
Towards an agent based approach for verification of
OWL-S process models

Alessio Lomuscio and Monika Solanki

Department of Computing, Imperial College London, UK
a.lomuscio, m.solanki@imperial.ac.uk

Abstract. In this paper we investigate the transformation of OWL-S process mod-
els to ISPL - the system description language for MCMAS, a symbolic model
checker for multi agent systems. We take the view that services can be considered as
agents and service compositions as multi agent systems. We illustrate how atomic
and composite processes in OWL-S can be encoded into ISPL using the proposed
transformation rules for a restricted set of data types. As an illustrative example,
we use an extended version of the BravoAir process model. We formalise certain
interesting properties of the example in temporal-epistemic logic and present results
from their verification using MCMAS.

1 Introduction

The verification of web service behaviour and interaction protocols is now an integral
aspect of several frameworks providing service oriented solutions to the IT industry. The
Increasing complexities that arise during service composition, make offline verification
as model checking [4] crucial in successfully implementingand using services. Model
checkers typically use specialised formats for the specification of behaviour, different
from those commonly used for describing services. Examplesof such system description
languages include Promela, used with the checker SPIN [10] and NuSMV, used with
the checker NuSMV [3]. However in the web service domain, WSBPEL [18], WSCDL
[17] and OWL-S [20], are some popular and widely used standards for describing service
behaviour, their composition and interaction protocols.

The languages above work at different levels of abstraction. In order to verify ser-
vices, an important first step is to investigate how the inputlanguage to the model checker
can be adapted to encode a suitable abstraction of the service behaviour, which has been
described using one of the above standards. Figure 1 illustrates the general architecture of
a verification framework for services. As highlighted, a crucial component is the “com-
piler” that takes as input the service specification, and generates a suitably abstracted
model/program, encoded in the system description languagefor the checker. The model
and the desired properties to be verified are fed to the checker. By performing a systematic
exploration of the complete set of states that can be generated during an interaction be-
tween a service and its clients, the model checker is able to verify desirable properties of
the composition. Generating a well abstracted model is thuscrucial to the verification of
services. However, developing a tool that generates such a model is non trivial. Mapping
rules between the languages are required to be established before any automated trans-
lation can be undertaken. The rules provide the basis and rationale for development of a
compiler providing (semi)automatic compilations from oneabstraction to the other.

Fig. 1.General architecture for service verification

In this paper, we explore the generation of transformation rules from the process
model of OWL-S, a well-established language for the description of web services on the
semantic web, to ISPL (Interpreted Systems Programming Language) in view of verifying
the results using MCMAS [15]. We are interested in using MCMAS, because it enables
the user to verify rich specifications. MCMAS supports not only temporal logic, but also
epistemic and deontic modalities. We take the view that a webservice can be modelled as
an “agent” [6]. Keeping this in perspective, a composition of web services can be viewed
as a multi agent system [22]. An OWL-S process model specifiesthe composition and
interaction between agents/services and their clients. Control constructs similar to those
found in programming languages can be used to compose services. Earlier work [16,1] on
using MCMAS for services has focused on exploiting its verification capabilities. In this
paper we provide the transformation rules and a compiler implementation of the rules,
that combined with MCMAS, could aid in automated verification of services.

The paper is structured as follows: Section 2 outlines our running example for the pa-
per, a flight booking and managing service, which is an extended version of the BravoAir
process from the OWL-S suite of examples. In Section 3 we provide a brief overview
of OWL-S, ISPL and MCMAS. Section 4 discusses the mapping rules from OWL-S to
ISPL and presents our implementation of the compiler. We present a brief account of the
analysis and verification for the case study in Section 5. Finally, we conclude in Section
6.

2 Case study

As a running example, we use an extended version of the BravoAirProcess model from
the OWL-S suite of examples. BravoAir functions as a flight booking agent. It allows a
client to perform several tasks such as searching, selecting and booking flights. Book-
ings can be made as individual or as groups. The top level process,BravoAir, is a
composite process. It is composed of asequenceof processes. Components of the se-
quence areGetDesiredFlightDetails andSearchAvailableFlight, and a
composite process,BookFlight. We extend theBookFlight process as asequence
whose components areLogIn, followed by a choice betweenIndividualBookng
andGroupBooking and finallyConfirmReservation. Group bookings can be

done for a group of more than 10 people and the discount offered is 10% of the total
booking fee. However when a group booking is cancelled, the cancellation fee is 15%
rather than 10% for individual bookings. We elaborate on theGroupBooking process in
Section 4.

