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Abstract. We introduce a novel automata-theoretic approach for the verification of multi-agent
systems. We present epistemic alternating tree automata, an extension of alternating tree automata,
and use them to represent specifications in the temporal-epistemic logic CTLK. We show that model
checking a memory-less interpreted system against a CTLK property can be reduced to checking
the language non-emptiness of the composition of two epistemic tree automata. We report on an
experimental implementation and discuss preliminary results. We evaluate the effectiveness of the
technique using two real-life scenarios: a gossip protocol and the train gate controller.

1. Introduction

Multi-agent systems (MAS) are a useful paradigm for reasoning about distributed, concurrent systems
where the individual components, or agents, act autonomously and collaboratively to meet private and
common objectives. MAS are typically specified by using intensional languages, including multi-modal
logics [2]. Considerable research over the past twenty years has focused on developing formalisms
to specify MAS, including languages to reason about their knowledge (epistemic logic), their beliefs
(doxastic logic), their intentions, and the obligations they should adhere to (deontic logic). In particular,
various forms of epistemic logic [5, 16] have found application in a MAS setting when reasoning about
robotics, web services, security, and, more generally, in areas where it is useful to consider the agents’
information states.

More recently, attention has been given to the problem of automatic verification of MAS by model
checking [4]. The objective is to develop efficient methodologies to check automatically whether a MAS
of interest meets its specifications. Several techniques have been put forward over the past few years in
this respect, ranging from bounded model checking [9], to symbolic model checking [14, 6], and partial
order reduction [13].

While the approaches above have been demonstrated to be of value, they are on their own insufficient
to tackle the complexity of scenarios arising from the industry. It is therefore of utmost importance to
explore novel methodologies that may help in this respect, either on their own or in combination with
existing techniques.

One method that has received little attention so far in the context of epistemic logic community is that
of automata-based model checking. Yet, model checking via Büchi automata, originally explored in the
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seminal paper by Vardi et al. [20], is one of the leading approaches in verification of reactive systems and
constitutes the basis of the well-known model checker spin [8]. The work in [20] covered linear time
only; this was extended to branching time logic in [12], where the formalism of alternating tree automata
(ATA) was used.

The aim of this paper is to explore the extent to which automata-based model checking can be adopted
in a MAS setting. Specifically, we work with CTLK (the customary temporal-epistemic logic with
branching time) as a specification language, and plain interpreted systems [5] as the underlying semantics.
These are at times referred to as memory-less interpreted systems, or systems with no memory. We first
extend the notion of ATA to more general structures that can be used in this setting (Section 3). We then
give a uniform translation of CTLK specifications into these automata (Section 3.1). This enables us to
define a suitable notion of automata product and give an emptiness condition for satisfaction (Section 3.2).
Having laid the theoretical foundations and demonstrated their soundness, we move on to report on a
novel implementation we have developed (Section 4.1), and present experimental results (Section 4.2).
Finally, we conclude in Section 5.

2. Prerequisites

In this section we introduce the temporal-epistemic logic CTLK, which combines the computation tree
logic CTL with the epistemic logic S5Cm with common knowledge for a set A = {1, . . . ,m} of agents.
Then we provide this language with a formal semantics in terms of interpreted systems [5, 16].

2.1. The Temporal Epistemic Logic CTLK

Given a set P = {p1, p2, . . .} of propositional variables, the temporal-epistemic language Lm contains the
propositional variables in P , the connectives ¬ and→, the linear time operators X and U , the branching
time operators A and E, the epistemic operator Ki for each agent i ∈ A, and the common knowledge
operator CG for each non-empty set G ⊆ A of agents.

Definition 2.1. The formulae in Lm are defined in BNF as:

φ ::= p | ¬φ | φ→ φ | AXφ | AφUφ | EφUφ | Kiφ | CGφ

The formulae AXφ and AφUφ′ (resp. EφUφ′) are read as “for all paths, at the next step φ” and “for
all paths (resp. for some path), φ until φ′”. The formula Kiφ means “agent i knows φ”; while CGφ means
“φ is common knowledge in the set G of agents”. We define the connectives ∧, ∨,↔ and the propositional
constants true and false as standard.

The operator X is self-dual, that is, EXφ is defined as ¬AX¬φ. The linear time operator U is dual
to U , that is, AφUφ′ is defined as ¬E¬φU¬φ′, and EφUφ′ as ¬A¬φU¬φ′. The epistemic possibility
Ki is dual to Ki for each i ∈ A, that is, Kiφ is defined as ¬Ki¬φ; while CG is dual to CG, i.e., CGφ is a
shorthand for ¬CG¬φ. Also, the operators AG, AF , EG and EF are defined as standard. Finally, EGφ
is defined as

∧
i∈GKiφ, and for n ∈ N, E0

Gφ = φ and En+1
G φ = EGE

n
Gφ.

The U -formulae in Lm are the formulae of the form AφUφ′ or EφUφ′ for some φ, φ′ ∈ Lm; the U -,
Ki- and CG-formulae are defined similarly.
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2.2. Interpreted Systems

We introduce interpreted systems by assuming a set Li of local states li, l′i, . . . for each agent i ∈ A in
a multi-agent system, as well as for the environment e. The set S ⊆ Le × L1 × . . .× Lm contains the
global states of the MAS. To represent the temporal evolution of the MAS we consider the flow of time N
of the natural numbers. A run in an interpreted system is a function ρ : N→ S that intuitively represents
a possible evolution of the MAS. We define the interpreted systems for the language Lm as follows.

Definition 2.2. An interpreted system (IS) is a tuple P = 〈R, s0, I〉 where (i) R is a non-empty set of
runs; (ii) s0 ∈ S is the initial state, i.e., s0 = ρ(0) for some ρ ∈ R; (iii) I : S → 2P is an assignment for
the propositional variables in P .

In what follows we assume without loss of generality that for every s ∈ S, there exist ρ ∈ R and
n ∈ N such that s = ρ(n), i.e., S is the set of all reachable states. Following standard notation [5], a pair
(ρ, n) is a point in P; let Π be the set of all points in P . If ρ(n) = 〈le, l1, . . . , lm〉 is the global state at
(ρ, n) then ρe(n) = le and ρi(n) = li are the environment’s and agent i’s local state at (ρ, n) respectively.
Further, for i ∈ A the equivalence relation ∼i is defined such that (ρ, n) ∼i (ρ′, n′) iff ρi(n) = ρ′i(n

′);
while ρ | n is the sequence of states ρ(0), . . . , ρ(n). Sometimes we do not distinguish between a point
and the associated state when it is clear from the context.

