
Model Checking Optimisation Based Congestion

Control Models

Alessio Lomuscio1, Ben Strulo2, Nigel Walker2, and Peng Wu3

1 Department of Computing, Imperial College London, UK
2 BT Research, Adastral Park, UK

3 Department of Computer Science, University College London, UK

Abstract. Model checking has been widely applied for verification of
network protocols, particularly on the sequences of interactions between
protocol entities. Alternatively, optimisation based approaches have been
proposed to reason about the large scale dynamics of networks, particu-
larly with regard to congestion and rate control protocols such as TCP.
This paper intends to provide a bridge and explore synergies between
these two approaches. We consider a series of discrete approximations
to the optimisation based congestion control algorithms. Then we use
branching time temporal logic to specify formally the convergence crite-
ria for the system dynamics and present results from implementing these
algorithms on a state-of-the-art model checker. We report on our expe-
riences in using the abstraction of model checking to capture features of
the continuous dynamics typical of optimisation based approaches.

1 Introduction

Model checking has been widely applied to reason about network protocols in
terms of the sequences of interactions between protocol entities. This typically
allows the discovery of functional problems in network protocols, such as whether
a protocol can deadlock or otherwise fail to achieve the desired outcome.

In the case of routing or flow control protocols network-wide properties are
specially concerned, such as whether a stable routing configuration could be
found, or whether link capacity could be fairly and efficiently shared between
communication sources. Optimisation theory has provided a successful approach
to this type of question. This approach abstracts away from the details of packet
arrivals and transmissions, and instead considers the rate at which a source
sends packets, typically measured as a positive real number. A protocol is then
specified as an algorithm which defines how the rate should change in response
to feedback from the network.

Our work investigates how model checking can be applied to reason about
protocol behaviour at this higher level of abstraction. We seek to explore how
logic, nondeterminism and discreteness, implicit in model checking, apply to
network resource control problems normally modelled from the point of view of
optimisation. In doing this we hope to widen the scope of models of this type of
network problem, and better understand the merits of the two approaches. We

2 Model Checking Optimisation Based Congestion Control Models

take examples from the area of congestion control, which has been extensively
studied in the networking literature [1]. To the best of our knowledge this is the
first time congestion control has been analysed from the perspective of model
checking. Our approach leads to the following notable features:

– The source and resource agents, instead of concrete protocol entities, are
identified in accordance with the duality structure inherited from the under-
lying optimisation model. The source agents represent sources that control
primal variables, while the resource agents represent resources that control
dual variables.

– A range of options is presented for composing these agents, ranging from fully
synchronous models to fully asynchronous models and various combinations
of them.

– Nondeterminism can capture aspects not modelled within the optimisation
framework, such as uncertain gain (a parameter within the agents) or prop-
agation delay.

The experiments we report here used the NuSMV [2] model checker, due
to its full support for CTL and LTL, as well as explicit fairness constraints.
The checker is able to identify unanticipated unstable behaviour, by returning
counterexamples to the stability property. We have also tried, but not reported
here, other model checkers, such as SPIN [3] and UPPAAL [4], with no better
results in other slightly different settings. More details of the work are available
in a technical report [5].

Related Work. Optimisation based approaches are now standard for analysing
congestion control, starting with [6]. [1] proposed a stable fluid-flow framework
for joint routing and rate control on which our first case study is based. [7, 8]
are similar works both using a Lagrangian optimisation model, which decom-
poses into distributed synchronous and asynchronous algorithms for congestion
control.

On the other hand, formal verification techniques were introduced into net-
work research. [9] applied SPIN to verify the equilibrium property of a priority
pricing based congestion control model. [10] presented an extended composi-
tional network simulation environment with the capability of bounded model
checking.

Our work differs from [9] in that we discretise and analyse a continuous opti-
misation based congestion control model and explore the issue of nondeterminism
in this setting, while the model checking result in [9] is just applicable for the
particular model considered. The work closest to our own is the asynchronous
algorithm presented in [11], which was based on optimisation but schedules the
sources and resources in a nondeterministic order.

