Non-elementary speed up for model checking
synchronous perfect recall

Mika Cohen!

Abstract. We consider the complexity of the model checking prob-
lem for the logic of knowledge and past time in synchronous systems
with perfect recall. Previously established bounds are k-exponential
in the size of the system for specifications with k£ nested knowledge
modalities. We show that the upper bound for positive (respectively,
negative) specifications is polynomial (respectively, exponential) in
the size of the system irrespective of the nesting depth.

1 Past LTLK

We assume that the computational system under analysis is given as
a transition system S = (S, R, Io) consisting of a finite set .S of
system states, a transition relation R C S X S, and a non-empty set
Io C S of initial states. We assume each state s C P is a subset of a
given set P of atomic propositions; intuitively, state s consists of the
atomic facts that hold at s. A (computation) path of S is a finite word
0 = S0,51,...,5 € ST such that so € Iy and (si, Si+1) € R for
all0 <7 < t.

We assume a finite set Ag of agents; each agent a € Ag observes a
subset P, C P of the propositional atoms. Intuitively, the set s N P,
represents the local view of agent a at the system state s. We say
that two system states s and s’ are equivalent with respect to agent
a, in symbols s ~, &', if they agree on the propositions observed
by agent a, i.e., if s N P, = s’ N P,. We say that two paths 0 =
50,81,...,5: € St and o' = s}, s),...,st € ST are equivalent
with respect to agent a, in symbols o ~, ¢, if they are point-wise
equivalent, i.€., S0 ~gq S0, 81 ~a 81, - St ~a S

Language of past LTLK. LTLK extends LTL with knowledge
modalities interpreted through path equivalences (cf. [1]). In this pa-
per we consider the following past-time fragment:

¢ u= pl|oAd |9V [kad| 0| O[T

where p € P and a € Ag. The knowledge diamond k, is read
as “agent a considers it possible that”, the temporal diamond < is
read as “once”, the strong yesterday modality © is read as “yes-
terday”, and the weak yesterday modality © is read as “yesterday,
if there was a yesterday”. We introduce box modalities in the ex-
pected way: K,¢ (“agent a knows that ¢”’) abbreviates —k, ¢ and
H¢ (“always in the past”) abbreviates =~O—¢. The knowledge depth
kd(¢) is the maximal nesting of knowledge modalities: kd(p) = 0;
kd(kad) = 1 + kd(¢); kd(O¢) = kd(O¢) = kd(D¢) = kd(—¢) =
kd(¢); kd(p A ¢') = kd(¢ V ¢') = maz(kd(¢), kd(¢')). For exam-
ple, kd((koky)"p) = kd((KoKp)"p) = 2n. Given a formula ¢, the

complement ¢ is the formula —¢ after double negations have been

1 Department of Computing, Imperial College London, UK

and Alessio Lomuscio

1

eliminated and negations have been distributed over conjunctions,
disjunctions, and yesterday modalities. The length || of a formula ¢
is the number of symbols in ¢ excluding negations.

We consider two language fragments. We say a formula ¢ is neg-
ative if any negation in ¢ is only applied to atoms:

¢ u= plploAd ¢V [kat|Ob| ©0 |50

A formula ¢ is positive if ¢ is negative, i.e., if ¢ can be obtained from
a negative formula by substituting diamonds with boxes:

¢ == p|lploAd |V |Kagp| Bo| ©¢|0O0

Synchronous perfect recall semantics. Satisfaction is defined as
standard for atomic propositions, boolean operators and temporal
modalities, while the knowledge diamonds are interpreted by the cor-
responding path equivalences as follows:

o (S,0) | kq ¢iff (S,0") = ¢ for some path 0’ ~, &

where o’ ranges over paths of S. Informally, k. ¢ holds if ¢ is consis-
tent with the past and present observations of agent a. Given a system
S, the extension [[¢]] of formula ¢ is the set of all computation paths
o of § such that (S,0) = ¢. A formula ¢ is valid in the given sys-
tem, S |= ¢, iff its extension [[¢]] consists of all computation paths
of S.

Example 1.1. After waiting a random number of days, a sender
agent sends a bit value to a receiver agent over a channel that deliv-
ers messages immediately or with a delay of one day.

We model the scenario as a transition system S with agents a, b
and c representing the sender, receiver and channel respectively. We
assume an atomic proposition holds(i,v) read as “agent i holds the
value v” for each agent i € {a,b, c} and each bit value v € {0,1}.
We assume that agent i observes only atomic propositions about
agent i itself: P; = {holds(t,0), holds(i, 1)}. We define the tran-
sition relation R and the set Iy if initial states such that the set
of possible computation paths of the system is given by the regu-
lar expression: {holds(a,0)}" - {holds(c,0)}" - {holds(b,0)}*+
{holds(a,1)}* - {holds(c,1)}" - {holds(b,1)}".

It can be shown that it is always the case that if the receiver has
held the bit value for n days, then 2n levels of knowledge have been
established, i.e., the positive formula

O" holds(b,v) — (KpKqa)™ holds(b,v))

is valid in S. Moreover, the negative converse of (1) holds: 2n levels
of knowledge can never be reached in less than n days.

2 Non-elementary speed up

The existing model checking algorithms [1] for synchronous perfect
recall run in time k-exponential in the size |.S| of the system for any
past LTLK formula ¢ with knowledge depth k.

Example 2.1. Existing techniques run in time 2n-exponential in the
size |S| of the system for formula (1) as well as for its converse. In

. . . . [S]
particular, the running time is at least 2% for the case whenn = 1.