We further extend the top level process with a composite processManageBooking,
to be executed insequencewith BookFlight. ManageBooking is composed as a
choicebetween the atomic processChooseSeats and the composite processes,
ChangeBooking andCancelBooking. If a booking is cancelled the amount which
is charged for cancellation depends on whether the booking was made at an individual or
group level.ChangeBooking is composed of asplit+join whose components are the
three atomic processesChargeCard- for economy bookings,AllocateNewBooking-
for club and business class bookings andSendUnAvailability- when a change of
booking is not possible. The outcome from a choice between the first two processes is
composed insequencewith SendConfirmation.ChargeCard is also invoked when
a booking is cancelled. Figure 2 illustrates the various control constructs and processes
used in the composition between BravoAir and a potential client. The composition can

Fig. 2.An extended version of the BravoAir process

be viewed as a multi-agent system where individual processes are abstracted as agents.
Within the above settings certain interesting properties of the composition can be veri-
fied. We enumerate some of these below and formalise them in temporal-epistemic logic
in Section 5.

– if there is a request confirmation of reservation, the ConfirmReservation agent knows
that the booking has been successful and payment has been made.

– If the number of people is more than 10, group booking will always be successful.
– Whenever a booking change is requested, it will always be confirmed.
– If a card is not charged when a booking is changed, theChangeBooking agent

knows that the reference is a business class booking.

– if a confirmation is received, the Customer agent knows that his booking was changed.
– If a card is charged after a booking has been made, it always implies that the booking

has been cancelled.

3 Preliminaries

3.1 OWL-S

OWL-S [20] is an OWL-based Web service ontology which supplies Web service providers
with a core set of constructs for describing the properties and capabilities of their Web
services. It defines an upper ontology for services withService Profile, Service Model
andService Groundingmodels. The ServiceProfile provides the information neededfor
an agent to discover a service, while the ServiceModel and ServiceGrounding, taken to-
gether, provide enough information for an agent to make use of a service, once found.

The process model informs a client on how to use the service bydetailing the se-
mantic content of requests, the conditions under which particular outcomes will occur,
and where necessary, the step by step processes leading to those outcomes. Functional-
ity description in OWL-S is represented by two aspects: the information transformation
(represented by inputs and outputs) and the state change produced by the execution of
the service (represented by preconditions and effects). The termResultis used to refer
to a coupled output and effect. Preconditions and conditions in results are represented
as logical formulas specified in a suitable logical framework such as SWRL [12]. OWL-
S defines three fundamental processes:atomic, simpleandcomposite. Atomic processes
correspond to the actions a service may perform by engaging in a single interaction; com-
posite processes correspond to actions that require multi-step protocols and/or multiple
server actions; simple processes provide an abstraction mechanism to provide multiple
views of the same process.

3.2 ISPL and MCMAS

ISPL (Interpreted System Programming Language) is based onthe formal semantics of
interpreted systems [7] and is the input language for the model checker MCMAS [15,14].
The syntax of ISPL includes the following

– The definition of agents describes the local behaviour of every agent in terms of states,
actions, protocols and evolution function. Each agent has aset of local variables. The
states of an agent, each of which contains a valuation of its local variables can be
further partitioned into two disjoint sets: a non-empty setof allowed (“green”) states
and a set of disallowed (“red”) states. Currently, ISPL allows three types of variables:
Boolean, enumeration and bounded integer.

– The global evaluation function of the system defines atomic propositions held over
global states which are a combinations of local states of agents defined in the model.

– The local initial state for each agent in the system.
– Specification to be checked defined as formulae in temporal, epistemic and deontic

logic and fairness formuale.

MCMAS is a specialised model checker for the verification of multi-agent systems. It
builds on symbolic model checking via OBDDs as its underlying technique, and supports
CTL, epistemic and deontic logic. The current version of MCMAS has the following
features:

– Support for variables of the following types: Boolean, enumeration and bounded in-
teger. Arithmetic operations can be performed on bounded integers.

