
Assume-Guarantee Reasoning with Local

Specifications

Alessio Lomuscio1, Ben Strulo2, Nigel Walker2, and Peng Wu3

1 Department of Computing, Imperial College London, UK
a.lomuscio@imperial.ac.uk

2 BT Innovate, Adastral Park, UK
{ben.strulo,nigel.g.walker}@bt.com

3 State Key Laboratory of Computer Science, Institute of Software, Chinese
Academy of Sciences, China

wp@ios.ac.cn

Abstract. We investigate assume-guarantee reasoning for global spec-
ifications consisting of conjunctions of local specifications. We present
a sound and complete assume-guarantee rule that permits reasoning
about individual modules for local specifications and draws conclusions
on global specifications. We illustrate our approach with an example
from the field of network congestion control, where different agents are
responsible for controlling packet flow across a shared infrastructure. In
this context, we derive an assume-guarantee rule for system stability, and
show that this rule is valuable to reason about any number of agents,
any initial flow configuration, and any topology of bounded degree.

1 Introduction

Assume-Guarantee reasoning [21, 12, 5] is one of the key techniques to alleviate
state explosion in model checking. In a system composed of a number of reactive
modules each module can be regarded as interacting with an abstract environ-
ment representing the rest of the system. Properties are then verified with the aid
of assumptions characterising the environment of each module. General assume-
guarantee rules have been proposed for safety and liveness properties over the
last decade [11, 4, 7, 8]. However, large assumptions can still cause scalability is-
sues. The motivation of this paper is to investigate possible ways to reduce the
size of the assumptions to be identified and to reuse them for compositional
verification.

Our starting point is the observation that a module in a system typically
reacts directly with relatively few modules in its environment. However, under
general assume-guarantee rules, the assumptions generated from a system prop-
erty do not exploit this neighbourhood dependency. Consequently, assumptions
for a module may contain redundant information about parts of the system that
the module does not directly interact with. Moreover, any new modules added
to the system can contribute with further redundancy in the assumptions.

2 A. Lomuscio, B. Strulo, N. Walker, P. Wu

In this paper we show that, for a system property that can be represented
as the conjunction of local specifications on individual modules, these scalabil-
ity issues can be resolved by generating assumptions from local specifications.
Our main contribution is a new presentation of the assume-guarantee rules to
permit reasoning about individual modules for local specifications, yet drawing
conclusions on properties of the system as a whole.

Firstly, we present a simple assume-guarantee rule R1 that we prove to be
sound for local specifications. Through a counterexample, we show that this sim-
ple rule is not complete because it exploits only the direct dependency between
modules.

We then extend rule R1 towards completeness. This leads to a bounded
assume-guarantee rule Rπ that we prove to be sound and complete for local
specifications. It explores the neighbourhood around each module up to the
depth π of the dependency closure of the system. We use this rule to propose
a bounded assume-guarantee reasoning approach, in which the dependency be-
tween modules is exploited incrementally.

We evaluate the approach through a case study of an optimisation-based
congestion control system proposed by Kelly and Voice [15]. The optimisation
approach allows a distributed solution for network congestion control. The fact
that a congestion control system is stable means that each source in the system
reaches an equilibrium flow configuration on the routes available to the source.
We analyse the stability of the system by reasoning about local stability of its
individual sources. The case study shows that an instantiation of rule Rπ for
system stability can be applied for reasoning about any number of sources, any
initial flow configuration, and any topology of bounded degree. To the best of
our knowledge, previous work on model checking of networked systems focused
on verifying network protocols under given topologies. The assume-guarantee
framework developed in this paper supports verification of network-wide objec-
tives irrespective of the underlying network topologies.

Related Work. The history of compositional verification of concurrent systems
dates back to late 70s and 80s with the pioneering works by Francez and Pnueli
[9], Jones [14] and Misra and Chandy [21]. Since then, considerable effort was
devoted to studying the soundness of circular assume-guarantee reasoning. Maier
[20] showed that compositional circular assume-guarantee rules cannot be both
sound and complete. Kupferman and Vardi [16] presented an automata-theoretic
approach to model checking assume-guarantee assertions.

More recently, Giannakopoulou, Păsăreanu et al. [11, 4, 7, 10, 24] proposed
sound and complete non-circular assume-guarantee rules for safety properties,
with support of learning based assumption generation. Nam, Alur et al. [22, 23]
proposed a symbolic approach to learning-based assume-guarantee reasoning.
Farzan, Chen et al. [8] extended the assume-guarantee rules to liveness prop-
erties, based on the fact that ω-regular languages preserve the essential closure
properties of regular languages.

The idea of reasoning about local specifications has appeared in early works
on compositional verification [1, 13], where sound circular assume-guarantee rules

Assume-Guarantee Reasoning with Local Specifications 3

were proposed for safety properties. This idea is further expanded in this paper to
reduce the size of assumptions, and hence to improve the scalability of assume-
guarantee reasoning. Moreover, the bounded rule here presented is shown to
be sound and complete and applies to liveness properties. Our approach can
also be implemented using symbolic representation, and integrated with learning
algorithms for automated assumption generation. Additionally, learning-based
methodologies can also benefit from our approach by exploiting assumptions
over local alphabets, instead of the global alphabet.

The rest of this paper is organised as follows. The simple rule R1 and the
bounded rule Rπ are presented in Section 2 and Section 3, respectively. Section
4 illustrates the case study of network congestion control, with the experimental
results reported and discussed in Section 5. The conclusions of this work are
summarised in Section 6.

2 Assume-Guarantee Reasoning

In this section we first introduce the notion of module in concurrent systems.
Then, we present a simple assume-guarantee rule R1 that permits reasoning
about individual modules for local specifications.
Modules. Technically we adopt the basic notion of reactive module [2] to rep-
resent concurrent systems that consist of multiple interacting agents. A module
is associated with two classes of variables: state variables and input variables.
The former is controlled by the module and thus defines the module’s state; the
latter is controlled by others that the module reacts directly with.

