MCMAS: A model checker for the verification of
multi-agent systems

Alessio Lomuscid, Hongyang Qu, Franco Raimondi
*Imperial College London, UK fUniversity College London, UK

1 Overview

While temporal logic in its various forms has proven essémdi reason about reactive
systems, agent-based scenarios are typically specifiedrsidering high-level agents
attitudes. In particular, specification languages basedpistemic logic [7], or logics
for knowledge, have proven useful in a variety of areas iticlg robotics, security
protocols, web-services, etc. For example, security fipations involving anonymity
[4] are known to be naturally expressible in epistemic fdismas as they explicitly state
the lack of different kinds of knowledge of the principals.

More generally, various extensions of temporal logic hagerbstudied in agents
and Al contexts to represent properties of autonomoussgstie addition to epistemic
operators, at the very core of these approaches is the iammabf deontic modalities
expressing norms and compliance/violation with respeptéviously agreed commit-
ments, and ATL-like modalities expressing cooperation agregents.

While these languages have been long explored and apppamantics devel-
oped, until recently there has been a remarkable gap in Hikhility of efficient sym-
bolic model checking toolkits supporting these. In this gragwe describe MCMAS,
a symbolic model checker specifically tailored to agentelaspecifications and sce-
narios. MCMAS [12] supports specifications based on CTLstepiic logic (includ-
ing operators of common and distributed knowledge) [7]eAlating Time Logic [2],
and deontic modalities for correctness [16]. The releaserdeed in this abstract is
a complete rebuild of a preliminary experimental checkd.[The model input lan-
guage includes variables and basic types and it implemieatsgmantics of interpreted
systems, thereby naturally supporting the modularity gmes agent-based systems.
MCMAS implements OBDD-based algorithms optimised for ipteted systems and
supports fairness, counter-example generation, andacttee execution (both in ex-
plicit and symbolic mode). MCMAS has been used in a varietgagiarios including
web-services, diagnosis, and security. MCMAS is releaselguGNU-GPL.

2 Multi-Agent Systems Formalisms

Multi-Agent Systems (MAS) formalisms are typically builb @xtensions of compu-
tational tree logic (CTL). For the purposes of this abstmetconsider specifications
given in the following languagé€ built from a set of propositional atoms< P, and a
set of agents € A (G C A denotes a set of agents):

* The research described in this paper is partly supportetidofztiropean Commission Frame-
work 6 funded project CONTRACT (IST Project Number 034418).

ou==0| 6N | (CYX | (GYF | (G)oUY] | Kio | Dao | Cad | O,
L extends ATL (hence CTL) by considering epistemic modalitiepresenting “agent

i knows¢” (K;¢), “group G has distributed knowledge aof’ (Dg¢), “group G has
common knowledge o” (Cg¢), and deontic modalities encoding “whenever agent
1 is working correctlyy holds” (O;¢). The ATL modalities above are read as custom-
ary: (G) X ¢ stands for “grougy can enforcep at the next step” anqG)) F'¢ stands
for “group G can enforcep at some point in the future”. As standard, CTL modali-
ties for AG, AU, AX and their existential counterparts may be derived from the A
modalities, and, similarly, epistemic modalities ¢ (“everyone inG knows”) may

be rewritten as a conjunction of appropri@fe ¢ € G, formulas. The specification lan-
guage above is very rich as itincludes Al-based modaligpsasenting various notions
of knowledge [7], deontic conditions [16], ATL-style modigls for cooperation [2], as
well as standard CTL.

A computationally grounded semantics for the family of MAfsrhalisms above (in
the sense of [19], i.e., one in which the interpretation tonaldalities is defined in terms
of the computational states of the system) can be given gtsyiextendingnterpreted
systemsinterpreted systems [7], originally proposed for lineare only, are an agent-
based semantics where the components, or agents, are dafinext of possible local
states, a set of actions that they may perform accordingéi thcal protocol, and
transition functions returning the target local state gitlee current local state and the
set of actions performed by all agents. An environment (idlesd similarly to an agent)
is also modelled as part of the system. ATL and CTL modalifiesinterpreted on
the induced temporal relation given by the protocols anaisiteon functions [15], the
epistemic modalities are defined on the equivalence resfilt on the equality of
local states [7], and the deontic modalities are interprete“green states”, i.e., subsets
of local states representing states of locally correct bielafor the agent in question.
Specifically, satisfaction for the epistemic modalitiesiégined by(1S, s) E K;¢ iff
for all s € S we have that ~; s’ implies (IS, s’) = ¢, wherelS is an interpreted
system,s, s’ reachable global states, and is defined on the local equality of global
states, i.e.s ~; s’ iff [;(s) = l;(s") wherel; is the function returning the local state
of agenti in a given global state. Satisfaction for common knowledgdéfined by
(IS,s) = Cgoiffforall s € S we have that ~* s’ implies(1S,s') = ¢, where~*
is the reflexive and transitive closure of the union of thatiehs~;, i € G. We refer to
the user manual available from [12] for satisfaction of rilistted knowledgeD and
correctness modalitig3;, as well as more details and examples.