– Counterexample/witness generation for quick and efficientdisplay of traces falsify-
ing/satisfying properties.

– Support for fairness constraints. This is useful in eliminating unrealistic behaviours.
– Support for interactive execution mode. This allows users to step through the execu-

tion of their model.
– A graphical interface provided as an Eclipse plug-in which includes a graphical editor

with syntax recognition, a graphical simulator, and a graphical analyser for counterex-
amples.

4 Encoding OWL-S processes as ISPL models

In an OWL-S process model, inputs and outputs are process parameters that have concrete
datatypes. The current version of ISPL provides support forvariables of typesbounded
integers, booleanandenum. Mapping between ontologies and these types can be done as
discussed in [13]. Most existing model checkers including MCMAS, are not equipped to
support OWL object types as also highlighted in [2]. We therefore abstract from defining
object types for the transformation presented in this paper.

Conditions explicitly occur in OWL-S models asPrecondition, and as part of the
Result andif statement. In ISPL conditions are defined as formulae when specifying
the protocol and evolution functions. In this section we first propose the following step-by-
step methodology for transforming an atomic process to an ISPL program. We then show
how composite processes can be transformed. These rules also facilitate the generation of
a semi-automatic compiler from OWL-S to ISPL.

4.1 Encoding Atomic Processes

Agent: For every atomic process in OWL-S, we define an agent, qualified asProcessName
in ISPL. Recall, that the definition of an agent in ISPL includes: local variables, red states,
actions, protocol functions and evolution functions.

Variables and local states: The local states of an agent in ISPL are defined in terms
of valuation of the local variables. We define the set of localvariables for an agent by
transforming the ontological inputs and outputs in the process model, to variables with
the same identifiers and datatypes in the ISPL model. Bounds for integer variables are
interactively assigned keeping the domain and context of the process model in perspective.
For an atomic process, we identify two kinds of states: (1) An“Input” or initial state and
(2) several “Result” states depending on the number of results defined for the process.

Let VI denote the set of integer variables,VB the set of Boolean variables andVE the
set of variables of type enum. We define the set of their valuations asV alI , V alB and

V alE respectively. The set of local variables for an agent is thereforeV = VI ∪VB ∪VE .
The set of local states,Llstate, of an agent can now be defined as

Llstate : (VI → V alI) ∪ (VB → V alB) ∪ (VE → V alE)

. We enumerateLlstate for an agent as follows -

– the initial state (l0) where local variables are assigned initial values. We denote the
set of variables at the initial state asV0 ⊆ V .

– the set of statesLresult, where eachl ∈ Lresult corresponds to a non deterministic
Result state, defined for the process. For example, a credit card validating service
may produce two results:ValidationSuccesswith boolean outputvalidated astrue,
andV alidationnFailed with boolean outputvalidated asfalse. The set of vari-
ables at each of the result state is denoted asVi ⊆ V , i = 1 . . . | Lresult |. The
valuations for the variables are computed as per the evolution function described be-
low.

– finally, lf , a failure state which is reached when the preconditions forthe process
evaluates tofalse. We denote the set of variables at this state asVf ⊆ V . Valuations
for the variables are again computed as per the evolution function.

Red States:They are reached when an agent performs an undesirable action. This feature
of ISPL is most useful while encoding faults and recovery in complex systems. The red
states of an agent are represented by a Boolean formula,f red, over its local variables.

Actions: The internal actions taken by a service cause a transition from the input state to
one of the several result states. Actions for the agent are enumerated as follows:

– the null actionǫ,
– the set of internal actions,Aint = {ai|i = 1 . . . n}, the agent takes at the input state

to reach one of the several result states.
– the internal actionaf taken when the precondition fails, to reach statelf .
– the set of actionsAsend = {si|i = 1 . . . n}. The agent takes an actions ∈ Asend at

eachl ∈ lresult respectively to send the corresponding results to the client.
– the actionsf which the agent takes to send the precondition failure message atlf .
– It follows that the total number of actions is:

Nactions =| Aint ∪ {af} | + | Asend ∪ {sf} | + | {ǫ} |

For simplicity we assume,| Aint ∪ {af} |=| Asend ∪ {sf} |, and simplify the above
to,

Nactions = 2× | Aint ∪ {af} | +1

Protocols: Protocols for the agent can be enumerated as follows:

fpre :{ai|i = 1 . . . | Aint |}

!fpre :af

f res
i :{si|i = 1 . . . | Asend |} ∪ sf

wherefpre (precondition),f res
i , i = 1 . . . | Asend | (condition in results) and!fpre

are Boolean formulae over the set of local variables at the input state, result states1and
the failure state respectively. Note that ISPL and MCMAS allow non determinism in the
specification of protocols.