We assume a domain D of all variables. For a set X of variables, let DX be
the set of all valuation functions on X . For valuation ρ : X → D and Y ⊆ X ,
ρ↾Y : Y → D is the restriction of ρ to Y , i.e., (ρ↾Y)(x) = ρ(x) for any x ∈ Y .

For valuations ρ1 : X1 → D and ρ2 : X2 → D, ρ1 and ρ2 are compatible,
denoted ρ1 ∼ ρ2, if ρ1(x) = ρ2(x) for any x ∈ X1∩X2. For compatible valuations
ρ1 and ρ2, ρ1∪ρ2 is the extension of ρ1 and ρ2 toX1∪X2, i.e., (ρ1∪ρ2)(x) = ρ1(x)
for x ∈ X1\X2, (ρ1 ∪ ρ2)(x) = ρ2(x) for x ∈ X2\X1 and (ρ1 ∪ ρ2)(x) = ρ1(x) =
ρ2(x) for x ∈ X1 ∩X2.

Definition 1 (Module). A module is a tuple M = (X, I,Q, T, λ, q0), where

− X is a finite set of state variables controlled by M ;

− I is a finite set of input variables that module M depends on with X∩I = ∅;
− Q is a finite set of states;

− λ : Q→ DX labels each state q ∈ Q with a valuation λ(q) : X → D;

− T ⊆ Q × DI × Q is a transition relation; each transition (q, α, q′) ∈ T ,

denoted q
α
−→T q′, means that the state of M evolves from q to q′ under

input α : I → D;

− q0 ∈ Q is the initial state.

An infinite trace σ of module M is an infinite sequence q0α0q1α1 . . . such
that qi

αi−→T qi+1 for any i ≥ 0. Let inf (σ) be the set of all the states that are
visited infinitely often in σ.

4 A. Lomuscio, B. Strulo, N. Walker, P. Wu

DX is referred to as the local alphabet of module M , where each ρ ∈ DX

is a valuation on X . An infinite word w = ρ0ρ1 . . . on the local alphabet DX

is derived by M if there exists an infinite trace q0α0q1α1 . . . of module M such
that ρi = λ(qi) for any i ≥ 0.

DI is referred to as the input alphabet of module M , where each α ∈ DI

is a valuation on I. An infinite word θ = α0α1 . . . on the input alphabet DI is
admitted by M if there exists an infinite trace q0α0q1α1 . . . such that qi ∈ Q for
any i ≥ 0. Let I(M) be the set of the input words admitted by M . We say that
module M is closed if I = ∅.

We define the composition operator for modules. We choose a notion of
composition that explicitly supports asynchrony, because in distributed envi-
ronments asynchrony typically arises externally from network communication or
scheduling.

Definition 2 (Composition). For modules M1 = (X1, I1, Q1, T1, λ1, q01
) and

M2 = (X2, I2, Q2, T2, λ2, q02
), the composition of M1 with M2 is a composite

module M1|M2 = (X1 ∪X2, (I1 ∪ I2)\(X1 ∪X2), Q, T, λ, q0), where

− Q ⊆ Q1 × Q2 is the maximal set such that λ1(q1) ∼ λ2(q2) for each state

(q1, q2) ∈ Q;

− λ : Q → DX1∪X2 labels each state (q1, q2) ∈ Q with the valuation λ1(q1) ∪
λ2(q2);

− T is the minimal transition relation derived by the following composition

rules:

asynL

q1
α1−→T1

q′1 q2
α2−→T2

q′2

(q1, q2)
α
−→T (q′1, q2)

asynR

q1
α1−→T1

q′1 q2
α2−→T2

q′2

(q1, q2)
α
−→T (q1, q′2)

syn
q1

α1−→T1
q′1 q2

α2−→T2
q′2

(q1, q2)
α
−→T (q′1, q

′
2)

where λ(q1) ∼ λ(q2), λ(q
′
1) ∼ λ(q2), λ(q

′
2) ∼ λ(q1), λ(q

′
1) ∼ λ(q′2), λ(q2) ∼

α1, λ(q1) ∼ α2, α1 ∼ α2, and α = (α1 ∪ α2)↾I .
− q0 = (q01

, q02
) ∈ Q.

In rule asynL (respectively, asynR) onlyM1 (respectively,M2) evolves; while
in rule syn both M1 and M2 evolve simultaneously. In the presence of several
modules, the composition rules above can allow only one, some, or all modules
evolve simultaneously. The notion of module and composition can be imple-
mented by existing reactive module languages [3, 6].

For an infinite word w = ρ0ρ1 . . . derived by M1|M2, we define the notion
of stuttering projection to hide asynchronous transitions that do not affect the
variables in X1 or X2. For Z ⊆ X1 ∪ X2, a stuttering projection of w on Z,
denoted w|Z , is an infinite word ρ′0ρ

′
1 . . . , where there exists 0 = j0 < j1 < · · ·

such that ρ′i = ρji ↾Z= ρji+1 ↾Z= · · · = ρji+1−1 ↾Z for any i ≥ 0. Specifically,
the restriction of w on Z, denoted w ↾Z , is the infinite word ρ′0ρ

′
1 . . . , where

ρ′i = ρi ↾Z for any i ≥ 0.

Thus, a closed concurrent system with a finite set X of state variables can be
represented as the composition of n modules Mi = (Xi, Ii, QMi

, TMi
, λMi

, q0Mi
),

Assume-Guarantee Reasoning with Local Specifications 5

where Xi ∩Xj = ∅ for any 1 ≤ i 6= j ≤ n,
n
∪
i=1

Xi = X and
n
∪
i=1

Ii ⊆ X . DX is

then referred to as the global alphabet of the system M1| · · · |Mn.

