
Abstraction in model checking multi-agent systems

Mika Cohen
Department of Computing
Imperial College London

London, UK

Mads Dam
Access Linnaeus Center

Royal Institute of Technology
Stockholm, Sweden

Alessio Lomuscio
Department of Computing
Imperial College London

London, UK

Francesco Russo
Department of Computing
Imperial College London

London, UK

ABSTRACT
We present an abstraction technique for multi-agent sys-
tems preserving temporal-epistemic specifications. We ab-
stract a multi-agent system, defined in the interpreted sys-
tems framework, by collapsing the local states and actions
of each agent in the system. We show that the resulting
abstract system simulates the concrete system, from which
we obtain a preservation theorem: If a temporal-epistemic
specification holds on the abstract system, the specification
also holds on the concrete one. In principle this permits us
to model check the abstract system rather than the concrete
one, thereby saving time and space in the verification step.
We illustrate the abstraction technique with two examples.
The first example, a card game, illustrates the potential sav-
ings in the cost of model checking a typical MAS scenario.
In the second example, the abstraction technique is used to
verify a communication protocol with an arbitrarily large
data domain.

Categories and Subject Descriptors
D.2.4 [Software/Program Verification]: Model check-
ing; I.2.4 [Knowledge Representation Formalisms and
Methods]: Modal logic

General Terms
Verification, theory

Keywords
Model checking, abstraction, epistemic logic

1. INTRODUCTION
Model checking [4] is a well-established automated tech-

nique for verifying reactive systems against design require-
ments expressed in temporal logics. More recently, model
checking has been extended to multi-agent systems (MAS)
and design requirements specified in agent logics, which ex-
tend temporal logics with agent-related modalities, such as
epistemic modalities (cf. [2, 13, 16, 18, 20]).

Cite as: Abstraction in model checking multi-agent systems, , Proc.
of 8th Int. Conf. on Autonomous Agents and Multiagent
Systems (AAMAS 2009), Decker, Sichman, Sierra and Castelfranchi
(eds.), May, 10–15, 2009, Budapest, Hungary, pp. XXX-XXX.
Copyright c© 2009, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

A major obstacle to model checking is the so called state
explosion problem. Since model checking involves a search
through the state space of the system to be analyzed, model
checking becomes intractable for systems with sufficiently
large state spaces. In fact, relatively small system descrip-
tions (“programs”) can induce intractable state spaces.

Often, however, some of the details of a large, intractable
system are irrelevant to the property we aim to verify. For
reactive systems, there are abstraction techniques [6, 7] to
simplify a system into a smaller, “abstract”, system such that
the temporal property to be verified holds for the original
system if it holds for the abstract system. The latter can be
checked automatically, if the abstract system is sufficiently
small.

In this paper, we extend existential abstraction [6] from re-
active systems to multi-agent systems, specified in the main-
stream framework of interpreted systems [12]. Specifically,
we reduce the state space generated by a given multi-agent
system by simplifying each agent in the system. We show
that if the reduced multi-agent system satisfies the property
to be verified − given as a formula in temporal-epistemic
logic − so does the original system.

We abstract a multi-agent system by simplifying the local
states, the local protocol and the local evolution function of
each agent. These simplifications alone suffice to guarantee
that the epistemic possibility relations (the Kripkean acces-
sibility relations for the epistemic modalities) in the abstract
system simulate the epistemic possibility relations in the
original system. Since the epistemic accessibility relations
are not reduced directly, the abstraction technique proposed
here has the same computational cost for temporal-epistemic
specifications as for purely temporal specifications.

We illustrate the abstraction technique with two exam-
ples. The first example, a card game, illustrates the poten-
tial savings in the cost of model checking a typical MAS
scenario. In the second example, the abstraction technique
is used to verify a communication protocol with an arbitrar-
ily large data domain.

Related work.
Abstraction of reactive systems for temporal properties

is an active research area, with considerable attention dedi-
cated to automatic techniques for building and refining ab-
stract systems in particular programming environments (cf.
[1, 5, 8, 15]). However, abstraction of multi-agent systems
has so far received little attention.

Abstraction for epistemic properties has been attempted

before in [9, 11]. The abstraction technique in [9] has the
novel feature of allowing several agent names in the origi-
nal model to be reduced to the same abstract name in the
abstract model. However, the models in [9, 11] are not com-
putationally grounded [19], which, as argued in [19], may
hamper the application of the technique to any concrete
scenario. The models are simply arbitrary Kripke models
with one primitive accessibility relation for each epistemic
modality in the logic; to abstract a model one computes
approximating relations for each epistemic accessibility re-
lation. Even if the original Kripke model is induced by a
multi-agent system, the abstraction technique does not pro-
duce another, smaller multi-agent system that can be fed
into a model checker.

Outline of the paper.
The rest of the paper is organized as follows. Section 2

recalls the interpreted systems framework and Section 3 the
temporal-epistemic specification logic ACTLK. Section 4 in-
troduces existential abstraction of interpreted systems, and
section 5 discusses simulation between interpreted systems.
Section 6 shows that abstract interpreted systems simulate
concrete interpreted systems; hence, ACTLK properties are
preserved in the process. Section 7 illustrates abstraction of
interpreted systems on a card game, while Section 8 looks
at abstraction for a transmission protocol. Finally, Section
9 concludes and considers future work.

