa). Sticking Var to its current value (so that the state
remains constant at its current value). Randomly setting
the value of Var (arbitrarily choosing one of the states at
every tick of the clock). In the following we use these failure
mode definitions to define a general extension of a model
representing correct behaviour into one including faults via
automatic fault injection.

Table 1: Transition relation for FI.
target state transition condition
faulty, not_injected | FI.Action = dont_inject
faulty, injected FI.Action = inject

3.2 Generic MAS model extension via fault in-
Jection

To make our fault injection method automatic, we define
a general way to extend any agent of the system A into a
faulty agent AF*. In order to reason about the correct and
faulty behaviours of A¥*, we set the fault to be intermittent.

To describe an intermittent fault we define a fault injector
agent F'I which determines under what conditions a fault is
to be injected into AF*. FT contains four local states:

Lrr ={(not_faulty, not_injected), (not_faulty, injected),
(faulty, not_injected), (faulty, injected)}

which indicate whether or not agent A* has in the past
or will at present inject a fault. We define this agent so
that (not_faulty/faulty) indicates whether faults are ever
injected. This is decided non-deterministically when setting
either faulty or not_faulty as its initial state, this state
then persists in the future. The pair (not_injected/injected)
indicates whether a fault is being injected at the current tick
of the clock according to (not_faulty/faulty) and the non-
deterministic actions of F'I.

For the fault injection agent we define in this paper we do
not allow an evolution into the state (not_faulty, injected),
i.e., it is not possible that faults are not injected and a fault is
currently being injected. These states have been introduced
so that not_faulty/ faulty can be used to reason about over-
all correct and faulty behaviours of the mutated system, and
not_injected/injected can be used to reason about intermit-
tent faults.

In the fault injection agent we define a set of two actions
Actpr = {dont_inject,inject} indicating whether the fault
is to be injected. The protocol is defined as:

Pr(not_faulty) = {dont_inject},
Pr(faulty) = {dont_inject,inject}.

Thus, the action of injecting a fault can be selected non-
deterministically for intermittent faults. F'I can also be de-
fined to inject faults in a more complex way, for the pur-
poses of varying the persistence of faults. For example, we
can define the transition relation to set injected to true for
n evolutions of the system. We currently define the tran-
sition relation for FI to select (dont_inject/inject) non-
deterministically as shown in Table 1.

In order to inject the fault into agent AT we need to mu-
tate the evolution function ¢4 to contain the desired faulty
behaviour in t4r.. We define the extension of the transi-
tion relation for our faults in Table 2 where trans indicates
the evolution function, fault indicates the type of fault, tar-
get state indicates the target state of the chosen variable
for the injected fault, and transition condition shows the
transition condition of the evolution function under original
and mutated conditions, where ‘[...]" indicates the original
transition condition.

We introduce the following atomic propositions to reason
about correct and faulty behaviours of 1ST*. APF* = AP
U {fault,injected}. The corresponding evaluation function

Table 2: Extended transition relation for fault injec-
tion.

trans | fault target state transition condition
ta N/A state = 0
tAFx all state = 0 ...] and Actpr = dont_inject
Ly random state = 0 .] and Actp; = inject
or state =1
t P« invert state = 1 ..] and Actpr = inject
t P« stuck at | state = state .| and Actp; = inject
ta N/A state =1
toFx all state = 1 ..] and Actpr = dont_inject
tAFx random state = 0 .| and Actp; = inject
or state =1
t Fx invert state = 0 ...] and Actp; = inject
taFx stuck at | state = state | [...] and Actp; = inject

V is updated so that V7*(fault) = {g € G | lars(y =
faulty} and V7* (injected) = {Actpr = ingect}. All that
remains now is to update I to initialise the local state of
FI either to not_faulty or to faulty to allow for faulty or
correct behaviour respectively. The extended faulty system
is defined as follows:

I1SF* = ((LF*Z»,ActF*,',PF*i,tF*i)ie{L... n}
(LEyACtE,PE,tE)7[F*7VF*>

3.3 Reasoning about faults

A B

"1 Noinjected fault [Injected Fault ——— Path
® Property required to hold O Property not required to hold

Figure 1: Computational paths under correct and
faulty behaviours of the system.