The languageC has been used to specify a wide range of scenarios in applicat
areas such as web-services, security, and communicaidocets. For example, in a
communication protocol we can UEF (K sender (Kreceiver (bit = 0))) to specify that
at some pointin the future the sender will know that the nesrdinows that the bit being
sent is equal to 0; in a game-based setting, we can Wie,,, (p1, p2)) X (p1-pawin)
to represent that it is always the case that, as long as plaigeiunctioning correctly,
playerl and player2 can together force a win at any step.

The complexity of the model checking problem 6fagainst compact represen-
tations (e.g., via reactive modules, or ISPL modules asvei® given by its more
expensive fragment (ATL) and so it is EXPTIME-complete [Bpte, however, that

the problem of checking its temporal-epistemic-deontagfnent is only PSPACE-
complete [13], i.e., the same as CTL [11].

3 The MCMAS toolkit

MCMAS is implemented in C++ and compiled for all major platfes. It exploits the

CUDD [18] library for BDD operations. MCMAS implements stiard algorithms for

CTL and ATL [3, 2], and dedicated BDD-based algorithms feréjpistemic and deontic
operators [17], in particular, the algorithms for satisifarc for K; andC are sketched

in Algorithm 1 (S represents the set of reachable states).

Algorithm 1 Algorithms for SATk (¢, 4)(left) andS AT (¢, G) (right).

1: X « 2,V <« SAT(—¢);
2: while X # Y do

1: X < SAT(—¢);

3 X<v;
. ’ . Al . ’
:2,): ?;tﬁ{sgfﬂs?s € Xstsrv s’} 4 Y e{seS|3s € Xandi € Gstsn~; s}
: B ' 5: end while
6: return =Y N S;

A number of optimisations are implemented in MCMAS in anmaipé¢ to minimise
the memory consumption and verification time. For exampkechecker does not build
a single OBDD for the global transition relation, but perfgrany required operation
against the local evolutions. Also, MCMAS does not comphéetinion of equivalence
relations~; in Algorithm 1 when checking common knowledge, but instegmbatedly
operates on all-;. MCMAS provides counterexamples and witnesses for a widgaa
of formulas including epistemic modalities thereby giviggidance to the user. The
algorithm used to return witnesses and counterexamplesvisl @and inspired by the
tree-like construction of [5].

MCMAS takes ISPL (Interpreted Systems Programming Languagscriptions
as input. An ISPL file fully describes a multi-agent systerotlbthe agents and the
environment), and it closely follows the framework of imieeted systems described
above. We refer to the user manual for examples and usagmtizdly, an ISPL agent
is described by giving the agents’ possible local statesy #ctions, protocols, and lo-
cal evolution functions. Local states are defined by usingtses of typeBool ean,

i nt eger, andenuner at i on. An optional sectiorRedSt at es permits the defini-
tion of non-green states by means of any Boolean formula®ndhables of the local
states to interpret the correctness modaliflesThe local transition function is given
as a set otvolution itemsf the formA i f C, whereCis a Boolean condition over
local variables, global variables (see below), and actlmnghe agents and the envi-
ronment, andh is a set of assignments on the agent’s local variables. Aildkikes not
present inA remain constant in the local transition. Any enabling ctiodiand syn-
chronisation among the agents is specifie€Cjmote also that any non-deterministic
behaviour may be specified by using several evolution it€besnpared to that of an
agent, an environment definition may have additional festuncluding the definition
of global variables observable to some or all agents. Taldkdlvs an example of a
self-explanatory ISPL file for the Train/Gate/Controlleesario with two trains.

An ISPL file also contains sections for the definition of thdiah states (given
by Boolean conditions on the agents’ local variables), amnéss constraints, groups

Table 1.1SPL snippet for the Train/Gate/Controller (Agent T2, danto Agent T1, is omitted).

