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Abstract. We investigate quantified interpreted systems, a computationally grounded semantics for
a first-order temporal epistemic logic on linear time. We report a completeness result for the monodic
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1. Introduction

Propositional modal logics to reason about knowledge and time have been thoroughly investigated by
researchers in logic and artificial intelligence both as regards their fundamental theoretical properties
(completeness, decidability, complexity) [3, 8, 10], as well as their suitability for the specification and
verification of multi-agent systems [5, 21, 31].

In one line of research epistemic modalities have been added to represent group knowledge such as
distributed and common knowledge [9, 11]. In another one, the temporal fragment has been modified
according to different models of time (e.g., linear or branching, discrete or continuous) [17, 19]. In yet
another line, temporal epistemic logic has been studied within a first order setting [1, 6, 15].
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In this paper we extend a combination of epistemic and temporal logic to the predicate level. We
provide this language with a computationally grounded semantics [30] given in terms of quantified inter-
preted systems [1, 2], and we present a sound and complete axiomatisation of the monodic fragment of
this logic, where at most one free variable appears in the scope of any modal operator. Finally, we apply
this formalism to the modeling of message passing systems, a typical framework in distributed systems
[18, 5].

Our starting point is a number of results by Hodkinson, Wolter, and Zakharyaschev, among others,
regarding the axiomatisability [25, 29], decidability [15, 28], and complexity [13, 14] of first-order modal
logics, including both positive [12, 24] and negative results [16, 26, 27]. Specifically, we prove the
completeness of our first-order temporal epistemic logic via a quasimodel construction. These structures
have been introduced in [15] to prove decidability for monodic fragments of first-order temporal logic
(FOTL) on a variety of flows of time. These investigations were further pursued in [16], where branching
flows of time are analysed, and in [12], which deals with the packed fragment of FOTL. In [13, 14] the
complexity of the decision problem for a number of monodic fragments of FOTL is considered.

As regards general first-order modal logic, the decidability of monodic fragments has been investi-
gated in [28]. In [27] it is proved that first-order epistemic logic with common knowledge is not axioma-
tisable. However, in [26] it is shown that its monodic fragment is. Finally, this paper relies on results in
[25, 29]. In [29] the authors present a complete axiomatisation for the monodic fragment of FOTL on the
natural numbers. In [25] we have a similar result for a variety of first-order epistemic logics with com-
mon knowledge. None of these references use interpreted systems [5, 20] as the underlying semantics,
as we do here.

Our motivation for this contribution comes from an interest in reactive, autonomous, distributed
systems, or multi-agent systems (MAS), whose high-level properties may usefully be modeled by first-
order temporal epistemic formalisms [4, 23, 31], and behaviours programmed by languages based on
interpreted systems such as ISPL [22]. While temporal epistemic logics are well understood at the
propositional level, their usefulness has been demonstrated in a number of applications (security and
communication protocols, robotics), and model checking tools have been developed for them [7, 22],
we still believe there is a growing need in web-services, security, as well as other areas, to extend these
languages to the first order. As a preliminary contribution, in [2] we introduced a “static” version of
quantified interpreted systems to model a first-order epistemic formalism. This was then extended to the
temporal dimension in [1]. Differently from these previous works, here we explicitly assume linear-time
operators and the natural numbers as the flow of time. Both features are crucial for applications, but they
also increase the complexity of the formalism.

Scheme of the paper. In Section 2 we introduce the first-order temporal epistemic language £,
foraset A = {1,...,m} of agents; in Section 3 we provide it with a computationally grounded se-
mantics in terms of quantified interpreted systems, and present its monodic fragment. In Section 4 we
explore its expressive power in specifying message passing systems. In Sections 5 and 6 we introduce
an axiomatisation for the monodic fragment of £,,, and prove its completeness.

2. Syntax

The first-order temporal epistemic language £,,, contains individual variables x1, 2, . . ., individual con-

stants ¢y, c2, . . ., and n-ary predicative letters P[*, P3', ... for n € N, the propositional connectives — and



F. Belardinelli, A. Lomuscio/ First-Order Linear-time Epistemic Logic with Group Knowledge 3

—, the universal quantifier V, the linear-time operators () and U, the epistemic operators K; for i € A,
the distributed knowledge operator D, and the common knowledge operator C.
The only terms ¢1, to, . . . in L,, are individual variables and constants.

Definition 2.1. Formulas in £,, are defined in the Backus-Naur form as follows:

¢ u= PR(ty,... ) | ¢ |d— ¢ |Vad | O | oUe | Ki¢ | Do | Ch

The formulas ()¢ and ¢pU ¢’ are read as “¢ holds at the next step” and “¢’ will eventually hold and
¢ is the case until that moment”. The formula K;¢ represents “agent i knows ¢, while formulas D¢
and C'¢ respectively mean “¢ is distributed knowledge” and “¢ is common knowledge” in the group A
of agents.

