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Abstract. In this paper we investigate the transformation of OWL-Spss mod-
els to ISPL - the system description language for MCMAS, alsylim model
checker for multi agent systems. We take the view that sesuwian be considered as
agents and service compositions as multi agent systemdlisdte how atomic
and composite processes in OWL-S can be encoded into ISRy ths¢ proposed
transformation rules for a restricted set of data types. Adlastrative example,
we use an extended version of the BravoAir process model.0iedlise certain
interesting properties of the example in temporal-epigtéogic and present results
from their verification using MCMAS.

1 Introduction

The verification of web service behaviour and interactiootg@eols is now an integral
aspect of several frameworks providing service orientéatisms to the IT industry. The
Increasing complexities that arise during service comjmosimake offline verification
as model checkind 4] crucial in successfully implementamgl using services. Model
checkers typically use specialised formats for the spetifin of behaviour, different
from those commonly used for describing services. Exangfleach system description
languages include Promela, used with the checker SPIN [A@]NuSMV, used with
the checker NuSMV[[3]. However in the web service domain, WEB [18], WSCDL
[L4] and OWL-S[[2D], are some popular and widely used stadsdfar describing service
behaviour, their composition and interaction protocols.

The languages above work at different levels of abstractiomrder to verify ser-
vices, an important first step is to investigate how the itgmuguage to the model checker
can be adapted to encode a suitable abstraction of the edr@i@viour, which has been
described using one of the above standards. FI[Jure 1 dbestthe general architecture of
a verification framework for services. As highlighted, agalicomponent is the “com-
piler” that takes as input the service specification, andegaes a suitably abstracted
model/program, encoded in the system description langfeagae checker. The model
and the desired properties to be verified are fed to the chegk@erforming a systematic
exploration of the complete set of states that can be gestetatring an interaction be-
tween a service and its clients, the model checker is ableriédesirable properties of
the composition. Generating a well abstracted model is ¢husial to the verification of
services. However, developing a tool that generates suabdelns non trivial. Mapping
rules between the languages are required to be establigferetany automated trans-
lation can be undertaken. The rules provide the basis aimhed for development of a
compiler providing (semi)automatic compilations from @iestraction to the other.
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Fig. 1. General architecture for service verification

In this paper, we explore the generation of transformatidasr from the process
model of OWL-S, a well-established language for the detionof web services on the
semantic web, to ISPL (Interpreted Systems Programmingliage) in view of verifying
the results using MCMAS [15]. We are interested in using MCB8/Aecause it enables
the user to verify rich specifications. MCMAS supports ndiygamporal logic, but also
epistemic and deontic modalities. We take the view that aseebice can be modelled as
an “agent” [6]. Keeping this in perspective, a compositibaeb services can be viewed
as a multi agent systern_[22]. An OWL-S process model spedtiesomposition and
interaction between agents/services and their clientatr@loconstructs similar to those
found in programming languages can be used to composeagsriarlier worki[16)1] on
using MCMAS for services has focused on exploiting its veaifion capabilities. In this
paper we provide the transformation rules and a compiletémpntation of the rules,
that combined with MCMAS, could aid in automated verificataf services.

The paper is structured as follows: Secfidn 2 outlines onning example for the pa-
per, a flight booking and managing service, which is an ex¢tdnérsion of the BravoAir
process from the OWL-S suite of examples. In Seclibn 3 weigeoa brief overview
of OWL-S, ISPL and MCMAS. Sectiolll 4 discusses the mappingsrfiom OWL-S to
ISPL and presents our implementation of the compiler. Weenta brief account of the
analysis and verification for the case study in Sedflon 5alkinwe conclude in Section

2 Case study

As a running example, we use an extended version of the BiigRo#cess model from
the OWL-S suite of examples. BravoAir functions as a flightking agent. It allows a
client to perform several tasks such as searching, sedeatid booking flights. Book-
ings can be made as individual or as groups. The top levelepsBr avoAi r, is a
composite process. It is composed o$equencef processes. Components of the se-
quence ar€et Desi r edFl i ght Det ai | s andSear chAvai | abl eFl i ght,and a
composite proces8ookFl i ght . We extend th&ookFl i ght process as aequence
whose components ateogl n, followed by a choice betweelnndi vi dual Bookng
and G oupBooki ng and finally Conf i r mReser vat i on. Group bookings can be



done for a group of more than 10 people and the discount affisrd0% of the total
booking fee. However when a group booking is cancelled, treellation fee is 15%
rather than 10% for individual bookings. We elaborate on@neupBooking process in
Sectior#.

