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Abstract. We investigate the problem of locally monitoring contraejulated behaviours in agent-
based web services. We encode contract clauses in seréc#icaions by using extended timed
automata. We proposenan intrusivdocal monitoring framework along with an API to monitor the
fulfillment (or violation) of contractual obligations. A kdeature of the framework is that it is fully
symbolic thereby providing a scalable solution to monitgriAt runtime execution steps generated
by the service are passed as input to the runtime monitorfd@oance of the execution against the
service specification is checked using a symbolically regméed extended timed automaton. This
allows us to monitor service behaviours over large stateespgenerated by multiple, long running
contracts. We illustrate our methodology by monitoring evie® composition scenario from the
vehicle repair domain, and report on the experimental tesul

1. Introduction

Web services (WS) are now considered one of the key techiesldgr building new generations of
digital business systems. Industrial strength distrithpplications can be built across organisational
boundaries using services as basic building blocks. Adagrtb a largely widespread view services
are implemented bwgentsacting socially in the system and the environment to maxantieir own
utility [26]. One of the main advantages of building distriéd systems as agent-based web services is
the flexibility they provide in terms of composition. Howeyehen services are combined a significant
challenge is to provide effective mechanisms to regulai thteractions. This is a well-known problem
in multi-agent systems (MAS) research where a variety otepts such as norms [9], institutionalised
power [8] and commitments [6] have been studied to reguladepaedict the behaviour of large MAS in
rich human like context.

In WS the traditional notion employed for similar purpossdhe one of service level agreement
(SLA) [12]. They provide a useful mechanism to establisheadrlevels of service provision when
interactions are invoked within certain parameters. Altito SLAs are useful, they can represent only
basic agreements of service provision. Applications nugieomplex, human-like activities require more
general and sophisticated declarative specificationgfyéed legal-like agreements among the parties.
Indeed, in an environment where previously unknown sesvare dynamically discovered and binded,



their composition is required to be underpinned by bindigigaments. Additionally, agents maximising
their own utilities may indeed choose to violate these agesdgs for a better payoff differently. While
this is unavoidable, we may still wish to monitor the exemnsi and track at run time the agreements that
are being violated.

A useful concept from the legal domain in this sense is the afneontract as found in human
societies. Should a contract be broken by one of the paguadifional rights and/or obligations (e.g.,
penalties to be paid) may be applicable to some party. GCaistraay not simply prescribe certain actions
depending on certain states, but may go as far as to spetiiygiconstraints (e.g, deadlines), or more
sophisticated measures (such as the number of actionsnpgottal interval, as in some QoS (Quality of
service) agreements).

In this paper, we study the problem of monitoring runtime &xéburs ofcontract regulated web
services While contracts are usually negotiated offline, it is okist to monitor at runtime whether
interactions between WS are complying to the contractsilstipd between the parties. Runtime mon-
itoring of web services is concerned with the actual, rathan possible state transitions occurring in
the system. A runtime monitor continuously checks the etiecs against a model of correct behaviour
previously encoded. In the case of contract-based webcesrwe are interested in monitoring at run-
time whether the contracts the web services are supposethéveato are violated in a given run of the
system, and if so, what action follows from this behaviouy, hether recovery actions are performed.

Monitoring complex interactions such as the ones aboverstridal. The key issue is the one of
scalability. It is relatively easy to envisage a methodgladereby contracts and possible behaviours
are explicitly stored in memory and the stream of eventsca lveb-service level is matched at runtime
against the envisaged contract-compliant runs. Howevieriwany complex contracts to be verified and
several WS present in a system the present approach islyritikee effective in any scenario where the
range of possible behaviours is large.

In this paper we put forward a “symbolic” solution to the plevh above. We represent both all
possible behaviours and the contractually-correct ones appropriate timed automata [1] at local web
service level. Specifically we present a local contractinmatmonitor (CRM) based on the symbolic
toolkit Verics [5], a symbolic model checker for timed-amata. CRM checks the local service’s ex-
ecution at runtime against the symbolic representationsiged, and reports back to the service (or
directly to the engineer) any mismatch, dolation, between the contract-compliant behaviours origi-
nally prescribed and the ones actually received in the inspaam. Note that differently from other lines
of research we do not wish to monitor the overall service amsitipn here. Instead we focus on a single
service and aim to monitor continuously its executions, itee change of its local variables and actions.
This is of relevance to several application areas whereiohal enterprises wish to monitor whether
any of their executions violates existing contracts, oviserlevel agreements.