Definition 2.3. The satisfaction relation |= for φ ∈ Lm and (ρ, n) ∈ P is defined as follows:

(P, ρ, n) |= p iff p ∈ I(ρ(n))
(P, ρ, n) |= ¬ψ iff (P, ρ, n) 6|= ψ

(P, ρ, n) |= ψ → ψ′ iff (P, ρ, n) 6|= ψ or (P, ρ, n) |= ψ′

(P, ρ, n) |= AXψ iff for all runs ρ′, ρ′ | n = ρ | n implies (P, ρ′, n+ 1) |= ψ

(P, ρ, n) |= AψUψ′ iff for all runs ρ′, if ρ′ | n = ρ | n then there is k ≥ n, (P, ρ′, k) |= ψ′

and for all k′, n ≤ k′ < k implies (P, ρ′, k′) |= ψ

(P, ρ, n) |= EψUψ′ iff for some run ρ′, ρ′ | n = ρ | n and there is k ≥ n, (P, ρ′, k) |= ψ′

and for all k′, n ≤ k′ < k implies (P, ρ′, k′) |= ψ

(P, ρ, n) |= Kiψ iff (ρ, n) ∼i (ρ′, n′) implies (P, ρ′, n′) |= ψ

(P, ρ, n) |= CGψ iff for all k ∈ N, (P, ρ, n) |= EkGψ

The truth conditions for ∧, ∨, ↔, true, false, EX , AU , EU , Ki and CG are defined from those
above. A formula φ is true on a IS P iff it is satisfied at (ρ, 0) such that ρ(0) = s0.

3. Epistemic Alternating Tree Automata

In this section we present epistemic alternating tree automata, which are a generalisation of alternating
tree automata for multi-modal logics. The latter were first introduced in [18] and have been used in [12] to
define an automata-theoretic technique to model check branching time logics. Let At be the set A ∪ {t}
containing all the agents in A plus the temporal index t. Hence, |At| = m+ 1. Further, for some set U ,
U∗ is the set of sequences of elements in U .
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Definition 3.1. An At-tree is a set T ⊆ (N × At)∗ such that if x · (c, j) ∈ T for x ∈ (N × At)∗ and
(c, j) ∈ N×At then

(i) x ∈ T ;

(ii) for all 0 ≤ c′ < c, also x · (c′, j) ∈ T .

The sequences in T are called nodes; the empty sequence ε is the root of T . For x ∈ T , the nodes
x · (c, j) are the j-successors of x. The number of j-successors of x is called the j-degree of x and is
denoted by dj(x); the vector of all successor degrees of x is denoted by ~d(x). A leaf is a node with no
successors.

Definition 3.2. A path in a tree T is a non-empty set π ⊆ T such that for every x ∈ π, either x is a leaf
or there exists a unique (c, j) ∈ N×At such that x · (c, j) ∈ π. A temporal path is a path where j = t;
while an epistemic path in G is a path where j ∈ G.

For any path π, πn represents the n-th element in the path, for n ∈ N. Given an alphabet Σ, a
Σ-labelled tree is a pair 〈T, V 〉 where T is a tree and V : T → Σ maps each node of T to a letter in Σ.
Note that an infinite word in Σ can be viewed as a Σ-labelled tree in which |At| = 1 and the degree of all
nodes is 1. We focus on Σ-labelled trees in which Σ = Π for some set Π of points, Σ = S for some set S
of global states, or Σ = 2P so V can intuitively be seen as an assignment of propositional variables to
nodes. Given an interpreted system P = 〈R, s0, I〉 we can define a tree 〈TP , V 〉 with Σ = Π such that
V (ε) = (ρ, 0) such that ρ(0) = s0 and

1. if V (x) = (ρ, n) and s0, . . . , sk are all s′ such that s′ ∼i ρ(n) for i ∈ A, then for 0 ≤ c ≤ k,
V (x · (c, i)) = (ρc, nc) for some ρc and nc such that ρc(nc) = sc;

2. if V (x) = (ρ, n) and ρ0, . . . , ρk are all ρ′ ∈ R such that ρ′ | n = ρ | n, then V (x · (c, t)) =
(ρc, n+ 1) for 0 ≤ c ≤ k.

We remark that the tree 〈TP , V 〉 is not unique given the IS P , as by (1) above for each sc there might
be more than one point (ρc, nc) such that ρc(nc) = sc. However, we can recover uniqueness by defining
a mapping VP : TP → S such that VP(x) = s iff V (x) = (ρ, n) and ρ(n) = s. It is straightforward to
check that given an IS P , the labelled tree 〈TP , VP〉 is indeed unique.

Furthermore, given a tree 〈T, V 〉 with Σ = 2P we can define a satisfaction relation |= for φ ∈ Lm
and x ∈ T as follows:

(T, x) |= p iff p ∈ V (x)
(T, x) |= ¬ψ iff (T, x) 6|= ψ

(T, x) |= ψ → ψ′ iff (T, x) 6|= ψ or (T, x) |= ψ′

(T, x) |= AXψ iff for all temporal paths π, for all n ∈ N, if πn = x then (T, πn+1) |= ψ

(T, x) |= AψUψ′ iff for all temporal paths π, for all n ∈ N, if πn = x then there is k ≥ n
such that (T, πk) |= ψ′, and for all k′, n ≤ k′ < k implies (T, πk

′
) |= ψ

(T, x) |= EψUψ′ iff for some temporal path π, for some n ∈ N, πn = x and there is k ≥ n
such that (T, πk) |= ψ′, and for all k′, n ≤ k′ < k implies (T, πk

′
) |= ψ

(T, x) |= Kiψ iff for all 0 ≤ c < di(x), (T, x · (c, i)) |= ψ

(T, x) |= CGψ iff for all epistemic paths π in G, for all n ∈ N,
if πn = x then for all k ≥ n, (T, πk) |= ψ
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Figure 1. An example of an interpreted system.

Given an IS P , there is a tree 〈TP , V 〉 with Σ = Π. If we identify each (ρ, n) ∈ Π with {p ∈ P | p ∈
I(ρ(n))} ∈ 2P , then 〈TP , V 〉 is also a tree with Σ = 2P , and we can prove the following result:

Lemma 3.1. For every φ ∈ Lm, for V (x) = (ρ, n),

(TP , x) |= φ iff (P, ρ, n) |= φ

Lemma 3.1 is proved by induction on the length of φ; we omit the proof. In particular, we have that
(TP , ε) |= φ iff φ is true in the IS P .