We further extend the top level process with a compositegeeanageBooki ng,
to be executed isequencavith BookFl i ght . ManageBooki ng is composed as a
choicebetween the atomic proceGhooseSeat s and the composite processes,
ChangeBooki ng andCancel Booki ng. If a booking is cancelled the amount which
is charged for cancellation depends on whether the bookasgmade at an individual or
group level.ChangeBooki ng is composed of aplit+join whose components are the
three atomic process€har geCar d- for economy booking#\l | ocat eNewBooki ng-
for club and business class bookings &shdUnAvai | abi | i t y- when a change of
booking is not possible. The outcome from a choice betweerfitbt two processes is
composed isequencith SendConf i r mat i on. Char geCar d is also invoked when
a booking is cancelled. FiguEé 2 illustrates the variougrobiconstructs and processes
used in the composition between BravoAir and a potentiahtliThe composition can

BravoAir
GetDesiredFlightDetails

SearchAvailableFlight

BookFlight

ManageBooking

‘Sendun/&val\abﬂny‘ Lb{ ChargeCard ‘ ‘Al\nca\eNewBaokmg‘

SendConfirmation

split+join

Fig. 2. An extended version of the BravoAir process

be viewed as a multi-agent system where individual prosease abstracted as agents.
Within the above settings certain interesting propertiethe composition can be veri-
fied. We enumerate some of these below and formalise thermipaeal-epistemic logic
in Sectiorl®.

— if there is a request confirmation of reservation, the Corieservation agent knows
that the booking has been successful and payment has been mad

— If the number of people is more than 10, group booking willa/be successful.

— Whenever a booking change is requested, it will always béircoed.

— If a card is not charged when a booking is changed,GhangeBooki ng agent
knows that the reference is a business class booking.



— ifa confirmationis received, the Customer agent knows tisdidoking was changed.
— Ifacard is charged after a booking has been made, it alwagikaathat the booking
has been cancelled.

3 Preliminaries

3.1 OWL-S

OWL-S [20] is an OWL-based Web service ontology which suggWWeb service providers
with a core set of constructs for describing the properties @pabilities of their Web
services. It defines an upper ontology for services \@ithvice Profile Service Model
andService Groundingnodels. The ServiceProfile provides the information nedded
an agent to discover a service, while the ServiceModel amd&@&rounding, taken to-
gether, provide enough information for an agent to make fiaeservice, once found.

The process model informs a client on how to use the servicdeltgiling the se-
mantic content of requests, the conditions under whichiqudarr outcomes will occur,
and where necessary, the step by step processes leadirgséodhtcomes. Functional-
ity description in OWL-S is represented by two aspects: ttiermation transformation
(represented by inputs and outputs) and the state chandeqad by the execution of
the service (represented by preconditions and effect®).t@imResultis used to refer
to a coupled output and effect. Preconditions and conditiorresults are represented
as logical formulas specified in a suitable logical framdnsrch as SWRLI12]. OWL-
S defines three fundamental process¢smic simpleandcomposite Atomic processes
correspond to the actions a service may perform by engagiagingle interaction; com-
posite processes correspond to actions that require staftiprotocols and/or multiple
server actions; simple processes provide an abstractichanesm to provide multiple
views of the same process.