The size |S| of the system is in practice often a large number.
Every increase in the knowledge depth k may therefore come at a
considerable cost under the existing algorithms. In this section we
present improved upper bounds.

2.1 Speed up for positive and negative formulae

The model checking problem for a positive formula can be decided
in time polynomial in the size of the system and in time exponential
in the length of the formula.

Theorem 2.2. The model checking problem for a positive formula ¢
can be decided in time | S|*'®!.

The model checking problem for a negative formula can be solved
in time exponential (in a polynomial) in the size of the system and in
time doubly-exponential in the length of the formula.

Theorem 2.3. The model checking problem for a negative formula

¢ can be decided in time QQ‘SHMH.

Example 2.4. The model checking problem for the positive (1) and

its negative converse can be decided in time |S |6<"+1) and in time

g2Is*n e respectively by Theorems 2.2 and 2.3 (cmp. Example 2.1.)
We prove Theorems 2.2 and 2.3 by way of the following automata-

theoretic characterization of validity

Lemma 2.5. For any system S and any negative formula ¢ there
exists an automaton Ay of size at most |S|!®! with L(Ay) = [[¢]].

We construct the automaton A for Lemma 2.5 by means of some
auxiliary operations on automata. The scalar product of an agent
a € Ag and an automaton A over the alphabet S (the state space
of the given system) is the result of replacing (“multiplying”) every
transition label s in A with all a-equivalent labels s’.

Definition 2.6 (Scalar multiplication). Assume an agent a € Ag
and an automaton A = (S, Q, Qo, p, F') over the alphabet S. The
product of a and A is the automaton a x A = (S, Q, Qo, p**, F)
over the alphabet S where: p®*(q,s) = U{p(q,s’) | s ~a s}

In other words, for every transition ¢ — ¢ in the automaton A
between locations ¢ and ¢’ labelled by state s and for every equiva-

lent state s’ ~, s, there is a transition g LN ¢’ in the automaton
a * A from g to ¢’ labelled by the equivalent state s’. Consequently,
the automaton a x A, accepts a word o € S™ iff the automaton .4
accepts some a-equivalent word o’ ~, o.

Remaining auxiliary operations needed are standard. The automa-
ton A(F") substitutes the set of accepting locations in the automaton
A with the set F’. The automaton &.A extends each location in A
with a boolean variable that becomes true when we reach an accept-
ing location ¢ € F' and stays true from then on; an extended location
is accepting in the automaton A if the boolean variable is true. Fi-
nally, the automaton 4 s corresponding to the given system S accepts
precisely all computation path of S.

Definition 2.7 (Formulae to automata). The automaton Ay corre-
sponding to a negative formula ¢ is defined inductively as follows:

o Ay = As([[p]])-

e Ap.s:=(axAg) X As.
[) -Acb/\(,‘b/ = A¢ X A¢/

o Ayy:=COA,.

The automata for remaining operators are standard: the automata
for © and © are defined similarly to the automaton for < and the
automaton for V is analogous to the automaton for A.

It can be shown that L(Ag) = [[¢]] and that the size of Ay
is at most |S|'®/. This establishes Lemma 2.5. Theorem 2.2 fol-
lows since the model checking problem for a positive specification
¢ can be decided by checking whether L(Ag) = () for the neg-
ative formula ¢, given that emptiness is decided in time quadratic
in the size (number of locations) of an automaton. In turn, Theo-
rem 2.3 follows from Lemma 2.5 since the model checking problem
for a negative specification ¢ can be decided by checking whether
L(((Ag)?)° x As) = 0, where A? determinizes the automaton A
by means of a subset construction, and .A° complements the set of
accepting locations in .A.

2.2 Speed up for arbitrary formulae

Let ad(¢) be the number of alternations from knowledge diamonds
to negations counting from the inside outwards in ¢. For example,
ad(kqa—p) = 0 and ad(—k.p) = 1. In detail, the alternation depth
ad(¢) is defined inductively by:

e ad(kqe®) = ad(¢).
e ad(—¢) =1+ ad(9), if ¢ is open.
e ad(—¢) = ad(d), if ¢ is closed.

where a formula ¢ is closed if every knowledge diamond is within
the scope of a negation, and a formula is open if not closed.
The model checking problem for arbitrary formulae ¢ can be de-

cided in time ad(¢)-exponential (in a polynomial) in the size of the
system.

Theorem 2.8. The model checking problem for a formula ¢ can be
decided in time exp(ad(g), |S|1#I+24(®))2,

The non-elementary factor in Theorem 2.8, the alternation depth

ad(¢), may be arbitrarily smaller than the non-elementary factor of
existing bounds, the knowledge depth kd(¢), and it is never worse:

Lemma 2.9. ad(¢) < kd(¢).

To establish Theorem 2.8, we extend the compositional automata
construction above with the following construction for negation:
o A4 = (Ay)c,if ¢ is closed.
o Ay :=((As)?)° x As, if ¢ is open.
Thus, we perform a subset construction only when needed, i.e., to
restore unambiguity following a scalar multiplication.

Acknowledgements The research described in this paper is partly
supported by EPSRC funded project EP/E035655. The authors
would like to thank Nir Piterman for valuable comments on earlier
drafts of this paper.

REFERENCES

[1] Ron van der Meyden, ‘Common knowledge and update in finite environ-
ments’, Inf. Comput., 140(2), 115-157, (1998).

