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Abstract. We investigate the problem of the verification of multi-
agent systems by means of parallel algorithms. We present algo-
rithms for CTLK, a logic combining branching time temporal logic
with epistemic modalities. We report on an implementation of these
algorithms and present the experimental results obtained. The results
point to a significant speed-up in the verification step.

1 Introduction

Temporal-epistemic logics are a well-known formalism to reason
about multi-agent systems [6]. One of its recent applications has
been the development of model checking techniques for the verifica-
tion of multi-agent systems (MAS) specified by means of temporal-
epistemic logics. Several approaches have been put forward in this
direction. [14] introduced an approach based on bounded model
checking for the verification of CTLK, the combination of CTL with
epistemic logic. [7] used binary-decision diagrams to perform sym-
bolic model checking on CTLK. This approach was also followed
in the development of MCMAS [9], an open-source model checker
for MAS. While these techniques and resulting toolkits are capable
of checking very considerable state-space, they still suffer from the
state-explosion problem. This is a well-known difficulty in verifica-
tion resulting from the fact that the state-space grows exponentially
with the number of variables in the program to be verified. In order
to be able to verify large systems it remains of paramount importance
to devise methodologies that mitigate this difficulty. Recent research
has focused on techniques such as abstraction [5] and symmetry re-
duction [4] to alleviate the problem.

Even if significant gains can be achieved, ultimately any technique
of this kind needs to confront the problem of computing and encod-
ing a very large state-spaces by means of a serial program. For several
years research in model checking has been able to benefit from con-
tinuously increasing computational power in the underlying single-
core computer architectures. However, there are increasing signs that
current CPU development is hitting the barriers of the underlying
physics, thereby providing only limited scope for faster serial CPUs.
Current CPUs already provide several execution cores; the number
of cores in a single CPU is expected to increase significantly in the
next few years. It is therefore of interest to develop model checking
algorithms ready to reap the benefits of the underlying parallelism.

Steps in this direction have already been taken. In [16] the state
space is partitioned and the overall model constructed by exploring
in parallel the sub-models generated by the representatives in the par-
titions. This approach was applied to explicit model checking pro-
cedures; however, similar algorithms [8, 16] have been devised for
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symbolic, i.e., OBDD-based, representations as well. A difficulty of
these approaches resides in the partitioning process. In a nutshell,
if we are performing breath-first search and assign new states to a
different thread, at times we are forced to cross-reference the par-
tial sub-models to the different execution threads. This results in a
computation overhead that may well offset any possible gain offered
by the parallel search. To overcome this difficulty the standard algo-
rithms for computing the set of states satisfying a logical formula [3]
have been modified in order to minimise the communication over-
head between threads.

In this paper we take inspiration from these observations to de-
velop parallel approaches to symbolic model checking MAS spec-
ified by means of branching-time temporal epistemic logic. Specif-
ically, we report on partitioning strategies for the representation of
state spaces generated by MAS encoded as interpreted systems [13]
and parallel algorithms for the satisfaction of epistemic operators,
including distributed and common knowledge.

The rest of the paper is organised as follows. In Section 2 we re-
call the interpreted systems formalism for MAS and the temporal-
epistemic logic CTLK. in Section 3 we give the sequential model
checking procedures for CTLK. We introduce a partition strategy and
parallel satisfaction algorithms for CTLK in Section 4. In Section 5
we evaluate the methodology by reporting the performance of the al-
gorithms on four scalable models. Section 6 presents directions of
future work.

2 Interpreted systems and CTLK

We model a MAS as an interpreted system [6], and follow the
presentation in [10]. An interpreted system is composed of a set
A = {1, . . . , n} of agents and an environment e. We assume that
at any given time each agent in the system is in a particular local
state. We associate a set of instantaneous local statesLi to each agent
i ∈ A and a set Le to the environment.