3.2 ISPL and MCMAS

ISPL (Interpreted System Programming Language) is basd@denformal semantics of
interpreted systemEl[7] and is the input language for theahdtecker MCMASI[16,14].
The syntax of ISPL includes the following

— The definition of agents describes the local behaviour afyeagent in terms of states,
actions, protocols and evolution function. Each agent tset af local variables. The
states of an agent, each of which contains a valuation obdal Ivariables can be
further partitioned into two disjoint sets: a non-emptyaieallowed (“green”) states
and a set of disallowed (“red”) states. Currently, ISPL\a#dhree types of variables:
Boolean, enumeration and bounded integer.

— The global evaluation function of the system defines atomipgsitions held over
global states which are a combinations of local states aftagkefined in the model.

— The local initial state for each agent in the system.

— Specification to be checked defined as formulae in tempqguadteamic and deontic
logic and fairness formuale.



MCMAS is a specialised model checker for the verification afltiragent systems. It
builds on symbolic model checking via OBDDs as its undedytechnique, and supports
CTL, epistemic and deontic logic. The current version of M@Mhas the following
features:

— Support for variables of the following types: Boolean, eruation and bounded in-
teger. Arithmetic operations can be performed on boundegéars.

— Counterexample/witness generation for quick and effiaisplay of traces falsify-
ing/satisfying properties.

— Support for fairness constraints. This is useful in elintimaunrealistic behaviours.

— Support for interactive execution mode. This allows usersép through the execu-
tion of their model.

— Agraphical interface provided as an Eclipse plug-in whietludes a graphical editor
with syntax recognition, a graphical simulator, and a gregllanalyser for counterex-
amples.

4 Encoding OWL-S processes as ISPL models

Inan OWL-S process model, inputs and outputs are proceaseders that have concrete
datatypes. The current version of ISPL provides supporvéoiables of typedounded
integers booleanandenum Mapping between ontologies and these types can be done as
discussed in[13]. Most existing model checkers includingNMWAS, are not equipped to
support OWL object types as also highlightediih [2]. We tfeneabstract from defining
object types for the transformation presented in this paper

Conditions explicitly occur in OWL-S models & econdi ti on, and as part of the
Resul t andi f statement. In ISPL conditions are defined as formulae whecifgfing
the protocol and evolution functions. In this section we firmpose the following step-by-
step methodology for transforming an atomic process to &h [gogram. We then show
how composite processes can be transformed. These rubdfaailitate the generation of
a semi-automatic compiler from OWL-S to ISPL.

4.1 Encoding Atomic Processes

Agent: For every atomic process in OWL-S, we define an agent, quhéBBr ocessName
in ISPL. Recall, that the definition of an agent in ISPL in@adlocal variables, red states,
actions, protocol functions and evolution functions.

Variables and local states: The local states of an agent in ISPL are defined in terms
of valuation of the local variables. We define the set of lo@aiables for an agent by
transforming the ontological inputs and outputs in the psscmodel, to variables with
the same identifiers and datatypes in the ISPL model. Boundisteger variables are
interactively assigned keeping the domain and contextotbcess model in perspective.
For an atomic process, we identify two kinds of states: (1)'Wput” or initial state and
(2) several “Result” states depending on the number of tedefined for the process.

Let V; denote the set of integer variabl&3; the set of Boolean variables ah@ the
set of variables of type enum. We define the set of their vanatasV al;, Valp and



Valg respectively. The set of local variables for an agent isgfeeelV = V; UVp U VE.
The set of local stated,;s;4:, Of an agent can now be defined as

Listate : (V] — Val]) U (VB — ValB) U (VE — ValE)
. We enumeraté ;.. for an agent as follows -

— the initial state {y) where local variables are assigned initial values. We tietie
set of variables at the initial state (g C V.

— the set of statef, .s.i:, Where eachh € L, cOrresponds to a non deterministic
Resul t state, defined for the process. For example, a credit caiditialg service
may produce two result$/alidationSuccesaith boolean outputalidated astrue,
andValidationn Failed with boolean outpubalidated as false. The set of vari-

ables at each of the result state is denote®jas V,i = 1... | Lyesut |- The
valuations for the variables are computed as per the ewal@tinction described be-
low.

