
Verification of Deployed Artifact Systems via Data
Abstraction

Francesco Belardinelli and Alessio Lomuscio and Fabio Patrizi

Department of Computing
Imperial College London, UK

Abstract. Artifact systems are a novel paradigm for specifying and implement-
ing business processes described in terms of interacting modules called artifacts.
Artifacts consist of data and lifecycle models, accounting for the relational struc-
ture of the artifact state and its possible evolutions over time. We consider the
problem of verifying artifact systems against specifications expressed in quan-
tified temporal logic. This problem is in general undecidable. However, when
artifact systems are deployed, their states can contain only a bounded number of
elements. We exploit this fact to develop an abstraction technique that enables us
to verify deployed artifact systems by model checking their bounded abstraction.

1 Introduction

Artifact systems (AS) are a recent paradigm in business process modelling and develop-
ment [9]. Artifacts are a response to criticisms [4] in the workflow and services literature
regarding the fact that services are typically represented and reasoned about by mostly
neglecting the data involved in the system. In artifact systems the underlying databases
on which services operate are treated with similar emphasis to the processes operating
on them. While this responds to the need of more accurate and natural modelling, it
results in significant difficulties from a theoretical point of view.

A considerable problem arises when trying to verify formally services specified us-
ing artifacts. While verification through model checking and its applications (including
orchestration and choreography) are relatively well-understood in the plain process-
based modelling, the presence of data makes these problems much harder. Put suc-
cinctly, infinite domains in the underlying databases lead to infinite state-spaces for the
model checking problem. Infinite domains also call for specification languages that sup-
port quantification, e.g., first-order temporal logic. This setting is known to generate an
undecidable model checking problem [12], thereby reducing, at least theoretically, the
possibility of verifying ASs in their most general setting.

The starting point for the work presented in this paper is that any AS, when de-
ployed, can operationally have only size-bounded (though infinitely many) underlying
database states, due to the finiteness of the machine running the system. It follows that
any verification problem for ASs deployed on concrete machines can be abstracted by
considering bounded abstractions of the theoretically infinite domains. This bound can
either be obtained from the size of the memory of the machine running the system, or

can be iteratively refined to generate finer abstractions of the concrete system. In the pa-
per we show that under these assumptions the verification problem for ASs is decidable
and its complexity, while high, is not vastly dissimilar from that of other applications.

The rest of the paper is organised as follows. In Section 2 we introduce database
schemas and a formalisation of AS suitable for verification. In Section 3 we introduce
the verification problem in its general form and point to its undecidability. Section 4
illustrates the formalisation through a use-case thereby validating the formal machinery.
Section 5 introduces the notion of deployed artifacts and bounded AS, and presents
abstraction results leading to the decidability of the verification problem. We conclude
by applying the results to the scenario discussed and pointing to further work.

Related Work.

Although different approaches to infinite-state model checking have been proposed [15,
7, 6], we are not aware of results addressing properties that involve the relational struc-
ture of the data in each state.

Our approach is largely inspired by [11] and [10], where decidability is achieved
by adding syntactic restrictions on both the system description and the specification to
verify. These impose a form of guarded quantification on variables and limit the access
to the values stored as the system evolves. Our work differs from these in that we do not
allow quantifiers to occur out of the scope of modal operators in the property to verify;
we do not impose any restriction on the system specification; we verify an infinite frag-
ment of the original system; and we consider a branching-time specification language.
We do not perceive exploring a fragment of the original system as a limitation, as the ex-
plored fragment is in fact the deployed system. Moreover, our technique enables a form
of (incomplete) verification based on generating successively more refined abstractions
of the original system.

Our abstraction technique is based on replacing the actual values of the concrete
system with a finite set of symbolic values. This approach was previously adopted in [3]
in the context of service composition.

Our work is also related to [1], which addresses the orthogonal problem of checking
whether an AS introduces only a finite number of new values. The conditions put for-
wards in this work guarantee the underlying model to be finite-state, which is a tighter
restriction than in our case. While we focus on properties specified in a first-order exten-
sion of CTL, [1] considers a quantified version of the µ-calculus. Although not formally
addressed here, we expect our technique to be able to deal with µ-calculus properties,
too, thus making our framework a generalisation of [1].