To represent the instantaneous configuration of the whole MAS at
a given time we use the notion of global state. A global state s ∈ S is
a tuple s = (l1, . . . , ln, le) where each component li ∈ Li represents
the local state an agent i is in, together with the environment state.
The set of all global states S ⊆ L1 × . . . × Ln × Le is a subset of
the Cartesian product of all local states and the local states for the
environment. I ⊆ S is a set of initial states for the system.

Each agent i has a repertoire of actions Acti available, similarly
has the environment. It is assumed null ∈ Acti for each agent i
where null is the null action. The action selection mechanism is
given by the notion of local protocol Pi : Li → 2Acti for any i ∈ A;
Pi is a function giving the set of possible actions that may be per-
formed when in a given local state. In other words Pi(li) represents
the actions that may be performed by agent i when in the state li.

The evolution of the system is given by locked transitions for all



the agents and the environment. The model assumes that each agent
moves from local state to local state at each time tick. The transitions
between local states depend on which actions have been performed
by all agents in the system. So an agent’s action may affect another
agent’s resulting next state. Formally, for each agent we assume a
local transition function τi : Li ×Act1 × . . .×Actn ×Acte → Li
defining the local state for agent i resulting from a local state and and
a joint action.

Local transitions may be combined together to give a joint transi-
tion function τ : S × Act1 × . . . × . . . Actn × Acte → S giving
the overall transition function for the system. We write (s, s′) ∈ T
if τ(s, a1, . . . , an, ae) = s′ for some joint action (a1, . . . , an, ae).

We introduce paths to give an interpretation to a branching time
language. A path π = (s0, s1, . . . , sj) is a sequence of possible
global states such that (si, si+1) ∈ T for each 0 ≤ i < j. For a
path π = (s0, s1, . . .), we take π(k) = sk.

Definition 1 (Models). A modelM = (S, I, T ,∼1, . . . , ∼n,L) is
a tuple such that:

• S ⊆ L1×, . . .×Ln×Le is the set of global states for the system,
• I ⊆ S is a set of initial states for the system,
• T is the temporal relation for the system defined as above,
• For each agent i ∈ A, ∼i is an epistemic indistinguishably rela-

tion defined by (l1, . . . , ln, le) ∼i (l′1, . . . , l
′
n, l
′
e) if li = l′i.

• L : S → 2AP is a labelling function over the set AP of atomic
propositions.

The above models allow us to interpret a temporal epistemic lan-
guage. The relation T is used to interpret temporal operators whereas
∼i is used to interpret epistemic modalities [6]. In addition to knowl-
edge for individual agent, we can define knowledge with respect to a
group Γ ⊆ A of agents in the following way.

• Everybody knows: ∼EΓ =
⋃
i∈Γ

∼i. We have s ∼EΓ s′ iff ∀i ∈

Γ such that s ∼i s′.
• Distributed knowledge ∼DΓ =

⋂
i∈Γ

∼i. We have s ∼DΓ s′ iff ∃i ∈

Γ such that s ∼i s′.
• Common knowledge: ∼CΓ = (

⋃
i∈Γ

∼i)+, where + denotes the re-

flexive transitive closure of the underlying relation.

The syntax of the temporal epistemic logic CTLK is given by the
following BNF notation.

Definition 2 (Syntax of CTLK).

φ ::= p | ¬φ | φ ∨ ψ | EXφ | EφUψ | EGφ |
Kiφ | EΓφ | DΓφ | CΓφ.

In the above definition, p is an atomic proposition, the connectives
X , G and U are CTL path operators, standing for “next”, “globally”
and “until”, respectively. E is the existential quantifier on paths. The
modal connectives Ki, EΓ, DΓ and CΓ stand for knowledge, every-
body knows, distributed knowledge and common knowledge respec-
tively. Kiφ means that agent i knows φ; EΓφ means all agents in
group Γ know φ; DΓφ means one agent in group Γ knows φ; CΓφ
means φ is common knowledge in group Γ. Other temporal modali-
ties, e.g., F , and the universal path quantifier A can defined in terms
of the above as usual.