2. INTERPRETED SYSTEMS
We model multi-agent systems in the interpreted systems

framework [12], where each agent is described by a set of pos-
sible local states it can be in, a set of actions it can perform,
a local protocol selecting actions depending on the current
local state, and a local evolution function specifying how an
agent evolves from one local state to another depending on
its own action and the actions of other agents.1

Definition 2.1 (Interpreted system). An interpreted
system over a set Ag of n > 0 agents and a set A of propo-
sitions (“atoms”) is a tuple

I = 〈{Li}i∈Ag, {ACTi}i∈Ag, {Pi}i∈Ag, {ti}i∈Ag, I0, V 〉

where:

• Li is a non-empty set of possible local states for agent i.
The set of possible global states is S = L1 × · · · × Ln.
For any global state g ∈ S, we write gi for the i-th
component in g, i.e., the local state of agent i in g.

• ACTi is a non-empty set of possible actions for agent
i. The set of possible joint actions is ACT = ACT1 ×
· · · ×ACTn.

• Pi ⊆ Li ×ACTi is the local protocol for agent i.

• ti ⊆ Li ×ACT × Li is the local evolution function for
agent i.2

1We follow [18] and assume a local evolution function for
each agent . For ease of presentation, we omit the environ-
ment, which usually forms part of an interpreted system. It
can be added with no difficulty.
2The local transition function ti can be rewritten as a func-
tion ACT −→ (Li × Li).

• I0 ⊆ S is a non-empty set of initial states.

• V : S −→ 2A is the evaluation function for proposi-
tions.

The local protocols and the local evolution functions to-
gether determine how the system of agents proceeds from
one global state to the next. Informally, the system can
move from global state g to global state g′ in one step if
there is a joint action possible at g which transforms each
local state gi into g′i.

Definition 2.2 (Global transition relation). The
global transition relation in I is the relation R ⊆ S×S such
that 〈g, g′〉 ∈ R if and only if:

∃a ∈ ACT : ∀i ∈ Ag : 〈gi, a, g′i〉 ∈ ti ∧ 〈gi, ai〉 ∈ Pi

We assume that the global transition relation R always is
serial, i.e., for every g ∈ S, there is g′ ∈ S such that gRg′.

Definition 2.3 (Path). A path in I is an infinite se-
quence g0, g1, . . . of global states in S such that every pair
of adjacent states forms a transition, i.e., gRgi+1 for all i.3

A global state is reachable if there is a path leading to it
from an initial state:

Definition 2.4 (Reachable states). The set G of reach-
able states contains all global states g ∈ S for which there is
a path g0, g1, . . . , g, . . . starting from an initial state g0 ∈ I0.

Intuitively, the local state of an agent contains all the
evidence available to that agent: If gi = g′i then system
state g could, for all agent i can tell, be system state g′.

Definition 2.5 (Epistemic possibility). The epistemic
possibility relation for agent i in system I is:

∼i = {〈g, g′〉 ∈ G×G | gi = g′i}

3. SPECIFICATION LOGIC ACTLK
We consider specifications (“system requirements”) expressed

in the logic ACTLK [17], which adds epistemic modalities to
the temporal logic ACTL, the universal fragment of Com-
putation Tree Logic [10].

Definition 3.1 (ACTLK). ACTLK formulae over a
set Ag of agents and a set A of propositions are defined by:

φ ::= α | ¬α | φ ∧ φ | φ ∨ φ | Kiφ | AXφ | A(φUφ) | A(φRφ)

where α ∈ A and i ∈ Ag.

The epistemic modality Ki is read “Agent i knows that” or
“Agent i has the information to conclude that”, the symbol
A is read “For all paths”, the symbol X is read “In the next
state”, the symbol U is read “Until” and, finally, the symbol
R is read “Releases”. Thus, the formula AXφ is read “For
all paths, in the next state, φ”; the formula A(φUφ′) is read
“For all paths, φ holds until φ′ holds”; the formula A(φRφ′) is
read “For all paths, φ releases φ′”. We assume abbreviations
customary for ACTL: > is any propositional logic tautology,
⊥ is ¬>, AFφ is A(>Uφ) (“For all paths, eventually φ”) and
AGφ is A(⊥Rφ) (“For all paths, always φ”).

3Note that we write gi for the i:th global state in a given
sequence of global states, while we use gi for the local state
of agent i inside the global state g.

As has been noted before, the combination of tempo-
ral and epistemic modalities allows us to specify, among
other properties, what agents in a system are expected to
know, and expected to know about what other agents know,
and how such knowledge evolves over time. For example,
AG(i sent m to j → AF (KiKji sent m to j)) expresses that
whenever agent i sends a (message) m to agent j, then even-
tually agent i will know that agent j knows that i did so.