Structure. Section 2 briefly introduces two congestion control protocols. Section
3 presents the modelling spectrum with expressiveness analysis.The stability
property is formulated in Section 4, followed by the model checking results.
Section 5 discusses the strength and the weakness of both approaches for this
optimisation problem. The paper is concluded in Section 6.

Model Checking Optimisation Based Congestion Control Models 3

2 Optimisation Based Congestion Control

This section will briefly present an optimisation formulation of a congestion con-
trol problem. We imagine a network in which a number of sources communicate
with a number of destinations. Between each source and destination a number
of routes have been previously provisioned, and a source can split its traffic over
these routes. Each route uses a number of links or, more generally, resources,
each of which has a finite capacity constraint. We formalise this as follows.

Assume a network with a set S of sources and a set J of resources. Let R be
a set of routes, each using a non-empty subset of resources. Each route connects
only one source with its destination. Let r ∈ s denote that source s can transmit
along route r and s(r) be the unique source s such that r ∈ s. Let xr be the
flow rate on route r ∈ R and Cj be the capacity of resource j ∈ J . Set Ajr = 1
if j ∈ r and Ajr = 0 otherwise. Fig. 1(b) presents the resource topology of the
simple network shown in Fig. 1(a), in which each source owns two routes, each
route uses only one resource, and each resource is shared by two routes .

Let x, C and A be the corresponding vectors and incidence matrix, that is,
x = (xr , r ∈ R), C = (Cj , j ∈ J) and A = (Ajr , j ∈ J, r ∈ R). Let xj denote the
aggregate flow rate at resource j. A resource j is congested if xj > Cj . A route
r is congested if j is congested for some j ∈ r.

Then, the multi-path congestion control problem is typically specified as the
following optimisation problem:

max
∑

s∈S

Us(
∑

r∈s

xr) subject to Ax ≤ C, x ≥ 0 (1)

where Us is a utility function of the total flow sent by source s over all paths
available to it. The network implements a distributed algorithm to solve this
problem, which is best understood by moving the constraints into the objective
function to give the associated Lagrange relaxation. Assume that for each s ∈ S,
Us is increasing and strictly concave in its argument. Then, problem (1) can be
solved by finding a saddle point of the following Lagrangian function:

L(x, y) =
∑

r∈R

Us(
∑

r∈s

xr) − y(Ax − C) (2)

where y = (yj , j ∈ J), y ≥ 0 and x ≥ 0. This is because if (x∗, y∗) is a saddle
point of L, then x

∗ is an optimal solution to problem (1) [11].
The x and y in the Lagrangian function L(x, y) are referred to as primal

and dual decision variables, respectively. Each primal (dual) variable selects its
value on behalf of a source (resource) such as to maximise (minimise) the value
of L(x, y), given the values of all other variables. Thus, a solution to problem (1)
is where the interactions between the sources and resources reach an equilibrium
[7, 8]. The dual variables have the interpretation of price, and act as a feedback
signal from the network to the sources indicating congestion.

An optimisation based approach would then specify an algorithm modelled as
a set of trajectories in the primal and dual decision variables. Typically the utility

4 Model Checking Optimisation Based Congestion Control Models

(a) Network Topology

/.-,()*+s3
r6

~~||
|| r5

 B
BB

B

j1 j3

/.-,()*+s1

r1
??~~~~
r2

// j2 /.-,()*+s2
r3

oo

r4
__@@@@

(b) Resource Topology

Fig. 1. A Communication Network

functions Us are assumed differentiable, and trajectories are specified as differ-
ential equations. The analysis would then demonstrate provable convergence of
these trajectories to the optimum under certain modelling and applicability as-
sumptions [6, 11, 1, 7, 8, 12]. The rest of this section will present two congestion
control protocols based on the above multi-path setting.