Assumptions can then be defined as extended modules with accepting states.
In this paper we focus on liveness properties; therefore, we adopt the formalism
of Büchi automaton for the definition of assumptions. However, the assume-
guarantee rules presented later also apply to safety properties (for which as-
sumptions are then defined as finite automata [4]). We do not discuss safety
properties further.

Definition 3 (Assumption). An assumption is a tuple A = (X, I,Q, T, λ, q0, F),
where X, I,Q, T, λ, q0 are as in Definition 1, and F ⊆ Q is a finite set of accept-

ing states.

The terminology defined for modules also applies to assumptions. So, an
infinite word ρ0ρ1 . . . on alphabet DX is accepted by A if there exists an infinite
trace σ = q0α0q1α1 . . . , referred to as an accepting trace, such that inf (σ)∩F 6= ∅
and ρi = λ(qi) for any i ≥ 0. The language L(A) accepted by A consists of all
the infinite words accepted by A. Let coA be the complement of assumption A

accepting the complement language ΩX\L(A), where ΩX is the set of infinite
words on alphabet DX .

The notion of composition can be extended to assumptions. For module
M = (X1, I1, Q1, T1, λ1, q01

) and assumption A = (X2, I2, Q2, T2, λ2, q02
, FA),

the composition ofM with A is an extended moduleM |A = (X, I,Q, T, λ, q0, F),
whereX, I,Q, T, λ, q0 are as in Definition 2 and F = {(q1, q2) ∈ Q | q2 ∈ FA}. For
extended modules coAi = (Xi, Ii, Qi, Ti, λi, q0i

, Fi) (i = 1, 2), the composition of
coA1 with coA2 is an extended module coA1|coA2 = (X, I,Q, T, λ, q0, F), where
X, I,Q, T, λ, q0 are as in Definition 2 and F = {(q1, q2) ∈ Q | q1 ∈ F1, q2 ∈ F2}.

The following definition formalises the notion of guarantee in the context
above.

Definition 4 (Guarantee). For k modules Mi = (Xi, Ii, Qi, Ti, λi, q0i
), 1 ≤

k ≤ n, and an assumption A = (XA, IA, QA, TA, λA, q0A
, FA) such that

− Xi ∩Xj = ∅ for any 1 ≤ i 6= j ≤ k;
− Mi1 , . . . ,Mik′

(1 ≤ i1, . . . , ik′ ≤ k) are all the k′ ≤ k modules such that

XA ∩XMij
6= ∅ for 1 ≤ j ≤ k′;

− XA ⊆
k′

∪
j=1

XMij
,

then M1| · · · |Mk guarantees A, denoted M1| · · · |Mk � A, if for any infinite word

w derived by M1| · · · |Mk and any stuttering projection w′ of w on
k′

∪
j=1

XMij
that

can be derived by Mi1 | · · · |Mik′
, w′ ↾XA

is accepted by A.

Note that, if k′ = k, i.e., XA ∩ Xi 6= ∅ for any 1 ≤ i ≤ k, M1| · · · |Mk � A

simply means that for any infinite word w derived by M1| · · · |Mk, we have that
w ↾XA

is accepted by A.

6 A. Lomuscio, B. Strulo, N. Walker, P. Wu

Simple Assume-Guarantee Rule. Consider the system M1| · · · |Mn and a
global specification ψ on X that can be represented as the conjunction of lo-

cal specifications ϕi on Xi ∪ Ii such that ψ ⇔
n
∧
i=1

ϕi. The general assume-

guarantee approach [11, 4, 7, 8] either generates assumptions for each module
from the global specification and then checks whether these assumptions may
collectively violate it (as shown by rule sym below); or generates an assump-
tion for some module (e.g., M1) from the global specification and then checks
whether the assumption can be guaranteed by the rest of modules (as shown by
rule asym below).

sym

∀1 ≤ i ≤ n, Mi|Ai � ψ

asym

M1|A1 � ψ

L(coA1| · · · |coAn) = ∅ M2| · · · |Mn � A1

M1| · · · |Mn � ψ M1| · · · |Mn � ψ

Thus, it is a common practice to generate assumptions from global specifi-
cations. However, in concurrent systems, each module typically control its state
variables under inputs from only a small proportion of other modules. Therefore,
in standard methodologies:
− each assumption Ai for module Mi may contain irrelevant valuations of

state variables that module Mi does not depend on. This makes the size of
assumption Ai larger than necessary.

− whenever the system is extended, each assumption Ai may have to be mod-
ified to incorporate the state variables of the additional modules. Hence,
assumptions already generated for the existing modules cannot be reused
for verifying the extended system.

We propose to avoid these issues by assigning each module Mi with the
corresponding local specification ϕi. Inspired by rules sym and asym, we present

below rules R0 and R1, respectively. Recall that ψ ⇔
n
∧
i=1

ϕi.

R0

∀1 ≤ i ≤ n, Mi|Ai � ϕi

R1

∀1 ≤ i ≤ n,
Mi|Ai � ϕi

L(coA1| · · · |coAn) = ∅ Mi1 | · · · |Miki
� Ai

M1| · · · |Mn �
n
∧
i=1

ϕi M1| · · · |Mn �
n
∧
i=1

ϕi

In rules sym and asym assumptions Ai are all supposed to be generated from
the global specification ψ (on X); while in rules R0 and R1 each assumption
Ai is to be generated from the corresponding local specification ϕi (on Xi ∪ Ii).
In this way the size of assumption Ai can be reduced because only variables in
Xi ∪ Ii (which is a subset of X) have to be concerned with assumption Ai.
Unsound Rule R0. As a side effect in rule R0, assumption Ai may admit more
interactions with moduleMi than can be admitted by the assumptions generated
from the global specification ψ. This is because the variables in X\(Xi ∪ Ii) are
not constrained by the local specification ϕi. Therefore, the tentative rule R0

above does not preserve soundness, though its completeness is not affected by the
weaker assumptions. We refer to our technical report [18] for a counterexample
where rule R0 fails.