Given an interpreted system I, the ACTL modalities are
interpreted by means of the global transition relation R,
while the epistemic modality Ki is interpreted by the epis-
temic possibility relation ∼i of agent i:

Definition 3.2 (Satisfaction). Let I be an interpreted
system over the set Ag of agents and the set A of proposi-
tions, let φ be an ACTLK formula over Ag and A, and let
g ∈ G be a reachable state. Truth of φ at g in I, written
(I, g) |= φ, is defined inductively by the following conditions:

• (I, g) |= α iff α ∈ V (g), for α ∈ A

• (I, g) |= ¬α iff (I, g) 6|= α

• (I, g) |= φ ∧ φ′ iff (I, g) |= φ and (I, g) |= φ′

• (I, g) |= φ ∨ φ′ iff (I, g) |= φ or (I, g) |= φ′

• (I, g) |= Kiφ iff (I, g′) |= φ for all g′ such that g ∼i g′

• (I, g) |= AXφ iff for every path g0, g1, . . . in I such
that g = g0, we have (I, g1) |= φ

• (I, g) |= A(φUφ′) iff for every path g0, g1, . . . in I
such that g = g0, there is a natural number i such that
(I, gi) |= φ′ and (I, gj) |= φ for all 0 ≤ j < i

• (I, g) |= A(φRφ′) iff for every i and every path g0, g1, . . .
in I such that g = g0, if for all 0 ≤ j < i, (I, gj) 6|= φ
then (I, gi) |= φ′

Formula φ is true in I, I |= φ, iff (I, g) |= φ for all g ∈ I0.

4. EXISTENTIAL ABSTRACTION OF IN-
TERPRETED SYSTEMS

In systems with large state spaces, it is infeasible to ver-
ify design requirements by considering the reachable states,
even if represented symbolically [3]. Often however, not all
aspects of system states are relevant to a given design re-
quirement. If so, it seems natural to reduce the state space
to a manageable size by simplifying states, removing irrel-
evant aspects. In existential abstraction [6], one reduces a
large, possibly infinite reactive system − referred to as the
concrete system − into a smaller reactive system − referred
to as the abstract system − by partitioning the system states
into equivalence classes. Each equivalence class, called an
abstract state, forms a state in the abstract system. The
abstract state is labelled with propositions that all concrete
states in that class agree on. For every transition between
states in the concrete system, one provides a corresponding
transition between the respective equivalence classes in the
abstract system: every behavior of the concrete system is a
behavior also of the abstract system.

Here, we extend existential abstraction to interpreted sys-
tems by abstracting each agent i separately. We partition
the set Li of possible local states of agent i into equiva-
lence classes; each equivalence class, called an abstract local

state of agent i, forms a possible local state of agent i in
the abstract system. Similarly, we partition the set ACTi

of possible actions of agent i into equivalence classes; each
equivalence class, called an abstract action of agent i, is a
possible action of agent i in the abstract system.

Local protocols and and local evolution functions are ab-
stracted by uniformly replacing any local state l with its
equivalence class [l], and uniformly replacing any action a
with its equivalence class [a]. Thus, if the local protocol of
agent i in the concrete system selects an action a at a local
state l, then the local protocol of i in the abstract system
selects the abstract action [a] at the abstract local state [l].
Analogously, if the local evolution function of agent i in the
concrete system transforms a local state l into a local state
l′ under a joint action 〈a1, . . . , an〉, then the local evolution
function of agent i in the abstract system transforms the
abstract local state [l] into the abstract local state [l′] under
the joint abstract action 〈[a1], . . . , [an]〉.

Finally, we abstract the evaluation function by removing
propositions that distinguish between equivalent local states;
for propositions that remain, we let any abstract global state
〈[g1], . . . , [gn]〉 inherit the propositions of the concrete global
state g.

Formally, the abstract interpreted system is formed as a
quotient construction as follows.

Definition 4.1 (Quotient of interpreted system).
Assume an interpreted system I over the set Ag of agents
and the set A of propositions. For each i ∈ Ag, assume an
equivalence ≡i⊆ Li × Li and an equivalence ≡i⊆ ACTi ×
ACTi. For l ∈ Li, write [l] for the equivalence class of l with
respect to ≡i. Similarly, write [a] for the equivalence class
of a ∈ ACTi with respect to ≡i. Write [g] for 〈[g1], . . . , [gn]〉
and write [a] for 〈[a1], . . . , [an]〉. Let A′ ⊆ A consist of all
propositions of A that do not distinguish between equivalent
local states, i.e., all α ∈ A such that for all g, g′ ∈ S: if
α ∈ V (g) and gi ≡ g′i for all i ∈ Ag, then α ∈ V (g′).

The quotient system of I is the interpreted system I′ over
the set Ag of agents and the set A′ of proposition such that:

1. L′
i = {[l] | l ∈ Li}.

2. ACT ′
i = {[a] | a ∈ ACTi}.

3. P ′
i = {〈[l], [a]〉 | 〈l, a〉 ∈ Pi}.

4. t′i = {〈[l], [a], [l′]〉 | 〈l, a, l′〉 ∈ ti}.

5. I ′0 = {[g] | g ∈ I0}.

6. V ′([g]) = V (g) ∩A′.

Definition 4.1 does not say how the equivalence relations
≡i are chosen. This issue is addressed in sections 6 to 8 be-
low. The important property of quotient systems, however,
is that specifications are preserved from abstract systems to
concrete ones, as we show below.

5. SIMULATION
There is a standard notion of simulation for reactive sys-

tems [6]: A system simulates another system if every behav-
ior of the latter is a behavior of the former. Since ACTL
operators quantify over all behaviors (paths), it follows that
any ACTL property that holds in the simulating system
holds also in the simulated system. To extend this prop-
erty preservation to ACTLK, we require that any epistemic

possibility in the simulated system can be “matched” by an
epistemic possibility in the simulating system.