Once we have obtained a mutated model 7ST*, both the
correct and faulty behaviours of the system can be anal-
ysed. Our goal is to develop specifications that are useful
for guaranteeing the correct operation of the system under
degraded conditions. We achieve this by defining a number
of specifications to reason about the correct and faulty be-
haviours of the system. This enables us to assess the extent
to which faulty behaviour affects properties of the system
and the system’s ability to recover from faulty states.

To put this into context, consider a MAS in which a prop-
erty of the system is the receipt of a message. Depending
on the system architecture, a system may be deemed fault
tolerant if the faulty behaviour of an agent never affects
the receipt of the message. Alternatively, a system may be

deemed fault tolerant if the faulty behaviour of an agent
initially prevents the receipt of the message, but at a later
time the system corrects itself and the message is received.
Thus, the fault tolerance specification patterns we define here
represent the direct and indirect effects of injected faults.

For the purposes of defining these specifications, Figure 1
highlights some of the computational paths we may wish to
analyse in the reachable state space of the system (contained
within the grey circle). These include paths along which no
faults are injected, paths along which faults are injected and
combinations of both. The figure shows properties which are
required or not required to hold along computational paths
according to the fault tolerance specification pattern we now
define. These specifications can be used to extend any logical
formula ¢, to reason about fault tolerance.

Consider the formula:

AGy (3.1)

This states that it is always true that ¢. In IST*, this
formula holds if the property of the system is unaffected
by the faulty behaviour. In this case the property would
hold along the paths in Figure 1.A. If the formula holds the
system would be completely tolerant to the fault.

The following formula can be used to verify that ¢ always
holds when the system behaves correctly:

AG(=fault —) (3.2)

This states that ¢ always holds when a fault is never in-
jected into the model, such as along the path in Figure 1.B.
This formula can be used to reason about only the correct
behaviour of the mutated system.

To reason about how the faulty behaviour affects the sys-
tem consider the following formula:

AG(—injected —) (3.3)

This stipulates that ¢ always holds when the fault is (at the
current tick) not injected into the system, such as along the
paths in Figure 1.C. This is useful for deciding whether the
system is unaffected by the injected fault. In this case, the
specification can be used to determine whether the property
is tolerant to the faulty behaviour when a fault has been
injected before its occurrence.

To reason about property ¢ when no fault has been in-
jected prior to its occurrence consider the following formula:

—E(—injected U (injected N ~AGyp)) (3.4)

This formula states that there is no path in which at some
point a fault is injected and at which point it is not true that
o always holds forever in the future, which is demonstrated
along the paths in Figure 1.D. This formula is useful when
deciding whether a property of the system is unaffected by
the injected fault and tolerant to it once that property of the
system holds.

The following formula can be used to reason about the
recoverability of the system when a fault occurs.

AG(injected — EFp); (3.5)

This formula captures the fact it is always true that when-
ever there is a fault injected, along some path at some point

o holds. Thus, if this specification holds, it can be deter-
mined that the system might recover from the fault in terms
of property ¢, such as along the paths in Figure 1.E.

The following formula can be used to reason more strongly
about the recoverability of the system when a fault occurs.

AG(injected — AFp); (3.6)

This formula captures the fact it is always true that when-
ever there is a fault injected, along all paths at some point
¢ holds. Thus, if this specification holds, the system will
recover from the fault in terms of property ¢, such as along
the paths in Figure 1.F.

These formulas provide useful insights to explore the ex-
tent to which the system is affected by faulty behaviour and
its ability to recover from it. These are specifications of in-
terest, but other variations exist. We now turn our attention
to applying these techniques to illustrate their usefulness.

4. EXAMPLE

We illustrate the automatic fault injection method that
is presented here by applying it to the example of the bit-
transmission problem [19]. Specifically, we present a com-
piler which automatically injects a fault into the model. We
then extend the specification of the protocol’s correct be-
haviour to verify fault tolerance using some of the specifica-
tions above.