— finally, ¢, a failure state which is reached when the preconditionshferprocess
evaluates tgfalse. We denote the set of variables at this stat¥’ as V. Valuations
for the variables are again computed as per the evolutioctifum

Red States: They are reached when an agent performs an undesirable.afhis feature
of ISPL is most useful while encoding faults and recoveryamplex systems. The red
states of an agent are represented by a Boolean forrffiffg,over its local variables.

Actions: The internal actions taken by a service cause a transition fhe input state to
one of the several result states. Actions for the agent amnerated as follows:

— the null actior,

— the set of internal actionsl,,; = {a;|i = 1...n}, the agent takes at the input state
to reach one of the several result states.

— the internal actiom; taken when the precondition fails, to reach state

— the set of actiongl,.,qs = {s;[i = 1...n}. The agent takes an actiene A,.,q at
eachl € I,y respectively to send the corresponding results to thetclien

— the actions which the agent takes to send the precondition failure ngesat .

— It follows that the total number of actions is:

Nactions =| Aint U {af} | 4 | Asena U {Sf} |+ | {e} |

For simplicity we assume,A;,,; U{ar} |=| Asena U {ss} |, and simplify the above
to,
Nactions =2x | Aint U {(If} | +1

Protocols: Protocols for the agent can be enumerated as follows:
frredagli=1...] Aine |}
LfPe cay
[ dsili=1...| Agena |} Usy



where fP"¢ (precondition),f7®*, i = 1 ... | Asena | (condition in results) andf? ¢
are Boolean formulae over the set of local variables at tpatistate, result statnd
the failure state respectively. Note that ISPL and MCMA®wlhon determinism in the
specification of protocols.

At execution time an agent &f takes an actiorny € A, if fP"¢, i.e., the precondi-
tion holds and action if | 7" holds. This causes a transition to one of the result states
l € Lyesuit U1y, where the conditionals from the resulfge®, i = 1... | Asena | @re
required to hold. At, the agent take an actionge Agenq U {ss}.

Evolutions (Transitions): The evolution function determines how local states evolve
based on the agent’s current local state and a set of actionevolution consists of a
set of assignments of local variableslinand an enabling condition which is a Boolean
formula, over local variables and actions of all agents.

lo if f{® and ProcessName.Actiea s; or ProcessName.Actiog sy, i=1...| Asend |
I; if fP"¢ and ProcessName.Acticaa;,i =1...| At |
Iy if 1fP"¢ and ProcessName.Actiea a ¢

We have implemented a semi automatic compiler for the toansition, by extending

Fig. 3. Mapping between an OWL-S atomic process and ISPL

the CMU OWL-S API [5]. Given an OWL-S process model, the cdempéxtracts the
agent name, inputs and outputs from the process model asd8Ribles and enumerates
the actions for the agent. Currently the definition of thestdes, protocol and evolution
function are interactively given, but we hope to automagedtocess in future versions of
the paper.

! Note that for simplicity we do not consider the case, when wusome internal failure of the
service, the result conditions do not hold, but this may Wwelpossible and additional transitions
would have to be defined to consider such scenarios



The psuedocode of an algorithm, which we implemented asopaxr compiler for
compiling an atomic process to ISPL is presented as algoffitiowards the end of the
paper.

4.2 ISPL encoding of the atomic process: GroupBooking

noOfPeople>=10
providedCard=true,
isLoggedIn=true

Preconditions invalidCardMsg

noOfPeople (in),

loggedinStatus(boolean)

{dateln, dateOut) (enum),
cardDetail (int)

Inputs

successMsg invalidNumberOfPeople
-

intAct3

Y

discountedPrice(int), _
isBookingSuccessful(boolean)

Outputs

ful fal i I=fal
isValidCard=true, isValidNumberOfPeople=false isCardValid=false

Conditional Results

Fig. 4. Atomic Process: Group Booking

Figure[3 illustrates an atomic process “Group Booking ” frdte case study pre-
sented in Sectiohl2. The process take®) f People, flightdetails, carddetails and
loggedInStatus as inputs. In order to perform a group booking, the precamton the
process are that the payment card details must be providedyumber of people in a
group must be atleast 10 and the booking client must be a ¢tbigg# returns as output, a
successM sg message, athvalidCardM sg or aninvalid NumM sg message depend-
ing on the conditionss BookingSuccess ful,isV alidCard and
1sValidNumberO f People beingtrue or false. For a successful booking it also returns
the discounted booking cost.