Assume-Guarantee Reasoning with Local Specifications 7

Sound Rule R1. Modules Mi1 , . . . ,Miki
(ki ≥ 1) in rule R1 are all the ki

neighbours of module Mi that control its input variables in Ii (i.e., Ii ⊆
ki

∪
j=1

Xij

and Ii∩Xij 6= ∅ for any 1 ≤ j ≤ ki). Theorem 1 shows the soundness of rule R1

for local specifications.

Theorem 1 (Soundness). If for any module Mi (1 ≤ i ≤ n) there exists an

assumption Ai such that Mi|Ai � ϕi and Mi1 | · · · |Miki
� Ai, then M1| · · · |Mn �

n
∧
i=1

ϕi.

Proof. By contradiction. Consider an infinite word w = ρ0ρ1 . . . on the global
alphabet (i.e., each ρi is a valuation onX) that makes the conclusion fail on some
ϕj (1 ≤ j ≤ n). Then, since the state variables in Xj are exclusively controlled
by Mj , any stuttering projection w|Xj∪Ij

would not be accepted by Mj|Aj and
hence any stuttering projection w|Ij

would not be accepted by Aj .
However, the variables in Xjl (1 ≤ l ≤ kj) are exclusively controlled by Mjl .

By the composition rules in Definition 2, there exists a stuttering projection of w

on
kj

∪
l=1

Xjl , denoted w′, that is derived by Mj1 | · · · |Mjkj
. Since Ij ⊆

kj

∪
l=1

Xjl and

Mj1 | · · · |Mjkj
� Aj , we have that w′ ↾Ij

is accepted by Aj . This is a contradiction

because w′ ↾Ij
is also a stuttering projection of w on Ij .

Unfortunately, rule R1 is not complete. In fact, for each module Mi, its
neighbour modules are isolated from the system when being examined against
assumption Ai. This ignores the impact of the rest of modules on its neighbour
modules. For example, consider a system consisting of the following four modules
Mi (1 ≤ i ≤ 4):

Mi Xi Ii Transition Function
M1 {x1} {x2, x3} x′1 = x2 − x3

M2 {x2} {x4} x′2 = x2 − x4

M3 {x3} {x4} x′3 = x3 + x4

M4 {x4} {x2, x3} x′4 =







1 x2 > x3 and x4 > 0
−1 x2 < x3 and x4 < 0

0 otherwise

Let x′ be the next value of variable x. Then, for each module Mi, the CTL
formula AFAG (∧

x∈Xi∪Ii

(x′ = x)) specifies that the values of the variables in

Xi ∪ Ii will always eventually remain unchanged for ever.
With an initial state (x1, x2, x3, x4) = (u−v, u, v, 1) for any u > v ≥ 0, it can

be seen that M1|M2|M3|M4 �
4
∧
i=1

AFAG (∧
x∈Xi∪Ii

(x′ = x)). This is because x2

and x3 evolve by converging in a step of size x4, until x2 and x3 meet or just
cross over each other. Then, the system M1|M2|M3|M4 reaches a stable state
where x4 = 0.

However, by M2|M3 itself, x2 and x3 may diverge from each other. Hence,
such divergent sequence of inputs (x2, x3) cannot lead M1 to stabilising x1,

8 A. Lomuscio, B. Strulo, N. Walker, P. Wu

and so cannot be accepted by any assumption A1 that satisfies the premise
M1|A1 � AFAG ∧

x∈X1∪I1
(x′ = x).

3 Bounded Assume-Guarantee Reasoning

In this section we modify rule R1 to achieve completeness by exploiting the
neighbourhood dependency between modules. This results in a “bounded” rule
Rπ, which defines a bounded assume-guarantee reasoning approach.

Let D = {(M1,M2) | X2∩I1 6= ∅} be the direct dependency relation between
the modules of the system M1| · · · |Mn. (M1,M2) ∈ D means that module M1

depends on the inputs from (or reacts directly with) module M2. Then, the
k-dependency relation Dk is defined recursively as follows: D1 = D and Dk =
Dk−1 ∪ (Dk−1 ◦ D) for k > 1, where Dk−1 ◦ D is the composition of Dk−1 with
D.

For module Mi let N k
i be the set of all the modules M except Mi such that

(Mi,M) ∈ Dk, and Cki be the composition of all the modules in N k
i . Then, rule

R1 can be extended further to rule Rk as follows:

Rk

∀1 ≤ i ≤ n,
Mi|Ai � ϕi
Cki � Ai

M1| · · · |Mn �
n
∧
i=1

ϕi

Informally, for each module Mi, rule R1 involves reasoning about its neigh-
bour modules only; while rule Rk checks all the modules within the range of k
hops around module Mi. Similarly, it can be proved that rule Rk is sound for
any k ≥ 1.

Theorem 2 (Soundness). Given k ≥ 1, if for any module Mi (1 ≤ i ≤
n), there exists an assumption Ai such that Mi|Ai � ϕi and Cki � Ai, then

M1| · · · |Mn �
n
∧
i=1

ϕi.

Proof. By contradiction. The proof is similar to that of Theorem 1.

If the modules within k hops around module Mi can together guarantee
assumption Ai, then such guarantee is preserved by the modules within k + 1
hops. This is because assumption Ai can already be guaranteed regardless of the
interactions with the additional modules. Based on this observation, Theorem 3
relates rule Rk with rule Rk+1.

Theorem 3. Let Ai be an assumption for module Mi. Then, Cki � Ai implies

Ck+1
i � Ai.

Proof. By the definition of Dk, we have N k
i ⊆ N

k+1
i . So, Ii ⊆ ∪

Mj∈Nk
i

Xj ⊆

∪
Mj∈Nk+1

i

Xj . For any infinite word w derived by Ck+1
i , there exists a stuttering

projection of w on ∪
Mj∈Nk

i

Xj , denoted w′, that can be derived by Cki . Since

Cki � Ai, w
′ ↾Ii

would be accepted by Ai for any such w′.