When a CTLK formula φ is evaluated to true in a global state s in
an ISM, we say that φ is satisfied in s, denoted by (M, s) |= φ. Let
L(s) ⊆ AP be set of atomic propositions satisfied in s.

Definition 3 (Satisfaction). Given an IS M, the satisfaction of a
CTLK formula φ in a global state s is recursively defined as follows.

• (M, s) |= p iff p ∈ L(s);
• (M, s) |= ¬φ iff it is not the case that (M, s) |= φ;
• (M, s) |= φ ∨ ψ iff (M, s) |= φ or (M, s) |= ψ;
• (M, s) |= EXφ iff there exists a path π starting at s such that

(M, π(1)) |= φ.
• (M, s) |= EGφ iff there exists a path π starting at s such that

(M, π(k)) |= φ for all k ≥ 0;
• (M, s) |= EφUψ iff there exists a path π starting at s such that

for some k ≥ 0, (M, π(k)) |= ψ and (M, π(j)) |= φ for all
0 ≤ j < k;

• (M, s) |= Kiφ iff for all s′ ∈ S if s ∼i s′ then (M, s′) |= φ.
• (M, s) |= EΓφ iff for all s′ ∈ S if s ∼EΓ s′ then (M, s′) |= φ.
• (M, s) |= DΓφ iff for all s′ ∈ S if s ∼DΓ s′ then (M, s′) |= φ.
• (M, s) |= CΓφ iff for alls′ ∈ S if s ∼CΓ s′ then (M, s′) |= φ.

In model checking we are normally interested in checking whether
a formula φ is satisfied in a modelM, which is equivalent to whether
φ is satisfied in all initial states I , i.e.,

(M, I) |= φ iff for all s ∈ I, (M, s) |= φ.

3 Model Checking CTLK formulae

Given a MAS represented as an interpreted system and a specifica-
tion φ ∈ CTLK, the model checking problem involves checking
whether (M, I) |= φ, i.e., establishing whether the formula φ is sat-
isfied in the system starting from initial states. Symbolic approaches
tackle this problem by computing the set of states inM that satisfy
φ by means of the transition relation T and compare it against the
set of initial states I inM . Recall that sets can be easily represented
in terms of ordered-binary decision diagrams (OBDDs); so any algo-
rithm can be implemented directly on OBDDs [1].

Several procedures exist to calculate the set of reachable states. In
Procedure 1, reported below, the function image(next, T ) returns
the set of successor states of the set next of states with respect to T .
The set next of states is the frontier during the generation.

Procedure 1 REACH(I, T )

1: S ⇐ ∅; next⇐ I; S′ ⇐ I
2: while S 6= S′ do
3: S ⇐ S′; next = Image(next, T ); S′ ⇐ S ∪ next;
4: end while
5: return S;

The second step in the model checking procedure is to calculate
SATφ, the set of states inM that satisfy the formula φ. The proce-
dure for calculating SATφ for φ ∈ CTLK is given in [15] and re-
sults from an extension of the algorithms given in [3] for CTL. Given
that in the sequel we do not modify the algorithms for the temporal
modalities, below we only report the cases for the epistemic modali-
ties.

Procedure 2 reports the algorithm for the basic epistemic modality.
In a nutshell we first compute the set of states for ¬φ, then construct
the set of states that can “see” by means of the epistemic relation a
state satisfying ¬φ, and finally we return the complement of this set.



Procedure 2 SATK(φ, i) for Kiφ.
1: X ⇐ SAT¬φ;
2: Y ⇐ {s ∈ S | ∃s′ ∈ X such that s ∼i s′};
3: return ¬Y ∩ S;

The procedure for everybody knows (distributed knowledge, re-
spectively) is similar to that above, except that the relation considered
is the union (intersection, respectively) of the epistemic relations in
Γ.