Definition 5.1 (Simulation). Assume an interpreted
system I over the set Ag of agents and the set A of propo-
sitions, and an interpreted system I′ over the same set Ag
of agents and a subset A′ ⊆ A of propositions. A simulation
relation between I and I′ is a relation '⊆ S×S′ such that:

1. If g ∈ I0 then g′ ∈ I ′0 for some g′ such that g ' g′

and whenever g ' g′ then:

2 V ′(g′) = V (g) ∩A′

3 If gRs then g′R′s′ for some s′ such that s ' s′

4 If g ∼i s then g′ ∼i s′ for some s′ such that s ' s′

where R and R′ are the global transition relations in, respec-
tively, I and I′. If there is a simulation relation between I
and I′, we say that I′ simulates I.

According to (1), every initial state in I can be matched
by an initial state in I′. According to (2), related states
must agree on propositions in A′. Informally, A′ contains
propositions from A that we consider “relevant”. According
to (3), every transition in I can be matched by a transition in
I′. Any ACTLK property is preserved from the simulating
system I′ to the system I being simulated:

Lemma 5.2. Assume I′ simulates I. For any ACTLK
formula φ over A′, if |=I′ φ, then |=I φ.

Proof (Sketch). Assume a simulation relation ' be-
tween I and I′. We show that

g ' g′, g′ |=I′ φ =⇒ g |=I φ (1)

by induction over φ. Base step, φ is α or ¬α for some α ∈
A: From simulation requirement 2. Induction step, CTL
modalities: From simulation requirement 3. For details cf.
[6]. Induction step, epistemic modality: From simulation
requirement 4. The Lemma follows from (1) and simulation
requirement 1. 2

6. PRESERVATION THEOREM
When we collapse local states and actions in an inter-

preted system, the resulting abstract system simulates the
original system; every behavior and every epistemic possi-
bility of the original system can be matched by a behavior
and an epistemic possibility of the abstract system.

Lemma 6.1. If I′ is a quotient of I, then I′ simulates I.

Proof. We show that the relation ' = {〈g, [g]〉 | g ∈ S}
is a simulation between I and I′. Simulation requirement
1: From requirement 5 in Definition 4.1. Simulation re-
quirement 2: From requirement 6 in Definition 4.1. Sim-
ulation requirement 3: Assume gRs. By Definition 2.2,
there is a a ∈ ACT such that (for all i ∈ Ag): 〈gi, a, si〉 ∈
ti and 〈gi, ai〉 ∈ Pi. By requirements 3 and 4 in Definition
4.1, 〈[gi], [a], [si]〉 ∈ t′i and 〈[gi], [ai]〉 ∈ P ′

i , i.e., 〈[g]i, [a], [s]i〉 ∈
t′i and 〈[g]i, [a]i〉 ∈ P ′

i , i.e., by Definition 2.2, [g]R′[s]. Thus,

gRs =⇒ [g]R′[s] (2)

from which simulation requirement 3 follows. Simulation
requirement 4: Assume g ∼i s. By Definition 2.5, gi = si,
i.e., [gi] = [si], i.e.,

[g]i = [s]i (3)

Also by definition 2.5, g, s ∈ G. By (2) and simulation
requirement 1, [g], [s] ∈ G′. Thus, simulation requirement 4
follows by (3). 2

Since the abstract system simulates the concrete system,
design requirements expressed in ACTLK are preserved from
the abstract system to the concrete system.

Theorem 6.2 (Preservation). Let I′ be a quotient of
interpreted system I. For any ACTLK formula φ over A′,
if |=I′ φ, then |=I φ.

Proof. From Lemma 5.2 and Lemma 6.1. 2

Thus, if we have a multi-agent system I which is too large to
model check, we can instead check the quotient system I′.
If the model checker reports that the specification φ holds,
Theorem 6.2 allows us to conclude that φ holds also for the
original system I.

When applying the theorem, the main challenge is how to
choose the collapsing equivalence relations ≡i on local states
and actions. One approach, following predicate abstraction
[14], would be to select a finite set of local state predicates,
and identify any two local states satisfying exactly the same
predicates. Alternatively, following data abstraction [6], we
may collapse local states by collapsing the data values they
are built from. We illustrate this approach in Section 8.

7. A CARD GAME EXAMPLE
We illustrate the abstraction technique presented above

on a simple card game. Two players, A and B, receive 9
cards each from a deck of 20 cards. The deck contains 10 red
cards, r1, . . . , r10, and 10 black cards, b1, . . . , b10. Every red
card beats every black card, otherwise higher indexed cards
beat lower index cards. In each round of the game, each
player plays a card from her hand. The better of the cards
played wins the round. The game continues until all cards
have been played. The player who won the most number of
rounds wins the game.

We model the game as an interpreted system with three
agents: the two players A and B and a score keeper S. Let
C be the set of cards. We proceed to define, for each agent
i ∈ Ag = {A, B, S}, its set of possible actions ACTi, its set
of possible local states Li, its local protocol Pi and its local
evolution function ti.