At execution time an agent atl0 takes an action,a ∈ Aint if fpre, i.e., the precondi-
tion holds and actionaf if !fpre holds. This causes a transition to one of the result states
l ∈ Lresult ∪ lf , where the conditionals from the results,f res

i , i = 1 . . . | Asend | are
required to hold. Atl, the agent take an action,s ∈ Asend ∪ {sf}.

Evolutions (Transitions): The evolution function determines how local states evolve
based on the agent’s current local state and a set of actions.An evolution consists of a
set of assignments of local variables inV and an enabling condition which is a Boolean
formula, over local variables and actions of all agents.

l0 if f res
i and ProcessName.Action= si or ProcessName.Action= sf , i = 1 . . . | Asend |

li if fpre and ProcessName.Action= ai, i = 1 . . . | Aint |

lf if !fpre and ProcessName.Action= af

We have implemented a semi automatic compiler for the transformation, by extending

Fig. 3.Mapping between an OWL-S atomic process and ISPL

the CMU OWL-S API [5]. Given an OWL-S process model, the compiler extracts the
agent name, inputs and outputs from the process model as ISPLvariables and enumerates
the actions for the agent. Currently the definition of the redstates, protocol and evolution
function are interactively given, but we hope to automate the process in future versions of
the paper.

1 Note that for simplicity we do not consider the case, when dueto some internal failure of the
service, the result conditions do not hold, but this may wellbe possible and additional transitions
would have to be defined to consider such scenarios

The psuedocode of an algorithm, which we implemented as partof our compiler for
compiling an atomic process to ISPL is presented as algorithm 1 towards the end of the
paper.

4.2 ISPL encoding of the atomic process: GroupBooking

Fig. 4.Atomic Process: Group Booking

Figure 4 illustrates an atomic process “Group Booking ” fromthe case study pre-
sented in Section 2. The process takesnoOfPeople, flightdetails, carddetails and
loggedInStatus as inputs. In order to perform a group booking, the preconditions on the
process are that the payment card details must be provided, the number of people in a
group must be atleast 10 and the booking client must be a logged in. It returns as output, a
successMsg message, aninvalidCardMsg or aninvalidNumMsg message depend-
ing on the conditionsisBookingSuccessful, isV alidCard and
isV alidNumberOfPeople beingtrue or false. For a successful booking it also returns
the discounted booking cost.

We specify the “GroupBooking” agent using the presentationsyntax of OWL-S along
with its corresponding ISPL code in Table 1. The inputs and outputs are mapped as “Vars”
in ISPL. Actions are interactively enumerated in accordance with the operation names
specified in the grounding model defined for the process. Preconditions such asloggedIn,
providedCard andnoOfPeople ≤ 10 are specified as Boolean formula on the LHS of
the protocol function. For the precondition,loggedIn = true andprovidedCard = true

andnoOfPeople ≥ 10 the internal actionsintAct1 or intAct3 would be non determin-
istically chosen by MCMAS as specified in the protocol function. The conditional part of
results is specified as Boolean formula on the LHS of the “if” in the evolution function.

4.3 Encoding Composite Processes

A composite process may use one of several control constructs such assequence, if-then-
else, found in programming languages. In what follows, we discuss the modelling of com-
posite processes, for some of the control constructs. Transformation to other constructs
follows intuitively from those presented below.