Obviously, the correspondence between IS and trees is not one-to-one: there are many trees that
cannot be represented as IS, this is indeed the case every time a node has no successor. However, this does
not hinder the following discussion as we focus on the class T of trees 〈TP , VP〉 for some interpreted
system P .

Example – Unwinding an Interpreted System. A simple interpreted system with two agents 1 and 2
is shown in Figure 1. We use solid lines to represent temporal transitions and indexed, dashed lines to
represent the epistemic indistinguishability relations for agents 1 and 2. Formally, this can be represented
as the IS P = 〈R, w0, I〉 such that:

• w0 is the initial state;

• the local state l1(w0) of agent 1 in w0 is the same as her local state l1(w2) in w2;

• R = {ρ1, ρ2} where ρ1(0) = w0 and ρ1(n) = w1 for all n ≥ 1, and ρ2(n) = w2 for all n ≥ 0.

Further, we assign the proposition p to all states in P , i.e., for all w, I(w) = {p}.
Figure 2 shows the S-labelled tree 〈TP , VP〉 unwinding of P . In the tree of Figure 2 each node of the

form x, V (x), represents the node of the tree T (i.e., x) along with the mapping in V of that node to a
state in S (i.e., V (x) ∈ S). The interpreted system of Figure 1 is cyclic (i.e., it contains reflexive loops),
therefore its corresponding unwinding is an infinite tree. We only show a truncated part of the tree; the
infinite part of the tree is represented with dotted lines. ut

We now introduce epistemic alternating tree automata. Given a set D ⊂ N, a D-tree is an At-tree in
which all the nodes have degrees in D. Further, let B+(P ) be the set of positive Boolean formulae over
the set P of propositional variables. For instance, B+({p, q}) includes p ∧ q, p ∨ q, p ∧ p.

Definition 3.3. An epistemic alternating tree automaton (EATA) is a tuple A = 〈Σ,D, Q, δ, q0, At, F 〉
such that:
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ε, w0

(0, t), w1

(0, t)·(0, t), w1

(0, t)·(0, 1), w1

(0, t)·(0, 2), w1

(0, 1), w0

(0, 1)·(0, t), w1

(0, 1)·(0, 1), w0

(0, 1)·(1, 1), w2

(0, 1)·(0, 2), w0

(1, 1), w2

(1, 1)·(0, t), w2

(1, 1)·(0, 1), w2

(1, 1)·(1, 1), w0

(1, 1)·(0, 2), w2

(0, 2), w0

(0, 2)·(0, t), w1

(0, 2)·(0, 1), w0

(0, 2)·(1, 1), w2

(0, 2)·(0, 2), w0

Figure 2. The epistemic alternating tree automata “unwinding” of the interpreted system in Figure 1.

(i) Σ, D and At are defined as above;

(ii) Q is a set of states;

(iii) q0 ∈ Q is the initial state;

(iv) F ⊆ Q is the set of accepting states;

(v) δ : Q× Σ×D|At| → B+(N×At ×Q) is the transition function.

Also, we require that if the atom (c, j, q′) appears in δ(q, σ, kt, k1, . . . , km), then 0 ≤ c < kj .

When the automaton is in state q and reads a node that is labelled by σ and has kj j-successors, it
applies the transition δ(q, σ, kt, k1, . . . , km). In what follows we denote the tuple 〈kt, k1, . . . , km〉 as ~k.

An EATA is a generalisation of an alternating tree automaton in that the successors of a node are
indexed according to the elements in At. ATA [12] are a special case of EATA, in which |At| = 1, i.e., At
contains only the temporal index t, which at this point can be ignored.

A run of an EATA A over a tree 〈T, V 〉 is a tree 〈Tr, r〉 in which the root is labelled by (ε, q0) and
every other node is labelled by an element in (N×At)∗ ×Q. Each node of Tr corresponds to a node of
T . However, each node of T can correspond to many nodes of Tr.

Definition 3.4. A run 〈Tr, r〉 is a Σr-labelled tree where Σr = (N×At)∗ ×Q and 〈Tr, r〉 satisfies the
following:

(i) r(ε) = (ε, q0)
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(ii) Let y ∈ Tr with r(y) = (x, q). If δ(q, V (x), ~d(x)) = θ ∈ B+(N×At×Q) then there are (possibly
empty) sets Sj = {(c0, j, q0), . . . , (cn, j, qn)} ⊆ {0, . . . , dj(x) − 1} × {j} × Q such that the
following hold:

(a) the assignment which assigns true to all the atoms in
⋃
j∈At

Sj satisfies θ;

(b) for 0 ≤ i ≤ n we have y · (i, j) ∈ Tr and r(y · (i, j)) = (x · (ci, j), qi).

Note that if, for some y, the transition function δ has value true, then y need not have successors.
Also, δ can never have the value false in a run. We use the same term run both for IS and for EATA to be
consistent with [5, 12]; the context will disambiguate.

A run 〈Tr, r〉 is accepting if all its infinite paths satisfy the acceptance condition. Here we consider a
Büchi acceptance condition. Given a run 〈Tr, r〉 and an infinite path π ⊆ Tr, let inf (π) ⊆ Q be the set
of q ∈ Q such that there are infinitely many y ∈ π for which r(y) ∈ (N × At)∗ × {q}, that is, inf (π)
contains exactly all the states that appear infinitely often in π. The acceptance condition is defined as
follows:

• A path π satisfies a Büchi acceptance condition F ⊆ Q if and only if inf (π) ∩ F 6= ∅.

An automaton accepts a tree if and only if there exists a run that accepts it. We denote by L(A) the
set of all Σ-labelled trees that A accepts. Note that an epistemic alternating tree automaton over infinite
words is simply an EATA with D = {1} and |At| = 1. Formally, we define an EATA over infinite words
as A = 〈Σ, Q, δ, q0, F 〉 where δ : Q× Σ→ B+(Q).

The model checking procedure for CTLK considers weak epistemic alternating automata (WEAAs),
an extension of weak alternating automata as first introduced in [17].

Definition 3.5. A weak epistemic alternating automata (WEAA) is an EATA such that:

• there is a partition of Q into disjoint sets Q1, . . . , Qn such that for 1 ≤ j ≤ n, either Qj ⊆ F , and
Qj is an accepting set, or Qj ∩ F = ∅, and Qj is a rejecting set.

• there is a partial order ≤ on the collection of the Qjs such that for every q ∈ Qi and q′ ∈ Qj
occurring in δ(q, σ,~k) for some σ ∈ Σ, ~k ∈ D|At|, we have Qj ≤ Qi.