A player can either play a card or do nothing (ε); the set
ACTi of actions for player i ∈ {A, B} is:

ACTi = {play c | c ∈ C} ∪ {ε}

The score keeper can either evaluate who wins the round or
do nothing:

ACTS = {eval, ε}

The local state of an agent contains the “information”
available to her; in this game, a player i ∈ {A, B} sees her
hand and remembers the moves played so far:

Li = {〈h, m〉 ∈ 2C ×ACT ∗ | |h|+ |m| = 9}

where h ⊆ C represents the current hand of the agent and
m ∈ ACT ∗ represents the remembered sequence of joint
actions. The score keeper, we assume, just keeps a record of
the score so far:

LS = {〈a, b〉 ∈ {0..9} × {0..9} | a + b ≤ 9}

where the record 〈a, b〉 says that player A has won a number
of rounds and player B has won b number of rounds.

The local protocol Pi selects actions for agent i depending
on the current local state of i; here, a player i ∈ {A, B} plays
a card randomly from its hand until it has no cards left:4

Pi(〈h, m〉) = {play c | c ∈ h}, if h 6= ∅
Pi(〈h, m〉) = {ε}, if h = ∅

The score keeper evaluates the score of each round until all
cards have been played:

PS(〈a, b〉) = {eval}, if a + b < 9

PS(〈a, b〉) = {ε}, if a + b = 9

The local evolution function tA for player A, specifying
how the local state of player A is updated by a joint action,

contains the following transitions (where l
a−→ l′ is the al-

ternative notion for the triple 〈l, a, l′〉, and · is the append
operation on sequences):

〈h, m〉 〈play c,play c′, eval〉−→ 〈h \ {c}, m · 〈play c, play c′, eval〉〉

〈h, m〉 〈ε,ε,ε〉−→ 〈h, m〉

In the first transition above, the card c played by A is re-
moved from the hand h and the move 〈play c, play c′, eval〉
is appended to the memory m. In the second transition,
the local state is unchanged when the agents do nothing.
The local evolution function tB for player B is defined in
the same way as tA above, but with the hand h \ {c′} in the
successor state in the first transition.

The score keeper adds a point to the player who plays the
strongest card. Formally, the local evolution function tS for
the score keeper contains the following transitions:

〈a, b〉 〈play c,play c′, eval〉−→ 〈a + 1, b〉, if c > c′

〈a, b〉 〈play c,play c′, eval〉−→ 〈a, b + 1〉, if c′ > c

〈a, b〉 〈ε,ε,ε〉−→ 〈a, b〉

where > is the total ordering of cards (i.e., ri > bj , and
if i > j then ri > rj and bi > bj). In the first transition
above, A plays the stronger card and so the score keeper adds
a point to the score of A, and analogously for the second
transition.

To complete the interpreted system for the card game, we
define the set I0 of initial states and the evaluation function
V . Initially, each player holds 9 unique cards, has no moves
recorded and has 0 points: I0 is the set of all global states
〈〈h, m〉, 〈h′, m′〉, 〈a, b〉〉 such that

|h| = |h′| = 9, h ∩ h′ = ∅, |m| = |m′| = 0, a = b = 0

We assume the set A contains the propositions onlyredi

(“Player i holds only red cards.”) and wini (“Player i has
won the game.”), for i ∈ {A, B}. The evaluation function V
interprets the propositions as expected:

onlyredA ∈ V (〈〈h, m〉, l, l′〉) ⇔ h ∩ {b1, . . . , b10} = ∅
winA ∈ V (〈l, l′, 〈a, b〉〉) ⇔ a > b and a + b = 9

4 Here we follow standard practice for interpreted systems
and treat Pi as a function Li −→ 2ACTi , rather than as a
relation as in earlier sections. Formally, we write Pi(l) = X
when X = {a | 〈l, a〉 ∈ Pi}.

Figure 1: Sketch of the global transition relation for
the concrete card game.

The conditions for the propositions onlyredB and winB are
analogous. This completes the definition of the interpreted
system I for the card game.

Figure 1 sketches the resulting global transition relation
R, following it from one particular initial state - In total,
there are approximately 9 million possible initial states. For
the sake of readability, we label transitions in the figure
with joint actions; the label c, c′ abbreviates the joint action
〈play c, play c′, eval〉. All nodes have transitions to other
nodes, even if not shown in the figure. The dots indicate
omitted transitions.

It is quite clear that if one player is served only red cards
she will win the game whatever the moves played. In fact we
can verify this and even stronger temporal epistemic specifi-
cations. For example, we could try to model check whether

onlyredB → KB(AF winB ∧KAAF winB) (4)

The formula states that if B is served only red cards then
not only does she know that she will win the game but also
she knows that A knows this.

It turns out, however, that the state space is too large
for the system to be checked even by symbolic techniques
such as BDDs [3]. But, instead of checking the specification
above directly, we can first abstract the system to reduce its
state space as we show below.

We collapse all red cards into one, collapse all black cards
into one and ignore the memory (“action log”) m of players.
Let ρ : C −→ {red, black} map all red cards to the abstract
card red and all black cards to the abstract card black, i.e.,
ρ(ri) = red and ρ(bi) = black. For each local state 〈h, m〉 of
a player i ∈ {A, B}, we abstract away the memory m and
the card indexes in the hand h:

〈h, m〉 ≡i 〈h′, m′〉 ⇔ ρ(h) = ρ(h′)

where ρ(h) is the multi-set {ρ(c) | c ∈ h}. For example, if
h = {b1, b2, r1} then ρ(h) is the multi-set {black, black, red}.
We do not abstract the local states of the score keeper, so
≡S is simply identity on LS .