The bit-transmission scenario involves a sender S wish-
ing to transmit the value of a bit to a receiver R via an
unreliable communication channel that can drop messages.
The channel may fail to deliver a message in either direction
between the sender and receiver, or may only be able to
deliver messages one way. A protocol is therefore required
to facilitate reliable communication between the sender and
receiver by re-sending the value of the bit when the message
is dropped. A suitable protocol can be defined by enforcing
S to repeatedly send the bit to R until an acknowledgement
has been received from R. R remains silent and continuously
transmits an acknowledgement following receipt of the bit.

4.1 Modelling correct behaviour

In this section we model the standard (i.e., correct) be-
haviour of the sender-receiver protocol [19]. The communi-
cation channel can be represented using the Agent I that
models the environment. There are four possible local states
for the environment Lg = {(.,.), (sendbit,.), (.,sendack),
(sendbit, sendack)}, where (., .) represents the state in which
the communication channel drops the message in both di-
rections, (sendbit,.) represents the state in which the bit
can be sent, (., sendack) represents the state in which the
acknowledgment can be sent and (sendbit, sendack) repre-
sents a fully functioning communication channel.

The actions for the environment are defined in a similar
manner Actg = {—, S —,— R, S & R}, where — represents
the action in which the communication channel drops the
message in both directions, S — represents the action in
which the environment enables the transmission from S to
R, < R, represents the action in which the environment
enables the transmission from R to S and S & R represents
the action in which in which the environment enables the
transmission in both directions. The protocol defines a non-
deterministic choice of action from any local state of the
environment, Pg(lg) = Actg = {—,5 —,— R,S & R}, for

Table 3: Local transition relation for S.
target state | transition condition

(0, ack) (Is = 0) and Actr = sendack and
Actg = («— Ror S= R)
(1, ack) (Is = 1) and Actr = sendack and

Actg = («— Ror S 2 R)

n

Fable 4: Local transition relation for R.
target state | transition condition

0 (Is = 0) and Actg = sendbit and
Actg = (S — or S 2 R)
1 (Is = 1) and Actg = sendbit and

Actg = (S — or S2 R)

all [z € Lg. This completes the modelling of the behaviour
of the communication channel.

The behaviour of the sender S can be modelled using
four local states Ls = {0, 1, (0, ack), (1, ack)}, where local
states 0 and 1 indicate that the sender is sending the respec-
tive bits and states (0, ack) and (1, ack) are states in which
the corresponding bit was sent and the acknowledgement
has been received. The corresponding actions are Acts =
{sendbit(0), sendbit(1), A}, where sendbit(n) indicates that
bit n is being sent by the receiver and A represents the
null action. The protocol for the sender is therefore for-
mally defined as Ps(0) = sendbit(0), Ps(1) = sendbit(1) ,
Ps((0,ack)) = Ps((1,ack))= A. The initial state for the
sender is 0 or 1 and the local transition relation is given in
Table 3.

The behaviour of the receiver R can be modelled using
four local states Lr = {0, 1, (0, €), (1, €)}, where states 0 and
1 indicate that the receiver has received the respective bits
and states (0, €) ,(1, €) indicate neither bit has been received.
The corresponding actions are Actr = {sendack, A}, where
sendack indicates the acknowledgement is being sent and A
represents the null action. The protocol for the receiver is
therefore defined as Pr(0) = Ps(1) = sendack , Ps(0,¢) =
Ps(1,e) = X. The initial state for the receiver is (0,€) or
(1,€) and the local transition relation is given in Table 4.

The following atomic propositions are introduced to allow
for reasoning about the behaviour of the protocol AP =
{bit = 0, bit = 1, recack}, and the corresponding evaluation
function is defined as follows:

V(bit = 0) = {g € G | either ls(g) = 0 or ls(g) = (0,ack)}
V(bit =1) = {g € G | either ls(g) = 1 or Is(g9) = (1,ack)}
V(recack) = {g € G | either l5(g) = (0,ack) or ls(g) = (1, ack)}

C
C

We have thus described an interpreted system which mod-
els the correct behaviour of the sender-receiver protocol. We
denote this system as ISgprp.