The significant advantage of the approach is that we do nat tedeeep the whole state space of the
possible and the contract-compliant behaviours in mematyse can simply call the timed-automata
engine at runtime to match moves against the stream of egenigg from the input. Because of the
requirements of the setting the approach extends convetioned automata with additional constraints
to allow the specification of compliance and violation of wants. As discussed below the memory
footprint of the CRM is also very attractive as is its perfamme. Additionally timed-automata offer us a
natural formalism to work with any timing properties of irest. The approach is also inherently scalable
as it enables us to monitor in parallel several independamiracts, or several independent clauses in a
single contract.



The rest of the paper is structured as follows: in Section Zoviefly introduce the formalism of
timed automata as used here. Section 3 presents our mogitoaimework. We analyse a motivating
case study in 4 and discuss the monitoring results. Sectedents related work and conclusions.

2. Monitoring via Timed Automata

Let IN denote the set of naturals (includiny Z - the set of integerdl) - the set of rational numbers,
andR (R.) - the set of (non-negative) reals.

2.1. Variables and Clocks

Let V' be a finite set of integer variables. The setathmetic expressionsver V', denotedEx( V'),
is defined by the following grammaez = c|v|v®c|c® v | v ® v, wherec € Z, v € V, and
® e {+,—}.

The set ofboolean expressionsver V, denotedBool( V'), is defined by3 ::= true | ex ~ ex | B A
BBV EB|-6](B),whereex € Ex(V)and~ € {=,#,<,<,>, >}

The set ofinstructionsover V', denoted/ns( V), is given bya ::= € | v := ex | ac, Wherev € V,
er € Ex(V).

Moreover, byIns"(V) we denote the subset dfs(V) such that for eacl = ay...q,, €
Ins®(V), whereq; = (v; := ex;) for 1 < i < m, we have*,{v} = 0, i.e., eachy; is assigned a
new value inn at most once.

By avariable valuationwe mean any total mapping : V — IN. We extend the mapping to
expressions ofz( V') in the usual way. The satisfaction relatiga)(for the boolean expressions is also
standard.

Given a variable valuatiom and an instructiom € Ins”( V), we denote by, () the valuationv’,
obtained after executing at v (updating a valuation), which is formally defined as follows

o if a = ethenv’ = v,
e if = (v:=ex), thenv'(v) = v(ex) andv’(v’) = v(v’) forall v’ € V' \ {v},

o if @« = ajan, thenv,’ = (v, (a1))(as).

LetX = {z1,...,z,, } be afinite set of real-valued variables, caltdocks The set otlock constraints
over X and V, denotedC(X, V), is defined by the grammarc ::= true | ; ~ ¢ | x; ® z; ~
clazi@a; ~v |z, Qv ~c|v®@w ~ z cc Acc, Wherez;,z; € X, v,w € V,c € NN,
® € {+,—},and~ € {<,<,=,>,>}. Let X" denote the set’ U {x(}, wherez, ¢ X is a fictitious
clock representing the constantA clock-to-clock assignment over X is a function4 : X — X'+,
Asg(X') denotes the set of all the assignments oVerBy aclock valuationwe mean a total mapping
c: X — IR,. The satisfaction relatior) for a clock constraintc € C(X', V') under a clock valuation
c and a variable valuatiow is defined as:

o (c,v) = (z;®v~c)iff c(z;) ® v(v) ~ ¢,

e the other cases are defined similarly.



In what follows, the set of all the paifg, v), composed of a clock and a variable valuation, satisfying a
clock constraintc is denoted byfcc]. Given a clock valuatior andd € R, by ¢ + 6 we denote the
clock valuationc’ such thatc’(z) = ¢(x) + 4§ for all x € X. Moreover, for a clock valuation and an
assignmentd € Asg(X), by c(A) we denote the clock valuatioef such that for al € X we have
c/(z) = c(A(x)) if A(z) € X, andc/(z) = 0if A(x) = . Finally, by c® we denote thénitial clock
valuation, i.e., the valuation such thét(z) = 0 for all » € X.