2 Artifacts and Artifact Systems

Broadly speaking, artifacts are abstract models of the atomic entities that, by mutu-
ally interacting, give raise to a business process [9]. They are structures consisting of
two parts: a data model and a lifecycle model. The former captures a fragment of the
structure of the information relevant to the process. The latter is a specification of the
possible ways such information evolves in response to external or internal events, and

how new events for other artifacts are generated. For our purposes, artifacts can be
simply thought of as possibly nested records (i.e., they may contain sets of records as
attribute values), equipped with actions that enable changes on their attributes. A char-
acterizing feature of artifacts is the presence of an id and some status attributes. The
id field identifies a particular artifact instance, the status fields encode the advancement
of the artifact with respect to its lifecycle. Adopting an approach similar to [1], in this
paper we formalise artifact systems by means of a database and a set of actions, which
account for the artifact data models and the artifact lifecycles, respectively.

Definition 1 (Database schema). A (relational) database schema is a setD = {P1/a1,
. . . , Pn/an} of relation (or predicate) symbols Pi, each associated with its arity ai ∈ N.

Definition 2 (Database interpretation). Given a database schemaD, aD-interpretation
(or D-instance) over an interpretation domain U is a mapping D associating each rela-
tion symbol Pi with a finite ai-ary relation over U , i.e., D(Pi) ⊆ Uai .

The set of allD-interpretations over a given domain U is denoted by ID(U). The active
domain of D, adom(D), is the set of all U -elements occurring in some tuple of some
predicate interpretation D(Pi).

Definition 3 (First-order formulas over D, U , and V). Given a database schema
D = {P1/a1, . . . , Pn/an}, and two sets U and V of constant and variable symbols,
respectively, the language LD,U,V of first-order formulas ϕ over D, U and V is induc-
tively defined as follows:

ϕ ::= t = t′ | Pi(t) | (ϕ) | ¬ϕ | ∀xϕ | ϕ→ ϕ,

where t is an ai-tuple of terms, and t, t′ are terms, i.e., elements in U ∪ V .

In the rest of the paper we assume V fixed, thus omitting the corresponding subscript.
When no ambiguity arise, we also omit U . We use the standard abbreviations ∃, >, ⊥,
∧, ∨, and 6=. Free and bound variables are defined as standard. For a formula ϕ we
denote the set of its variables as vars(ϕ), the set of its free variables as free(ϕ), and
the set of constants occurring in ϕ as const(ϕ). We write ϕ(x) with x = 〈x1, . . . , x`〉
to list explicitly in arbitrary order all the free variables in ϕ. By slight abuse of notation,
we treat x as a set, thus we write x = free(ϕ). A sentence is a formula with no
free variables. Given a FO-formula ϕ(x), and a list of terms t s.t. |x| = |t| = `,
ϕ(t) represents the formula obtained from ϕ by replacing every occurrence of the i-th
element in x with the i-th element of t, for i = 1, . . . , `. Obviously, if t contains only
constants, ϕ(t) is a sentence. A U -assignment is a total function σ : V 7→ U . For
technical convenience, we implicitly assume that every U -assignment σ is extended to
the whole U and is the identity on it, i.e., ∀u ∈ U, σ(u) = u. Given an assignment
σ, we denote by σxu the U -assignment s.t. σxu(x)

.
= u and σxu(x

′)
.
= σ(x′), for every

x′ ∈ V s.t. x′ 6= x.

Definition 4 (Active-Domain Semantics of FO-formulas). Given a database schema
D, an interpretation domain U , a D-interpretation D over U , a U -assignment σ, and
a FO-formula ϕ ∈ LD,U over D and U (with V being fixed), we inductively define
whether D satisfies ϕ under σ, written (D,σ) |= ϕ, as follows:

(D,σ) |= t = t′ iff σ(t) = σ(t′);
(D,σ) |= Pi(t1, . . . , t`) iff 〈σ(t1), . . . , σ(t`)〉 ∈ D(Pi);
(D,σ) |= (ϕ) iff (D,σ) |= ϕ;
(D,σ) |= ¬ϕ iff (D,σ) 6|= ϕ;
(D,σ) |= ϕ→ ψ iff (D,σ) 6|= ϕ or (D,σ) |= ψ;
(D,σ) |= ∀xϕ iff for every u ∈ adom(D), (D,σxu) |= ϕ.

A formula ϕ is true in D, written D |= ϕ, iff (D,σ) |= ϕ for all U - assignments σ.

It can easily be seen that the satisfaction of a formula does not depend on the values
that σ assigns to non-free variables. Observe that we are adopting an active-domain
semantics, i.e., all quantified variables range over the active domain of D. Also, notice
that constants are uninterpreted, i.e., two constants are equivalent iff they are the same
constant. We can now formally introduce the notion of artifact system.