OWL-S atomic process ISPL Agent

define atomic process Group
(inputs:(
noOfPeople - xsd:integer
cardDetails - xsd: string

dout - xsd:date
din - xsd:date
),
exists:(
loggedInStatus - xsd:boolean
),
preconditions :((loggedInStatus)
& (noOfPeople>=10)
& providedCard(cardDetails),
outputs:(invalidCardMsg - xsd:string
successMsg - xsd:string
invalidNumMsg -xsd:string
discountedPrice - xsd:String
)
results :(
isValidCard & noOfPeople>=10)|-> output(isBookingSuccessful -

xsd:boolean, discountedPrice - xsd:integer),
isValidCard
|-> output(invalidCardMsg-xsd:string),
isValidNumberOfPeople
|-> output(invalidNumMsg),
)

Agent GroupBooking
Vars:
noOfPeople:1..20;
isValidNumberOfPeople:boolean;
loggedIn:boolean;
providedCard:boolean;
isValidCard:boolean;
isBookingSuccessful:boolean;
price:1000..200000;
discountedPrice:100..20000;
dates:{dout, din};
successMsgSent:boolean;
cardFailureMsgSent:boolean;
numberFailureMsgSent:boolean;
end Vars
RedStates:
end RedStates
Actions = {intAct1, intAct2, intAct3, intAct4,

invalidCardMsg, invalidNumMsg, successMsg, nothing};
Protocol:
loggedIn=true and providedCard=true and noOfPeople >=10 :

{intAct1, intAct3};
loggedIn=true and noOfPeople <10 : {intAct2};
isValidCard=false:{invalidCardMsg};
isValidNumberOfPeople=false:{invalidNumMsg};
isBookingSuccessful=true:{successMsg};
end Protocol
Evolution:
isBookingSuccessful=true and isValidCard=true and

discountedPrice=price -(price * 1/10) if
loggedIn=true and providedCard=true and noOfPeople>=10 and

GroupBooking.Action=intAct1;
isBookingSuccessful=false and isValidCard=false if

providedCard=true and
GroupBooking.Action=intAct3;

isBookingSuccessful=false if noOfPeople<=10 and
GroupBooking.Action=intAct2;

successMsgSent=true if isBookingSuccessful=true and
GroupBooking.Action=successMsg;

cardFailureMsgSent=true if isBookingSuccessful=false and
GroupBooking.Action=invalidCardMsg;

end Evolution
end Agent

Table 1.The Group Booking Atomic Process

SequenceThe sequencespecifies a list of processes to be executed in a certain order.
The modelling of OWL-S sequence requires explicit synchronisation. In ISPL, the def-
inition of evolution for an agent encodes this synchronisation. We illustrate sequential
composition through an example of processes composed in sequence.

Consider the processBookFlight, from the BravoAir model, which is a sequential
composition of three atomic processes,Login, GroupBooking and
ConfirmReservation. After receiving the result of a successful booking from the
GroupBooking process, the client invokes theConfirmReservation process with
inputs isbookingSuccessful=trueandconfirmFlight=true. The precondition for the exe-
cution ofConfirmReservation is isbookingSuccessful=true. Note that this was also
the result condition of theGroupBooking process. TheConfirmReservationpro-
cess returns a single result as a complex message consistingof a reservationIDandseat-
Number. The processes are synchronised for these inputs on the finalstate of
GroupBooking and the initial state ofConfirmResearvation. It may also be the
case that the client provides all the inputs for both the processes in the initial state of the
GroupBooking process. In such a scenario theGroupBooking process invokes the
ConfirmResearvation process at its final state using those inputs. We encode both
the atomic processes in ISPL using the approach outlined in Section 4.1. We then define
synchronisation between the processes for the sequential composition as outlined above.
Figure 5 illustrates the composition. A typical evolution function for the “GroupBooking”

Fig. 5.Sequential composition of GroupBooking and ConfirmReservation

agent would now be:
Evolution:
isBookingSuccessful=true and isValidCard=true and discountedPrice=price -(price * 1/10) if
loggedIn=true and providedCard=true and noOfPeople>=10 and GroupBooking.Action=act1;
isBookingSuccessful=false and isValidCard=false if
providedCard=true and GroupBooking.Action=act3;

isBookingSuccessful=false if
noOfPeople<=10 and GroupBooking.Action=act2;
sucessMsgSent=true if
isBookingSuccessful=true and GroupBooking.Action=successMsg and
ConfirmResearvation.Action=recBookingSuccessMsg;
cardFailureMsgSent=true if
isBookingSuccessful=false and GroupBooking.Action=invalidCardMsg;
numberFailureMsgSent=true if
isBookingSuccessful=false and GroupBooking.Action=invalidNumMsg;
end Evolution

Split, Split+Join OWL-S provides two types of constructs for concurrent execution:split
andsplit+join. The components of a split process are a set of processes to beexecuted
concurrently. Split completes when all its component processes have been scheduled for
execution whereas split+join completes when all of its component processes have been
completed. In both these types of constructs there is a parent process that spawns off the
component processes. Split is encoded as illustrated in Figure 6.