2.2. Timed Automata with Discrete Data

In this paper we assume a slightly modified definition of tinaetbmata with discrete data [27], which
extend the standard timed automata of Alur and Dill in théofeing way:

Definition 2.1. A timed automaton with discrete da@ADD) is a tuple A = (3, L,1°, V, X,£,7),
where

Y is a finite set ofabels (actions)

L is afinite set ofocations

19 € L is theinitial location,

V' is the finite set of integer variables,

X is the finite set of clocks,
e ECLxXYxBool(V)xC(X, V) x Ins"(V) x Asg(X) x L is atransition relation and
e 7:L — C(X,0)is aninvariant function

The invariant function assigns to each location a clock taimg (without integer variablé$ expressing
the condition under whichl can stay in this location. Each element (I, a, 3, cc,«, A,1’) € € denotes
atransition from the locatiohto the locatiorn’, wherea is the label of the transitioty 3 andcc define the
enabling conditions fot, « is an instruction to be performed, ardis a clock assignment. Moreover,
for a transitiont = (I,a, 3, cc,a, A, l') € & we write source(t), label(t), v_guard(t), cv_guard(t),
instr(t), asgn(t) andtarget(t) for , a, (3, cc, o, A andl’, respectively.

An example of a TADD can be found in Section 4.1. The automatoRigure 5 is composed
of 4 locations and3 transitions, wheres4 is the initial location. Labels on the transitions are, e.9.
SendVehicle! andSendAssessed!. Invariant is, e.g.xz <= 7 wherex is the clock. Reset on clockis
defined ass = 0 on the transitions. The semantics of a TADDOs given below:

Definition 2.2. Thesemanticeof A = (%, L,[°, V, X, £, T) for an initial variable valuatiow" : vV —
Z is a labelled transition syste®{.A) = (Q, ¢°, Xs, —), where:

e Q={(,v,c)[leLrveZVI Ace R Ac k= Z(1)}is the set of states,
o " = (1% v %) is the initial state,
e Ys =X UIR; is the set of labels,

e —C(@Q x Xs x @ is the smallest transition relation such that:

1To ensure the monotonicity of the timed successor relation.



— fora e ¥,
(I,v,c)-%=(I',v', ) iff there exists a transition = (I, a, 3, cc, o, A,1') € € such thatv =
B, (c,v) = ¢, vV = vy(a), c = Z(1), and ¢’ = c(A) = Z(I') (action transition)

— ford e Ry,
(1,v,c)—(l,v,c + 6) iff ¢ = () ande + & = Z(l) (time transition)

A transitiont € & is enabledat a state(l,v,c) if v = v_guard(t), (c,v) = cv_guard(t) and
c(asgn(t)) = Z(target(t)). Intuitively, in the initial state all the variables are setheir initial values,
and all the clocks are set to zero. Then, at a state(l, v, c¢) the system can either execute an enabled
transitiont and move to the staig¢ = (I, v/, c’), wherel’ = target(t), the valuation of the variables is
changed according tastr(t), and the clock valuation is changed according4gn(t), or move to the
stateq’ = (I, v, c + ) which results from passing some timiec IR, such that + 6 = Z(1).

2.3. TADD Semantics for contract monitoring

In our framework, we use the TADD for an agent-based seng@efarmal structure for the specification
of all possible behaviours (contract-compliant or otheeyi Inspired by related work in the formal
representation of states of compliance and violation [@g]partition the set of global statésof S(.A)
for A = (X,L,1° V, X, & T) into two subset€y and R such thatG N R = (). The setG represents
green(or ideal) states, wherea® represents thead (or non-idea) ones. Intuitively,G contains the
states of compliance anfé@ contains the states of violation with respect to the cohtrae, the whole set
of clauses being included. Figure 1 illustrates the induitbehind the semantics.

contract compliant
recovery

green state

contract violating

/4 red state

continuous contract violating

Figure 1. Partitioning of states and transitions in a TADD

Based on the above partitioning each action transition, ¢') of S(.A) can be one of the following
four types of transitions:

e Contract compliant: between green and green states, iyeg) € G. These transitions occur
when the observed behaviour is in compliance with the pitesgoehaviour of the contract.

e Contract violating: between green and red states, ies, G andq’ € R. These transitions occur
when the observed behaviour violates the prescribed balvaef the contract.

2Note that satisfaction of invariants is ensured by the diimof Q.
3This partition is obtained “location-wise” from a partitiof the set of locations.



e Recovery between red and green states, iges R andq¢’ € G. These transitions occur when a
recovery action is taken by the service after a violatiorhefgirescribed behaviour is recorded.

e Continuous contract violating: between red and red states, igq4’ € R. The transitions occur
when no recovery results from a previous violation.