We define the symbols A, V, <, 3, G (always in the future), and F' (some time in the future) as stan-
dard; while K;¢ and D¢ are shorthands for —K;—¢ and —D—¢ respectively. Further, B¢ = Nica Ko,
and for A equal to E or O, A*¢ is defined as follows for every k € N: A% = ¢ and A* 1y = AAF.

Finally, by ¢[jj] we mean that i = y,...,%, are all the free variables in ¢; while ¢[¢j/7] is the
formula obtained by substituting simultaneously some, possibly all, free occurrences of ¥ in ¢ with
t= t1,...,tn, renaming bounded variables if necessary.

3. Quantified Interpreted Systems

In this section we present a dynamic version of the “static” quantified interpreted systems in [2] by
assuming the natural numbers N as the underlying flow of time. Specifically, for each agenti € A in a
multi-agent system we introduce a set L; of local states [;, [/, . . ., and a set Act; of actions a;, al,.... We
consider local states and actions for the environment e as well. The set S C L, x L1 X ... X L, contains
the global states of the MAS, while Act C Act, x Acty X ... X Acty, is the set of joint actions. We also
introduce a transition function 7 : Act — (S — ). Intuitively, 7(a)(s) = s’ encodes that agents access
the global state s’ from s by performing the joint action a. We say that the global state s’ is reachable in
one step from s, or s C &', iff there is a € Act such that 7(a)(s) = s'.

To represent the temporal evolution of the MAS we consider the flow of time (N, <) of natural
numbers N with the strict total order <. A run r over (S, Act, 7, N) is a function from N to S such that
r(n) C r(n+1). Intuitively, a run represents a possible evolution of the MAS according to the transition
function 7 and assuming N as the flow of time. We now define the quantified interpreted systems for the
language L, as follows:

Definition 3.1. (QIS)
A quantified interpreted system over (S, Act, 7, N) is a triple P = (R, D, I) such that:

(i) R is a non-empty set of runs over (S, Act, 7, N);
(i1) D is a non-empty set of individuals;

(iii) I is an interpretation of L, such that I(c) € D, and for r € R, n € N, I(P*,r,n) is a k-ary
relation on D.

We denote by QZS the class of all quantified interpreted systems.
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Note that the individual constants in £, are interpreted rigidly, that is, their interpretation is the
same in every global state. Following standard notation [5] a pair (r,n) is a point in P. If r(n) =
(leyl1, ..., ) is the global state at the point (1, n), then r.(n) = [ and r;(n) = ; are the environment’s
and agent i’s local state at (7, n) respectively. Further, a QIS is synchronous if for every i € A, r;i(n) =
ri(n') implies n = n/, that is, time is part of the local state of any agent. We denote by QZS*Y"¢ the
class of all synchronous QIS.

Now we assign a meaning to the formulas of £,, in quantified interpreted systems. Let o be an
assignment from the variables to the individuals in D, the valuation 17 (t) of a term ¢ is defined as o (y)
for t = y, and I°(t) = I(c) for t = c. A variant (%) of an assignment o assigns a € D to x and
coincides with o on all the other variables.

Definition 3.2. The satisfaction relation = for ¢ € L,,, (r,n) € P, and an assignment o is defined as
follows:

(P?,r,n) | PR(ty, ... ty)  iff (I9(t1),..., I (tg)) € I(P*, 7, n)
(P7,r,n) | iff  (P7,r,n) o
(P7,r,n) = — iff  (P?,r,n) Eor (P2, r,n) =
(P%,r,n) =V iff  foralla € D, (Po(z),r, n) =
(P, r,n) = Qv iff  (P7,r,n+1) 9
(P?,r,n) = Uy’ iff  there is n’ > n such that (P, r,n’) = ¢’

and for all n”,n < n” < n' implies (P7,r,n") =
(P, r,n) = Ky iff ~ forall (+',n'),ri(n) = ri(n') implies (P?,r',n') =4
(P?,r,n) = Dy iff  ri(n) =7r)(n') foralli € A, implies (P7,7",n’) =
(P7,r,n) = Cy iff forallk € N,(P?,r,n) = E*

The truth conditions for A, V, <, 9, G, and F' are defined from those above. A formula ¢ € L, is
true at a point (r,n) iff it is satisfied at (r, n) by every o; ¢ is valid on a QIS P iff it is true at every point
in P; ¢ is valid on a class C of QIS iff it is valid on every QIS in C.

3.1. The monodic fragment

In the rest of the paper we focus on the monodic fragment of the language L,,.