Thus, transitions from a state in Qi lead to states in either the same Qi or a lower one. It follows that
every infinite path of a run of a WEAA ultimately gets trapped within some Qi. The path then satisfies the
acceptance condition if and only if Qi is an accepting set. We call the partition of Q into sets the weakness
partition, and we call the partial order over the sets of the weakness partition the weakness order.

3.1. Model Checking for CTLK

In this section we provide the construction of a weak alternating automaton AD,ψ that accepts all the
D-trees in T satisfying a given CTLK formula ψ ∈ Lm. In the next section the automaton AD,ψ will be
used to construct the product word automatonAP,ψ for a given IS P . We will then prove that the language
L(AP,ψ) is non-empty iff the tree 〈TP , VP〉 is accepted by AD,ψ, i.e., iff ψ is true in P . By extending
Theorems 3.1 and 4.7 in [12] we can show that all these steps can be performed in linear time in the size
of φ and P .
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First, we remark that by using de Morgan’s laws and the definitions of operators U , Ki and CG, we
can draw the negation inwards, such that it applies only to propositional variables.

Further, we define the closure cl(ψ) of a formula ψ ∈ Lm as follows:

• ψ ∈ cl(ψ);

• Let 2 be any of operators ¬, AX , EX , Ki, Ki, CG or CG. If 2φ ∈ cl(ψ) then φ ∈ cl(ψ).

• Let ] be any of operators→, AU , EU , AU or EU . If φ]φ′ ∈ cl(ψ) then φ, φ′ ∈ cl(ψ).

Theorem 3.1. Given a CTLK formula ψ ∈ Lm and a set D ⊂ N, we can construct in linear time a
WEAA AD,ψ = 〈2P ,D, cl(ψ), δ, ψ,At, F 〉 such that the D-tree 〈TP , VP〉 is in L(AD,ψ) iff ψ is true in
P .

Proof:
The WEAAAD,ψ = 〈2P ,D, cl(ψ), δ, ψ,At, F 〉 is such that Σ = 2P ,Q = cl(ψ) and q0 = ψ. Further, the
set F of accepting states consists of all the U -, Ki- and CG-formulae in cl(ψ). For σ ∈ 2P and ~k ∈ D|At|

the transition function δ is defined as in Table 1. Each formula φ ∈ cl(ψ) constitutes a (singleton) set
{φ} in the weakness partition. The weakness order is defined by {φ1} ≤ {φ2} iff φ1 ∈ cl(φ2). Since
each transition of the automaton from a state φ leads to states in cl(φ), the weakness conditions hold.

We now prove the correctness of this construction. By Lemma 3.1 the formula ψ is true in P iff
〈TP , ε〉 |= ψ. So it is left to prove that the D-tree 〈TP , VP〉 is in L(AD,ψ) iff 〈TP , ε〉 |= ψ. We first prove
that AD,ψ is sound, that is, given an accepting run 〈Tr, r〉 of AD,ψ over the tree 〈TP , VP〉, we show that
for every y ∈ Tr such that r(y) = (x, φ) we have that 〈TP , x〉 |= φ. Thus, in particular 〈TP , ε〉 |= ψ.
The proof is by induction on the structure of φ. If φ is an atomic proposition and r(y) = (x, p) then
δ(p, VP(x), ~d(x)) = true iff p ∈ VP(x), i.e., iff 〈TP , x〉 |= φ. The cases where φ is φ1 ∧ φ2, φ1 ∨ φ2,
AXφ1, or EXφ1 follow easily, by the induction hypothesis, from the definition of δ. If φ is Kiφ1 and
r(y) = (x,Kiφ1) then δ(Kiφ1, VP(x), ~d(x)) =

∧di(x)−1
c=0 (c, i, φ1) ∧

∧di(x)−1
c=0 (c, i,Kiφ1). Thus, for all

0 ≤ k < di(x) and c = k we have r(y ·(k, i)) = (x·(c, i), φ1). By induction hypothesis, 〈TP , x·(c, i)〉 |=
φ1 for 0 ≤ c < di(x), and therefore 〈TP , x〉 |= Kiφ1. The case of φ = Kiφ1 is similar. If φ is equal
to CGφ and r(y) = (x,CGφ) then δ(CGφ, VP(x), ~d(x)) = δ(φ, VP(x), ~d(x)) ∧

∧
i∈G

∧ki−1
c=0 (c, i, CGφ).

Thus, if π is an epistemic path for G such that πn = x, then by induction hypothesis for all k ≥ n, we
have that 〈TP , πk〉 |= φ . Therefore, 〈TP , x〉 |= CGφ. The case of φ = CGφ1 is similar. Consider now
the case of φ equal to Aφ1Uφ2 (resp. Eφ1Uφ2). As 〈Tr, r〉 is an accepting run, it visits the state φ only
finitely often. Since AD,ψ keeps inheriting φ as long as φ2 is not satisfied, then it is guaranteed, by the
definition of δ and the induction hypothesis, that along all paths (resp. some path) φ2 eventually holds and
φ1 holds until then. Finally, consider the case of φ equal to Aφ1Uφ2 or Eφ1Uφ2. By the definition of δ
and the induction hypothesis, either φ2 always holds or until both φ2 and φ1 hold.

We now prove thatAD,ψ is complete, that is, if 〈TP , VP〉 is aD-tree such that 〈TP , ε〉 |= ψ, thenAD,ψ
accepts 〈TP , VP〉. In fact, we show that there exists an accepting run 〈Tr, r〉 ofAD,ψ over 〈TP , VP〉 defined
as follows: the run starts at the initial state, so ε ∈ Tr and r(ε) = (ε, ψ), and it proceeds maintaining
the invariant that for every y ∈ Tr, if r(y) = (x, φ) then 〈TP , x〉 |= φ. Since 〈TP , ε〉 |= ψ, the invariant
holds for y = ε. Also, by the semantics of CTLK and the definition of δ, the run can always proceed such
that all the successors y · (k, j) of a node y that satisfies the invariant have r(y · (k, j)) = (x′, φ′) with
〈TP , x′〉 |= φ′. Finally, the run always tries to satisfy eventualities of U -formulae. Thus, whenever φ is
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δ
(
p, σ,~k

)
= true if p ∈ σ

δ
(
p, σ,~k

)
= false if p /∈ σ

δ
(
¬p, σ,~k

)
= true if p /∈ σ

δ
(
¬p, σ,~k

)
= false if p ∈ σ

δ
(
φ1 ? φ2, σ,~k

)
= δ

(
φ1, σ,~k

)
? δ
(
φ2, σ,~k

)
, for ? ∈ {∧,∨}

δ
(
AXφ, σ,~k

)
=

kt−1∧
c=0

(c, t, φ)