The parent process is agentP which spawns three child processesA, B, C at the
initial state. Synchronisation between the processes is defined at the initial states of the
parent and child processes. Note that in ISPL the parent and child processes are encoded
as agents. The number of child agents to be defined can be extracted automatically from
the OWL-S definition of composite process.

Similar to split, split+join is encoded as illustrated in Figure 7. In addition to the
synchronisation on the initial states of the child processes, the parent process is also syn-
chronised on their final states.

Consider, our extended model for BravoAir. The parent processChangeBooking is
composed of two child atomic processes,ChargeCard andAllocateNewBooking
usingsplit+join. The processes are synchronised at the states indicated in Figure 8.
ChangeBooking sends an input message toChargeCard which includes the client’s
details and the extra payment to be charged. As outputChargeCard returns transac-
tion details. Concurrently,ChangeBooking sends the client’s details, original booking
and the requested new booking toAllocateNewBooking. The process returns new
booking for the client. All messages are encoded as propositions as discussed in section
4.1.

Fig. 6.Encoding split Fig. 7.Encoding split+join

Fig. 8.The ChangeBooking process

Choice Thechoiceconstruct allows the invoking process to choose one processnon de-
terministically, from a set of processes. Once the choice ismade, the composition essen-
tially resolves to a sequential composition between the invoking process and the chosen
process. The parent process as well as the set of processes are encoded as agents in ISPL,
as illustrated in Figure 9

In our extended example for BravoAir,ManageBooking is a process, composed as
a choice betweenChooseSeats and theChangeBooking andCancelBooking.
Due to space restrictions, we do not discuss this in the paper.

If-then-else The if-then-elseconstruct allows to conditionally choose a process from a
pair of processes. We define three agents, corresponding to the invoking process and the
pair of processes. Since the condition to be checked is a boolean formulae, similar to
checking preconditions, we define two states, one where the condition holds and the other
where it does not. At these two states we define the synchronisation between the invoking
process and the processes in the pair respectively as illustrated in Figure 10.

Fig. 9.Encoding choice Fig. 10.Encoding if-then-else

Iterate, Repeat-while, Repeat-Until The iterateconstruct allows the unconditional re-
peated invocation of a process. Two agents are defined corresponding to the invoking and
the iterating process.Repeat-whileandRepeat-Untilallow repeated and conditional invo-
cation of a process Synchronisation between the processes is illustrated in Figure 11 and
12.

Fig. 11.Encoding iterate Fig. 12. Encoding repeat-while-repeat-
until

5 Analysis and Verification

In this section we show the results of verification of some interesting properties of the
BravoAir process. Properties are specified as CTL and epistemic formulae2.

– if there is a request for flight booking confirmation, the ConfirmReservation agent(CR)
knows that the customer (C) is an authorised customer.

EF ((confirmBookingRequest) → KCR(authorisedCustomer))

– If the number of people is more than 10, group booking will always be successful.

AF ((noOfPeople > 10) → EF (isBookingSuccessful))

2 For further details on how such properties could be specifiedand verified using MCMAS, the
interested reader is referred to [1].

Intuitively the property does not hold because if the card details provided are not
valid, the booking will not be successful.

– Whenever a booking change is requested, it will eventually be confirmed.

EF ((bookingChangeRequest) → EF (sendConfirmation))

Intuitively the property does not hold because if there are no alternative bookings
available, the change will not be confirmed.

– If a card is not charged when a booking is changed, theChangeBooking agentCB

knows that the reference is a business class booking.

EF (bookingChanged ∧ ¬cardCharged → KCB(businessBooking))

– if a confirmation is received, the Customer agent(C) knows that his booking was
changed.