Definition 3.3. The monodic fragment £, is the set of formulas ¢ € £,, such that any subformula of ¢
of the form K1), D1, Cp, O, or 11U1po contains at most one free variable.

The monodic fragments of a number of first-order modal logics have been thoroughly investigated
[14, 15, 25, 28, 29]. In the case of L,, this fragment is quite expressive as it contains formulas like the
following:

Vy(Resource(y) — C(VzAvailable(y, z)UIxRequest(x,y)) (1)
D O Vzyz(Request(x,y) — —Available(y, z)) — O DVzyz(Request(x,y) — —Available(y,z)) (2)

Formula (1) states that it is common knowledge that every resource will eventually be requested, but
until that time the resource remains universally available. Formula (2) represents that if it is distributed



F. Belardinelli, A. Lomuscio/ First-Order Linear-time Epistemic Logic with Group Knowledge 5

knowledge that at the next step any resource is not available whenever it is requested, then at the next
step it is distributed knowledge that this is the case.
However, note that the formula

VaK;(Process(x) — VyF Access(z,y)) (3)

which intuitively means that agent ¢ knows that every process will eventually try to access every resource,
is not monodic. Still, the monodic fragment of £, is quite expressive as it contains all de dicto formulas,
i.e., formulas where no free variable appears in the scope of modal operators, as in (2).

4. Message Passing Systems

In this section we model message passing systems [5, 18] in the framework of QIS. A message passing
system (MPS) is a MAS in which the only actions for the agents are sending and receiving messages.
This setting is common to a variety of distributed systems, well beyond the realms of MAS and Al
Indeed, any synchronous or asynchronous networked system can be seen as an MPS.

To define our message passing QIS we introduce a set Msg of messages pi1, (2, . . ., and define the
local state [; for agent ¢ as a history over Msg, that is, a sequence of events of the form send(i, j, ;1) and
rec(i, j,p) fori,j € A, p € Msg. Intuitively, send(i, j, ) represents the event in which agent i sends
message |1 to j, while the meaning of rec(i, j, 1) is that agent i receives message i from j. A global state
s € Sisatuple (lg,l1,...,1,) where l1,...,1, are local states as above, and [. contains all the events in
T

A run r over (S, N) is a function from the natural numbers N to S such that:

MP1 r;(0) is a sequence of length zero, and 7;(n + 1) is either identical to r;(n) or results from append-
ing an event to r;(n).

By MPI1 the local state of each agent records the messages she has sent or received; at each step
at most a single event occurs to any agent. We define message passing QIS (MPQIS) as the class of
quantified interpreted systems P = (R, D, I) where R is a non-empty set of runs satisfying MP1, D
contains the agents in A and the messages in Msg, and [ is an interpretation for £,,. We use the same
notation for objects in the model and syntactic elements, the distinction will be made clear by the context.

For the specification of MPS we introduce a predicative letter Send such that (P?, 7, n) = Send(i, j, )
iff event send(i, j, ;1) occurs to agent ¢ at time n in run , i.e., r;(n) is the result of appending send(i, j, pt)
to r;(n — 1). Also, we introduce the predicate Sent such that (P?,r,n) = Sent(i,j,p) iff event
send(i, 7, ) occurs to agent i before time n in run 7, i.e., send(i, j, 1) appears in r;(n). The predicates
Rec and Rec’ed are similarly defined for event rec(i, j, ).

Let us now explore the range of specifications that can be expressed in this formalism. A property
often required in MPS is channel reliability. We express this by stating that every sent message is
eventually received. Note that, according to the definition of message passing QIS, it is possible that a
message is lost during a run of the system. We can force channel reliability by requiring the following
specification to hold on MPQIS:

Vu(JijSend(i, j, ) — F3i'j'Rec(j', i, 1)) 4)
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In fact, we can be more specific and require that every message is received at most (at least) k steps
after being sent, or exactly k steps after being sent:

Vu(3ijSend(i, j, 1) — QF3i'j'Rec’ed (5,1, 11)) ®)
Vu(3ijSent(i, j, ) — O"3i'j'Rec(5', ', 1)) (6)
Vu(ijSend(i, j, 1) — OF3i'j'Rec(', ', 11)) (7

Note that all of (4)-(7) are monodic. In these specifications the identities of the sender and the
receiver are left unspecified. So, in cases in which we are not interested in singling out the addresser and
the addressee, the monodic fragment suffices.