4.2 A compiler for automatic fault injection

It is straightforward to implement the bit-transmission
protocol in ISPL for it to be checked by MCMAS. To facili-
tate automatic fault injection, we developed a generic com-
piler to inject automatically a fault into any ISPL program.
The compiler is based on the generic MAS model extension
via fault injection that we defined in section 3.2. The injec-
tion program is given the name of the ISPL file, the name of
the agent we wish to inject the fault on (FaultyAgent), the
variable we wish to inject the fault on (FaultyV ariable) and
the type of fault that needs to be injected (FaultType). The

type of fault can presently be of type inversion, random or
stuck at. The compiler automatically mutates the code of
the ISPL program to create a mutated model for which ex-
tended specifications can be used to verify fault tolerance.

We illustrate how the compiler works by injecting a single
fault on ISprp. The compiler mutates the ISPL code of
ISprp to create ISPL code defining 1ST* prp. We instruct
the compiler to inject an inversion fault on the rec variable of
the receiver agent in I Sprp, so that the receiver erroneously
acknowledges that it has received a bit without one having
been sent. The input for the compiler includes the ISPL file-
name for ISprp, FaultyAgent is Receiver, FaultyV ariable
is rec and FaultType is inversion. The correct behaviour
of the Receiver is defined in ISPL as follows:

Agent Receiver
Vars:

rbit : {r0, r1}; rec boolean;
end Vars
Actions = {nothing,sendack};

Protocol:

rec=false {nothing};

rbit=r0 and rec=true: {sendack};
rbit=r1 and rec=true: {sendack};
end Protocol

Evolution:
(rec = true and rbit=r0) if ((rec=false) and
(Sender.Action=sb0) and ((Env.Action=SR)
or (Env.Action=S)));
(rec = true and rbit=r1) if ((rec=false) and
(Sender.Action=sb1l) and ((Env.Action=SR)
or (Env.Action=8)));

end Evolution

end Agent

Thus, rbit = r0 and rec = false correspond to state (0, €)
in R and rbit = r0 and rec = true corresponds to state 0
in R. The same correspondence between variable and states
applies when rbit = rl.

The first task the compiler performs is inserting the fault
injection agent F'I into the code as follows:

Agent Receiver_FI_rec

Vars:

inject: boolean;
end Vars

injected: boolean;

Actions = {dont_inject,inject_fault};

Protocol:
inject=true {dont_inject,inject_faultl};
inject=false: {dont_inject};

end Protocol

Evolution:
injected=true if
(Receiver_FI_rec.Action=inject_fault);
injected=false if
(Receiver_FI_rec.Action=dont_inject);
end Evolution

end Agent
where inject = false and inject = true corresponds to
not_faulty/faulty in the state definitions of FI. Simi-
larly injected = false and injected = true corresponds

to not_injected/injected in the state definitions of FI. The
corresponding naming convention of the fault injection agent
is FaultyAgent_FI_FaultyV ariable.

The next task of the compiler is mutating the code of the
receiver agent, by altering tr to contain the desired faulty
behaviour in tprF«, the transition conditions of which are
shown in in Table 5.

Table 5: Mutated transition relation for R.

target state | transition condition
0 (Is = 0) and Acts = sendbit and Actg =

(S — or S &2 R) and Actpr = dont_inject
1 (Is = 1) and Acts = sendbit and Actg =

(S — or S 2 R) and Actp; = dont_inject
0 (Recetver.state = (0,€)) and Actpr = inject
1 (Receiver.state = (1,€)) and Actpr = inject
(0,¢€) (Recetver.state = (0) and Actpr = inject
(1,¢€) (Receiver.state = (1) and Actp; = inject

The corresponding code of the mutated receiver agent is
defined as follows, where the mutated code is highlighted
with a box:

Evolution:
(rec=true and rbit=r0) if ((rec = false)
and (Sender.Action=sb0) and ((Env.Action=SR)
or (Env.Action=8))

’ and (Receiver_FI_rec.Action=dont_inject));