Agent Environnent Agent T1
Vars: s: {g, r}; end Vars Vars: s: {w, t, a}; end Vars
Actions={El, L1, E2, L2}; Actions={El, L1, B1};
Protocol : Protocol :
s=g: {E1, E2}; s=w. {E1}; s=t: {L1}; s=a: {Bl};
s=r: {L1, L2}; end Protocol
end Protocol Evol uti on:
Evol ution: s=w if s=a and Action=B1;
s=g if s=r and ((Action=L1 and T1.Action=L1) s=t if s=w and Action=El1 and
or (Action=L2 and T2.Action=L2)); Envi ronment . Acti on=E1,;
s=r if s=g and ((Action=L1 and T1.Acti on=El) s=a if s=t and Action=L1 and
or (Action=L2 and T2. Action=E2)); Envi ronnment . Acti on=L1;
end Evol ution end Evol ution
end Agent end Agent

of agents (to be used in epistemic and ATL formulas) and tleahformulae in the
language’l to be checked. The interpretation for the propositionatretaised in the
specifications is also given; among these the predefinedsaBmenSt at es, and
RedSt at es have their interpretation fixed to the locally green locatas and their
set complement respectively. We refer to the user manuaiéoe details and examples.

The graphical user interface (GUI) is an essential part@MICMAS release. It is
built as an Eclipse plug-in and provides a rich number of fiomalities, some of which
reported below.

ISPL program editingThe GUI guides the user to create and edit ISPL programs
by performing dynamic syntax checking (an additional ISRkser was implemented
in ANTLR for this). The GUI also provides outline view, texdriatting, syntax high-
lighting, and content assist automatically.

Interactive execution mod&he user can use MCMAS interactively to explore the
model. This can be done both in symbolic and explicit way. &hkplicit exploration
does not require installation of the checker itself and @vjated entirely by the GUI.
Obviously large models are best explored symbolically.r§lsan choose which state
to visit among the possibilities presented, backtrack, etc

Counterexample displaijthe user can launch the verification process via the GUI
which, in turns, calls the checker. The GUI shows which djptions are satisfied and
which are not. For a wide range of specifications (see the msgwal) the user can
visualise counterexamples or witnesses (the Graphvizaugcis used to display the
submodel representing the counterexample/witness). $&ehas a variety of options
once a submodel is displayed including inspecting the ajatates in the system,
projecting the whole system onto agents, etc.

4 Experimental results and conclusions

MCMAS has been used in our group and in a limited number ofratisitutions to
verify a range of scenarios, including agent-based welicesynetworking protocols,
and security protocols. Some of these examples are awailadyh the MCMAS web-
site. To evaluate the tool we discuss the experimentaltesbtained while verifying
the protocol of thalining cryptographer$4]. This is a scalable anonymity protocol in
which lack of knowledge needs to be preserved following andoof announcements.
We refer to [8, 10] for more details.

On a Linux x8664 machine with Intel Core 2 Duo 2.2GHz and 4GB memory, we
tested the protocol (code on the website) against two teahppistemic specifications:

AG((oddA —payer) — ((Kcryptographer V Payer) A (A ~KcryptographePayer))),
=2 =2
AG(even — C'cryptographer.....cryptographer; ~(V payer)). We checked the second
i=1

formula specifically to evaluate the performancg of the égalinst common knowledge.

Table 2. Verification results for the dinning cryptographers pratoc

n crypts| possible | reachable knowledge common knowledge
states states |bdd memory (MB)|time (s)|bdd memory (MB) |time (S)
10 [1.86 x 10| 33792 12.5 1 125 1
11 [2.23 x 10" 73728 12.4 3 12.6 2
12 [2.67 x 10| 159744 12.8 4 12.9 4
13 [3.21 x 10™] 344064 28.2 23 28.4 23
14 [3.85 x 10" 737280 15.8 14 16.1 13
15 [4.62 x 10™%[1.57 x 106 17.1 24 18.0 24
16 [5.55 x 10'7[3.34 x 106 42.3 149 42.3 150
17 16.66 x 10™®[7.07 x 106 60.0 612 60.0 612
18 [7.99 x 10™°]1.49 x 107 222.8 2959 222.8 2959

The table reports the results for different numbers of @gpdphers, indicated in
the first column. The size of the state space (equabtal 2™) is reported in the second
column, and the third reports the number of actual reactsdates in the corresponding
model. Memory usage and time required for the verificatiotheftwo formulas follow
in the last four columns respectively.

A direct efficiency comparison with other toolkits is profvlatic. Apart from the
different input languages, other tools with overlappingdtionalities support differ-
ent variable types making any comparison difficult. In teohpure size of the model,
we found that MCMAS can explore the full state space of moud#iese size is ap-
proximately two orders of magnitude larger than most exasplailable for temporal-
epistemic model checkers [8, 6, 20], and comparable to #eedfithe models analysed
with BDD-based temporal-only model checkers such as NuSMV.

As mentioned in the introduction, MCMAS is a complete reiempéntation of the
original proof-of-concept described in [14]. Compared e briginal prototype, the
current version is several orders of magnitude faster. Edue to improved algo-
rithms for the verification of epistemic and ATL modaliti@snd the computation of the
reachable state space. Additionally, the revised inpguage now enables the user to
write code that naturally generates smaller models, eygusing globally observable
variables in the environment. Several functionalitieg,,ecounterexample generation,
witnesses, fairness, a fully-fledged GUI, etc., are also included.