Procedure 3 SATE(φ,Γ) for EΓφ.
1: X ⇐ SAT¬φ;
2: Y ⇐ {s ∈ S | ∃s′ ∈ X such that ∃i ∈ Γ, s ∼i s′}
3: return ¬Y ∩ S;

Procedure 4 SATD(φ,Γ) for DΓφ.
1: X ⇐ SAT¬φ;
2: Y ⇐ {s ∈ S | ∃s′ ∈ X such that ∀i ∈ Γ, s ∼i s′}
3: return ¬Y ∩ S;

Computing CΓ normally involves a fix point computation. For ef-
ficiency we use the algorithm below. Procedure 5 starts from the set
of states where φ is not satisfied and repeatedly extends it by adding
any state related by an agent in Γ to any of state in the working set.
The set of states satisfying CΓ is the complement of the result of the
recursive computation above.

Procedure 5 SATC(φ,Γ) for CΓφ.
1: X ⇐ S; Y ⇐ SAT¬φ;
2: while X 6= Y do
3: X ⇐ Y ;
4: Y ⇐ {s ∈ S | ∃s′ ∈ X and ∃i ∈ Γ such that s ∼i s′};
5: end while
6: return ¬X ∩ S;

Since we can calculate the set S of reachable states and the set
SATφ of states satisfying any formula φ ∈ CTLK, we can now
give the general model checking algorithm, reported in Procedure 6.
Effectively, the algorithm checks whether the formula in considera-
tion is true at all initial states (I ⊆ SATφ).

Procedure 6 CHECK(M, φ)

1: if I ⊆ SATφ then
2: return TRUE
3: else
4: return FALSE
5: end if

4 Parallel model checking algorithm for CTLK

In this section we present the proposed parallel approach to verifying
CTLK. Given a modelM and a formula φ to be checked we follow
the steps below.

1. We first partition the set I of initial states and assign each partition
to a process.

2. We then compute the set of reachable states in each partition in
parallel;

3. Finally, we carry out model checking checks simultaneously on
all sets of reachable states.

The only communication requirement in the above is in Step 3, where
it is possible that a process may require to access states being com-
puted by another process.

In more detail, assume I is divided into m partitions I1, . . . , Im.
We define Mk = 〈Sk, Ik, Tk,∼k1 , . . . ,∼kn,Lk〉 (1 ≤ k ≤ m) to
be a submodel ofM if Sk ⊆ S is the set of states reachable from
the states in Ik, and∼ki (Lk, Tk, respectively) is the projection of∼i
(L, Tk, respectively) onto Sk, i.e, for all s, s′ ∈ Sk, (s, s′) ∈ T ⇔
(s, s′) ∈ Tk, s ∼ki s′ ⇔ s ∼i s′ and Lk(s) = L(s). Note that for
constructing the set of reachable states from any Ik we can equally
use the relations T ,∼i, for any i ∈ A.

In view of the remarks at the end of the previous section we be-
gin by giving a general procedure for model checking that can be
parallelised.

Procedure 7 P CHECK(M, φ) for checking (M, I) |= φ

1: for k = 1 to m do
2: if CHECKp(Mk, φ)=FALSE return FALSE end if
3: end for
4: return TRUE

Clearly the for loop can be made parallel by means of m parallel
processes (PPs), simply calculating the reachable states in the corre-
sponding submodel and checking the satisfiability of the formula on
it (see Procedure 8). Every PP executes step 1 in Procedure 8 inde-
pendently and afterwards executes CHECKp(Mk, φ) with limited
synchronisation with other PPs. We then generate a control process
(CP) to collect the return values from the individual PPs, thereby im-
plementing P CHECK(M, φ).

Procedure 8 SIMPLE PARA(k, φ)

1: Sk ⇐ REACH(Ik);
2: CHECKp(Mk, φ);

The distributed procedure CHECKp(Mk, φ) to run on the sub-
model is identical to CHECK(M, φ) apart the test of Ik against
the set of states returned by the P SATφ procedures.