(rec=true and rbit=r1) if ((rec=false) and
(Sender.Action=sbl) and ((Env.Action=SR)
or (Env.Action=8))

’ and (Receiver_FI_rec.Action=dont_inject));

l(rec=true) if (rec=false)‘

’ and (Receiver_FI_rec.Action=inject_fault);‘

l(rec= false) if (rec= true)‘

’ and (Receiver_FI_rec.Action=inject_fault);‘

end Evolution

The final role of the compiler is to mutating the definitions
of V and I to VF* and I™* in the code as follows, where the
mutated code is highlighted with a box:

Evaluation

recack if (Sender.ack=true);

bit0 if (Sender.bit=b0);
bitl if (Sender.bit=bl);

’fault if (Receiver_FI_rec.inject=true);‘

injected if (Receiver_FI_rec.injected=true);‘

end Evaluation

InitStates
((Sender .bit=b0) or (Sender.bit=bl)) and
(Receiver.rec=false) and (Sender.ack=false) and
(Env.state=none)

and ((Receiver_FI_rec.inject=true) ‘

’or (Receiver_FI_rec.inject=false));
end InitStates

The compiler therefore performs the function of parsing
the ISPL code of 1S, inserting the fault injection agent into
it, adding the mutated transition conditions to FaultyAgent
for FaultyV ariable, and updating the evaluation and initial
states to create ISPL code defining 157*.

4.3 Verifying fault tolerance

Now that we have a mutated model IS¥*grp, we wish
to reason about its correct and faulty behaviours to ver-
ify fault tolerance by modifying formulas that verified cor-
rect behaviour in ISgrp. For ISprp we consider the fol-
lowing temporal-epistemic specification to verify the correct
behaviour of the protocol.

AG(recack — Kg(Kpr(bit =0) V Kg(bit = 1)));

This formula states that when the sender receives an ac-
knowledgement, the sender knows that the receiver knows
the value of the bit. In ISgrp, this specification is veri-
fied by MCMAS as true. In the mutated 1S grp model,

this specification corresponds to the specification pattern of
Formula 3.1. For IS¥*grp, MCMAS returns the specifi-
cation as false, since the injected inversion fault can cause
the receiver to send the acknowledgement before the value
of the bit has been received. We conclude that the protocol
is intolerant to this specific injected fault.

What is significant is that we are now in the position of
checking on the new program a variety of other specifica-
tions. For instance we may want to check that when in
IS™* grp no faults are actually injected then the original
property is still true. To do so we consider the following ex-
tended specification corresponding to the specification pat-
tern of Formula 3.2.

AG(—fault — (recack — Kg(Kpg(bit =0) vV Kg(bit = 1))));

This formula states that when no faults are ever injected into
the model and the sender receives an acknowledgement, the
sender knows that the receiver knows the value of the bit.
MCMAS verifies the specification as true since the protocol
is acting under correct behavioural conditions.

To reason about the influence of injected faults on the
specification we now consider the following formula corre-
sponding to the specification pattern of Formula 3.3.

AG (—injected — (recack — Kg(Kgr(bit =0) V Kg(bit =1))));

This formula states that when there is no fault injected into
the model and the sender receives an acknowledgement, the
sender knows that the receiver knows the value of the bit.
MCMAS returns the formula as false, since it is possible
that a fault has been previously injected into the model that
caused the receiver to send the acknowledgement before the
value of the bit has been received. The protocol is therefore
indirectly affected by the the injected fault with regards to
the original property we are reasoning about, and intolerant
to the fault when the fault has been previously injected.

We now consider a specification corresponding to the spec-
ification pattern of Formula 3.4 where there is no fault in-
jected until a fault is injected and at which point the original
specification holds.

—E(—injected U (injected N
—AG(recack — Kg(Kgr(bit =0) V Kr(bit =1)))));

This formula states that there is no path in which at some
point a fault is injected and at which point it is not true
that when the sender receives an acknowledgement, then
the sender knows that the receiver knows the value of the
bit. MCMAS verifies the specification as false, which means
that the original property is intolerant to the fault if it is
injected when the original property holds. This is because
recack may be false for the original property to hold, thus
the injected fault can still affect the acknowledgment when
the original property holds.