Assume-Guarantee Reasoning with Local Specifications 9

Since the system consists of a finite number of state variables, there exists
a transitive dependency closure Dπ (π ≥ 1) such that Dπ = Dπ+1. Theorem 4
shows that rule Rπ is complete for local specifications.

Theorem 4 (Completeness). Suppose Dπ is the transition dependency clo-

sure of the system M1| · · · |Mn. If M1| · · · |Mn �
n
∧
i=1

ϕi, then for each module

Mi, there exists an assumption Ai such that Mi|Ai � ϕi and Cπi � Ai.

Proof. By construction. For each module Mi, Cπi could be extended as such
assumption Ai by appointing all states in Cπi as accepting states. This is because

for any 1 ≤ j ≤ k,
n
∧
i=1

ϕi implies ϕj , and the variables in Xj are exclusively

controlled by Mj that is independent of modules not in Mj |Cπj .

As a corollary of theorems 2, 3 and 4, rule Rπ could be reformulated as rule
Rπ below, which is also sound and complete for local specifications.

Rπ

∀1 ≤ i ≤ n,
Mi|Ai � ϕi

∃1 ≤ di ≤ π, C
di

i � Ai

M1| · · · |Mn �
n
∧
i=1

ϕi

Rule Rπ can be applied incrementally for compositional verification of con-
current systems. For the sake of generality and reusability, we opt for the weakest
assumption WAi [4, 22] that admits as many as possible sequences of inputs to
module Mi without violating the local specification ϕi. For module Mi, the
weakest assumption WAi is an assumption such that
− L(WAi) ⊆ I(Mi) and Mi|WAi � ϕi;
− L(Ai) ⊆ L(WAi) for any assumption Ai such that L(Ai) ⊆ I(Mi) and
Mi|Ai � ϕi.

Then, the verification task for checking whether the system M1| · · · |Mn sat-

isfies the global specification ψ (⇔
n
∧
i=1

ϕi) can be decomposed into n parallel

sub-tasks. For each pair of module Mi and local specification ϕi, we envisage
the following procedure:

1: Generate the weakest assumption WAi from the local specification ϕi;
2: di ← 1;
3: while Cdi

i 6� WAi do

4: if N di

i 6= N
di+1
i then

5: di ← di + 1;
6: else
7: return false;
8: return true;

The weakest assumption WAi is suitable for checking an increasing number
of modules as the while-loop continues (Line 3). Since the number of modules is
finite, this procedure will terminate: either the assumption WAi is guaranteed
(Line 8), or all the modules that Mi reacts with have been checked (Line 7).

10 A. Lomuscio, B. Strulo, N. Walker, P. Wu

4 Case Study

One of our motivations for investigating assume-guarantee reasoning was to
broaden the range of applications in the area of network control. We partic-
ularly wish to reason about the overall objectives or behaviour of the control
algorithm implemented by a protocol. This section illustrates an application of
rule Rπ to verify the stability of an optimisation-based congestion control sys-
tem. Both the dynamic system and the stability property exhibit compositional
structures. We refer to our previous work [17] for more details about the system
and the property we considered.
Multi-Path Congestion Control. For tractability, we devise a discrete version
of the fluid-flow congestion control algorithm proposed by Kelly and Voice [15].

Consider a network in which a finite number of sources communicate with
a finite number of destinations. Between each pair of source and destination
a number of routes have been provisioned. Let r ∈ s denote that route r is
available to source s and s(r) be the source that transmits along route r. Each
route uses a number of links or, more generally, resources, each of which has a
finite capacity constraint. Let j ∈ r denote that resource j is used by route r.

Then, for each source s and route r available to s, the discrete trajectory in
the flow rate xr is subject to the following equation:

x′r = xr + κrxr



1−
1

αs(r)

∑

j∈r

βjxj
∑

r′∈s(r)

xr′





+

xr

(1)

where κr is a constant, x′r is the next value of xr and
− αs is the utility co-efficient of source s;
− βj is the price co-efficient of resource j;

− xj is the aggregate flow rate at resource j, i.e., xj =
∑

j∈r

xr;

− (z)+x = min(0, z) if x ≤ 0, otherwise (z)+x = z.
Thus, each source s adjusts the flow rate xr on route r ∈ s based on feedback

βjxj from every resource j ∈ r in the network (indicating congestion). Then, the
algorithm presented in [15] is composed of these sources acting synchronously
and collectively. The stability of this synchronous algorithm has been proved in
[15]. Herein, we analyse the fully asynchronous variant of the algorithm under
the fairness constraint that every source acts infinitely often. This asynchronous
model captures uncertain delay between distributed sources.
Stability. System stability is a key property of interest for a distributed conges-
tion control system. A system is stable if it equilibrates at certain network-wide
flow configuration, i.e., where x′r = xr for every route r. Let si range over all
the sources. Then, the following CTL formula

AFAG ∧
si

(∧
r∈si

x′r = xr) (2)

represents system stability, that is, the system will always eventually be stable.

Assume-Guarantee Reasoning with Local Specifications 11

Lagrangian decomposition techniques reduce system stability onto individual
modules [19]. A distributed source is stable if certain stable flow configuration
is reached on all the routes using the resources consumed by the source. Let
γ(si) denote the set of the routes serving or sharing resource with source si, i.e.,
γ(si) = {r | j ∈ r for any r′ ∈ si and j ∈ r′}. Then, local stability on source si
is represented by the following CTL formula

AFAG (∧
r∈γ(si)

x′r = xr) (3)

Observe that the global specification (2) is equivalent to the conjunction of
local specifications (3) on all the sources. Therefore, we instantiate rule Rπ as
rule SS below for system stability:

SS

∀1 ≤ i ≤ n,
Mi|Ai � AFAG ∧

r∈γ(si)
x′r = xr

∃1 ≤ di ≤ π, C
di

i � Ai

M1| · · · |Mn � AFAG ∧
si

(∧
r∈si

x′r = xr)

where source si is represented as module Mi.
Computing Assumptions. By rule SS, the assumption Ai for module Mi

is such that Mi|Ai satisfies the local specification (3). Thus, assumption Ai
concerns only on the variables in Xi ∪ Ii, and is meant to supply sequences
of inputs to module Mi such that Mi|Ai can eventually converge to certain
configuration on Xi ∪ Ii.