We abstract the actions of player i ∈ {A, B} by removing
the indexes from cards:5

play c ≡i play c′ ⇔ ρ(c) = ρ(c′) (5)

5To be precise, we take ≡i to be the least equivalence on
ACTi satisfying the condition (5).

Again, we do not abstract the actions of the score keeper:
≡S is identity on ACTS .

We proceed to construct the abstract system I′, i.e., the
quotient of I with respect to equivalences ≡A, ≡B and ≡S .
Representing the abstract action [play c] by play ρ(c), and
representing the abstract local state [〈h, m〉] by the multi-
set ρ(h), we have:

ACT ′
i = {play red, play black, ε}

L′
i = {h | multi-set h, |h| ≤ 9}

Pi(h) = {play x | x ∈ h}, if h 6= ∅
Pi(h) = {ε}, if h = ∅

for players i ∈ {A, B}, while ACT ′
S = ACTS , L′

S = LS and
P ′

S = PS .
The abstract local evolution function t′A for player A con-

tains the following transitions:

h
〈play x,play x′,eval〉−→ h \ {x}

h
〈ε,ε,ε〉−→ h

for abstract cards x, x′ ∈ {red, black}, where h \ {x} is the
result of removing one instance of the abstract card x from
the multi-set h. The abstract local evolution function t′B for
player B is defined in the same way, but with the multi-set
h \ {x′} as the successor state in the first transition.

The abstract local evolution function t′S for the score keeper
contains the following transitions:

〈a, b〉 〈play x,play x, eval〉−→ 〈a + 1, b〉

〈a, b〉 〈play x,play x, eval〉−→ 〈a, b + 1〉

〈a, b〉 〈play red,play black, eval〉−→ 〈a + 1, b〉

〈a, b〉 〈play black,play red, eval〉−→ 〈a, b + 1〉

〈a, b〉 〈ε,ε,ε〉−→ 〈a, b〉

for abstract card x ∈ {red, black}. In the first transition
above, the score keeper adds a point to the score of A when
players A and B play cards of the same color, while in the
second transition, the score keeper adds a point to the score
of B when players A and B play cards of the same color.

The set I ′0 of abstract initial states consists of all abstract
global states 〈h, h′, 〈a, b〉〉 such that

|h| = |h′| = 9, a = b = 0

|Red(h)|+ |Red(h′)| ≤ 10, |Black(h)|+ |Black(h′)| ≤ 10

where Red(h) is the multi-set of red cards in multi-set h,
and similarly for Black(h).

The abstract and concrete systems have the same propo-
sitions, A′ = A, since no proposition in A distinguishes be-
tween global states that have been identified. The abstract
evaluation function V ′ is defined by:

onlyredA ∈ V ′(〈h, l, l′〉) ⇔ Black(h) = ∅
winA ∈ V ′(〈l, l′ 〈a, b〉〉) ⇔ a > b and a + b = 9

and analogously for propositions onlyredB and winB .
This completes the construction of the abstract system

I′. Figure 2 depicts the resulting abstract global transition
relation R′, tracking it from one of the 36 possible initial
states.

Figure 2: Scetch of the global transition relation for
the abstract card game.

Having thus constructed the abstract system, we could
feed it to a model checker and check wether the specifica-
tion (4) - which uses only propositions from A′ - holds. The
model checker would report that the specification does in-
deed hold. By Preservation Theorem 6.2, we could then
conclude that the specification holds also in the concrete
system. Note, however, that checking a different specifica-
tion might require a different abstraction. For instance, the
formula onlyredB → AF KB winB holds for the concrete
system but not for the particular abstract system above.6

In this example, the abstraction technique reduces the
number of reachable states that the model checker needs to
compute by a factor of 5 · 1011: The concrete system has
approximately 3 · 1018 reachable states, while the abstract
system has approximately 5 million reachable states. Al-
though the example is artificial and serves only as a vehicle
to illustrate the presented abstraction technique, we expect
state space savings of a similar magnitude in a number of
scenarios that are amenable to abstraction.

8. TRANSMISSION PROTOCOL EXAMPLE
The bit transmission protocol [12] is a popular applica-

tion of temporal-epistemic logic. In this protocol, a sender
S wants to communicate some data to a receiver R over a
faulty communication channel. When analyzing the proto-
col, one typically assumes − “for the sake of the example”−
that the data communicated is just the value of a bit. Us-
ing abstraction, we can formally show that the data domain
{0, 1} indeed suffices: if the protocol achieves its goal for
the data domain {0, 1}, it achieves its goal for any choice of
data domain, no matter how large.

The transmission protocol for a data domain D runs as
follows. A sender S and a receiver R communicate over a
lossy channel. The goal of the protocol is to transmit a
data value d ∈ D from the sender S to the receiver R in
such a way that the sender S will know that the receiver R
knows the value d. The protocol specifies that S sends the
data value to R, and continues to send it until S receives
an acknowledgement from R. For its part, once R receives
the data value, R sends an acknowledgement of receipt to S,

6We thank an anonymous reviewer for suggesting this for-
mula to us.

and re-sends it indefinitely. When |D| = 2, the transmission
protocol is the bit transmission protocol.