Definition 5 (Artifact System). An artifact system is a tuple S = 〈D, U,D0, Φ〉,
where:

– D = {P1/a1, . . . , Pn/an} is a database schema;
– U is a (possibly infinite) interpretation domain;
– D0 is an initial database instance;
– Φ is a finite set of parametric artifact actions of the form α(x) = 〈π(y), ψ(z)〉,

where:
• x = y ∪ z;
• α(x) is the action signature and x the set of its (formal) parameters;
• π(y) is the action precondition, i.e., a FO-formula over D and U ;
• ψ(z) is the action postcondition, i.e., a FO-formula over D ∪ D′ and U , with
D′ .= {P ′1/a1, . . . , P ′n/an};

For an action α(x) we let const(α(x)) = const(π(x)) ∪ const(ψ(x)). Moreover, if
|x| = `, an execution of α(x) with actual parameters u ∈ U `, is the ground action
α(u) = 〈π(v), ψ(w)〉, where v (resp., w) is obtained by replacing each y (z) compo-
nent yi (zi) with the value occurring in u at the same position as yi (zi) in x (observe
that such replacements make both π(u) and ψ(u) sentences).

The semantics of an artifact system is given in terms of its possible executions,
captured by a Kripke structure, whose states are instances of the database schema and
whose transitions correspond to the execution of some action.

Definition 6 (Model of an artifact system). Given an artifact system S = 〈D, U,D0, Φ〉,
the model of S is the Kripke structure K = 〈Σ,D0, τ〉, where:

– Σ ⊆ ID(U) is the set of states;
– D0 ∈ Σ is the initial state;
– τ ⊆ Σ ×Σ is the transition relation such that τ(D,D′) iff for some action α(x) ∈
Φ, there exists an execution α(u) = 〈π(v), ψ(w)〉 such that:
• adom(D′) ⊆ adom(D) ∪ {u1, . . . , u`} ∪ const(ψ);
• D |= π(v); in this case we say that the action is enabled;
• D⊕D′ |= ψ(w), where D⊕D′ is the (D ∪D′)-interpretation over U s.t. for

every i ∈ {1, . . . , n}, D ⊕D′(Pi) = D(Pi), and D ⊕D′(P ′i) = D′(Pi).

As usual, preconditions represent the requirements that a state needs to fulfil in order for
an action to be enabled, and postconditions define the possible successors of the state
where the action is executed. The former are simply LD,U FO-sentences to be evaluated
against the current state, while the latter are FO-sentences using unprimed and primed
relational symbols from D, that refer to relations in the current and the successor state.
Intuitively, given two states (i.e.,D-interpretations)D andD′, the operator⊕ constructs
a new “joint” interpretation, namely D ⊕D′, interpreting unprimed relational symbols
in D, and primed in D′. Notice that the active domain of D ⊕ D′ may include values
from adom(D), const(ψ), and u only. Thus D′ may contain additional values with
respect to D′, i.e., those from const(ϕ) and u, and is necessarily finite. For this reason,
given D and α(u) the whole set of D-successors is computable.

Since the actual parameters come from an infinite domain, the set of K-states Σ is
in general infinite. This may happen even in presence of a fixed bound on the active
domain of each state, which, although bounded, may correspond to any of the infinitely
many finite subsets of U not exceeding the bound.

3 Verification of Artifact Systems

We focus on the problem of verifying an artifact system against a temporal specification
of interest. Since the states of an artifact are characterised by their data content, the
atomic components of the specifications need to capture relational properties pertaining
to the states. This, together with the fact that the domain of data may be infinite, makes
the problem substantially more challenging than standard model checking [8].

We first introduce syntax and semantics of our specification language.

Definition 7 (Sentence-atomic FO-CTL formulas (over a system S)). Given an arti-
fact system S = 〈D, U,D0, Φ〉, the language LS of sentence-atomic FO-CTL formulas
over S is inductively defined as follows:

ϕ ::= φ | (ϕ) | ¬ϕ | ϕ→ ϕ | AXϕ | AϕUϕ | EϕUϕ,

where φ is an FO-sentence from LD,U .

The notions of free and bound variables extend in the obvious way to LS , as well as
functions vars, free, and const. Observe that formulas in LS are in fact sentences,
as all of their atomic components are FO-sentences. We use the standard abbrevia-
tions EXϕ ≡ ¬AX¬ϕ, AFϕ ≡ A>Uϕ, AGϕ ≡ ¬E>U¬ϕ, EFϕ ≡ E>Uϕ, and
EGϕ ≡ ¬A>U¬ϕ.