Another property often required on MPQIS is that there are no “ghost” messages: if agent ¢ receives
a message [, then 7 knows that p must actually have been sent by some agent 7. This specification is
expressible as a monodic formula:

Vu(3jRec(i, j, p) — K;35'Sent(5',i, 1)) (8)

We compare (8) with a further relevant property of MPQIS, i.e., authentication: if agent ¢ receives
a message 1 from agent j, then 7 knows that i has actually been sent by j. This specification can be
expressed as the de re version of (8):

Vuj(Rec(i, j, ) — K;Sent(j,i, 1)) )

Note that, differently from (8), (9) is not monodic.
Even if we allow an agent 7 not to know whether a received message p has actually been sent, that
is, we reject (8), it can be checked on arbitrary MPQIS that the following formula holds:

Y (Fij(Sent(i, j, u) A Rec’ed(j,i, 1)) — D3i'j'(Sent(i', j', ) A Rec’ed(5', i, 11)))

In other words, it is distributed knowledge that a message p has been sent and received as soon as it has
been received. On the other hand, the corresponding monodic formulas

V(35 (Sent(i, j, 1) A Rec’ed(j,i, 1)) — K;35'(Sent(i, j', pu) A Rec’ed(j’, i, 1)))
Vju(Fi(Sent(i, , 1) A Rec'ed(j,i, 1)) — K37 (Sent(i',j, 1) A Rec'ed(j, ', 1))
are not valid for any agent 7, j.

Furthermore, in £}, we can express that an agent i cannot aquire the knowledge that message p has
been sent to her, other than by receiving the message:

Vu(3jSent(j,i, 1) — (~K;35'Sent (5’ i, n)U3j"Rec(i, 5", 1))

Finally, we might want to check whether at a certain point in the evolution of the MPQIS it will be
common knowledge that a message has been sent or received:

Vu(JijSent(i, j, u) — FC(Ii'§'Sent(i', j', 1n))) (10)
Vi(JijRec’ed(i, j, i) — FC(3i'j'Rec’ed (i, j', 1)) (11)

From results in [5] regarding the attainability of common knowledge in systems with unreliable
communication, we may infer that some assumption on channel reliability in MPQIS is needed in order
to validate specifications (10) and (11).

The conclusion we draw from the observations above is that the monodic fragment of the language
L, allows for rich specifications on MPS, notwithstanding the limitation on free variables in modal
contexts.
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5. Axiomatisation

In this section we present a sound and complete axiomatisation of the set of monodic validities in the
class of quantified interpreted systems. This result shows that, even though the language £ is highly ex-
pressive, QIS provide a perfectly adequate semantics for it. This also opens the possibility of developing
automated verification methods for this formalism.

The system QKT is a first-order multi-modal version of the propositional epistemic system S5
combined with the linear temporal logic LT L. Hereafter we list the postulates of Q K'T.,. Note that =
is the inference relation between formulas, while [ is a placeholder for any of the epistemic operators
K;forie A, D,orC.

Definition 5.1. The system QK T}, contains the following schemes of axioms and inference rules, where
#, 1 and y are formulas in L] :

Taut | instances of classic propositional tautologies
MP | ¢ =1, o=

K O¢ = ¢¥) = (Od — Ov)

Tl O¢=-0¢

T2 PUY <V (¢ A O(eUY))

Nec ENQ)

T3 | x = Y AOx = x— ~(eUy)

K O(¢ — ) — (0o — [y)

T o — ¢
¢ — O0¢
5 —-O¢ — O-0¢

Nec | ¢ =Uo¢

D Kip — D¢

Cl1 Co— (pNECP)

C2 | o> (WANEP)=¢—Cy

BF OVzgp Ve O ¢

BF Vz¢ « Vo

Ex Vap — ¢la/t]

Gen | ¢ — Y[z/t] = ¢ — Vi) for z not free in ¢

Table 1. The system QK T,

The operators K;, D, and C' are S5 modalities, while the next () and until I/ operators are axioma-
tised as linear-time modalities. To this we add the classic postulates Fx and Gen for quantification,



8 F. Belardinelli, A. Lomuscio/ First-Order Linear-time Epistemic Logic with Group Knowledge

which are both sound as we are considering a unique domain D of individuals for each QIS. We consider
the standard definitions of proof and theorem: - ¢ means that ¢ € L) is a theorem in QK T}.,.

It is a routine exercise to check that the axioms of Q KT}, are valid on every QIS and the inference
rules preserve validity. As a consequence, we have the following soundness result:

Theorem 5.1. (Soundness)
The system QK T}, is sound with respect to the class QZS of quantified interpreted systems.

The next corollary directly follows from the fact that QZS*Y"¢ is a subset of QZS.

Corollary 5.1. (Soundness)
The system QK T}, is sound with respect to the class QZS*Y"¢ of synchronous QIS.

Now we show that the axioms in QKT are not only necessary, but also sufficient to prove all
monodic validities on Q7S and QZS*Y"°.