We specify the “GroupBooking” agent using the presentatiortax of OWL-S along
with its corresponding ISPL code in Talle 1. The inputs artduts are mapped as “Vars”
in ISPL. Actions are interactively enumerated in accor@awith the operation names
specified in the grounding model defined for the process daditions such akggedin,
providedCard andnoO f People < 10 are specified as Boolean formula on the LHS of
the protocol function. For the preconditidnggedin = true andprovidedCard = true
andnoO f People > 10 the internal actionsnt Act1 or int Act3 would be non determin-
istically chosen by MCMAS as specified in the protocol fuantiThe conditional part of
results is specified as Boolean formula on the LHS of the fifttie evolution function.

4.3 Encoding Composite Processes

A composite process may use one of several control constsuch asequencgf-then-
else found in programming languages. In what follows, we disdhe modelling of com-
posite processes, for some of the control constructs. foanation to other constructs
follows intuitively from those presented below.



OWL-S atomic process

ISPL Agent

define atonic process G oup
(inputs:(
noCf Peopl e - xsd:integer
cardDetails - xsd: string
dout - xsd:date
din - xsd:date
)
exists:(
| oggedl nStatus - xsd: bool ean
preconditions :( (loggedlnStatus)
& (noCf Peopl e>=10)
& provi dedCard(cardDetails),
outputs: ( invalidCardMsg - xsd:string
successMsg - xsd:string
inval i dNumvsg - xsd:string
di scountedPrice - xsd:String
)
results :(
isvalidCard & noOf Peopl e>=10) | - > out put (i sBooki ngSuccessf ul
xsd: bool ean, di scountedPrice - xsd:integer),
i svalidCard
| -> out put (i nval i dCar dMsg- xsd: string),
i sVal i dNunber Of Peopl e
| -> out put (i nval i dNunMsg) ,

Agent G oupBooki ng

Vars:

noCf Peopl e: 1. . 20;

i sVal i dNunber Of Peopl e: bool ean;

| ogged! n: bool ean;

provi dedCar d: bool ean;

i sVal i dCar d: bool ean;

i sBooki ngSuccessf ul : bool ean;

price: 1000. . 200000;

di scount edPri ce: 100. . 20000;

dat es: {dout, din};

successMsgSent : bool ean;

cardFai | ureMsgSent : bool ean;

nunber Fai | ureMsgSent : bool ean;

end Vars

RedSt at es:

end RedStates

Actions = {intActl, intAct2, intAct3, intAct4,
inval i dCardMsg, invalidNunMsg, successMsg, nothing};

-[Protocol :

| oggedl n=true and provi dedCard=true and noCf Peopl e >=10 :
{intActl, intAct3};
| oggedl n=true and noCf Peopl e <10 :
i sVal i dCard=f al se: {i nval i dCar dMsg};
i sVal i dNunber Of Peopl e=f al se: {i nval i dNumivsg};
i sBooki ngSuccessf ul =t rue: { successMsg};
end Protocol
Evol ution:
i sBooki ngSuccessful =true and isValidCard=true and
di scountedPrice=price -(price * 1/10) if
| oggedl n=true and provi dedCard=true and noOf Peopl e>=10 and
G oupBooki ng. Acti on=i nt Act 1;
i sBooki ngSuccessful =fal se and isVal i dCard=fal se if
provi dedCar d=t rue and
G oupBooki ng. Act i on=i nt Act 3;
i sBooki ngSuccessful =fal se i f noCf Peopl e<=10 and
G oupBooki ng. Act i on=i nt Act 2;
successMsgSent =true if isBooki ngSuccessful =true and
G oupBooki ng. Acti on=successMsg;
cardFai | ureMsgSent=true if isBookingSuccessful =fal se and
G oupBooki ng. Act i on=i nval i dCar dVsg;
end Evol ution
end Agent