‘We now consider a specification corresponding to the spec-
ification pattern of Formula 3.5 to reason about the recov-
erability of the protocol in relation to the original property.

AG(injected — EF(recack —
Kg(KRr(bit = 0) vV Kg(bit = 1))));

This formula states that when there is fault injected into
the model it is possible that when the sender receives an
acknowledgement the sender knows that the receiver knows
the value of the bit. MCMAS returns this specification as
false which means that in relation to the original property

there is no possibility that it is able to recover from the in-
jected fault. This is what we would expect because once an
injected fault has caused an acknowledgement to be sent,
another one will not follow. The stronger specification cor-
responding to the specification pattern of Formula 3.6 also
returns false since the protocol is not always able to recover.

By reasoning about the correct and faulty behaviours of
the mutated sender-receiver protocol we have shown that the
original property is intolerant to the injected fault generally,
indirectly, and when the original property holds. We have
also shown that in relation to the original property the pro-
tocol is unable to recover from the fault and thus intolerant
to the fault in terms of recovery.

S. RELATED WORK

Previous work on combining fault injection [1, 2, 3, 14]
and model checking is limited to model checkers that use
temporal logic to reason about properties of the system. For-
malisms used are the language of the popular model checker
NuSMYV [2], process algebras such as CCS/Meije [1, 3], and
the commercial SCADE tool by Esterel Technologies cou-
pled with the SCADE Design Verifier model checker [14].
Our classification of failure modes is based upon the com-
monly defined faults in [2, 14].

In [2] a integrated tool for injecting faults into a sys-
tem model defined in NuSMV is applied to verify safety-
critical avionics systems. The tool automatically mutates
the NuSMV code according to a library of failure modes.The
tool provides a library of temporal logic formulas for safety
requirements whose definition is pattern based. Due to the
high level of automation of the tool in specifying safety re-
quirements, injecting faults, and producing fault trees, the
tool is successful in improving the usability for non-experts
in formal verification.

In [14] faults are injected into SCADE for a model of a
wheel brake system. The fault injection is not automatic.
Verification is performed on the faulty model by reasoning
about the faults using temporal logic. Specifications are in-
cluded to check whether safety properties hold under faulty
conditions. These are specific to the faulty model and not
generically extended from verification of the correct model.

In [3] fault tolerance is verified via model checking using
mechanisms for handling faults modelled for process alge-
bras such as CCS by applying special-purpose process oper-
ators. Similarly, in [1], a modelling approach for formalising
fault tolerant systems is proposed for the CCS/Meije process
algebra and model checking applied to verify fault tolerance
and recoverability. The proposed formalisms are not suit-
able for verifying MAS and although feasible, the work is
not extended to provide a practically usable tool.

6. CONCLUSION

In this paper we developed a methodology for automati-
cally injecting common faults into a MAS program to gen-
erate a mutated system exhibiting faulty behaviour. We
used temporal and epistemic logic to reason about the cor-
rect and faulty behaviours of the mutated system in order
to verify fault tolerance. To test the practical application of
our methods we developed a compiler to inject faults auto-
matically, and used it to analyse the degraded performance
in the bit-transmission problem. In this way we were able
to verify automatically issues pertaining to fault tolerance

and recoverability.

We regard the presented results as interesting for address-
ing the challenging problem of how to verify complex fault
tolerant agent based systems. In particular, the methods
discussed here are either automatic or can be extended to
be automatic. This is crucial to usability for those who are
not experts in verification.

In future work we will proceed with the goal in mind of
creating a powerful automatic tool to verify fault tolerance
of a MAS. Inspired by the formulas we discussed in this
article, we wish to investigate a taxonomy of specifications
modelling various aspects of faults and recovery. The com-
piler should also allow for automatic injection of multiple
faults into the system and the fault injection agent needs to
be extended to vary the persistence of faults. Finally, we fur-
ther aim to determine how to inject faults on the protocols
of the MAS as well as on the states.