5.1. Kripke Models

Although quantified interpreted systems are useful for modeling MAS, to prove the completeness of
QKT! we first introduce an appropriate class of Kripke models, and prove completeness for these
structures. Then we apply a correspondence result between Kripke models and QIS to obtain the desired
result.

Definition 5.2. A Kripke model for L,, is a tuple M = ((N;, <;);c, {~i}tica, D, I) such that:
(1) for j € J, Nj is a copy of the natural numbers with the strict total order <;
(i) fori € A, ~; is an equivalence relation on | J ey Nj;
(iii) D is a non-empty set of individuals;
(iv) the interpretation I is such that I(c) € D, and for n; € N;, I(P* n;) is a k-ary relation on D.
The class of all Kripke models is denoted by K.

A Kripke model is synchronous if for every i € A, nj ~; n’, implies n = n’. By K*¥""¢ we denote the
class of all synchronous Kripke models. The satisfaction relation |= for an assignment o is inductively
defined as follows:

(M",nj) ):Pk(tl,...,tw iff <Ig(t1>,...,fo(tk)> EI(Pk,'I”Lj)
(M, n5) = = iff (M7, nj) [~ 4
(M7, nj) E o — o) iff (M7, n;) & o or (M7, ny) |= o/
(M7, 1)) |= Vo iff  foralla € D, (M) n;) =
(M? ;) b= Ou it (M7 1) o
(M7, n;) = Uy’ iff  there is n; >; n; such that (M7, n}) = 1/
and for all n7, n; <; nf <; n’; implies (M7, n7) = ¢
(M?,n;) = K iff  forall n),, nj ~; n, implies (M7, n’) = 9
(M?,n;) = Dy iff  forall nl, (nj,nl) € (;cq ~i) implies (M7, n%,) 9

(M7,nj) = Cy iff  forallnl, (nj,nl) € (U;cs ~i)* implies (M7, n,) E¢
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where (| J;c 4 ~i)* is the reflexive and transitive closure of the relation | J;c 4 ~i.
We compare Kripke models and quantified interpreted systems by means of a map g : K — OQZS.
Let M = ((Nj, <j)jes,{~i}ica,D,I) be a Kripke model. For every equivalence relation ~;, for

n; € Nj, let the equivalence class [n;]~, = {n, | n; ~; n),} be a local state for agent 4, while
Ujes Nj is the set of local states for the environment. Then define g(M) as the tuple (R, D, I’) where
R contains the runs r; for j € J such that 7;(n) = (n;, [nj]~, ..., [2j]~,.), D is the same as in M,

and I'(P*,rj,n) = I(P* n;). The structure g(M) is a QIS that satisfies the following result:

Lemma 5.1. For every ¢ € L,,,
(M%,nj) E ¢ iff (g(M)7,rj,n) E ¢

We omit the proof of this lemma, which can be easily proved by induction on the lenght of ¢. Note
that if M is synchronous, then also g(M) is synchronous, i.e., g also defines a map from KY€ to

Qz'ssync‘

6. Completeness

The completeness of the system QKT with respect to the classes QZS and QZS*Y"¢ of quantified
interpreted systems is proved by means of a quasimodel construction [6]. In particular, the version of
quasimodels here considered combines the purely epistemic structures in [25] with the purely temporal
structures in [29]. Intuitively, a quasimodel for a monodic formula ¢ € L} is a relational structure
whose points are sets of sets of subformulas of ¢. Each set of sets of subformulas describes a “possible
state of affairs”, and contains sets of subformulas defining the individuals in the point. In what follows
we provide the formal definitions.

Definition 6.1. Given a formula ¢ € L! we denote by sub¢ the set of subformulas of ¢, and define
subcgp = subp U {ECY | C € subp} U{K;Cy | Cyp € subp,i € A}. Further, let subco¢ =
subcdp U{~ | ¢ € subcg} U{OY | ¢ € subcg} U{O~¢ | ¢ € subcd}.

Let suby, ¢ be the subset of subc¢ containing formulas with at most n free variables and let = be
a variable not occurring in ¢, we define sub,¢ = {¢[y/x] | ¥[y] € subip}. Clearly, z is the only free
variable in sub,¢. By con¢ we denote the set of all constants occurring in ¢.

Definition 6.2. (Type)
A type for ¢ is any subset t of sub, ¢ such that for every ¢, x € suby@, ) Y Ax € tiffyp € tand x € t;
and (ii) ¢ € tiff ¢ ¢ t.

This definition of type is completely standard [6, 25, 29]. In what follows we do not distinguish
between a type t and the conjunction /\we (V¥ of its formulas. Note that subg¢ is the set of sentences
in suby¢. Two types t, t' agree on suby¢ iff t N subgp = t' N subyo, i.e., they share the same set of
sentences. Finally, given a type t for ¢ and a constant ¢ € cong, the pair (t, ¢) is called an indexed type
for ¢.