EF (receivedConfirmation → KC(bookingChanged))

We encoded the scenario and the specification above in ISPL and verified it using MC-
MAS. Our system was running on Linux Ubuntu 8.10 (kernel 2.6.27) on Intel Core 2
Duo T5500 1.66GHz with 2GB memory. We encoded 20 ISPL agents by using 120 BDD
variables: 43 BDD variables for local states (the same number of BDD variables are con-
structed for the transition relation) and 34 for local actions. The total number of global
states is approximately105. it took about 41 seconds with 34 MB memory space for
MCMAS to verify 15 properties. The verification results werein accordance with what
expected.

6 Conclusions

Although extensive research [19,8] has been done on the automated verification of web
service composition using BPEL4WS, work on verification of OWL-S process models
is relatively scant. Approaches closely related to our workare [2] and [11]. In [2] the
mapping rules are defined for Promela to be used with SPIN, an explicit model checker. In
[11], the rules are defined for a C-like specification language to be used with BLAST [9].
The limitation in both cases is that only LTL (SPIN) and LTL-like (BLAST) properties can
be verified. Using our approach, it is possible to verify LTL,CTL, epistemic and deontic
properties with MCMAS. For example, for the case study in Section 2 the composition can
be viewed as a multi-agent system where individual processes are abstracted as agents.

In this paper we have proposed mapping rules from the processmodel of OWL-S to
ISPL. We believe the rules are sound as the semantics of ISPL are based on standard
kripke semantics and it has been shown that OWL-S processes can be encoded as transi-
tion systems [21]. We have shown the mapping for atomic processes and for certain con-
trol constructs used for composing them. Our approach provides the first steps necessary
to compile automatically OWL-S process models to ISPL. We have developed a com-
piler that implements the proposed mapping rules. The compiler generates ISPL agents
for atomic processes and processes composed in sequence. Weare now in the process of
enhancing the compiler for other control constructs such aschoiceandif-then-else.

References

1. A. Lomuscio and H. Qu and M. Solanki. Towards verifying compliance in agent-based web
service compositions. InProceedings of The Seventh International Joint Conferenceon Au-
tonomous Agents and Multi-agent systems (AAMAS-08). ACM Press, 2008.

2. Anupriya Ankolekar, Massimo Paolucci, and Katia P. Sycara. Towards a formal verification of
owl-s process models. InInternational Semantic Web Conference, pages 37–51, 2005.

3. A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri. NuSMV: A new symbolic model verifier.
In Proc. of CAV’99, pages 495–499, 1999.

4. E. M. Clarke, O. Grumberg, and D. A. Peled.Model Checking. The MIT Press, Cambridge,
Massachusetts, 1999.

5. CMU: An API for OWL-S. CMU OWL-S API.
http://www.daml.ri.cmu.edu/owlsapi/index.html.

6. D Booth, H Haas, F McCabe, E Newcomer, M Champion, C Ferris and D Orchard. Web service
architecture. W3c working group note 11 february 2004, 2004. http://www.w3.org/TR/ws-
arch/.

7. R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi.Reasoning about Knowledge. MIT Press,
Cambridge, 1995.

8. X. Fu, T. Bultan, and J. Su. Analysis of interacting BPEL web services. In13th international
conference on World Wide Web, pages 621–630. ACM Press, 2004.

9. T. A. Henzinger, R. Jhala, R. Majumdar, , and G. Sutre. Software verification with Blast. In
Proceedings of the Tenth International Workshop on Model Checking of Software (SPIN), pages
235–239. Lecture Notes in Computer Science 2648, Springer-Verlag, 2003.

10. G. J. Holzmann.SPIN Model Checker, The: Primer and Reference Manual. Addison Wesley
Professional, 2003.

11. H. Huang, W. Tsai, R. Paul, and Y. Chen. Automated model checking and testing for composite
web services. InProc. of ISORC’05, pages 300–307. IEEE Computer Society, 2005.

12. I Horrocks, P F. Patel-Schneider, H Boley, S Tabet, B Grosof, M Dean. SWRL: A Semantic
Web Rule Language Combining OWL and RuleML . Technical report, University of Manch-
ester, Version 0.5 of 19 November 2003.