Procedure 9 CHECKp(Mk, φ)

1: if Ik ⊆ P SATφ then
2: return TRUE
3: else
4: return FALSE
5: end if

The P SATφ procedure for the cases p, EX , EG, EU is the
same as the sequential procedures SATφ, thereby reducing the syn-
chronisations among PPs. The parallel procedures for Ki, EΓ, DΓ,
CΓ cases are defined as follows.

The procedure P SATK(φ, i, k, Sk) differs from the serial
SATK(φ, i, k, Sk) by means of a loop to get all reachable states in
which φ is not satisfied. The for loop needs to synchronise with other
PPs: each PP k needs to get a copy of Xj (1 ≤ j 6= k ≤ m) from
other PP j.



Procedure 10 P SATK(φ, i, k, Sk) for Kiφ.
1: Xk ⇐ P SAT (¬φ); X ⇐ ∅;
2: for j = 1 to m do X ⇐ X ∪Xj ; end for
3: Y ⇐ {s ∈ Sk | ∃s′ ∈ X such that s ∼i s′};
4: return ¬Y ∩ Sk;

The procedures P SATE(φ,Γ, k, Sk) and P SATD(φ,Γ, k, Sk)
are obtained in the similar way from SATE(φ,Γ) and SATD(φ,Γ)
respectively with similar synchronisation steps.

Procedure 11 P SATE(φ,Γ, k, Sk) for EΓφ.
1: Xk ⇐ P SAT (¬φ); X ⇐ ∅;
2: for j = 1 to m do X ⇐ X ∪Xj ; end for
3: Y ⇐ {s ∈ Sk | ∃s′ ∈ X such that ∃i ∈ Γ, s ∼i s′}
4: return ¬Y ∩ Sk;

Procedure 12 P SATD(φ,Γ, k,Gk) for DΓφ

1: Xk ⇐ P SAT (¬φ); X ⇐ ∅;
2: for j = 1 to m do X ⇐ X ∪Xj ; end for
3: Y ⇐ {s ∈ Gk | ∃s′ ∈ X such that ∀i ∈ Γ, s ∼i s′}
4: return ¬Y ∩Gk;

The parallel procedure for CΓφ, reported below, is more complex
because of the fix point computation. Observe that in P SATC we

Procedure 13 P SATC(φ,Γ, k, Sk) for CΓφ

1: Yk ⇐ P SAT (¬φ);
2: repeat
3: Y ⇐ ∅; Fk ⇐ FALSE;
4: for j = 1 to m do Y ⇐ Y ∪ Yj ; end for
5: repeat
6: X ⇐ Y ;
7: Y ⇐ {s ∈ Sk | ∃s′ ∈ X and ∃i ∈ Γ such that s ∼i s′};
8: until X = Y
9: if Yk = Y then Fk ⇐ TRUE; else Yk ⇐ Y ; end if

10: F ⇐ TRUE;
11: for j = 1 to m do F ⇐ F ∧ Fj ; end for
12: until F = TRUE
13: return ¬Y ∩ Sk;

need to compute a double fix point. In fact, each PP k calculates set
Yk of states in which φ is not satisfied and broadcasts it to other PPs.

Following this, and given Sk and Y =
m⋃
j=1

Yj , each PP k computes

the set of states Y ′k ⊆ Sk in whichCΓφ is not satisfied. If there exists
a PP k (1 ≤ k ≤ m) such that Yk 6= Y ′k , then all PPs assign Y ′k to
Yk, rebroadcast Yk, and re-compute Y ′k . This iteration is repeated
until Yk = Y ′k for all 1 ≤ k ≤ m. Since we only deal with systems
with finite states, P SATC(φ,Γ, k, Sk) eventually terminates.

The parallel Procedures 8, 9, and 10 are integrated into Pro-
cedure 7 thereby defining a parallel approach to verifying CTLK
formulae on IS models. It can be shown by induction that all
P CHECK(M, φ) return the correct set of states.