2.1 Multi-path congestion/rate control

In [1] a protocol was presented that gives rise to trajectories in the primal flow
rates xr as a continuous function of time t, i.e., xr(t), subject to the following
differential equation:

d

dt
xr(t) = κrxr(t)

(

1 −
yr(t)

U ′

s(r)(xs(r)(t))

)+

xr(t)

(3)

where κr is a constant, U ′

s is the first-order derivative of Us and

– yr(t) =
∑

j∈r

yj(t) is the total cost on route r; yj(t) is the cost at resource j;

– xs(t) =
∑

r∈s

xr(t) is the aggregate flow rate on all routes serving source s;

– (z)+x = min(0, z) if x ≤ 0, otherwise (z)+x = z.

In [1] propagation delay in a communication network was taken into account
by defining yr and xs as functions of the past route flow rates. Herein, we omit
this consideration and assume propagation delay to be negligible. We will come
back to this point in Section 5.

Now we discretise this continuous model by making the time and state
variables integer-valued under integer arithmetic, and by choosing particularly
tractable instances of the generic functions in Equation (3).

Model Checking Optimisation Based Congestion Control Models 5

When the continuous time t is abstracted into a discrete one, the flow rate
function xr(t) is converted into a series of instantaneous snapshots of xr. This
also applies to yr(t) and xs(t). The relation between the current value of xr and
its next value x′

r can be defined uniformly as x′

r = xr + ∆xr, where ∆xr is the
increment of xr in one unit time.

Following a rather common choice, we assume Us to be a logarithmic function
of the aggregate flow rate on all routes serving source s, that is, Us = αs ln(xs),
where αs is a utility coefficient. We choose yj to be a linear function of the flow
rates at resource j, that is,

yj = βjxj with xj =
∑

j∈r

xr (4)

where βj is a price coefficient. Then, by following the skeleton of Equation (3),
∆xr is defined as

∆xr = κrxr



1 −
βr

αs

∑

j∈r

xj

∑

r′∈s(r)

xr′





+

xr

(5)

Here, κr can be regarded as a gain coefficient that defines the pace at which

route r seeks its equilibrium; while
βr

αs

defines the saddle point where route r

will settle.

2.2 Session based rerouting and termination

In the second protocol, we consider essentially the same underlying optimisation
problem but with the context moved to a regime where a continuous real-valued
model is a less reliable fit.

We consider a system where the sources are managing a non-empty set of
constant flow rate sessions. The primal variable xr of problem (1) can be regarded
as the number of sessions on route r, a more naturally discrete value. We take a
linear utility function Us = αsxs, where αs is the utility value of a single session
of source s. This sounds appropriate for a network operator who typically treats
all sessions equally.

Then the congestion control policy of the second protocol is as follows: for
each congested route r ∈ s, source s will reroute a certain number of excess
sessions from route r to a non-congested route r′ ∈ s, which is chosen nonde-
terministically; or terminate them if such r′ does not exist. The proportions of
sessions to be rerouted or terminated is based on the proportions of excess load
at resources, that is, for resource j,

yj =
xj − Cj

xj

with xj =
∑

j∈r

xr (6)

Then, for a congested route r ∈ s,

∆xr = −xr max{yj | j ∈ r} (7)

6 Model Checking Optimisation Based Congestion Control Models

Herein, max{yj | j ∈ r} is the largest proportion of congestion at a bottleneck
resource. For a non-congested route r′ ∈ s, ∆xr′ is the aggregate number of
sessions rerouted to r′ from those congested routes r ∈ s.

3 Modelling

From optimisation based congestion control models, distributed algorithms were
developed, depending on whether it is the sources (primals), the resources (du-
als), or both controlling the evolution of a system actively, as well as the types
of interleaving of their control actions. Most of these algorithms schedule the
sources and/or resources synchronously along the unique continuous time scale
[11, 1, 8], while an asynchronous algorithm was also presented in [11], which
schedules the sources and resources in a nondeterministic order. In the rest of
this section we will explore the options of these composition structures.