Acknowledgements.
The research described in this paper is partly supported
by EPSRC funded project EP/E02727X/1.

7. REFERENCES

[1] C. Bernardeschi, A. Fantechi, and S. Gnesi. Model
checking fault tolerant systems. Software Testing,
Verification and Reliability, 12(4):251-275, 2002.

[2] M. Bozzano and A. Villafiorita. The
FSAP/NuSMV-SA safety analysis platform. Software
Tools for Technology Transfer, 9(1):5-24, 2007.

[3] G. Bruns and I. Sutherland. Model checking and fault
tolerance. In Proceedings of AMAST’97, volume 1349
of LNCS, pages 45-59. Springer, 1997.

[4] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill,
and L. J. Hwang. Symbolic model checking: 10%°
states and beyond. Information and Computation,
98(2):142-170, 1992.

[5] A. Cimatti. Industrial applications of model checking.
In Proceedings of MOVEP’00, volume 2067 of LNCS,
pages 153-168. Springer, 2001.

[6] A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri.
NUSMV: a new Symbolic Model Verifier. In
Proceedings of CAV’99, volume 1633 of LNCS, pages
495-499. Springer, 1999.

[7] E. Clarke, O.Grumberg, and D. Peled. Model
Checking. MIT Press, Cambridge, 1999.

[8] R. Fagin, J. Y. Halpern, M. Y. Vardi, and Y. Moses.
Reasoning about knowledge. MIT Press, Cambridge,
1995.

[9] A. Fedoruk and R. Deters. Improving fault-tolerance
by replicating agents. In Proceedings of AAMAS’02,
pages 737-744. ACM press, 2002.

[10] P. Gammie and R. van der Meyden. MCK: Model
checking the logic of knowledge. In Proceedings of
CAV’04, volume 3114 of LNCS, pages 479-483.
Springer, 2004.

[11] Z. Guessoum, J. P. Briot, S. Charpentier, O. Marin,
and P. Sens. A fault-tolerant multi-agent framework.
In Proceedings of AAMAS’02, pages 672—673. ACM
Press, 2002.

[12] G. J. Holzmann. The model checker SPIN. IEEE
Transactions on Software Enginnering, 23(5):279-295,
1997.

[13] R. Iyer. Experimental evaluation. In Proceedings of
FTCS-25, pages 115-132. IEEE, 1995.

[14] A. Joshi and M. P. E. Heimdahl. Model-based safety
analysis of Simulink models using SCADE design
verifier. In Proceedings of SAFECOMP’05, volume
3688 of LNCS, pages 122-135. Springer, 2005.

[15] A. Lomuscio, H. Qu, M. Sergot, and M. Solanki.
Verifying temporal epistemic properties of web service
compositions. In Proceedings of ICSOC’07., volume
4749 of LNCS, pages 456—461. Springer, 2007.

[16] A. Lomuscio, H. Qu, and M. Solanki. Towards
verifying compliance in agent-based web service
composition. In Proceedings of AAMAS’08, pages
265-272. IFAAMAS, 2008.

[17] A. Lomuscio and F. Raimondi. MCMAS: A model
checker for multi-agent systems. In Proceedings of
TACAS’06, volume 3920 of LNCS, pages 450-454.
Springer, 2006.

[18] A. Lomuscio and M. J. Sergot. Deontic interpreted
systems. Studia Logica, 75(1):63-92, 2003.

[19] A. Lomuscio and M. J. Sergot. A formalisation of
violation, error recovery, and enforcement in the bit
transmission problem. Journal of Applied Logic,
2(1):93-116, 2004.

[20] A. Niewiadomski, W. Penczek, and M. Szreter. Verics
2004: A model checker for real time and multi-agent
systems. In Proceedings of CS&P’04,
Informatik-Berichte, pages 88-99, 2004.

[21] A. Pnueli. The temporal logic of programs. In
Proceedings of FOCS 77, pages 46-57. IEEE, 1977.

[22] M. J. Wooldridge. Reasoning about Rational Agents.
MIT Press, Cambridge, 2000.