δ
(
EXφ, σ,~k

)
=

kt−1∨
c=0

(c, t, φ)

δ
(
Aφ1Uφ2, σ,~k

)
= δ

(
φ2, σ,~k

)
∨
(
δ
(
φ1, σ,~k

)
∧
kt−1∧
c=0

(c, t, Aφ1Uφ2)
)

δ
(
Eφ1Uφ2, σ,~k

)
= δ

(
φ2, σ,~k

)
∨
(
δ
(
φ1, σ,~k

)
∧
kt−1∨
c=0

(c, t, Eφ1Uφ2)
)

δ
(
Aφ1Uφ2, σ,~k

)
= δ

(
φ2, σ,~k

)
∧
(
δ
(
φ1, σ,~k

)
∨
kt−1∧
c=0

(
c, t, Aφ1Uφ2

) )
δ
(
Eφ1Uφ2, σ,~k

)
= δ

(
φ2, σ,~k

)
∧
(
δ
(
φ1, σ,~k

)
∨
kt−1∨
c=0

(
c, t, Eφ1Uφ2

) )
δ
(
Kiφ, σ,~k

)
=

ki−1∧
c=0

(c, i, φ) ∧
ki−1∧
c=0

(c, i,Kiφ)

δ
(
Kiφ, σ,~k

)
=

ki−1∨
c=0

(c, i, φ)

δ
(
CGφ, σ,~k

)
= δ

(
φ, σ,~k

)
∧
∧
i∈G

ki−1∧
c=0

(c, i, CGφ)

δ
(
CGφ, σ,~k

)
= δ

(
φ, σ,~k

)
∨
∨
i∈G

ki−1∨
c=0

(
c, i, CGφ

)
Table 1. The transition function δ in the automaton AD,ψ .
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of the form Aφ1Uφ2 or Eφ1Uφ2 and 〈TP , x〉 |= φ2, it proceeds according to δ(φ2, VP(x), ~d(x)). It is
easy to see that all the paths in such 〈Tr, r〉 are either finite or reach a state associated with a U -, Ki- or
CG-formula and stay there thereafter. Thus, 〈Tr, r〉 is accepting.

Finally, it is easy to check that the construction of the automaton AD,ψ can be performed in linear
time in the size of ψ. ut

Note that the particular way the δ function is defined for Kiφ, and the loss of symmetry with Kiφ,
depends on the fact that the epistemic indistinguishability relation is an equivalence relation. Also, the δ
function for the epistemic EG modality can be straightforwardly defined in terms of the δ function for Ki,
for i ∈ G.

Example – Lm to WEAA. Here we demonstrate the technique by showing the translation of a Lm
formula to a weak epistemic alternating automaton. We take the formula ϕ = AGC{1,2}K2p. To translate
ϕ into a WEAA, we require the formula in negation-normal form with all abbreviations expanded; so we
use ϕ = A

(
falseUC{1,2}K2p

)
. The closure of ϕ is cl(ϕ) =

{
ϕ,C{1,2}K2p,K2p, p

}
, which is the set Q

of states in AD,ϕ. The accepting states F are
{
ϕ,C{1,2}K2p,K2p

}
. The alphabet of AD,ϕ has only the

letter p; therefore the transitions are over 2{p}.
We formally defineAD,ϕ = (2{p},D,

{
ϕ,C{1,2}K2p,K2p, p

}
, δ, ϕ, {t, 1, 2} ,

{
ϕ,C{1,2}K2p,K2p

}
),

where the transition relation δ is as follows:

q δ
(
q, {p},~k

)
δ
(
q, ∅,~k

)
ϕ

kt−1∧
c=0

(c, t, ϕ) ∧
k2−1∧
c=0

(c, 2, p) ∧
k2−1∧
c=0

(c, 2,K2p) ∧
∧

i∈{1,2}

ki−1∧
c=0

(
c, i, C{1,2}K2p

)
C{1,2}K2p

k2−1∧
c=0

(c, 2, p) ∧
k2−1∧
c=0

(c, 2,K2p) ∧
∧

i∈{1,2}

ki−1∧
c=0

(
c, i, C{1,2}K2p

)
K2p

k2−1∧
c=0

(c, 2, p) ∧
k2−1∧
c=0

(c, 2,K2p)

p true false

In the state ϕ the automata expects that ϕ recursively holds in all temporal successors and that both
K2p and C{1,2}K2p hold in all epistemically related states. This is highlighted in Rows 2 and 3 of the
transition relation above.

3.2. The Product Automaton

Let AD,ψ = 〈2P ,D, Qψ, δψ, q0, At, Fψ〉 be an epistemic alternating tree automaton that accepts all the
D-trees in T that satisfy ψ, as constructed in the previous section. Let P = 〈R, s0, I〉 be an interpreted
system such that the degrees of 〈TP , VP〉 are in D. We introduce the weak epistemic alternating word
automaton AP,ψ = 〈{a},Π×Qψ, δ, ((ρ, 0), q0), F 〉 such that ρ(0) = s0 and δ, F are defined as follows:

• Let q ∈ Qψ, (ρ, n) ∈ Π, {s′ ∈ S | s′ ∼i ρ(n)} = 〈s0,i, . . . , sdi(ρ(n))−1,i〉 and {ρ′ ∈ R |
ρ′ | n = ρ | n} = 〈ρ0,t, . . . , ρdt(ρ(n))−1,t〉. Further, let δψ(q, I(ρ(n)), ~d(ρ(n))) = θ. Then
δ(((ρ, n), q), a) = θ′, where θ′ is obtained from θ by replacing each atom (cj , i, qj) in θ by the
atom ((ρcj ,i, ncj ,i), qj) for some point (ρcj ,i, ncj ,i) such that ρcj ,i(ncj ,i) = scj ,i, and by replacing
each atom (cj , t, qj) in θ by the atom ((ρcj ,t, n+ 1), qj).
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• The acceptance condition F is defined according to the acceptance condition Fψ of AD,ψ. If
Fψ ⊆ Qψ is a Büchi condition, then F = Π× Fψ is also a Büchi condition.

It is easy to see that if AD,ψ is a WEAA with a weakness partition {Q1, . . . , Qn}, then so is AP,ψ
with a partition {Π×Q1, . . . ,Π×Qn}.