Note that under rule sym or asym, assumption Ai has to concern on all
the variables in X . A local stable state on Xi ∪ Ii would be extended to a
global stable states on X to meet the global specification (2). Since module Mi

controls only the variables in Xi, all the variables in X\(Xi∪Ii) can converge to
any possible combinations of values in domain D. Hence, for every local stable
state on Xi ∪ Ii, assumption Ai has to cover all the corresponding |D||X\(Xi∪Ii)|

global stable states. Such redundancy is avoided under rule SS by generating
assumption Ai from the local specification (3).

For module Mi = (Xi, Ii, QMi
, TMi

, λMi
, q0Mi

), the assumption can be con-
structed as a tuple Ai = (Ii, Xi, EAi

∪ FAi
, TAi

, λAi
, q0Ai

, FAi
) where EAi

, FAi
,

TAi
and λAi

are the minimal sets of non-accepting states, accepting states, tran-
sitions and the labelling function derived through the following algorithm, re-
spectively.

1. For each valuation α on Ii, there exists one and only one state p ∈ EAi
such

that λAi
(p) = α.

2. For any q
α
−→Mi

q′ and the state p ∈ EAi
such that λAi

(p) = α, p
λMi

(q)
−−−−→Ai

p′

for all p′ ∈ EAi
.

3. For any q
α
−→Mi

q, there exists one and only one state pq ∈ FAi
\EAi

such
that λAi

(pq) = α and

− pq
λMi

(q)
−−−−→Ai

pq;

− p
λMi

(q)
−−−−→Ai

pq, where p ∈ EAi
is the state such that λAi

(p) = α;

12 A. Lomuscio, B. Strulo, N. Walker, P. Wu

4. qAi0
is the initial state, and λ(qAi0

) is the given initial configuration on Ii.
Intuitively, step 1 logs all possible inputs to module Mi as the non-accepting

states of assumption Ai; while step 2 traces the state changes of moduleMi as the
transitions of assumption Ai. Step 3 defines the accepting states of assumption
Ai to characterise all configuration on Xi ∪ Ii where Mi|Ai can possibly settle.

Each self-loop transition q
α
−→Mi

q contributes to an accepting state pq with
λAi

(pq) = α. Apparently, module Mi at state q would remain at this state under
constantly repeated inputs α, which is exactly what the local specification (3)
expects.

Thus, we compute an assumption Ai for module Mi based on the module it-
self, regardless of the underlying topology. Theorem 5 shows that the assumption
is an appropriate one for our purpose.

Theorem 5. Assumption Ai generated by the above algorithm for module Mi

is the weakest assumption with respect to the local specification (3).

Proof. By definition, it can be seen that any accepting trace of Mi|Ai will fall
into an infinite loop at some state (q, pq), where q ∈ QMi

admits a self-loop tran-
sition under input λAi

(pq). Correspondingly, the infinite word accepted through
such an accepting trace will terminate with an infinite loop of the valuation on
λMi

(q) ∪ λAi
(pq). Therefore, Mi|Ai satisfies the local specification (3).

We then prove by contradiction that assumptionAi is the weakest assumption
with respect to the local specification (3). Suppose there exists an assumption
A′
i such that L(A′

i) ⊆ I(Mi) and Mi|A′
i satisfies the local specification (3), but

there exists an infinite word θ = α0α1 · · · ∈ L(A′
i) that is not accepted by Ai.

Then, by this hypothesis and the definition of step 3, θ cannot be derived by Ai.
Assume α0 . . . αk (k ≥ 0) is the longest prefix that can be derived from Ai.

This means that, for any valuation ρ on Xi, no transition p
ρ
−→Ai

p′ exists such
that λAi

(p) = αk and λAi
(p′) = αk+1. Hence, by the definition of step 2, no

transition q
αk−−→Mi

q′ exists such that for any states q, q′ ∈ QMi
. This conflicts

with the hypothesis, which implies θ ∈ I(Mi).

The time complexity of this algorithm is linear to the size of module Mi.
The worst run-time is O(2|TMi

|). The size of the resulting assumption Ai is
also linear to the size of module Mi. In the worst case, assumption Ai contains
|D||Ii| + |TMi

| number of states and |TMi
||D||Ii| + 2|TMi

| number of transitions.
By omitting step 4, this algorithm can be revised to generate a super as-

sumption with the universal set of all possible initial states, each labelled with
a valuation on Ii. The language accepted by the super assumption is then the
disjoint union of the languages accepted by the assumptions under each possible
initial valuation on Ii.

5 Experiments

This section illustrates how reduced assumptions can help improve the efficiency
and scalability of assume-guarantee reasoning. Specifically, we show how one set

Assume-Guarantee Reasoning with Local Specifications 13

of verification checks under rule SS can prove stability regardless of the number
of sources and their initial flow configurations, and for any topology of bounded
degree.

Consider a simple topology where each source is provisioned with two routes
and each resource is shared by two sources. Thus, each source module has two
state variables and two input variables. Let Mu,v be a source with an initial
configuration (u, v) ∈ D2 and the transitions defined by Equation (1). Then, no
matter how many sources a network may consist of, each source is of the general
form Mu,v, where u, v ∈ D.

Let Au,v be the super assumption generated by the above algorithm for mod-
ule Mu,v. We start with checking whether the composition of any two possible
neighbour modules can guarantee these assumptions. This amounts to check
whether

Mu1,v
′

1
|Mu′

1
,v1 � Au0,v0 (4)

for any initial configuration (u0, v0, u1, v1, u
′
1, v

′
1) ∈ D6. For the domain D =

[1, 6] this means that 66(= 46656) instances of Equation (4) need to be verified.
These checks are done through, as usual, by establishing whether any infinite
word derived by Mu1,v

′

1
|Mu′

1
,v1 can be accepted by coAu0,v0 , the complement of

assumption Au0,v0 .