One standard form of these algorithms is termed primal algorithms, in which
the sources actively adjust their primal variables and the resources just imme-
diately recalculate the values of their dual variables. For such algorithms, either
one, some, or all sources can act synchronously. We term these three possible
systems AS, AS∗, and SS. Note that trivially the traces of AS∗ includes those
of both AS and SS.

The symmetric form of primal algorithms, termed dual algorithms, can also
be modelled where the resources take the active parts. However, we do not
present these here for lack of space.

The other form is termed primal/dual algorithms, in which both classes of
agents are active. For such algorithms, we consider the asynchronous composi-
tion of these three possible systems for both primals and duals. If we compose
a system where each action is that of a single agent, we obtain the fully asyn-
chronous system termed ASAR. We can also compose either sources or resources
or both constrained to all act synchronously giving systems SSAR, ASSR, and
SSSR.

The modelling options above will in general produce variant system evolu-
tion but, as far as the underlying optimisation models are concerned, there is
certain redundancy. For instance, in a primal/dual system, consecutive updates
by different sources cause the same state change as a joint synchronous update
since the sources depend only on the states of the resources which have not
yet changed. Any interleaving of these source updates leads to the same state
as the equivalent synchronous update. This case of redundancy applies simi-
larly to consecutive resource updates. This opens the possibility of employing
state reduction techniques, notably partial order reduction, when checking such
a system.

With the above consideration, the following trace inclusion relations are infer-
able from the standard semantics of synchronous and asynchronous composition.
These relations actually also clarify in detail the difference of these modelling
frameworks in representing the interactions between the sources and resources.

1. SSSR ≺ SSAR ≺ ASAR and SSSR ≺ ASSR ≺ ASAR.

Model Checking Optimisation Based Congestion Control Models 7

Asynchronous source agents can nondeterministically choose to ignore re-
source updates, while synchronous ones cannot. Thus changing to asyn-
chronous agents makes uncertain the rate at which a source moves towards
an equilibrium.

By including the resources explicitly as agents, these models can partially
capture an uncertain propagation delay between the sources and resources,
in the sense that one source (or resource) update will not take effect until the
connected resources (or sources) act and thereby pass on the information.

2. SS ≺ SSSR and AS ≺ AS∗ ≺ ASSR.

SS and AS models can be regarded as having fast resources, which imme-
diately react to all source updates. So this is equivalent to a primal/dual
system in which there is a synchronous resource update after every source
action.

For AS∗ (like SS and AS), each source update will take effect on all resources
before the next one. That is, the resources will not miss any source update.
On the contrary, ASSR allows consecutive source updates, which can be
interpreted as allowing the sources to update faster than the resources.

4 Verification

With the presence of nondeterminism in the above algorithms, model checking
is a natural choice for verification. Moreover, following a perturbation from an
equilibrium (perhaps due to a fault), it would be useful to find out not only
whether an algorithm will reconfigure the network flow to a new optimum, but
also how quickly it does so. Although the objective function of problem (1)
itself does not consider the convergence time, this can be investigated through
model checking. In this section we report on the lessons learnt from a series of
experiments we have run in this setting.

4.1 Specifications

Herein we consider convergence of the objective function to a given value u∗,
i.e.,

∑

s∈S

Us(
∑

r∈s

xr) = u∗. To check whether there exists such a constant value

to which the objective function may converge, we can repeatedly run model
checking experiments exploring the range of u∗ with the binary search strategy.
Therefore, in our experiments we checked the following CTL specifications:

AF AG
∑

s∈S

Us(
∑

r∈s

xr) = u∗ (8)

EF AG
∑

s∈S

Us(
∑

r∈s

xr) = u∗ (9)

Specification (8) states that the objective function always converges to some
constant u∗, while Specification (9) states that it does so along at least one trace.