{intAct2};

Table 1. The Group Booking Atomic Process

Sequence The sequencespecifies a list of processes to be executed in a certain.order
The modelling of OWL-S sequence requires explicit synclsation. In ISPL, the def-
inition of evolution for an agent encodes this synchromsatWe illustrate sequential

composition through an example of processes composed ireses.

Consider the proce®ookFl i ght , from the BravoAir model, which is a sequential
composition of three atomic processesgi n, G oupBooki ng and
ConfirmReser vat i on. After receiving the result of a successful booking from the
G oupBooki ng process, the clientinvokes t@anf i r mReser vat i on process with
inputsisbookingSuccessful=truend confirmFlight=true The precondition for the exe-
cution ofConf i r rReser vat i on isisbookingSuccessful=trublote that this was also
the result condition of thé& oupBooki ng process. Th€onf i r mReser vat i on pro-
cess returns a single result as a complex message consikamgservation|Dandseat-
Number The processes are synchronised for these inputs on thetfatalof
G oupBooki ng and the initial state ofonf i r TResear vat i on. It may also be the
case that the client provides all the inputs for both the @sses in the initial state of the
G oupBooki ng process. In such a scenario tBeoupBooki ng process invokes the
Conf i r mResear vat i on process at its final state using those inputs. We encode both
the atomic processes in ISPL using the approach outlineedticd®[Z.1. We then define
synchronisation between the processes for the sequeotigasition as outlined above.
Figure[® illustrates the composition. A typical evolutiem€tion for the “GroupBooking”



Synchronisation between GroupBooking and
ConfirmReservation

successMsg
recBookingSuccessMs:

52 (3

isBookingSuccessful=true,
isValidCard=true,
discountedPrice

Fig. 5. Sequential composition of GroupBooking and ConfirmRedema

agent would now be:
Evol ution:
i sBooki ngSuccessful =true and isValidCard=true and di scountedPrice=price -(price * 1/10) if
| oggedl n=true and provi dedCard=true and noCf Peopl e>=10 and G oupBooki ng. Acti on=act 1;
i sBooki ngSuccessful =fal se and isVal i dCard=fal se if
provi dedCar d=t rue and GroupBooki ng. Acti on=act 3;
i sBooki ngSuccessful =fal se i f
noCf Peopl e<=10 and GroupBooki ng. Acti on=act 2;
sucessMsgSent =true if
i sBooki ngSuccessful =true and G oupBooki ng. Acti on=successMsg and
ConfirmResear vati on. Acti on=r ecBooki ngSuccessMsg;
cardFai | ureMsgSent =true if
i sBooki ngSuccessf ul =f al se and GroupBooki ng. Acti on=i nval i dCar dMsg;
nunber Fai | ureMsgSent=true if
i sBooki ngSuccessf ul =f al se and G oupBooki ng. Acti on=i nval i dNumvsg;
end Evol ution

Split, Split+Join OWL-S provides two types of constructs for concurrent ekeausplit
andsplit+join. The components of a split process are a set of processesetebated
concurrently. Split completes when all its component psses have been scheduled for
execution whereas split+join completes when all of its comgnt processes have been
completed. In both these types of constructs there is a pprecess that spawns off the
component processes. Splitis encoded as illustrated i &Ry

The parent process is ageRtwhich spawns three child processés B, C at the
initial state. Synchronisation between the processesfisatkat the initial states of the
parent and child processes. Note that in ISPL the parentfaifddprocesses are encoded
as agents. The number of child agents to be defined can betext@utomatically from
the OWL-S definition of composite process.