We say that there is stepfrom stateg; to ¢ in A if ¢; LN ¢ qéiq% for some stateg|, ¢, € Q,
01,09 € Ry, anda € X.

2.4. Querying of TADD for monitoring contracts

In order to monitor contracts at runtime, we monitor the ation in the variables of the current state of
the service. We query the symbolic representation, i.e.T&DD, by inputting the previously observed
state and the currently observed state. We check whether iha transition in the formally specified
TADD representation between the two states.

In our approach, we rephrase the problem of local monitasirexecutions against contract compli-
ant behaviours into the following model checking problemwr. & given TADD.A and a pair(@, Q') of
sets of global states @¥(.A), we check whether there are two stages @ andq’ € @’ such that there
is a step fromy to ¢’. If so, we denote the step 85~ )’. We use this operation as follows: first we
check if there is a transition from the source @b the subset of target stat€s being the red state8
(formally: @ ~ (Q' N R)). If so, thennon compliancéRED) is reported. If there is no such a step, we
check if@Q ~ @Q’. If the result is positive we repodompliance(GREEN), or INVALID TRANSITION
in the other case.

Technically, the transition relation is first encoded inforapositional formula. Then for each step,
this propositional formula is conjuncted with the encodinda pair of sets of states specified above, with
the conjunction of formulas encoding sets implementingstiteunion. The satisfiability of the resulting
formula is tested. A transition exists when the formula issfiable, and does not exist otherwise.

Thus we check steps of one transition in length that can cacyawhere in the system. Note that the
fact that we check one step at a time does not mean that we #tbaimgle-step contract. We benefit by
using SAT because we can encode the whole system of all po$&sibaviours very efficiently, and that
gueries are efficiently answered. Our tool uses MiniSAT pf]dhecking satisfiability, but any standard
SAT-solver capable of processing propositional formutathié conjunctive normal form can be applied.

3. Runtime monitoring framework

Our approach for run-time monitoring of contract-based s&tvices (RMCWS), is illustrated in Figure

2. For each agent to be monitored all its possible behavigorgract-compliant and otherwise) are rep-
resented as a TADD and stored in the checker. At regulanvaite(whose granularity is smaller than the
smallest possible sequence of local transitions, typicaberal per second), execution snapshots taken
at runtime are passed to RMCWS as inputs. The BMC based miogitengine checks the snapshots
against their TADD specification and reports back to RMCWthér the actual runtime behaviours
are in compliance with the contractually prescribed behavas specified in the TADD, or, if not, states
the clause that has been violated in the present transitiotiis section we enumerate and discuss the
core components of RMCWS followed by a detailed discussiothe monitoring mechanism.
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Figure 2. The general architecture and methodology

3.1. Runtime architecture

Agents implementing WS are the primary entities within oaniework. Service behaviour and contracts
associated with them may be specified at a high level using i®lards, e.g., WSBPEL [21] and
contracts, e.g., WSLA [12]. The TADD specification for thesee is engineered from these interface
representations.

A significant feature of our framework is that we do not plang gestriction on service implementa-
tion in terms of development infrastructure and executiatfgrms. Central to our framework isreon
intrusiveapproach to monitoring. The mechanism works independentgrvice execution.

The module responsible for linking the service to the mamtpmechanism is the “ logging frame-
work”. Each service to be monitored is associated with adoggdhe logger records a “snapshot” of
the variables of interest that are to be monitored. Snapshaly be finely grained, i.e., every change
in valuation is recorded or coarse, i.e, recorded afteryeper-specified or random number of changes.
Snapshots may also be time bound, i.e., taken after a spgciédnterval. Each snapshot captures vari-
able valuation as they are generated, updated by the senieeeived from partners. Every snapshot is
passed to the runtime state analyser using a dedicated ARtpd by the logging framework.

TADDs for services The specification of service behaviour used by RMCWS is a DAEpresentation

as in Section 2. We use the XML format generated by the modler UPPAAL [22] for representing
the TADD. Our choice is motivated by the fact that UPPAAL pd®s a user friendly GUI. This is of
great help to system engineers when modelling the TADDsor8#y, the XML representation format
can be modified easily in order to take into account any exiaago the TADD model. As illustrated
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Figure 3. Set of behaviours for a service

in Figure 3, the TADD specification encodes all possiblergeisbehaviours for a service. Typically, the
full set of behaviours for a contract regulated service cadédrived from:

e its contractually compliant behaviours. These behaviemsapsulate contractual obligations for
the service.

e behaviours that are classified as violations of the contract
e behaviours that define a recovery from incurred violations.