8 Model Checking Optimisation Based Congestion Control Models

The Lagrangian function L(x, y) also concerns convergence of each route flow
rate, which would lead to a saddle point of the function itself. So we also consider
the following CTL specifications:

AF AG ((
∑

s∈S

Us(
∑

r∈s

xr) = u∗) ∧
∧

r∈R

(x′

r = xr)) (10)

EF AG ((
∑

s∈S

Us(
∑

r∈s

xr) = u∗) ∧
∧

r∈R

(x′

r = xr)) (11)

Recall that x′

r is the next value of xr .

4.2 Experimental results

The combination of the individual agent transitions described in Section 2 with
the composition rules in Section 3 gives a collection of transition models that
can be straightforwardly coded into NuSMV, which we ran on a Xeon Dual-Core
64-bit 2.8GHz machine with 1GB memory.

Two different initial congestion conditions were examined: Route Overload
and Resource Failure. The first was designed to emulate a situation in which a
network must redistribute load because one route has excess load which can be
carried elsewhere. The second was to emulate a resource failure, that is, we set
Cj1 = 0 so that resource j1 cannot carry any traffic. Table 1 summarises the
experimental results for the network shown in Fig. 1, which has three sources
and three resources. The capacity of each resource was set to 6.

The column #Reach. st. shows the number of the reachable states of each
model. Due to the data-oriented nature of the underlying optimisation models,
it can be seen that the reachable state space grows dramatically, though as
expected, from synchronous models to asynchronous models.

For the twelve models in Table 1, Specification (8) and Specification (10)
were found not satisfiable, that is, each of these models was found to be unstable.
However, most models show that the network does converge along some traces
in the sense that there exist values for the constant u∗ resulting in satisfiable
Specification (9) and/or Specification (11).

The penultimate column u∗(Stable) reports the validity of Specification (11),
and hence Specification (9) for each model; while for this case the column
#Min steps presents the minimal number of control actions that the sources
take to reach an equilibrium in each model. The column u∗(Vibrating) shows
the values of the constant u∗ for which Specification (9) but not Specification
(11) is satisfied.

Multi-path congestion/rate control Our first batch of experiments were based on
the congestion control protocol with primal transition rule (5) and dual update
rule (4), with αs = 36βj, kr = 2 for each s, j, r. The model checking results are
presented in Table 1(a).

Because the individual transition rules are deterministic, their synchronous
composition (SS) leads to a deterministic trace, and relatively few states. How-
ever, the discretisation of the continuous state space leads to a limit cycle rather

Model Checking Optimisation Based Congestion Control Models 9

(a) Multi-path Congestion/Rate Control

No. Composition Congestion #Reach. st. u∗(Stable) #Min steps u∗(Vibrating)

1 SS Route Overload 23 NONE NONE

2 SS Resource Failure 17 NONE NONE

3 AS∗ Route Overload 82723 ? ?

4 AS∗ Resource Failure 6187 ln(100) ? NONE

5 ASSR Route Overload 2.06719e+06 ? ?

6 ASSR Resource Failure 35445 ln(100) 8 NONE

(b) Session based Rerouting and Termination

No. Composition Congestion #Reach. st. u∗(Stable) #Min steps u∗(Vibrating)

7 SS Route Overload 3 NONE NONE

8 SS Resource Failure 7 NONE 14

9 AS∗ Route Overload 16 16 2 18

10 AS∗ Resource Failure 1418 11-12 3 13,15,16

11 ASSR Route Overload 8513 14-18 2 12,13

12 ASSR Resource Failure 32200 4-11 5 13-18

Table 1. Model Checking Results

than a final stable state, and model checking has picked this up in the failure to
satisfy Specification (8) and Specification (9).

For each AS∗ and ASSR model, as the interleaving constraints are relaxed,
the number of accessible states increases, suggesting a severe instability in the
system. This is not unexpected since it is now possible for one source agent to
act many times before the others do: repeated actions on route r, when projected
back into the optimisation framework, corresponds roughly to an increase in the
gain coefficient κr, and increasing gain within a feedback loop typically leads
to instability. Through model checking, similar limit cycles are detected in the
AS∗ and ASSR models, which makes Specification (8) and Specification (10)
unsatisfiable.