We implement the transmission protocol for a non-empty
data domain D as an interpreted system ID with two agents,
the sender S and the receiver R. We assume the sender S
observes her value and whether or not she has received an
acknowledgement:

LS =
[

d∈D

{d, 〈d, ack〉}

In local state d, the sender sees (has) her data value d, while
in local state 〈d, ack〉, the sender sees (has) her value d and
the acknowledgement. The receiver, on the other hand, ei-
ther sees nothing or sees the data value:

LR = {λ} ∪D

In local state λ, the receiver has not yet seen any value,
while in local state d ∈ D, the receiver sees the value d.

The sender can send her data value or do nothing (ε):

ACTS = {send d | d ∈ D} ∪ {ε}

while the receiver can send an acknowledgement of receipt
of do nothing:

ACTR = {sendack d | d ∈ D} ∪ {ε}

The protocol for the sender is to keep sending her data
value until she receives an acknowledgement:

PS(d) = {send d}
PS(〈d, ack〉) = {ε}

The receiver should do nothing until it received a data value,
and then keep sending an acknowledgment:

PR(λ) = {ε}
PR(d) = {sendack d}

The local evolution function tS for the sender contains the
following transitions:

d
〈send d,ε〉−→ d (6)

d
〈send d,sendack d〉−→ d (7)

d
〈send d,sendack d〉−→ 〈d, ack〉 (8)

〈d, ack〉 〈ε,sendack d〉−→ 〈d, ack〉 (9)

In (6), the joint action 〈send d, ε〉 leaves the local state of
S unchanged: Since the receiver does nothing, the sender
obtains no new information. In (7), the receiver sends an
acknowledgement which is lost on the communication chan-
nel, so the local state of S is unchanged. In (8), on the other
hand, the acknowledgement reaches the sender, and the lo-
cal state is updated accordingly. In (9), the sender stays in
the same local state once the the sender has received the
acknowledgement.

Analogously, the local evolution function tR for the re-
ceiver contains the following transitions:

λ
〈send d,ε〉−→ λ

λ
〈send d,ε〉−→ d

d
〈π,sendack d〉−→ d

for π ∈ ACTS .

Initially, the sender sees its data value d and the receiver
sees nothing:

I0 = {〈d, λ〉 | d ∈ D}

Let the set A of propositions contain the proposition recack
(“The sender has received an acknowledgement”) and the
propositions val = d (“The value is d”), for all d ∈ D. The
evaluation function is as expected:

V (〈d, l〉) = {val = d}
V (〈〈d, ack〉, l〉) = {val = d, recack}

for l ∈ LR. This completes the definition of the interpreted
system ID for the transmission protocol.

As discussed in the literature, suppose we would like to
check wether whenever the sender S has obtained an ac-
knowledgement, the sender S knows that the receiver R
knows whether the value is d. Formally, we would like to
determine, for all d ∈ D, if ID satisfies:

AG(val = d ∧ reckack → KSKRval = d) (10)

Applying Preservation Theorem 6.2, we show that the
specification (10) holds in ID for any chosen data domain
D, if the specification holds for the bit transmission proto-
col, i.e., if it holds for D = {0, 1}. The latter is, of course,
feasible for a model checker to determine.

Fix any d0 ∈ D. We abstract the concrete system ID

by identifying all data values d which are distinct from d0.
Define a data collapsing function ρ : D −→ {d0,¬d0} by:

ρ(d0) = d0

ρ(d) = ¬d0, if d 6= d0

We identify local states if they are identical after applying
ρ on the data values inside:

d ≡S d′ ⇔ ρ(d) = ρ(d′)

d ≡R d′ ⇔ ρ(d) = ρ(d′)

〈d, ack〉 ≡S 〈d′, ack〉 ⇔ ρ(d) = ρ(d′)

Similarly, we identify actions that are identical after renam-
ing:

send d ≡S send d′ ⇔ ρ(d) = ρ(d′)

send ack d ≡R send ack d′ ⇔ ρ(d) = ρ(d′)

Now, let I′ be the quotient of ID with respect to equiva-
lences ≡S and ≡R.

If we represent the abstract local state [l] by ρ(l) (i.e, the
result of substituting ρ(d) for d in l), and represent the ab-
stract action [a] by ρ(a), we see that the abstract system I′

is just the bit transmission protocol model I{d0,¬d0}, except
that A′ contains only the abstract propositions reckack and
val = d0.

If we feed the bit transmission protocol model I{0,1} to a
model checker, we will find that the specification (10) holds.
From this we infer that the specification (10) holds also for
the concrete system ID: Pick any d0 ∈ D and form the
abstract system I′ as above. As we have seen, the abstract
system I′ is just I{0,1}. So, by assumption, the abstract
system I′ satisfies:

AG(val = d0 ∧ reckack → KSKRval = d0) (11)

By Preservation Theorem 6.2, (11) holds for the concrete
system ID. Since, d0 was chosen arbitrarily from D, we can
conclude the protocol goal (10) for all d ∈ D.

The transmission protocol (with variations) is a standard
example used to illustrate data abstraction for reactive sys-
tems and temporal logic. The logical specifications usually
considered specify only control flow, and therefore allow
data to be abstracted away completely. The specification
(10) here, by contrast, is about knowledge of data, and so
does not allow data to be completely abstracted away; if we
choose ρ : D −→ {0}, then A′ in the abstract system will
contain only the proposition reckack, and so Theorem 6.2
would not apply to the specification (10) .