There is a one-to-one correspondence between variableedéfithe TADD and the service implemen-
tation in terms of types and names i.e., variables namestaidtypes across the two representations
are kept identical for simplicity. The logging frameworkssas execution snapshots to the analyser
component of the engine as an XML data structure. One sugiskaais illustrated in Listing 1.

<?xml version="1.0" encoding="UTF-8"7?>
<VarValuations

<var name="receivedPOQ’true</var>
<var name="numberOfDays’5</var>
</VarValuations

Listing 1. Snapshot from logger to RSA

Runtime State Analyser (RSA) The runtime state analyser interfaces with the logger éaeiving
snapshots of latest variable valuations generated by thwé&se Snapshots are passed to the RSA via
the logging framework. RSA is also responsible for updatitogks by querying the system hardware,
in accordance with the granularity oftek chosen by the service. A tick can be defined in terms of
seconds, minutes, hours or days i.e., clock values may laredpevery second, minute or day or any
other interval chosen by the service. Clocks may also betaddmsed on resets and assignments defined
in the TADD for the service. The monitoring engine reportskbany resets or assignments made to the
clocks, along with reporting the results, e.g., if the moniitg engine reports that a cloakis reset, the
current valuation of the clock is discarded and the clocleigmitialised. Clock resets and updates are
significant especially when a recovery action is taken agairviolation of contract. In such scenarios
one would like to start the monitoring again with clock vadlaa recorded before the violation occurred.
The clock valuations once recorded are then added to theblarvaluation snapshot received from the
logger. RSA is also responsible for storing the history o¥ise executions and passing the augmented
snapshots to the monitoring engine.



The runtime information passed to the monitoring enginenftbe RSA consists of one or several
steps. A step is a pair of consecutive snapshots, represastésource” and “target” states. The states
define immediately previous (source) and current (targetkcand variable valuations recorded for the
service. An example step for the case study in section 4uiriated in Listing 2 below.

<modelfile>Repair.xmk/ modelfile>
<step>
<source-
<component name="RepairCompany”
<clock name="x*>3</clock>
</component
<var name="maxRepairRequestTime7</var>
</source-
<target-
<component name="RepairCompnay”
<clock name="x*5</clock>
</component
</target>
</ step>

Listing 2. Snapshot from RSA to the monitoring engine

Any component of a source or a target such as a clock valyairomvariable valuation can be omitted.
Thus each set can range from containing only the systensdtabevalues given at all) to a single state
(every component is specified).

3.2. The monitoring engine

The monitoring engine is the core component responsibleefting the conformance of runtime service
behaviour presented as an input from the RSA, against tisenised TADD specification of the service.

Each execution step passed to the engine is encoded andfitsroance to the TADD specification
is tested by means of the model checking approach descritfeelction 2.4. Our SAT-based verification
method does not need to construct the complete modellfawhich could be unfeasible for both the
explicit-state [10] and BDD-based methods [17]. Insteadtiimed automaton is encoded as a proposi-
tional formula, but testing of its satisfiability is postmmhuntil the concrete source and target states of
an execution step are provided. This significantly redubescomputational cost as information about
concrete states prunes the state space to be searched.

The engine monitors if the service has taken an executignfsten the source set to the target set
of states in accordance with its prescribed TADD. In additibchecks if it is possible to reach a target
red state from a given set of source states. In the genemlkltasystem consists of several components
represented by automata,; if at least one component of ddacatachable as a result of the transition is
red, then this fact is reported.

Monitoring results: The engine checks at runtime whether the stream of execstEps received as
inputs from the RSA, conforms with its symbolic representabf all possible behaviours. For each
execution step, the answer returned by the monitoring engione of the following:

e GREEN - This represents the fact that the step is conforming wighsftecification, i.e., there is a
contract compliant transition between the source andtatgees.



e RED - This represents the fact that a red state is reached ased tdiripe transition given, i.e., a
contract has been violated as a result of the transitiors dlkb signifies the fact that the inputs do
not comply with the extended format of the TADD for the seevic

e INVALID TRANSITION - This represents the fact that the step does not confornmetsgécifi-
cation, i.e., there is no such transition.

e ERROR - This represents the fact that the specification is incgirfecexample syntax errors are
detected, or undefined variables occur at specified location

Results reported at runtime may be analysed in several waysase of contract compliant transi-
tions, the service can continue executing as per the oretedgtworkflow. For contract violating tran-
sitions, the service administrator may impose on the serndaexecute one of the prescribed recovery
transition. In other cases the administrator may chooseédaide the violations reported and allow the
service to continue execution. For a continuous contraatating transition being reported, the service
may be stopped. Finally, the outputs generated may be stoeelbg file for future offline analysis.