We use the GOAL tool [25] to compute and simplify each complement coAu0,v0 .
Each assumption Au0,v0 and its complement coAu0,v0 are encoded as Büchi au-
tomata in GOAL. Table 1 reports the size of each automaton in terms of the num-
ber of states (in Columns #states) and the number of transitions (in Columns
#transitions), and the time usage in seconds for complementing each assump-
tion Au0,v0 (in Column time). Note that Mv0,u0

is equivalent to Mu0,v0 under
permutation. For sake of comparison, Table 1 also reports the size of each as-
sumption Aψu0,v0

, generated from the global specification (2), and the time usage
(in seconds) for complementing it. The symbol ‘-’ means that the tool did not
return any result within 10 hours. All experiments were ran on a Linux server
with two Intel 2.8GHz Quad Core Xeon processors and 16G memory. Observe
that GOAL is not a tool optimised for speed; faster results may possibly be
achievable.

It can be seen that assumptions for each module Mu0,v0 are greatly reduced
under rule SS. In average each assumption Au0,v0 is reduced by a factor of 36
times in the number of states and a factor of 569 in the number of transitions
compared with the corresponding assumption Aψu0,v0

. This is because the combi-
natorial explosion with the redundant variables in X\(Xi ∪ Ii) for each module
Mi is avoided without loss of expressiveness of the assumptions. The advantage
of using reduced assumptions is particularly apparent when computing their
complements. The tool took no more than 2.5 minutes to complement each as-
sumption Au0,v0 , but only 10 out of 21 complementation instances coAψu0,v0

can
be computed by the tool. Considering that it is very time-consuming to simplify
a Büchi automaton, our approach is more efficient than that of applying the
general assume-guarantee rules with simplified assumptions Aψu0,v0

.

14 A. Lomuscio, B. Strulo, N. Walker, P. Wu

Table 1. Experimental Results for Computing Assumptions

u0 v0

A
ψ
u0,v0

Au0,v0 coAu0,v0

#states #transitions time(s) #states #transitions time(s) #states #transitions

1 1 1332 49248 1511.0 37 108 3.3 73 2628
1 2 1332 49248 1475.1 37 108 1.9 73 2628
1 3 1332 49248 1415.8 37 108 1.7 73 2628
1 4 2016 97200 3292.9 56 180 3.5 110 3960
1 5 2268 144288 4247.5 63 228 4.9 123 4428
1 6 2304 190944 5693.8 64 264 5.0 124 4464
2 2 1332 49248 1477.2 37 108 1.6 73 2628
2 3 4752 195840 14207.2 132 400 19.3 114 4104
2 4 5760 291024 21088.4 160 524 31.5 168 6048
2 5 5796 337680 25180.2 161 560 33.1 169 6084
2 6 6084 431424 - 169 644 34.6 183 6588
3 3 8532 389736 - 237 746 77.3 174 6264
3 4 9648 531720 - 268 910 103.5 233 8388
3 5 9684 578376 - 269 946 106.4 234 8424
3 6 9756 671688 - 271 1018 105.9 236 8496
4 4 8568 436392 - 238 782 74.7 175 6300
4 5 9684 578376 - 269 946 108.1 234 8424
4 6 9684 578376 - 269 946 104.1 234 8424
5 5 10836 767016 - 301 1146 145.1 294 10584
5 6 10836 767016 - 301 1146 138.0 294 10584
6 6 10836 767016 - 301 1146 138.1 294 10584

Equation (4) was verified in our experiments for all the values of parameters
u0, v0, u1, v1, u

′
1, v

′
1 in domain D. As a consequence, any assumption Au0,v0 can

be guaranteed by the composition of any two possible modules. Thus, our ex-
periments show the stability of such system for any number of sources and any

initial flow configuration under the given topology.
Furthermore, the experiments reported can be extended for any topology

with bounded degree (i.e., each source is sharing resources with a bounded num-
ber of other sources). Suppose each source has at most m routes, the general

form of each module is Mu, where vector u ranges over
m
∪
k=1

Dk. This is par-

ticularly appealing to us as previous results in the literature on verification of
congestion control models (e.g., [26, 17]) apply only to fixed network topologies.

6 Conclusions

The paper presents a methodology for assume-guarantee reasoning for global
specifications consisting of conjunctions of local specifications. The rule Rπ pre-
sented is both sound and complete for local specifications, yet can be applied
to draw conclusions on global specifications. Thus, a verification task on a sys-
tem can be decomposed onto individual modules and local specifications. The
methodology is based on an incremental approach to exploit the neighbourhood

Assume-Guarantee Reasoning with Local Specifications 15

dependency between modules. Each increment explores the modules’ interactions
one step further into the neighbourhood.

We applied the rule to verify the stability of a distributed congestion control
system with any number of modules, any initial state, and any topology of
bound degree. We proved system stability by considering only local stability of
each individual source when interacting with its neighbours. In this way, the
technique presented could greatly extend the range of network problems that
model checking could be applied to.