The following definition of state candidate is also standard.
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Definition 6.3. (State Candidate)
Let T be a set of types for ¢ that agree on subg¢, and T°°™ a set containing for each ¢ € con¢ an indexed
type (t, c) such that t € T', then the pair € = (T', 7°°") is a state candidate for ¢.

Given a state candidate € = (7', T°") we define the formula a.¢ as follows:
ae = /\ Jzt[z] AV \/ tlx] A /\ tlx/c]
teT teT (tec)yeTeon

Note that ¢ is monodic. A state candidate € is consistent iff the formula o is consistent with
QKT}, i.e., ¥ ~ag. Consistent state candidates will be the points of our quasimodel. We now define a
relation of suitability for types and state candidates that constitute the relational part of our quasimodel.

Definition 6.4. 1. A pair (t1,t2) of types is O-suitable iff the formula t; A Otz is consistent. A
pair (El, t) is i-suitable iff the formula t; A Kty is consistent, and it is D-suitable iff the formula
1 A D—ty is consistent.

2. A pair (¢, &) of state candidates is Q—sui{able iff the formula ag; A Oave, is consistent. A pair
(€1, Co) is i-suitable iff the formula avg, A K;avg, is consistent, and it is D-suitable iff the formula

ag, N\ Dag, is consistent.
We now introduce the frame underlying the quasimodel for ¢.

Definition 6.5. (Frame)
Let AT = AU{D}. A frame F is a tuple ((N;, <;) e, {<i}iea+) such that:

(i) for j € J, each N; is a copy of the natural numbers with the strict total order <j;
(i) the pair (;c; Nj,Ujc 4+ <i) is a set of disjoint intransitive trees'.

A frame is synchronous if for every | € A*, n; <; n, implies n = n’. Further, we introduce state
functions mapping points in F to consistent state candidates.

Definition 6.6. (State Function)
A state function for ¢ over F is a map f associating with each n; € F a consistent state candidate
f(nj) = &, for ¢ such that:

(i) the domain of f is not empty;
(i) if f is defined on n; then § is defined on n + 1;;
(iii) if f is defined on n; and n; < n;, then f is defined on n;-,.

In what follows we often do not distinguish between a state n; and its associated state candidate
f(nj) = an'

Finally, we provide the definition of objects, which correspond to the runs in [25, 29]. We use this
name to avoid confusion with the runs in QIS.

"The pair (U, R) is an intransitive tree iff (i) there is a root ug € U such that uo R*u for every u € U, where R* is the reflexive
and transitive closure of R; (ii) for every u € U the set {u’ € U | u'R*u} is finite and linearly ordered by R*; (iii) every
u € U but the root ug has exactly one predecessor; (iv) the root ug is irreflexive.
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Definition 6.7. (Object)
Let { be a state function for ¢ over F. An object in (F, f) is a map p associating with every n; € Dom(f)
atype p(n;) in Ty, such that:

(i) the pair (p(n;), p(n + 1;)) is (O-suitable;
(i) if nj <; n’, then p(n;) and p(n’,) are l-suitable;
2j

(i) xU € p(ny) iff there is n’; >; n; such that ¢ € p(n}) and x € p(n}) for all n; <; n <; n’;

(iv) if K3 € p(n;) then for some ), nj <; ny, and ¢ & p(n,);
(v) if =Dy € p(n;) then for some n’;,, n; <p 1), and ¢ & p(nf,);
(vi) if ~Cy € p(n;) then for some n’,, (nj, 1)) € (Ujea+ <1)* and ¢ ¢ p(nl).

A map p associating with every n; € Dom(f) a type p(n;) € T, such that only conditions (i)
and (iii) hold is a femporal object. Similarly, a map p associating with every n; € Dom(f) a type
p(n;) €T, n,; such that only conditions (ii) and (iv)-(vi) hold is an epistemic object. Now we have all the
elements to give the definition of quasimodels.

Definition 6.8. (Quasimodel)
A quasimodel for ¢ is a tuple Q = (F, f, O) such that f is a state function over F and

(1) ¢ €t, forsomet € Tnj and Tn]. € @nj;
(ii) every pair (&, €,11;,) is O-suitable, and if n; <; n;, then &, and €,/ are [-suitable;
J
(iii) for every t € T),; there exists an object p € O such that p(n;) = t;
(iv) for every c € cong the function p. such that pc(n;) = t for (t,c) € Ti°" is an object in O.

As first step in the completeness proof we show that for monodic formulas satisfability in quasimod-
els implies satisfability in Kripke models.