4. A vehicle repair contract: case study

We now present a description of a case study — the vehiclér regach is a web-service coming from an
industrial usecase in an actual project. This is followedlaetailed discussion on the local monitoring
and analysis of one of the agents in the composition.

We consider a service composition scenario that definesadr regntract between a clien€j and
a vehicle repair companyR(C). Communication betweet' and RC is facilitated via web service
interfaces. A repair contract specifies details conceraiparticular repair, i.e., the type of repair to be
performed, price, dates, pickup and delivery locations Etr simplicity we only model the behaviour
of RC'. Table 1 identifies some of the contract clauses governie@ctktions taken byRC', the deadlines
against which the contracts are monitored, if the clausebeaviolated, and, if a violation is recorded,
whether any recovery is possible. Note that in some cR§émay take an “offline” action, in response to
a violation from which no recovery may be possible. For exangpnsider clause 6: “For any violation
take recovery action withimax RecoveryTime - number of days”. If the recovery action is not taken,
C may take an offline legal action againz.

The informal behaviour oRRC is described as follows. WheRC receives a request frof' to
undertake a repair job, it sends a repair proposal. In respdr sends an acceptance or rejection
message. If accepted?C sends a contract initiation message(o RC' then waits for the vehicle
to arrive, failing which it sends two reminders@b If the vehicle fails to arrive, it takes an offline action.
As per the contractRC' is obligedto assess the damage, repair the vehicle and send a regortQo
receiving the report(’' is obligedto send payment t&C'. If the payment is not senizC sends two
reminders ta” and then takes an offline action.

The actions taken byrC' in response to messages sent(yare monitored to meet the deadlines
set for various activities as per the contract. Failure tehaeadlines is considered a violation of the
contractual obligations. In some cases a recovery fromitilation may be possible.

We assume the contract has been negotiated offline and tidrtigadefined in terms of their respec-
tive contract clauses, have been agreed by each of the copémdies.



clause | Contract regulated actions Deadline | Violation Recovery

1 Receives a repair request 5 days - -
by C

2 Sends a repair proposal to 7 days - -
c

3 Assess damage to the ve- 3 days yes yes
hicle

4 Execute repair 30 days yes yes

5 Send repair report t6’ 5 days yes yes

6 For any violation take re-| 3 days yes no (take offline action)
covery action

Table 1. Some contract regulated actionsRar

4.1. Monitoring the runtime behaviour of the Repair Company

The full set of behaviours of the repair company is represikby a TADDF. As described in Section 4,
deadlines for various activities are decided during cahtn@gotiation between the parties. Deadlines
are defined in terms of number of days. For example considecowtract clauses to be monitored:

e If RC' accepts a repair request it sends a proposal’tavithin 5 days- clause (2) in table 1. A
snippet of the TADD for the clause is shown in the Figure 4.

e If C' sends a damaged vehicle Rt it assess the damage to the vehicle within 3 dayause (3)
in table 1. A snippet of the TADD for the clause is shown in thguFe 5.

O

S

x=0
TacceptRequest

ReceiveRequest?
receivedRequest

sO=ReceivedRequest
x<=5
IsentProposgl

x=0
acceptRequest AcceptRequest!
) s1=AcceptedRequest
x<=7

sentProposal 0 SendProposal!
x=

C) 552=SemProposaI
X<=!

©)

Figure 4. TA specification of clause (2)

Figure 6 describes for clause (2) the timeline in number ggdstatus ofRC' in terms of tasks executed,
snapshots taken by the logger and sent to the RSA, snapgmt® she monitoring engine by the RSA
and the results from monitoring. Heredenotes the clock against which deadlines are monitoreateSi
deadlines for this contract is in days, the tick for clock atedis defined to be 1 day.