From the point of view of supported functionalities, MCMASthe only checker
we are aware of that supports the specification langudadescribed above. Epistemic
modalities are also treated in [8] although not via an olm@x-based semantics as
here and not with the CUDD package. BMC based approachepi&iemic modalities
have also been presented [6]: a comparison with [6] revhalkhnown advantages and

disadvantages of BDD vs SAT-based approaches. Finally,i&of course supported by
MOCHA [1]. However, MOCHA is an on-the-fly checker tailorelassume/guarantee
analysis, whose efficiency crucially depends on the legroifrsuccessful decomposi-
tions and assumptions for the scenario under analysis.

References

1.

10.

11.

12.

13.

14.

15.

16.
17.

18.

19.

20.

R. Alur, T. Henzinger, F. Mang, S. Qadeer, S. Rajamani,&ntasiran. MOCHA: Modu-
larity in model checking. IfProceedings of the 10th International Conference on Coeput
Aided Verification (CAV'98)volume 1427 oL NCS pages 521-525. Springer-Verlag, 1998.

. R. Alur, T. A. Henzinger, and O. Kupferman. Alternatingw temporal logic.Journal of

the ACM 49(5):672—-713, 2002.

. J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L.. Hwang. Symbolic model

checking:102° states and beyondnformation and Computatiqr98(2):142-170, 1990.

. D. Chaum. The dining cryptographers problem: Unconditicender and recipient untrace-

ability. Journal of Cryptology1(1):65—75, 1988.

. E.Clarke, Y. Lu, S. Jha, and H. Veith. Tree-like countareples in model checking. lihe

17" IEEE Symposium on Logic in Computer SciedE€E Computer Society, 2002.

. P. Dembifski, A. Janowska, P. Janowski, W. PenczekokoR, M. Szreter, B. Wozna, and

A. Zbrzezny. Vercs: A tool for verifying Timed Automata and Estelle specificats. In
Proceedings of TACAS'08olume 2619 oL NCS pages 278-283. Springer-Verlag, 2003.

. R.Fagin, J. Y. Halpern, Y. Moses, and M. Y. VarRieasoning about Knowledg®lIT Press,

Cambridge, 1995.

. P. Gammie and R. van der Meyden. MCK: Model checking théclofjknowledge. In

Proceedings of CAV'Q4/olume 3114 oL NCS pages 479-483. Springer-Verlag, 2004.

. W. van der Hoek, A. Lomuscio, and M. Wooldridge. On the claxipy of practical atl

model checking knowledge, strategies, and games in myatitesystems. IRroceedings of
AAMAS’06 pages 946-947. ACM Press, 2006.

M. Kacprzak, A. Lomuscio, A. Niewiadomski, W. PenczekRimondi, and M. Szreter.
Comparing BDD and SAT based techniques for model checkirapu@¥'s dining cryptogra-
phers protocolFundamenta Informaticaé3(2,3):221-240, 2006.

O. Kupferman, M. Y. Vardi, and P. Wolper. An automatastie¢ic approach to branching-
time model checkingJournal of the ACM47(2):312—-360, 2000.

A. Lomuscio, H. Qu, and F. Raimondi. MCMAS. http://wwai-tloc.ic.ac.uk/mcmas/.

A. Lomuscio and F. Raimondi. The complexity of model dtieg concurrent programs
against CTLK specifications. |Rroceedings of the'® international joint conference on
Autonomous agents and multiagent systems (AAMAS88es 548-550. ACM Press, 2006.
A. Lomuscio and F. Raimondi. MCMAS: A model checker forlthagent systems. In
Proceedings of TACAS 2006lume 3920, pages 450-454. Springer Verlag, 2006.

A. Lomuscio and F. Raimondi. Model checking knowledgetegies, and games in multi-
agent systems. IRroceedings of AAMAS'Q@ages 161-168. ACM Press, 2006.

A. Lomuscio and M. Sergot. Deontic interpreted syste®tsdia Logica75(1):63-92, 2003.
F. Raimondi and A. Lomuscio. Automatic verification of ltihmgent systems by model
checking via OBDDsJournal of Applied Logic5(2):235-251, 2005.

F. Somenzi. CUDD: CU decision diagram package - releasd.1.2
http://visi.colorado.edu/ fabio/CUDD/cuddintro.htr2D05.

M. Wooldridge. Computationally grounded theories cérazy. InProceedings of ICMAS,
International Conference of Multi-Agent Systepages 13-22. IEEE Press, 2000.

M. Wooldridge, M. Fisher, M. Huget, and S. Parsons. Mathelcking multiagent systems
with MABLE. In Proceedings of AAMAS'QPages 952-959, 2002.