Theorem 1 (Soundness and completeness). Given a CTLK formula
φ, m partitions of initial states I1, . . . , Im and corresponding sets
of reachable states S1, . . . , Sm, we have that P CHECK(M, φ)
if and only if CHECK(M, φ).

Proof. (Sketch) by induction on syntax of φ.

Efficiency considerations. We now pursue different optimisation
strategies that will be analysed experimentally in the next section.
Observe that the parallel procedure above is as slow as the slowest
PP. This is because of the communication required among PPs. It is
a priori not trivial to identify a partitioning of the initial states so that
all PPs share a similar load. Additionally, since in any implementa-
tion the computations above are performed on OBDDs, the variable
reordering mechanisms make any prediction even harder.

In an attempt to distribute evenly the workload to the various
PPs, we can partition I in a number of sets greater than the num-
ber of processes available. In this way the various PPs can per-
form their respective computations and can, when finished, move
to the next partition. Several strategies are possible here. We can
try to explore as many reachable states as possible, or attempt to
run the check for satisfaction of the formula in question. The pro-
cedure MERGE PARA(k, φ, sp) below adopts the former line.
Here, after a successful computation of the reachable state space
from a partition, the next unexplored set of initial states is itera-
tively computed, before performing the check for the formula in
question. MERGE PARA(k, φ, sp) is illustrated in Procedure 14
below where sp is a global pointer to the next available partition and
m the number of parallel processes. Note that I ′k and S′k are the ini-
tial states and reachable states of the submodelM′k respectively.

Procedure 14 MERGE PARA(k, φ, sp)

1: S′k ⇐ ∅; I ′k ⇐ ∅;
2: repeat
3: if sp ≤ m then j ⇐ sp; sp⇐ sp+ 1; end if
4: I ′k ⇐ I ′k ∪ Ij ; S′k ⇐ S′k ∪REACH(Ij);
5: until sp > m
6: CHECKp(M′k, φ);

The procedure SIMPLE PARA(k, φ, sp) is a special case of
MERGE PARA(k, φ, sp) such that m = m.

In many cases, especially when the length of the formula φ is
short, the time to generate the state space is predominant in the
overall model checking time. However, the time spent performing
P SATφ is at times non-negligible. In some of these cases P SATφ
runs faster on a number of small OBDDs than on a single large one,
even taking into count the extra synchronisations needed. The pro-
cedure FULL PARA(k, φ, sp), reported below, is an extension of
MERGE PARA where sets of reachable states are not merged, in
an attempt to exploit the considerations above. Note that Itk and Stk
are the initial and reachable states of the submodelMt

k respectively.

Procedure 15 FULL PARA(k, φ, sp)

1: t⇐ 0;
2: repeat
3: if sp ≤ m then j ⇐ sp; sp⇐ sp+ 1; end if
4: t⇐ t+ 1; Itk ⇐ Ij ; Stk ⇐ REACH(Ij);
5: until sp > m
6: for j = 1 to t do CHECKp(Mj

k, φ); end for

Lastly, in order to demonstrate the impact of model checking pro-
cedures on OBDDs of different sizes, we also explore a final pro-
cedure, that we call SEMI PARA(k, φ). Procedure 16 is a sim-
plification of SIMPLE PARA(k, φ). In SEMI PARA(k, φ),
PP 1 collects Sk from all other PPs, and then constructs the



set S. Then it executes the sequential model checking procedure
CHECK(M, φ). Other PPs terminate when they send their Sk to
PP 1.

Procedure 16 SEMI PARA(k, φ)

1: Sk ⇐ REACH(Ik);
2: if k = 1 then
3: S ⇐ ∅;
4: for j = 1 to m do S ⇐ S ∪ Sj ; end for
5: CHECK(M, φ);
6: end if

We analyse the performance of these variants below.