“The complete TADD for the example being too large, we do nduitke it in the paper



s4=Contract Initiated
x<=7

vehicleSent
SendVehicle!

s5=Received Vehicle

damageAssessed ldamageAssessed

SendAssessed? /=g clause=003,x=0

s7=Assessed s8=notAssessed

x<=30 x<=2

Figure 5. TA specification of clause (3)

Timelinein  Status Snapshot Clock (x) Snapshot Step Results
Days logger - RSA RSA — Monitoring engine
Start O - Received Request receivedRequest=true, 0 T
maxRepairAcceptTime=5,
1 acceptRequest=false 1 4
2 receivedRequest=true, 2
maxRepairAcceptTime=5, i =
4 R d Re it 4 receiveRequest=true,
3 ecelved Request  acceptRequest=true 3 maxRepairAcceptTime=5, ——pmw SOUICE
_ acceptRequest=true, x=3
3+ Accepted Request  acceptRequest=true, 0 reset
maxSendProposalTime=3, REEN
4 sendProposal=false 1 )
reset
acceptRequest=true, acceptRequest=true,
51 Accepted Request maxSendProposalTime=3, 2 + maxSendProposalTime=3, ——» target
sendProposal=true sendProposal=true,x=2
5 —_ Proposal Sent 3 —

Figure 6. Runtime valuations for clause (2)

The first snapshot is passed to RSAcat 0 from the logger, when a request for repair is received.
The request is acceptedat= 3 by the service and a new snapshot is passed by the logger.lddke c
x is reset as part of the TA specification. As per the contrattea request has been accepted, the
repair proposal has to be sent within 9 days. WIh&T accepts the proposal, a snapshot is again sent
by the logger to the RSA at = 2. The snapshot taken at= 3, before reset and at = 2 after reset
are sent by the RSA as a pair - or as a “step” to RMCS. The resilisned by the monitoring engine
are{GREFEN,reset}. GREEN signifies that the step is a valid step, i.e., a valid tramsiandreset
indicates that the clock has been reset. Execution stepsvateated for valid transitions as per the
methodology described in Section 2.

Timeline in Status Snapshot Clock (x) Snapshot Step Results
Days logger - RSA RSA — Monitoring engine
. receivedVehicle=true, receivedVehicle=true,
8 Received Vehicle maxDamageAssessedTime=3 0 maxDamageAssessedTime=3, source
damageAssessed=false damageAssessed=false, x=0
9 1
10 2 ED,
1 3 reset,
ivedVehicle=t ivedVehicle=t Clause 003
Not A d receivedVvenicle=true, recelvedVenhicle=true,
12 ol fissesse maxDamageAssessedTime=3 4 maxDamageAssessedTime=3 ta rg et

damageAssessed=false

Figure 7.

damageAssessed=false,x=5

Runtime valuations for clause (3)



Step state Explanation
step 1 | source | RC waits to receives the request for repairing cars.

target | RC receives the request for repairingars. In table 3 we present an example
of the clock and variable valuations for three cars.

step 3 | source | RC accepts the request for repairingars.
target | RC sends repair proposals for repairingars.

Table 2. Explanation of trace contents for ste@nd3

stepnr | nrofcars | nrofintvariables | nr of clocks Nc/Nvars time answer
[s]

10 10 10 6779/16528 <1

1 20 20 20 17738/43455 | <1 YES
300 300 300 265741/652852| 4.3
10 10 10 6743/16431 <1

3 30 30 30 26781/65822 | <1 NO
300 300 300 265811/653052| 5.4

Table 3. The experimental results. Parameters of the exaamgl described in the text; size of encoding:
Nc¢/Nwars is the number of clauses/Boolean variables in the result @fula; time refers to checking this
formula using the tool Minisat.

Figure 7 describes for clause (3) the timeline in number ggda snapshot passed to RSAcat 0
from the logger when a vehicle for repair arrives, snapsket to the monitoring engine by the RSA
and the results from monitoring. As per the contract, oncaraatied vehicle has arrived the damage
has to be assessed within 3 days. A snapshot is again sent tbygiper to the RSA at = 5. The
snapshot taken at= 0 and atr = 5 are sent by the RSA as a pair - or as a “step” to RMCS. The results
returned by the monitoring engine &&F D, reset,003}. RED signifies that a violation has occurred,
i.e., the damage was not assessed within the deadlret indicates that the clock has been reset and
003 indicates the clause index that has been violated.

4.2. Experimental results and Discussion

In order to validate our methodology, we implemented thevalmase study and monitored several run-
time execution steps for the service. To provide an indicatif the number of variables the toolkit can
monitor at the same time we scaled the example describec gimrametrizing the number of cars in
the contract. As one clock and one integer variable are ededowith every car, numbers of clocks and
int variables grow respectively. Notice that the bigger\hkies these vars can have, the more bits are
needed for encoding them.