References

1. Abadi, M., Lamport, L.: Conjoining specifications. ACM Transactions on Program-
ming Languages and Systems 17(3), 507–535 (1995)

2. Alur, R., Henzinger, T.A.: Reactive modules. In: Proc. 11th Annual IEEE Sym-
posium on Logic in Computer Science Logic in Computer Science (LICS’96). pp.
207–218. New Brunswick, USA (27–30 July 1996)

3. Alur, R., Henzinger, T.A., Mang, F., Qadeer, S., Rajamani, S.K., Tasiran, S.:
MOCHA: Modularity in model checking. In: Proc. 10th International Conference
on Computer-aided Verification (CAV’98). pp. 521–525. Vancouver, Canada (28
June–2 July 1998)

4. Barringer, H., Giannakopoulou, D., Păsăreanu, C.S.: Proof rules for automated
compositional verification through learning. In: Proc. 2003 Workshop on Speci-
fication and Verification of Component-Based Systems (SAVCBS’03). pp. 14–21.
Helsinki, Finland (1–2 September 2003)

5. Berezin, S., Campos, S.V.A., Clarke, E.M.: Compositional reasoning in model
checking. In: Revisted Lectures from Proc. International Symposium on Composi-
tionality. pp. 81–102. Bad Malente, Germany (8–12 September 1997)

6. Cimatti, A., Clarke, E.M., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M.,
Sebastiani, R., Tacchella., A.: NuSMV 2: An opensource tool for symbolic model
checking. In: Proc. 14th International Conference on Computer-Aided Verification
(CAV’02). Copenhagen, Denmark (July 27–31 2002)

7. Cobleigh, J., Giannakopoulou, D., Păsăreanu, C.: Learning assumptions for com-
positional verification. In: Proc. 9th International Conference on Tools and Algo-
rithms for the Construction and Analysis of Systems (TACAS’03). pp. 331–346.
Warsaw, Poland (7–11 April 2003)

8. Farzan, A., Chen, Y.F., Clarke, E.M., Tsay, Y.K., Wang, B.Y.: Extending auto-
mated compositional verification to the full class of omega-regular languages. In:
Proc. 14th International Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS’08). pp. 2–17. Budapest, Hungary (29 March–6
April 2008)

9. Francez, N., Pnueli, A.: A proof method for cyclic programs. Acta Informatica
9(2), 133–157 (1978)

10. Gheorghiu Bobaru, M., Păsăreanu, C.S., Giannakopoulou, D.: Automated assume-
guarantee reasoning by abstraction refinement. In: Proc. 20th International Con-
ference on Computer Aided Verification (CAV’08). pp. 135–148. Princeton, USA
(7–14 July 2008)

11. Giannakopoulou, D., Păsăreanu, C.S., Barringer, H.: Assumption generation for
software component verification. In: Proc. 17th IEEE International Conference

16 A. Lomuscio, B. Strulo, N. Walker, P. Wu

on Automated Software Engineering (ASE’02). pp. 3–12. Edinburgh, UK (23–27
September 2002)

12. Grumberg, O., Long, D.E.: Model checking and modular verification. ACM Trans-
actions on Programming Languages and Systems 16(3), 843–871 (1994)

13. Henzinger, T.A., Qadeer, S., Rajamani, S.K.: You assume, we guarantee: Method-
ology and case studies. In: Proc. 10th International Conference on Computer Aided
Verification (CAV’98). pp. 440–451. Vancouver, Canada (28 June–02 July 1998)

14. Jones, C.B.: Tentative steps toward a development method for interfering pro-
grams. ACM Transactions on Programming Languages and Systems 5(4), 596–619
(1983)

15. Kelly, F., Voice, T.: Stability of end-to-end algorithms for joint routing and rate
control. ACM SIGCOMM Computer Communication Review 35(2), 5–12 (2005)

16. Kupferman, O., Vardi, M.Y.: An automata-theoretic approach to modular model
checking. ACM Transactions on Programming Languages and Systems 22(1), 87–
128 (2000)

17. Lomuscio, A., Strulo, B., Walker, N., Wu, P.: Model checking optimisation-based
congestion control models. In: Proc. 2009 Workshop on Concurrency, Specification,
and Programming (CS&P 2009). pp. 386–397. Kraków-Przegorza ly, Poland (28–30
September 2009)

18. Lomuscio, A., Strulo, B., Walker, N., Wu, P.: Assume-guarantee verification for
distributed systems with local specifications. Tech. Rep. RN/10/01, Department
of Computer Science, University College London (February 2010)

19. Low, S.H., Lapsley, D.E.: Optimization flow control, I: basic algorithm and con-
vergence. IEEE/ACM Transactions on Networking 7(6), 861–874 (1999)

20. Maier, P.: Compositional circular assume-guarantee rules cannot be sound and
complete. In: Proc. 6th International Conference on Foundations of Software Sci-
ence and Computational Structures (FoSSaCS’03). pp. 343–357. Warsaw, Poland
(7–11 April 2003)

21. Misra, J., Chandy, K.M.: Proof of networks of processes. IEEE Transactions on
Software Engineering SE-7(4), 417–426 (1981)

22. Nam, W., Alur, R.: Learning-based symbolic assume-guarantee reasoning with
automatic decomposition. In: Proc. 4th International Symposium on Automated
Technology for Verification and Analysis (ATVA’06). pp. 170–185. Beijing, China
(23–26 October 2006)

23. Nam, W., Madhusudan, P., Alur, R.: Automatic symbolic compositional verifica-
tion by learning assumptions. Formal Methods in System Design 32(3), 207–234
(2008)

24. Păsăreanu, C.S., Giannakopoulou, D., Bobaru, M.G., Cobleigh, J.M., Barringer,
H.: Learning to divide and conquer: applying the L* algorithm to automate assume-
guarantee reasoning. Formal Methods in System Design 32(3), 175–205 (2008)

25. Tsay, Y.K., Chen, Y.F., Tsai, M.H., Wu, K.N., Chan, W.C.: GOAL: A graphical
tool for manipulating büchi automata and temporal formulae. In: Proc. 13th Inter-
national Conference on Tools and Algorithms for the Construction and Analysis
of Systems (TACAS’07). pp. 466–471. Braga, Portugal (24 March–1 April 2007)

26. Yuen, C., Tjioe, W.: Modeling and verifying a price model for congestion control in
computer networks using promela/spin. In: Proc. 8th International SPIN Workshop
on Model Checking of Software (SPIN’01). pp. 272–287. Toronto, Canada (19–20
May 2001)