5 Experiments

We implemented the different model checking algorithms presented
in Section 4 on top of MCMAS [9], an open-source model checker
for temporal-epistemic logic. MCMAS was the natural choice as it
already supports the semantics of Interpreted Systems, CTLK speci-
fication languages, and performs OBDD operations by means of the
efficient CUDD library [17]. In a MCMAS model, each agent has a
set of local variables and a local state is an evaluation of these vari-
ables. A global state is an evaluation over all variables in the system.
The set of initial states is specified by a Boolean expression over
variables, i.e., any global state that satisfies the expression is an ini-
tial state.

To allow parallel model checking in a model, we only need to re-
organise the expression for the initial states. The new expression is of

the form es ∧ (
m∨
j=1

ej). Any global states satisfying es ∧ ek is in par-

tition Ik (1 ≤ k ≤ m) for FULL PARA and MERGE PARA.
For SIMPLE PARA and SEMI PARA, partition Ik is con-
structed as es∧ (e(k−1)∗(δ2+1)+1∨ . . .∨ek∗(δ2+1)) for 1 ≤ k ≤ δ1,
or es ∧ (e(k−1)∗δ2+δ1+1 ∨ . . . ∨ ek∗δ2+δ1) for δ1 < k ≤ m where
δ1 = m mod m and δ2 = bm/mc.

In order to provide a thorough assessment we tested our imple-
mentation on four examples already used with MCMAS. These are:
the dining cryptographers scenario [2], the card games [5] example,
the NSPK protocol [12], and the muddy children puzzle [6]. We re-
fer to the cited publications and MCMAS’s documentation for more
details. The experiments were performed on an AMD Phenom(tm)
9600B Quad-Core Processor with 8GB memory running Fedora 12
x86 64 Linux (kernel 2.6.31.5-127). Four parallel threads were gen-
erated for all the examples.

We found that in all examples the overall memory consump-
tion was often three or four times higher than that in the publicly
available MCMAS. This was entirely expected as each thread cre-
ates an independent BDD manager. The experiments were meant to
check whether we can perform checks faster than on a single core.
The tables below report the running time (in seconds) and mem-
ory (in MBs) for the examples discussed. Note that Seq represents
sequential model checking procedure, and Semi (Simple, Merge
and Full respectively) represents SEMI PARA(SIMPLE PARA,
MERGE PARA and FULL PARA respectively).
Dining cryptographers [2]. In this example, we checked the follow-
ing common knowledge formula specification

AG(even→ CΓ(
∧
¬paidi)),

where even represents an even number of cryptographers claiming
that the two coins fell on the same side and paidi represents that the
bill was paid by the i-th cryptographer. The set of initial states was
split intoN +1 partitions for MERGE- and FULL-PARA. We found
the following results.

Table 1. Verification results for the dining cryptographers scenario.

N States Seq Semi Simple Merge Full
10 45056 21s 11s 12s 6s 5s

20MB 67MB 69MB 60MB 58MB
14 9.8×105 128s 26s 56s 28s 15s

51MB 91MB 99MB 83MB 84MB
18 2.0×107 160s 149s 186s 21s 48s

55MB 174MB 159MB 82MB 96MB
22 3.9×108 2098s 6783s 6622s 85s 85s

127MB 357MB 353MB 126MB 149MB
26 7.2×109 365s 161s 184s 58s 55s

58MB 176MB 170MB 117MB 164MB
30 1.3×1011 2823s 12771s 12009s 160s 496s

105MB 427MB 412MB 176MB 205MB

Card games [5]. Here we used the formula presented in [5] for our
tests:

AG (allred1→ Kplayer1(AF win1)),

The specification states that it is always the case that if player 1 has
only red cards, then he knows that eventually he will win the game.
The initial states are partitioned based on the possible choices of each
player’s first card. The number of partitions is (N − 1)N , where N
is the number of total cards.

Table 2. Verification results for the card games example.

N States Seq Semi Simple Merge Full
8 8×104 1s 1s 1s 1s 1s

13MB 48MB 48MB 54MB 54MB
10 7.4×108 62s 32s 33s 34s 22s

48MB 150MB 140MB 215MB 213MB
12 2, 9×1010 51242s 15160s 13974s 3569s 3960s

1.4GB 2.5GB 2.2GB 1.9GB 1.9GB

NSPK protocol [12]. In this example we ran experiments on n ∈
{2, 3, 4} number of agents, respectively, together with (n+ 1)n par-
titions. The CTLK formulae verified in each case are listed below.