We remark that the word automaton AP,ψ defined above is not unique given P . However, we can
recover uniqueness by considering states in S rather than points in Π. Thus, the product automaton ofAD,ψ
and P is defined as the weak epistemic alternating word automaton AP,ψ = 〈{a},S ×Qψ, δ, (s0, q0), F 〉
where F = S × Fψ and if δ(((ρ, n), q), a) = θ the δ((ρ(n), q), a) = θ′, where θ′ is obtained from θ by
replacing each atom ((ρ, n), q) in θ by (ρ(n), q).

Theorem 3.2. L(AP,ψ) is nonempty iff ψ is true in P .

Proof. We show that L(AP,ψ) is nonempty if and only if AD,ψ accepts the tree 〈TP , VP〉 built from
the IS P as shown in Section 3.1. Since AD,ψ accepts exactly all the D-trees in T that satisfy ψ, and
since all the degrees of P are in D, the latter holds if and only if ψ is true in P . Given an accepting run of
AD,ψ over 〈TP , VP〉, we construct an accepting run of AP,ψ. Also, given an accepting run of AP,ψ, we
construct an accepting run of AD,ψ over 〈TP , VP〉.

Assume first that AD,ψ accepts 〈TP , VP〉. Thus, there exists an accepting run 〈Tr, r〉 of AD,ψ over
〈TP , VP〉. Recall that Tr is labelled with (N×At)∗×Qψ. A node y ∈ Tr with r(y) = (x, q) corresponds
to a copy of AD,ψ that is in the state q and reads the tree obtained by unwinding P from VP(x). Consider
the tree 〈Tr′ , r′〉 where Tr′ is the tree obtained from Tr by the function f as follows. Suppose that
δψ(q, VP(x), ~d(x)) = θ and there are (possibly empty) sets Sj = {(c0, j, q0), . . . , (cnj , j, qnj )} ⊆
{0, . . . , dj(x)− 1} × {j} ×Q such that

⋃
j∈At

Sj satisfies θ, and for 0 ≤ i < nj , we have y · (i, j) ∈ Tr
and r(y · (i, j)) = (x · (ci, j), qi). Then,

• f(ε) = ε;

• f(y · (i, j)) = f(y) · (Σj∈At

j′<j nj′ + i).

The tree Tr′ is labelled with 0∗ × S ×Q, and for every y ∈ Tr with r(y) = (x, q), we have r′(f(y)) =
(0|x|, VP(x), q). We show that 〈Tr′ , r′〉 is an accepting run of AP,ψ. In fact, since F = S × Fψ, we only
need to show that 〈Tr′ , r′〉 is a run of AP,ψ; this follows from the definition of δ. Acceptance follows
from the fact that 〈Tr, r〉 is accepting.

Assume now that AP,ψ accepts aω. Thus, there exists an accepting run 〈Tr, r〉 of AP,ψ. Recall that
Tr is labelled with 0∗ × S ×Qψ. Consider the tree 〈Tr′ , r′〉 labelled with (N × At)∗ ×Qψ, where Tr′
and r′ are obtained from Tr and r by means of a function g : Tr → Tr′ as follows:

• g(ε) = ε and r′(ε) = (ε, q0);

• if y · c ∈ Tr, r′(g(y)) ∈ {x}×Qψ, r(y · c) = (0|x+1|, s, q) and i, j are such that VP(x · (i, j)) = s,
then g(y · c) = g(y) · (i, j) and r′(g(y · c)) = (x · (i, j), q).

As in the previous direction, we can check that 〈Tr′ , r′〉 is an accepting run of AD,ψ over 〈TP , VP〉. ut
By Theorem 4.7 in [12] we know that the 1-letter non-emptiness problem for weak alternating automata

is decidable in linear time. This concludes the automata-theoretic model checking procedure for CTLK.
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Example – The product automata AP,ϕ. Using the approach developed so far, it can be shown that
the language of the product automaton obtained from the composition of AD,ϕ and the tree unwinding of
the IS from Figure 1 is non-empty.

Figure 3 shows a sub-tree of the full product automata. This sub-tree shows the accepting sub-tree for
the formulaAX

(
A
[
falseUC{1,2} (K2 (p))

])
starting at the world w1 from Figure 1. While this sub-tree

contains 13 nodes, the full product automata contains 31 nodes and has been omitted from brevity.

w1, AX
(
A
[
falseUC (K2 (p))

])
w1, A

[
falseUC (K2 (p))

]
∧

w1, C (K2 (p))

w1,K2 (p) ∧ C (K2 (p))

∧

w1,K2 (p)

w1, p ∧K2 (p)

∧

w1, p

>

w1,K2 (p)

w1, C (K2 (p))

w1, false ∨AX
(
A
[
falseUC (K2 (p))

])
∨

w1, false

⊥

w1, AX
(
A
[
falseUC (K2 (p))

])
w1, A

[
falseUC (K2 (p))

]

Figure 3. A sub-tree of the automata AP,ϕ.

Branches that reach a recurring node (e.g., the node “w1,K2 (p)” that occurs twice in Figure 3) are
underlined. The nodes that appear between the first and second occurrence of a recurring node make a
path in the tree that is subsequently checked against the acceptance condition. For example, the set of
states that occur infinitely often between the first and second occurrence of the node “w1,K2 (p)” are
“w1,K2 (p)” and “w1, p ∧K2 (p)”. This path is accepted as the intersection of this path and accepting
states F =

{
ϕ,C{1,2}K2p,K2p

}
of the formula ϕ is non-empty.

4. Implementation and Evaluation

4.1. An Epistemic Tree Automata Verifier

We have implemented the technique above in C++ as part of a new, explicit-state model checker called
etav (Epistemic Tree Automata Verifier). Currently, etav only supports models specified directly as
Kripke structures, with all relations explicitly constructed, i.e., the full state space has to be enumerated
prior to verification. An open source, GNU GPL-licenced release of etav is available from [1].
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In the following, we use X ↓n to represent the n-th element of the tuple X . Additionally, we use ⊥
and > to represent the evaluation of a node in an AND/OR graph to either true or false [12]. We use ℘(A)
to represent the power-set of possible groups.

4.1.1. Approach

The approach taken by etav is to perform depth first construction of AP,ψ, constructed as an AND/OR

graph, interleaved with checking the non-emptiness of the tree. If it can be decided that the tree is
accepting (or rejecting) without constructing the full product automata, etav will return this result early
and save on over computation.