Similar to split, split+join is encoded as illustrated ingBie[T. In addition to the
synchronisation on the initial states of the child proceste parent process is also syn-
chronised on their final states.

Consider, our extended model for BravoAir. The parent geChangeBooki ngis
composed of two child atomic process€har geCar d andAl | ocat eNewBooki ng
usingsplit+join. The processes are synchronised at the states indicatéglirel.
ChangeBooki ng sends an input messageGoar geCar d which includes the client’s
details and the extra payment to be charged. As outhatr geCar d returns transac-
tion details. ConcurrentifzhangeBooki ng sends the client’s details, original booking
and the requested new bookingAbl ocat eNewBooki ng. The process returns new
booking for the client. All messages are encoded as praposias discussed in section

B



Agent P synchronisatio Agent P

synchronisatio!
parent process parent process

Fig. 6. Encoding split Fig. 7. Encoding split+join

* client details
* payment

ChangeBooking
parent process

* client details
* original booking

« requested booking

AllocateNewBooking

ChargeCard

* transaction details

Fig. 8. The ChangeBooking process

Choice Thechoiceconstruct allows the invoking process to choose one protassle-
terministically, from a set of processes. Once the choiceade, the composition essen-
tially resolves to a sequential composition between thekimg process and the chosen
process. The parent process as well as the set of processascaded as agents in ISPL,
as illustrated in Figurgl9

In our extended example for BravoAWanageBooki ng is a process, composed as
a choice betwee@hooseSeat s and theChangeBooki ng andCancel Booki ng.
Due to space restrictions, we do not discuss this in the paper

If-then-else Theif-then-elseconstruct allows to conditionally choose a process from a
pair of processes. We define three agents, correspondihg iovoking process and the
pair of processes. Since the condition to be checked is sebndbrmulae, similar to
checking preconditions, we define two states, one whereathéitton holds and the other
where it does not. At these two states we define the synclattoridbetween the invoking
process and the processes in the pair respectively asalledtin Figur&ITl0.
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.' Agent P

synchronisation synchronisation

Fig. 9. Encoding choice

Agent P

synchronlsat\on L . synchronlsatlon

%B &

Fig. 10.Encoding if-then-else

Iterate, Repeat-while, Repeat-Until Theiterate construct allows the unconditional re-
peated invocation of a process. Two agents are defined pondig to the invoking and

the iterating procesfepeat-whilendRepeat-Untikllow repeated and conditional invo-
cation of a process Synchronisation between the proceséikstrated in FigurEJ1 and

3.

Agent P

0

' synchronisation

Agent B
Agent B

t1

Fig. 11.Encoding iterate

5 Analysis and Verification

Agent P

synchronisation

Agent B

Agent B
t1)c

Fig.12. Encoding repeat-while-repeat-
until

In this section we show the results of verification of someriesting properties of the
BravoAir process. Properties are specified as CTL and episiﬁmrmulaa.

— ifthereis arequest for flight booking confirmation, the ConfReservation ageri(R)
knows that the custome€f] is an authorised customer.

EF((confirmBookingRequest) — Kcr(authorisedCustomer))

— If the number of people is more than 10, group booking willa/be successful.

F((noOfPeople > 10) — EF (isBookingSuccess ful))

2 For further details on how such properties could be specifiaiverified using MCMAS, the

interested reader is referred o [1].



Intuitively the property does not hold because if the carthitkeprovided are not
valid, the booking will not be successful.
— Whenever a booking change is requested, it will eventualgdnfirmed.

EF((bookingChangeRequest) — EF (sendCon firmation))

Intuitively the property does not hold because if there ayealiernative bookings
available, the change will not be confirmed.

— Ifacardis not charged when a booking is changedCtreengeBooki ng agentC' B
knows that the reference is a business class booking.

EF(bookingChanged N\ —cardCharged — Kcp(businessBooking))

— if a confirmation is received, the Customer agéftknows that his booking was
changed.