13. Aditya Kalyanpur and Daniel Jimnez. Automatic mapping of owl ontologies into java. InIn
Proceedings of Software Engeering and Knowledge Engeering(SEKE04, 2004.

14. A. Lomuscio, H. Qu, and F. Raimondi. Mcmas 0.9 alpha.
http://sourceforge.net/projects/ist-contract/, 2008.

15. A. Lomuscio and F. Raimondi. MCMAS: A model checker for multi-agent systems. InPro-
ceedings of TACAS 2006, volume 3920, pages 450–454. Springer Verlag, 2006.

16. Alessio Lomuscio, Hongyang Qu, Marek J. Sergot, and Monika Solanki. Verifying temporal
and epistemic properties of web service compositions. InICSOC, volume 4749 ofLNCS, pages
456–461. Springer-Verlag, 2007.

17. N Kavantzas, D Burdett, G Ritzinger, T Fletcher, Y Lafon.Web Services Choreography De-
scription Language Version 1.0:W3C Working Draft 17 December 2004, 2004.

18. OASIS Web service Business Process Execution Language (WSBPEL) TC. Web service Busi-
ness Process Execution Language Version 2.0, 2007.

19. Marco Pistore, F. Barbon, Piergiorgio Bertoli, D. Shaparau, and Paolo Traverso. Planning and
monitoring web service composition. InAIMSA, pages 106–115, 2004.

20. The OWL-S Coalition. OWL-S 1.1 Release., 2004.
http://www.daml.org/services/owl-s/1.0/.

21. Paolo Traverso and Marco Pistore. Automated composition of semantic web services into
executable processes. InISWC, 2004.

22. M. Wooldridge.An introduction to multi-agent systems. John Wiley, England, 2002.

http://sourceforge.net/projects/ist-contract/

Transformation Algorithm from OWL-S to ISPL

Algorithm 1 Psuedocode: OWL-S - ISPL mapping
1: readProcessName.owl {parse the atomic process}
2: print AgentProcessName {define the agent}
3: print Vars:{begin the extraction and definition of local variables}
4: for all hasInput in ProcessName.owldo
5: print InputID: datatype;
6: end for
7: for all hasOutput in ProcessName.owldo
8: print OutputID: datatype;
9: print end Vars{end of variable definition}

10: end for
11: NhasResult ⇐ count(<process:hasResult>){count the number of

<process:hasResult> elements}
12: Nactions ⇐ 2 × NhasResult+2 {determine the number of actions for the process}
13: print RedStates:{begin the definition the red states}
14: fred {define the Boolean formula for the red states}
15: print end RedStates{end definition of red states}
16: print Actions ={ǫ, af {begin enumeration of actions}
17: for all i such that1 ≤ i ≤| Aint | do
18: print ai, {enumeration of actions taken at statesl0}
19: end for
20: for all i such that1 ≤ i ≤| Asend | do
21: print si, {enumeration of actions taken at states{li | i = 1 . . . | Asend |}}
22: end for
23: print sf} {end enumeration of actions}
24: print Protocol:{begin enumeration of the protocols}
25: printfpre : {define the Boolean formula for the precondition}
26: for all i such that1 ≤ i ≤| Aint | do
27: print {ai|i = 1 . . . | Aint |} {enumerate the actions}
28: end for
29: print;{end of line}
30: print!fpre : af ; {define the protocol for precondition failure}
31: for all i such that1 ≤ i ≤| Asend | do
32: print fres

i : {si}
33: print;{end of line}
34: end for
35: print end protocol{end enumeration of the protocol}
36: print Evolution:{begin enumeration of the evolutions}
37: print l0 if (
38: for all i such that1 ≤ i ≤| Asend | do
39: print (li and ProcessName.Action=si)
40: end for
41: print;{end of line}
42: for all i such that1 ≤ i ≤| Aint | do
43: print li if (l0 and ProcessName.Action=ai);
44: end for
45: print lf if (Lstate =l0 and ProcessName.Action=af);
46: end Evolution;{end enumeration of evolutions}
47: end Agent{end agent definition}

	Towards an agent based approach for verification of OWL-S process models
	Alessio Lomuscio and Monika Solanki