Session based rerouting and termination In the light of the above observations
we chose our second batch of experiments to be based on a scenario that is closer
to the natural idiom of model checking. Here transition rules are not designed
to correspond to smooth optimisation dynamics in any way. Instead they are
designed to terminate flows in ways comparable to real systems like [13]. We use
the dual update rule (6) and the primal update rule (7), while the latter features
nondeterminism in which route it chooses to reallocate flow to.

The model checking results are presented in Table 1(b). Because the transi-
tion rules are designed only to shed load rather than to increase it we do not,
in any of the interleaving scenarios, see any state explosion corresponding to
instability.

However, the last column u∗(Vibrating) reports values of the constant u∗ that
are valid for Specification (9) but not Specification (11), that is, the objective

10 Model Checking Optimisation Based Congestion Control Models

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

 17

 18

 19

 20

 1 2 3 4 5 6 7 8

State No.

Us
xr1
xr2
xr3
xr4
xr5
xr6

Fig. 2. Stable total load with varying route flow rates.

function converges to the shown values but at least some route flow rates xr, r ∈ s

do not meet the capacity constraint and continue to change (“vibrate”). In these
circumstances, the system is entering a limit cycle in which the total load offered
into the network is greater than the capacity that it can carry, but no individual
source knows it must terminate some flow. Instead they pass the excess flow
around in the cycle. A trace showing this is presented in Fig 2. This behaviour
sounds possible in real systems and therefore model checking has detected a real
possible issue with this simple design.

5 Discussion

In translating from optimisation based continuous dynamics to model checking
we identified two possibilities for the interpretation of nondeterminism. In the
first it represents the choice that each agent has within each action it takes. From
an optimisation point of view this type of choice arises when the solution to a
local problem is not unique: if two routes have equal least cost then the total
flow can be split or moved arbitrarily between them. In the second interpretation
nondeterminism represents choice of sequencing of the actions of the agents which
can be derived from the composition of the agents, and our first case study
suggests that allowing too much nondeterminism in the agent composition would
lead to system instability.

Another way of thinking about nondeterminism is that it accounts for loss
of knowledge in moving from real systems to abstract models. We had hoped
that this abstraction would allow us to make statements about the behaviour

Model Checking Optimisation Based Congestion Control Models 11

of congestion control policies that are independent of the propagation delay
encountered by signalling mechanisms (indeed the resource matrix used in our
models is already forgetful of details of the underlying resource connectivity).
However, this was not straightforward. The difficulties arise from modelling the
additional state actually present in the propagating messages. We did build
models, though not reported here, in which we explicitly represented state ‘on-
the-fly’ within a signalling system (or within input queues and buffers). Our
hope was that the increase in the system state space could be offset by reducing
the explosion of possible evolution due to the interleaving semantics. In other
words we produced larger but more deterministic models. However, our initial
experiments still ran into size limitation of the model checkers that we used.

In the standard modelling idiom, the state space is the product of the state
space of all the individual agents (sources and resources in our case). Crucially
this idiom abstracts away from the real state information on-the-fly. This same
abstraction is also implicit in the smooth optimisation dynamics of Equation
(3). In that case the agents are assumed to act sufficiently slowly for the ab-
straction to be valid. In model checking, by contrast, the agents are assumed to
act instantaneously, but sufficiently infrequently for it to be valid. In both cases
this assumption could be interpreted either as the limitation on the accuracy
of the model (if analysing a system), or as constraints on implementation, or
as conditions that must be policed by some other mechanism in the network (if
synthesising a system). In both cases the assumption is quite brittle. In optimi-
sation dynamics it has been shown that an arbitrarily short delay can render an
otherwise stable system unstable [14]. In the model checking idiom an arbitrarily
short delay could allow a sequence of transitions not captured by the delay free
semantics. While the optimisation and discrete models appear at first sight to
be quite different, in their modelling of delay it turns out that they share very
similar types of limitation.