We scaled the example above so that the client is now ine&teéstgettingx cars repaired. The
request for all these repairs is included as a single cantrac



Table 2 explains the contents of traces for contract clausesl3 (see Table 1). Table 3 presents exper-
imental results. It can be stated that the approach perfextiemely well against explicit approaches,
which, although more immediate in their construction, ¢gtly fail to scale due to their memory foot-
print. This phenomenon could be even more visible if we cdaide a network of automata instead of a
single automaton defining a contract. The experiments shewproach can monitor effectively several
hundreds of variables. This is sufficient for very complexnitaring of key aspects of a service. We
did not optimise the monitoring process in any way; we exjpectresults to improve significantly by
tailoring the approach to a particular problem we wish to itwonindeed, observe that the methodology
above could be parallelised over several engines on topeafdb service with each engine monitoring
different independent contracts or clauses in a contract.

As can be seen from the tables above, we found the only timeuooing step of our methodology
to be the construction of the automaton representing atidebrs. However this only needs to be done
once, tools to assist the user in the design exist, and itloam be used for all monitoring purposes.
Additionally it is to be noted that for complex applicatiorssrepresentation of the service composition
in an automata-based framework (or something equivalsrexpected to be produced during the de-
sign phase, so the construction above may in practice beatési from existing formalisations of the
composition under analysis.

5. Related work and conclusions

In this paper we presented a symbolic approach based on ttedhata for the runtime monitoring
of contract regulated agent based WS. Several previoustefiave investigated various formalisms
and frameworks for the monitoring of functional and nondtional properties of services. Within the
multi-agent community, Modgil et al [18] present a somewsiatilar approach, where norms defin-
ing compliance or violation are specified as augmented itransietworks. The monitoring technique
adopted here is corrective, whereas we propogeedictiveapproach where agents could be warned if
one of the next states on transition would be a red state. #mnaltive approach is presented in [11]
whereoverhearingis used as a monitoring technique. In contrast, the agentsrrirsystem explicitly
communicate their state to the monitoring engine.

In [20] the authors propose an approach based on Aspecttédi®nogramming. The methodology
is based on QoS requirements and does not consider compigraciolike constraints. The monitoring
problem has also been considered for several formalismaperg [25, 2, 4, 23, 19, 16, 14, 3]. Table 4
presents a brief summary.

Timed automata have been used in earlier work such as [13]amitoning and fault diagnosis of
systems, while [24] presents an approach which also usesltantomata for monitoring SLAs. The
aims of the above approaches are however quite differenmt &or objectives in this paper. However
[13, 24] are not concerned with local monitoring of contrbased executions.

Further none of the approaches above is based on a symbdticiqgee, which as shown in this
paper offers a significant performance advantage. Thisestalihe fact that, differently from explicit
approaches, in our framework histories and pending cadsteae not stored in memory during the moni-
toring. This positively impacts the scalability of the apach and is particularly useful when monitoring



Properties Monitoring spec Web service spec

[25] | general ITL-formulae OWL-S

[2] boolean, time-related and RTML BPEL, java
statistic properties

[4] general Algebraic specification BPEL

[23] | protocols Automata, EaGLe -

[19] | rights and obligation FSMs B2B Object middleware

[16] | general Event calculus BPEL

[14] | interaction constraints FSAs OWL-S

[3] timeouts, external errors| Assertions languages BPEL, C#
contracts

Table 4. Summary of approaches

multiple and long running contracts between several sesvié\s a case study we presented the mon-
itoring of contracts for a repair company. Although the TAE® the service is not large enough to
exploit the full capabilities of RMCWS, we believe it is $slufficiently significant to demonstrate the
methodology and scope of the proposed approach. Expesrdentonstrate that larger scenarios would
be handled just as well by the technique.

While verification is still an aspect of systems validatioa are not aware of symbolic attempts to
the runtime monitoring of these notions. It seems to us thaily be of interest to investigate whether
this could be achieved in ways related to the technique ptegdere.

Much work remains to be done. An important part of our futuknis the translation to TADDs
from high level specification standards such as WSBPEL. Dpugy such a translation is non trivial as
most standards do not support the explicit representafitimong constraints on prescribed activities.
These standards therefore need to be augmented with supbrsupdditionally, we are interested in
developing an interactive compiler for services specifit®SBPEL to be compiled into our TADD
representation.
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