EF(receivedCon firmation — Kc(bookingChanged))

We encoded the scenario and the specification above in 1S exified it using MC-
MAS. Our system was running on Linux Ubuntu 8.10 (kernel 27%.on Intel Core 2
Duo T5500 1.66GHz with 2GB memory. We encoded 20 ISPL agentssimg 120 BDD
variables: 43 BDD variables for local states (the same numbBDD variables are con-
structed for the transition relation) and 34 for local aetioThe total number of global
states is approximately0®. it took about 41 seconds with 34 MB memory space for
MCMAS to verify 15 properties. The verification results wémeaccordance with what
expected.

6 Conclusions

Although extensive research |1B,8] has been done on thenat#a verification of web
service composition using BPELAWS, work on verification /DS process models
is relatively scant. Approaches closely related to our wamé [2] and [11]. In[[2] the
mapping rules are defined for Promela to be used with SPINalicé model checker. In
[@10, the rules are defined for a C-like specification languimgbe used with BLAST[9].
The limitation in both cases is that only LTL (SPIN) and LTikd (BLAST) properties can
be verified. Using our approach, it is possible to verify LTTL, epistemic and deontic
properties with MCMAS. For example, for the case study inti®afd the composition can
be viewed as a multi-agent system where individual prosesseabstracted as agents.
In this paper we have proposed mapping rules from the pronesel of OWL-S to
ISPL. We believe the rules are sound as the semantics of I$°based on standard
kripke semantics and it has been shown that OWL-S proceasdsecencoded as transi-
tion systems[21]. We have shown the mapping for atomic meeeand for certain con-
trol constructs used for composing them. Our approach gesvihe first steps necessary
to compile automatically OWL-S process models to ISPL. Weehdeveloped a com-
piler that implements the proposed mapping rules. The cemgénerates ISPL agents
for atomic processes and processes composed in sequeneaee Waw in the process of
enhancing the compiler for other control constructs suathagceandif-then-else
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Transformation Algorithm from OWL-S to ISPL

Algorithm 1 Psuedocode: OWL-S - ISPL mapping

e
~ o

: readPr ocessNane. owl {parse the atomic process

: print AgentPr ocessNane {define the agent

: print Vars: {begin the extraction and definition of local varialjles
: for all haslnput in ProcessName.odo

print InputID: datatype;
end for

: for all hasOutput in ProcessName.aid

print OutputID: datatype;
print end Vars{end of variable definitioh

. end for
 NhasResult <  countkprocess: hasResul t >){count the  number

<process: hasResul t > element}

i Nactions <= 2 X Nhasresuit+2 {determine the number of actions for the progess
: print RedStategbegin the definition the red stajes

. fr¢ {define the Boolean formula for the red stdtes

: print end RedStategend definition of red statgs

. print Actions ={¢, ay {begin enumeration of actiohs

: forall ¢ suchthatl < i <| Ain: | do

print a;, {enumeration of actions taken at stalgs

: end for
: forall ¢ suchthatl < i <| Asenq | do

print s;, {enumeration of actions taken at stafés| i = 1... | Asena |}}

: end for

: print sy} {end enumeration of actiohs

: print Protocol:{begin enumeration of the protocls

: printfP"¢ : {define the Boolean formula for the preconditjon
: for all ¢ suchthatl < i <| Ain: | do

print {a:|¢ = 1...| Aint |} {€NUMerate the actiohs

: end for

: print;{end of ling

: print! f77¢ : a; {define the protocol for precondition failyre
: forall 7 suchthatl < i <| Asenq | do

print f7°° : {ss}
print;{end of ling

: end for

: print end protocoend enumeration of the protogol

: print Evolution: {begin enumeration of the evolutighs
: print lo if

: forall ¢ suchthatl < i <| Agena | dO

print (I; and ProcessName.Actions

: end for
: print;{end of ling
: forall ¢ suchthatl < i <| Ain¢ | do

print [; if (lo and ProcessName.Actioas);

. end for

. print I if (Lstate 9o and ProcessName.Actioa);
: end Evolution{end enumeration of evolutiohs

: end Agentfend agent definitioh

of
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