9. CONCLUSION AND FUTURE WORK
Model checking MAS has received considerable attention

in the MAS community. However, there has been little work
so far on abstraction techniques for reducing the state space
of MAS to a tractable size.

In this paper, we have presented an abstraction technique
for MAS preserving temporal-epistemic properties. We have
seen that when the state space of a MAS is too large for a
model checker to compute, it is sometimes possible to reduce
it by simplifying the local states and actions of agents before
feeding the system to a model checker. If the model checker
reports that a design requirement expressed in the temporal-
epistemic logic ACTLK holds, we can conclude that the re-
quirement holds also for the original system.

A natural next step for future research is to automate the
abstraction process. We intend to attempt this for multi-
agent programs in the interpreted systems programming lan-
guage (ISPL) [18] by taking inspiration from predicate ab-
straction techniques used in reactive systems.

Acknowledgments.
The research described in this paper is partly supported

by EPSRC funded project EP/E035655, by the European
Commission Framework 6 funded project CONTRACT (IST
Project Number 034418), and by grant 2003-6108 from the
Swedish Research Council.

10. REFERENCES
[1] T. Ball and S. K. Rajamani. Boolean programs: A

model and process for software analysis. MSR
Technical Report 2000-14. 2000.

[2] R. H. Bordini, M. Fisher, C. Pardavila, and
M. Wooldridge. Model checking AgentSpeak. In J. S.
Rosenschein, T. Sandholm, W. Michael, and
M. Yokoo, editors, AAMAS-03, pages 409–416. ACM
Press, 2003.

[3] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill,
and L. J. Hwang. Symbolic model checking: 1020

states and beyond. Information and Computation,
98(2):142–170, 1992.

[4] E. M. Clarke and E. A. Emerson. Design and synthesis
of synchronization skeletons using branching-time
temporal logic. In Logic of Programs Workshop, pages
52–71, London, UK, 1982. Springer-Verlag.

[5] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and
H. Veith. Counterexample-guided abstraction
refinement. In E. A. Emerson and A. P. Sistla, editors,
CAV, volume 1855 of Lecture Notes in Computer
Science, pages 154–169. Springer, 2000.

[6] E. M. Clarke, O. Grumberg, and D. E. Long. Model
checking and abstraction. ACM Trans. Program.

Lang. Syst., 16(5):1512–1542, 1994.

[7] P. Cousot and R. Cousot. Abstract interpretation: A
unified lattice model for static analysis of programs by
construction or approximation of fixpoints. In POPL,
pages 238–252, 1977.

[8] S. Das and D. L. Dill. Successive approximation of
abstract transition relations. In LICS, pages 51–60,
2001.

[9] F. Dechesne, S. Orzan, and Y. Wang. Refinement of
kripke models for dynamics. In J. S. Fitzgerald, A. E.
Haxthausen, and H. Yenigün, editors, ICTAC, volume
5160 of Lecture Notes in Computer Science, pages
111–125. Springer, 2008.

[10] E. A. Emerson and E. M. Clarke. Using branching
time temporal logic to synthesize synchronization
skeletons. Science of Computer Programming,
2(3):241–266, 1982.

[11] C. Enea and C. Dima. Abstractions of multi-agent
systems. In H. Burkhard, G. Lindemann,
R. Verbrugge, and L. Z. Varga, editors, CEEMAS,
volume 4696 of Lecture Notes in Computer Science,
pages 11–21. Springer, 2007.

[12] R. Fagin, J. Y. Halpern, M. Y. Vardi, and Y. Moses.
Reasoning about knowledge. MIT Press, Cambridge,
MA, USA, 1995.

[13] P. Gammie and R. van der Meyden. MCK: Model
checking the logic of knowledge. In CAV’04, volume
3114 of LNCS, pages 479–483. Springer-Verlag, 2004.

[14] S. Graf and H. Säıdi. Construction of abstract state
graphs with pvs. In O. Grumberg, editor, CAV,
volume 1254 of Lecture Notes in Computer Science,
pages 72–83. Springer, 1997.

[15] R. P. Kurshan. Computer-aided verification of
coordinating processes: the automata-theoretic
approach. Princeton University Press, Princeton, NJ,
USA, 1994.

[16] W. Nabialek, A. Niewiadomski, W. Penczek,
A. Pólrola, and M. Szreter. VerICS 2004: A model
checker for real time and multi-agent systems. In
CS&P’04, volume 170 of Informatik-Berichte, pages
88–99. Humboldt University, 2004.

[17] W. Penczek and A. Lomuscio. Verifying epistemic
properties of multi-agent systems via bounded model
checking. Fundamenta Informaticae, 55(2):167–185,
2003.

[18] F. Raimondi and A. Lomuscio. Automatic verification
of multi-agent systems by model checking via ordered
binary decision diagrams. Journal of Applied Logic,
5(2):235–251, 2007.

[19] M. Wooldridge. Computationally grounded theories of
agency. In E. Durfee, editor, ICMAS, pages 13–22.
IEEE Press, 2000.

[20] M. Wooldridge, M. Fisher, M. Huget, and S. Parsons.
Model checking multiagent systems with MABLE. In
AAMAS-02, pages 952–959, Bologna, Italy, July 2002.