The crux of etav’s construction of product automata relies upon the following structures:

• visited : Formula×World→ Bool

• eval : Formula×World→ {>,⊥}

• path : (Formula×World)+

• tf : Formula→ (Formula)+ ×Node_Type× {d∪ 	}, d ∈ {℘(A) \ ∅} ∪ t

The data structure visited, implemented using std:: multiset, holds a set of nodes ofAP,ψ visited
on a certain path. If a newly constructed node in the product automata is already in visited, then a cycle
has been detected. Once a path in the tree reaches a node which evaluates to either ⊥ or >, or completes a
cycle, that node is removed from visited and added to eval along with its evaluation.

In a similar way, eval, implemented with std::map, records the evaluation of previously seen nodes.
This saves re-evaluating a formula at a given world, or searching for a cycle when one has already been
detected. If a node has been previously explored, it will have a definitive value; etav can simply reuse
that value from eval.

The list path records all of the nodes on a path of the tree in the order that they appear. The acceptance
of a path-suffix depends upon the non-emptiness of the intersection between the states occurring in the
path-suffix and the acceptance condition. The path-suffix can be created by iterating backwards along
path until the cycle is found.

Finally, tf holds the encoding of the transition function δ. Taking inspiration from [19], we use a
simplified transition relation in which rules are labelled with ∧, ∨, > or ⊥, representing a node-type in
the product AND/OR graph. To support multiple directions, i.e., a direction in G ⊆ A or t, tf either
returns a member of ℘(A) \ ∅ (the set of all non-empty groups), t or 	. We use the first to locate
(possibly many) Ri, the second to locate Rt; the latter represents evaluation at the current state. When
tf(ϕ) ↓3 ∈ {℘(A) \ ∅} ∪ t, we have |tf(ϕ) ↓1 | = 1, otherwise |tf(ϕ) ↓1 | = 2. If the number of
successors in Ri or Rt for a given world is greater than two, the successors are iterated over and the
AND/OR node is constructed in the intuitive manner. For example, if φ = E

[
ϕUψ

]
, then tf (φ) returns

the tuple ((ψ,ϕ ∨ EXφ) ,∧,	). This means that the current state must satisfy the conjunction of ψ and
ϕ ∨ EXφ. It follows that tf(Kiϕ)↓3 = i, tf(CGϕ)↓3 = G (G ⊆ A) and tf(AXϕ)↓3 = t. For φ ∈ P ,
we have tf(φ)↓2 ∈ {>,⊥}.

The depth first construction is called recursively for all elements in tf(ϕ)↓1 until tf(ϕ′)↓2 ∈ {>,⊥}.
This result is then stored in eval and is also used to label the current node in the AND/OR graph of the
product automata. Eventually, the procedure returns with the root of the AND/OR graph being labelled
with > or ⊥.
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4.1.2. Efficiency

etav builds the product automata in such a way that it only constructs the parts of the product automata
that are required for deciding the satisfiability of the formula. The eval structure is used to remove the
possibility of over computation. It is assumed that storing the acceptance or rejection of a node in eval
will use less memory than performing the computation more than once.

As another step, etav will only generate a sibling for a node if the current node is not sufficient to
decide the acceptance of the path. For example, if the child of an ∧-node evaluates to ⊥, then etav does
not check the acceptance of the other child.

A third optimisation step implemented in etav consists of constructing the transition rule for a
formula only when it is required, i.e., the transition function tf is not fully instantiated prior to starting
the construction of the product automata. This, in conjunction with the fact that etav only constructs
world-formula pairs in the product graph when reached, leads to an “on-the-fly” construction of bothAD,ψ
and AP,ψ. Despite this, the technique cannot be regarded as truly “on-the-fly” as the whole reachable
state space for the model is known prior to verification.

4.2. Evaluation

In this section we evaluate the effectiveness of our technique by looking at two common scenarios: a
gossip protocol (Section 4.2.1) and the faulty train gate controller (Section 4.2.2).

We do not draw a comparison between the current implementation, which accepts an explicitly defined
state space, and existing symbolic model checkers such as mcmas [14]. The verification of “concurrent
structures”, similar to those supported in symbolic model checking, is in a harder complexity class [15],
making a direct comparison unjustified. Indeed, symbolic model checkers such as mcmas [14] or NuSMV [3]
use implicit declarations for each agent (or, in NuSMV’s case, component) in the system. These component
declarations are given programmatically, i.e., in a language closer to a conventional programming language
than a finite state machine where each local state is explicitly defined. In such systems, the reachable
state-space has to be fully enumerated prior to verification. This can be done by composing the implicit
component declarations and then finding the states reachable under the synchronised transition relation.

Comparatively, etav requires the user to provide explicitly the reachable global state-space before
verification even begins. It follows that if a model checker can avoid generating the composed system
and finding the reachable states, then its verification task is easier. It should be noted that although the
model checker mck [6] purportedly supports an explicit-state mode, the input is still given as an implicit
declaration. For these reasons, we do not provide an empirical comparison between etav and any other
tool.

4.2.1. Gossip Protocol

Gossip, or epidemic, protocols are often used to represent the propagation of messages through large-scale
distributed applications, much in the way that “gossip” disseminates through social groups, based only on
periodic communication.

The central idea in gossip-based protocols is that the nodes (“participants”) in the system periodically
share information (“gossip”) between a small, random subset of other nodes. The propagation of data
throughout the system depends heavily upon the peers that a node chooses to communicate with. This is
based upon a notion of peer sampling [10].
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Table 2. Gossip Protocol Specifications

GP1 EF
(∧

i∈A completei
)

GP2 KG1EF
(∧

i∈A completei
)

GP3 AG
(
completeG1 → KG1AF

(∧
i∈A completei

))
GP4 AG

(
completeG1 → Call_participantsAF

(∧
i∈A completei

))

Table 3. Model Checking The Gossip Protocol

|A| Formula Memory (KiB) Time (s) Nodes

3

GP1 3392 0.002 35
GP2 3392 0.002 66
GP3 3392 0.001 131
GP4 3392 0.001 324

4

GP1 3636 0.033 69
GP2 3636 0.031 531
GP3 3636 0.030 46
GP4 3636 0.033 75

5

GP1 452516 84.027 95
GP2 452368 84.213 41596
GP3 452160 84.217 232
GP4 452336 83.892 207

We created a rudimentary gossip-based protocol in the input for etav, which is parametric in the
number of agents, representing nodes, in the system. Initially, each agent possesses a unique piece of data.
The aim of the protocol is for each agent to propagate its information, possibly indirectly, to every other
agent. In a gossip protocol with n agents the state space is as follows: 3 agents, 14 states; 4 agents, 259
states; 5 agents, 13647 states.