2. AG(i2 end→ Ki2 agree i2 i1).
3. AG(i3 end→ Ki3(agree i3 i1 ∨ agree i3 i2)).
4. AG(i3 end→ Ki3(agree i3 i1 ∨ agree i3 i2)).
AG(i4 end→ Ki4(agree i4 i1 ∨ agree i4 i2)).

The first formula says that whenever agent 2 terminates, he knows
that he and agent 3 agree on the protocol variables. The second one
specifies that globally when agent 3 terminates, he knows that he
agrees with either agent 1 or agent 2 on the protocol variables.
Muddy children [6]. The formula verified on this example is

AG(((Kchild1muddy1)∨(Kchild1¬muddy1))→ saysknows1),

specifying that whenever child 1 knows whether or not he has muddy
forehead, he will announce that he knows this. The initial states were
partitioned into 8 disjunctive groups.

The results above demonstrate that the parallel algorithms of-
fer good performance in the first three examples. The verification



Table 3. Verification results for the NSPK protocol.

N States Seq Semi Simple Merge Full
2 618 1s 1s 1s 1s 1s

12MB 44MB 43MB 43MB 43MB
3 42240 7s 3s 2s 3s 2s

50MB 170MB 159MB 143MB 143MB
4 2.9×106 391s 161s 134s 155s 156s

647MB 1373MB 992MB 961MB 717MB

Table 4. Verification results for the muddy children puzzle.

n States Seq Semi Simple Merge Full
20 3.4×107 7s 8s 8s 8s 7s

24MB 87MB 82MB 83MB 86MB
30 3.4×1010 52s 75s 72s 66s 70s

36MB 145MB 130MB 144MB 159MB
40 7.0×1013 272s 227s 234s 285s 285s

58MB 224MB 219MB 244MB 231MB
50 7.2×1016 585s 1003s 1077s 1091s 1102s

61MB 266MB 241MB 297MB 253MB
60 7.4×1019 30521s 2318s 2167s 2216s 2295s

87MB 490MB 311MB 342MB 352MB

time was reduced dramatically with significant gains being shown on
bigger models. Generally speaking, the experimental results point
to the fact that smaller size partitions can speed up the computa-
tion more, even with the same number of physical processor cores.
Strong indications of this were given by the speed gained by the
MERGE- and FULL-PARA algorithms. While some differences ex-
ist, the speed difference between SEMI- and SIMPLE-PARA, and
between MERGE- and FULL-PARA, can be small.

Our parallel algorithms failed to accelerate the verification on half
of the muddy children models. The biggest gain on this example was
obtained when the model became very large (the last one in Table 4).
We suspect this situation is caused by the regularity of the underlying
OBDD structure; this is the only case we found where the speed ad-
vantage in the algorithms did not compensate for the communication
overhead between the processes.

6 Conclusions

In this paper we have defined and explored a number of parallel
model checking algorithms for the verification of multi-agent sys-
tems. These algorithms require only limited synchronisations among
parallel processes/threads to evaluate epistemic operators, and leave
the interpretation of CTL operators as it is in the sequential approach.
The experimental results not only demonstrate the effectiveness of al-
gorithms in a number of cases, but also suggest that more partitions
of the set of initial states usually lead to shorter verification time. This
is promising in view of the fact that the number of cores available in
CPUs is expected to grow significantly, perhaps exponentially, in the
years ahead.

There are many directions for future work. We are not satisfied
with the performance of the algorithms on the muddy children ex-
ample; a deeper investigation on the underlying OBDD structures is
required to appreciate the result fully. It is also of interest to explore
how the initial partitioning can affect the performance of the parallel
model checking algorithms.
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