6 Conclusions

The paper presents a way to integrate optimisation based approaches with model
checking. On one hand, it associates optimisation models with nondeterminism;
on the other hand, it associates the structure of optimisation models into model
checking. A spectrum of modelling frameworks are presented importing different
levels of nondeterminism: uncertain gain and propagation delay, and nondeter-
ministic congestion control policies.

We believe that logic methods and model checking approaches should offer
machinery that complements optimisation theory in the design and analysis of
network control processes. We have investigated this proposition in the context
of dynamic allocation of traffic amongst multiple routes across a network, a topic
that is attracting attention within the networking research community. Our ex-
periments showed some promise in this direction, but also some limitation. Not
surprisingly we were limited to small concrete topologies by the state explosion
problem. We see one way of addressing this could be to combine theorem prov-

12 Model Checking Optimisation Based Congestion Control Models

ing and model checking techniques. However, our experiments highlighted more
subtle points concerning the interpretation and specification of the interleaving
semantics.

References

1. Kelly, F., Voice, T.: Stability of end-to-end algorithms for joint routing and rate
control. ACM SIGCOMM Computer Communication Review 35(2) (2005) 5–12

2. Cimatti, A., Clarke, E.M., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M.,
Sebastiani, R., Tacchella., A.: NuSMV 2: An opensource tool for symbolic model
checking. In: Proceedings of the 14th International Conference on Computer-Aided
Verification (CAV’02), Copenhagen, Denmark (2002)

3. Holzmann, G.J.: The model checker SPIN. IEEE Transactions on Software Engi-
neering 23(5) (1997) 279–295

4. Bengtsson, J., Larsen, K.G., Larsson, F., Pettersson, P., Yi, W.: Uppaal — a
Tool Suite for Automatic Verification of Real–Time Systems. In: Proceedings of
Workshop on Verification and Control of Hybrid Systems III. Number 1066 in
Lecture Notes in Computer Science, Springer–Verlag (1995) 232–243

5. Lomuscio, A., Strulo, B., Walker, N., Wu, P.: Model checking optimisation-based
congestion control models. Technical Report RN/09/02, Department of Computer
Science, University College London (2009)

6. Kelly, F., Maulloo, A., Tan, D.: Rate control for communication networks: shadow
prices, proportional fairness and stability. Journal of the Operational Research
Society 49 (1 March 1998) 237–252(16)

7. Walker, N., Wennink, M.: Interactions in transport networks. Electronic Notes in
Theoretical Computer Science 141(5) (2005) 97–114

8. Wennink, M., Williams, P., Walker, N., Strulo, B.: Optimisation-based overload
control. In: NET-COOP. (2007) 158–167

9. Yuen, C., Tjioe, W.: Modeling and verifying a price model for congestion control
in computer networks using promela/spin. In: Proceedings of the 8th International
SPIN Workshop on Model Checking of Software (SPIN’01), New York, NY, USA,
Springer-Verlag New York, Inc. (2001) 272–287

10. Sobeih, A., Viswanathan, M., Hou, J.C.: Check and simulate: a case for incor-
porating model checking in network simulation. In: Proceedings of the 2nd ACM
and IEEE International Conference on Formal Methods and Models for Co-Design
(MEMOCODE’04). (2004) 27–36

11. Low, S.H., Lapsley, D.E.: Optimization flow control, I: basic algorithm and con-
vergence. IEEE/ACM Transactions on Networking (TON) 7(6) (1999) 861–874

12. Strulo, B., Walker, N., Wennink, M.: Lyapunov convergence for lagrangian models
of network control. In: NET-COOP. (2007) 168–177

13. Eardley, P.: Pre-congestion notification (PCN) architecture. Internet-Draft draft-
ietf-pcn-architecture-08 (2008)

14. Voice, T.: Stability of multi-path dual congestion control algorithms. In: Proceed-
ings of the 1st International Conference on Performance Evaluation Methodolgies
and Tools (VALUETOOLS ’06), New York, NY, USA, ACM (2006) 56