The specifications used for verifying the gossip-protocol are reported in Table 2. We use completei to
represent that agent i holds all the information in the system. The first specification, GP1, represents that
there exists an execution of the protocol in which all the agents eventually learn the data. Property GP2

states that the first agent knows GP1 (i.e., that all the agents can learn the data). The next specification,
GP3, states that if one agent holds all the data, then that agent knows that all agents eventually learn the
data. Finally, GP4 states that if one agent holds all the data, then it is common knowledge between the
participants that eventually they will all learn the data. Specifications GP1 and GP2 are satisfiable on
models of all sizes, while GP3 and G4 are unsatisfiable for models with strictly greater than three agents,
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Table 4. Faulty Train Gate Controller Specifications

TGC1 AG (train1_in_tunnel→ EF¬train1_in_tunnel)
TGC2 AG (¬train1_in_tunnel ∨ ¬train2_in_tunnel)
TGC3 AG(train1_in_tunnel→

KTrain1¬train2_in_tunnel)
TGC4 AG(KTrain1

(¬train1_in_tunnel ∨ ¬train2_in_tunnel))
TGC5 AG(Call_trains

(¬train1_in_tunnel ∨ ¬train2_in_tunnel))

as the protocol does not ensure that all of the data will eventually reach all of the agents in larger scenarios.
Table 3 shows the results for verifying the gossip protocol with etav. The final column, Nodes,

represents the number of AND/OR nodes in the graph of the product automata. For GP2, we can see that
increasing the number of reachable states increases the number of indistinguishable states for agent G1.
This leads to a greater number of states in the product automata. When comparing the results for GP3 and
GP4, it can easily be seen that evaluating Call_participants is more costly than KG1. This is due to the fact
that common knowledge leads to more indistinguishable states. It should be noted that the high execution
time for a model with five agents arises from parsing the large, explicitly-declared state space.

4.2.2. Faulty Train Gate Controller

The faulty train gate controller model of [11] extends the epistemic version [7] of the train gate controller
model by allowing the trains to display faults non-deterministically. In the standard model n trains attempt
to access a shared resource of the tunnel. When the trains do not display faults, and with a correctly
functioning controller, it is not possible for more than one train to enter the tunnel at one time. In the
faulty model trains are extended with a counter variable which represents the number of actions that the
train has performed since being last serviced (analogous to a car’s mileage counter). Once the counter
exceeds a given threshold, trains can non-deterministically “break”, leading them to be stuck in the tunnel.
The counter has an upper limit which, when reached, causes the trains to be serviced, resetting the counter.

The specifications in Table 4 for the faulty train gate controller have the following interpretations:
TGC1 states that when a train enters the tunnel, there exists a future time when it eventually leaves;
TGC2 represents a mutual exclusion over the model; TGC3 means that when one train is in the tunnel, it
knows that the other is not; TGC4 states that Train1 always knows that there is a mutual exclusion of
the tunnel between the trains. All of the specifications are unsatisfiable in a model with broken trains and
satisfiable on a model with working trains; TGC5 expresses that the mutual exclusion over the tunnel is
common knowledge between all the trains.

In a model with two trains and a maximum counter of seven, varying the breaking depth affects the
state space as follows: breaking depth of 1, states 3389; breaking depth of 6, states 2269; working model,
states 1877.

The verification results for this model can be seen in Table 5. The column Depth represents the depth



F. Belardinelli et al. / Model Checking Temporal-Epistemic Logic Using Alternating Tree Automata 1017

Table 5. Model Checking The Train Gate Controller

Depth Formula Memory (KiB) Time (s) Nodes

1

TGC1 12080 1.387 308
TGC2 12084 1.391 199
TGC3 12080 1.386 114
TGC4 30668 1.986 298284
TGC5 12080 1.381 53

6

TGC1 7992 0.704 1751
TGC2 7992 0.715 1118
TGC3 7992 0.700 55
TGC4 12988 0.852 82098
TGC5 8124 0.698 901

W

TGC1 9005 0.650 27822
TGC2 9007 0.658 27140
TGC3 9128 0.651 29401
TGC4 26507 1.113 307169
TGC5 42884 5.854 563027
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at which a fault can appear; W represents a working model, but still with a service counter. These results
demonstrate that verifying a satisfiable invariant formula, even over a smaller state space, requires greater
memory than for an unsatisfiable invariant. For satisfiable invariants, the product automata is required to
contain every reachable state. For the working model, it follows immediately that verifying a satisfiable
formula induces a greater number of nodes in the product graph. There are fewer nodes in the product
graph for TGC5 than TGC4 in a broken model, as the greater number of indistinguishable states means
that a state invalidating the mutual exclusion can be reached using a shorter epistemic path.

5. Conclusions

It is often argued that a key concern for MAS to be deployed in applications of societal importance is their
lack of verification and validation. Model checking is a prominent automatic verification technique that,
together with other methodologies such as testing, can be used to validate systems.

While considerable work has been carried out in the area of model checking for MAS, the current
state-of-the-art still falls short of enabling engineers to verify industrial-strength MAS. Therefore, it
remains of paramount importance to develop novel techniques, as well as improve existing methodologies,
such that forthcoming model checking toolkits can tackle complex MAS.

In this paper we have put forward an automata-theoretic methodology for verifying MAS specified
by temporal-epistemic logic. Although automata form the underlying building blocks of considerable
work in model checking for reactive systems, surprisingly they have not been employed for epistemic
specifications yet. To achieve this, we extended the relevant notions of automata and provided a sound
translation from the whole CTLK logic into automata, thereby providing a model checking algorithm. We
implemented the technique from first principles by constructing a toolkit for epistemic tree automata.

The experimental results reported with etav are inferior to those that can be obtained with a symbolic
checker, such as mcmas [14]. Still, they validate the correctness of the approach and show promise as etav
contains none of the traditional optimisations present in explicit-state model checkers (e.g., state-level
compression and hashing). Most importantly, the automata-theoretic technique was not leveraged on top
of other efficient techniques, such as partial order reduction [13]. We believe considerable gains can be
achieved in this direction but leave this for further work. Automata are usually the basis of conventional
“on-the-fly” methodologies, but we are not aware of similar approaches for MAS. The present work may
form a stepping stone in this direction.

Currently, etav only accepts models specified as full Kripke structures, where all the temporal and
epistemic successors are explicitly defined. As the toolkit matures along the lines above, we will extend
this to work directly on implicit models, e.g., those provided by ispl, the input to mcmas.
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