Lemma 6.1. If a monodic formula ¢ € £} has a quasimodel £, then ¢ is satisfiable in a Kripke model.

Proof:
The proof of this lemma is similar to those of Lemmas 11.72 and 12.9 in [6].

First, for every monodic formula ¢p € L} of the form K;x, Dx, Cx, Qx, or xildxe, if ¢ is a
sentence then we introduce a propositional variable p,, and py, is the surrogate of 1); if x is the only free
variable in 1, then we introduce a unary predicative letter Pi and the formula Pqi (x) is the surrogate of

1. Given a formula ¢ € £}, we denote by ¢ the formula obtained from ¢ by substituting all its modal
subformulas that are not within the scope of another modal operator with their surrogates.

Since every state candidate € in the quasimodel £ is consistent and the system QK T\, is based on
first-order logic, the formula @ is consistent with first-order (non-modal) logic. As a consequence, by
completeness of first-order logic, there is a first-order structure Z = (I, D) where D is a non-empty set
of individuals and I is an interpretation on D, which satisfies g, that is, Z |= @ for some assignment
otoD.
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Now consider a cardinal k > N greater than the cardinality of the set O of all objects in £ and
define D = {(p,&) | p € O,& < k}. By the theory of first-order logic, we can assume without loss of
generality that D is the domain of the first-order structure Z,,, = (I,,,, D) satisfying Qg s that is, all the
structures Inj share a common domain D. Moreover, we can assume that for every t € T, nj (p,&) € D,
p(n;) = tiff I} |= t[z] for o(x) = (p, &), and I, (c) = (p,0) for every ¢ € cone.

Let us now define the Kripke model M. Let F = ((Nj, <j)jecs, {<i}ica+) be the frame of the
quasimodel 9, we define M as ((N;, <;);cs, {Ri}ica, D, I) where each sequence N; of naturals in F
belongs also to M each relation R; is the reflexive, symmetric and transitive closure of <; U <p; D is
defined as above; and the interpretation / is obtained by gluing together the various I, .

By induction on the length of 1) € sub; ¢ we can show that for every assignment o,

I3 ED i (MOng) E

The base of induction follows by the definition of I. The step for propositional connectives and
quantifiers follows by the induction hypothesis and equations ¢1 — ¥y = Y1 — s, ~1 = —1,
Vx, = Va;. To deal with modal operators we state the following remark; the relevant cases directly
follow.

Remark 6.1. For every p € O and n; € N;
() Qv € plny) iff € plnt1y)
(11) Ky € p(ny) iff forevery )y, (nj,n}) € R; implies ¢ € p(n’)
(#11) Dy € p(ny) iff forevery nly, (nj,ny) € ﬂ R; implies ¢ € p(n)
i€A
(iv) Cy € p(ny) iff forevery nly, (nj,ny) € ( U Ri> implies ¢ € p(n)
i€A

The proof of this remark is similar to Lemma 12.10 in [6].
To complete the proof of Lemma 6.1 we remark that by definition of quasimodel ¢ € t, for some
te T, and T, € &,,, therefore we obtain that ¢ is satisfied in the Kripke model M. O

Note that if £ is a synchronous quasimodel for ¢, then the Kripke model built from £ in Theorem
6.1 is also synchronous.
Now it is left to prove the existence of such a quasimodel for ¢.

Lemma 6.2. If ¢ € L) is a consistent monodic formula, then there exists a (synchronous) quasimodel
for ¢.

In the proof we use the following partial results. These lemmas, which we state without proof, are
modifications of Lemmas 11.73 and 12.11 in [6].

Lemma 6.3. Let € be a consistent state candidate, then we can construct an infinite sequence {&, },en
of state candidates such that € = €y and

(i) every pair (€, €, 1) is ()-suitable;
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(ii) for every t € T,, there exists a temporal object p such that p(n) = t;

(iii) for every c € con¢ the function p. such that p.(n) = t, for (t,c) € T);°", is a temporal object.

Lemma 6.4. If ¢ is a consistent state candidate, then we can construct a structure W = (W,
<1, .-, =m,=p) such that W is a non-empty set of state candidates, and the pair (W, J,c 4+ <i) is
a tree. Furthermore,

(i) € <; ¢ if and only if ¢ and ¢’ are [-suitable;
(ii) forevery t € T, w € W, there exists an epistemic object p such that p(w) = t;
(iii) for every c € con¢ the function p. such that p.(w) = t, for (t,c) € TS, is an epistemic object.

We can now prove Lemma 6.2.

Proof:

Let 74 be the disjunction of all formulas ¢ for all state candidates € for ¢. We denote by 74 the formula
obtained from 7, by substituting all its modal subformulas that are not within the scope of another modal
operator with their surrogates. Note that 74 is true in every first-order model, so by completeness of first-
order logic we have that - 7. Since ¢ is consistent, also ¢ A 7y is consistent. Then there is a consistent
state candidate € = (7', 7°°") such that ¢ € t for some t € T'.

We define the structure (F,f) underlying the quasimodel £ in steps. At step 2n+1 we extend the
structure with a chain N of state candidates for every state candidate ¢ introduced at step 2n. At stage
2n+2 we provide every state candidate introduced at step 2n+1 with a tree of state candidates as shown
in Lemma 6.4.

We start with the base of induction. Define Fo = ((N;, <;)jeJ,, {=<? }1ca+) where Jy is empty and
forevery [ € AT, <? is also empty. The function fg is empty as well. We also consider a set Uy which
contains only the state candidate € defined above, and assume U_1 = ().

At step 2n+1 the frame Fo,11 is defined as the tuple ((Nj, <j)jesnn 1s {=<7"" }ica+) such that
Jont1 = Jan U{Ua, \ Usp—1} and foreach [ € AT, <l2"+1:<12". Further, for every u € Usy, \ Ugp—1
by Lemma 6.3 there exists a sequence {ug }ren of state candidates such that uyp = u. Thus, the state
function foy, is extended to fo,,41 such that fo,1(n,) = u, for u € Usy, \ Ua,—1, and fo,+1 is equal to
for, on all the other u € Usy,_1. Finally, Uspi1 = UjernH N;.

For defining Fs,, 42 we take Jop, 12 = Jop41. Moreover, by Lemma 6.4 for every u € Uapq1 \ Usy,
there is a structure (W, {<;}ica+) such that the pair (W, ;e 4+ <i) is a tree. We define <7""2 as
-<12”+1 U <, foreach [ € A™. Finally, fo,, 12 = font1 and Usp 9 = Uspy1 U Uu€U2n+1\U2n W,.

Now consider the quasimodel Q = (F,f, O) where F = ((N;, <;);es, {<i}ica+) such that J =
Uren Ik and <= Ugey <F forl € A", § = Upen fr» and O is the set of all objects on (F, f). By
Lemmas 6.3 and 6.4 and by construction of £ we can show that O is non-empty and the objects in O
satisfy the constraints on quasimodels. Since ¢ € t for some t € € and € € £, we have that Q is a
quasimodel for ¢.

Furthermore, if we want to obtain a synchronous quasimodel from the construction above we modify
the step 2n+1 for n > 1 as follows. For every u € Usy, \ Uaj,—1 by construction there exists a structure
(W, {=<1}1ca+) for some v/ € Usp,—q such that u € W,,. Moreover, for some j € Jo,, m € N,
u = m;. Now, by Lemma 6.3 there exists a sequence {uy}rcn of state candidates such that vy = w,
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but now we define the state function fo,, 41 such that fo,,+1((m + k),,) = uy for k € N. It it not difficult
to show that by this construction the quasimodel £ for ¢ is synchronous. This completes the proof of
Lemma 6.2. O

By combining Lemmas 6.2 and 6.1 we can state the main result of this paper.

Theorem 6.1. (Completeness)
The system QK T}, is complete with respect to the class QZS of quantified interpreted systems.

Assume that /¥ ¢, then —¢ is consistent and by Lemmas 6.2 and 6.1 there is a Kripke model M
satisfying —¢. By Lemma 5.1 the QIS g(M) does not validate ¢, therefore Q7S (= ¢. The following
result can be proved similarly.

Theorem 6.2. (Completeness)
The system QK T}, is complete with respect to the class QZS*Y"¢ of synchronous QIS.

7. Conclusions and Further Work

In this paper we analysed a quantified version of interpreted systems, the typical formalism for temporal
epistemic logic in multi-agent systems, and proved completeness for the system QK T}, defined on the
monodic fragment of the first-order language L£,, that includes linear-time modalities and epistemic
operators for group knowledge. This result makes use of previous contributions on the axiomatisation of
first-order epistemic and temporal logic [25, 29]. Further, we showed that a wide range of specifications
on message passing systems can be expressed in the monodic fragment of £,,.

Still, further work is needed in this line of research. The present paper deals with the class QZS
of all quantified interpreted systems and the class QZS*Y"¢ of synchronous QIS. In the axiomatisation
QKT} for these classes there is no interaction between temporal and epistemic operators, but interaction
is essential to express epistemic concepts such as perfect recall and no learning. These refinements have
been widely studied at the propositional level [8, 10], but it is not clear to which extent these results apply
to the first order.

Finally, another issue not tackled in this paper is decidability. We believe that by combining the
techniques in [15, 28] it is likely to find decidable monodic fragments of first-order temporal epistemic
logic. However, this topic demands further investigations.
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