In order to define the semantics of LS , we first define runs on a Kripke structure.

Definition 8 (K-runs). Given a Kripke structure K = 〈Σ,D0, τ〉 of an artifact system
S, aK-run r from aK-stateD ∈ Σ is an infinite sequence ofK-states r = D0 → D1 → · · ·
such that D0 = D and τ(Di, Di+1), for i ≥ 0. For every run r and i ≥ 0, we define
r(i)

.
= Di.

The semantics of LS formulas is provided in terms of the model K of S.

Definition 9 (Semantics of LS). Consider a system S and its model K. Given a for-
mula ϕ ∈ LS and a K-state D ∈ Σ, the satisfaction relation |= is inductively defined
as follows:

(K, D) |= ϕ iff D |= ϕ, if ϕ is an FO-sentence;
(K, D) |= (ϕ) iff (K, D) |= ϕ;
(K, D) |= ¬ϕ iff (K, D) 6|= ϕ;
(K, D) |= ϕ→ ψ iff (K, D) 6|= ϕ or (K, D) |= ψ;
(K, D) |= AXϕ iff for all K-runs r s.t. r(0) = D, (K, r(1)) |= ϕ;
(K, D) |= AϕUψ iff for all K-runs r s.t. r(0) = D, ∃k ≥ 0 s.t. (K, r(k)) |= ψ

and ∀j s.t. 0 ≤ j < k, (K, r(j)) |= ϕ;
(K, D) |= EϕUψ iff for some K-run r, r(0) = D, ∃k ≥ 0 s.t. (K, r(k)) |= ψ,

and ∀j s.t. 0 ≤ j < k, (K, r(j)) |= ϕ.

A formula ϕ is true in K, written K |= ϕ, if (K, D0) |= ϕ. We say that S satisfies ϕ,
written S |= ϕ, if K |= ϕ.

The Problem. We are interested in exploring the model checking problem for artifact
systems. Formally, this amounts to checking whether an artifact system S satisfies a
specification ϕ ∈ LS , i.e., S |= ϕ. It can be shown that the problem is decidable for U
finite, and undecidable otherwise.

To see the former, observe that if U contains only finitely many distinct elements,
its model contains a finite set of states, whose (relational) data content can be captured
by a finite set of propositions (namely, one proposition per fact). By quantifier elimi-
nation ϕ can be transformed into an equivalent propositional (CTL) temporal formula,
whose propositions are ground atoms from LS . This corresponds to reducing the whole
problem to standard model checking, which is known to be decidable [8].

For the latter, we have the following result.

Theorem 1. The model checking problem for artifact systems is undecidable.

Proof (Sketch). The theorem can be proven by showing that every Turing machine T
whose tape contains an initial input I can be simulated by an artifact system ST,I ,
and that the problem of checking whether T terminates on that particular input can be
reduced to checking whether ST,I |= ϕ, where ϕ encodes the termination condition.
The detailed construction is similar to that of Th. 4.10 in [11].

The theorem essentially states the general impossibility of checking the correctness
of an artifact system’s design, when the interpretation domain is infinite. As this as-
sumption is typically fulfilled in practice, this is a considerably negative result. In the
following, rather than focusing on the design, we explore conditions on the concrete
implementation of a system that yield decidability and enable the reduction of the veri-
fication task to standard model checking of finite-state systems.

4 The Order-to-Cash Business Process

In this section we formalise a business process inspired by an IBM customer exam-
ple [13] as an AS. Specifically, the Order-to-Cash scenario describes the process a

product undergoes from order to delivery. It involves a manufacturer, some customers,
and some suppliers. The process starts when a customer prepares and submits a cus-
tomer purchase order (CPO), i.e., a list of products the customer needs.

Upon receiving a CPO, the manufacturer first prepares a work order (WO), i.e., a
list of the components needed to assemble the requested products. Then she selects a
possible supplier for each component, prepares one material purchase order (MPO) per
selected supplier, and submits each MPO to the corresponding supplier.

A supplier can either accept or reject a received MPO. In the former case he de-
livers the requested components to the manufacturer. In the latter case he notifies the
manufacturer of his rejection. If an MPO is rejected, the manufacturer can delete it and
prepare and submit new MPOs for the rejected components. When all the components
required by a product have been delivered to the manufacturer, she assembles the prod-
uct and, provided the order has been paid for, delivers it to the customer. Any order
(directly on indirectly) related to a CPO can be deleted only after the CPO is deleted.

It is natural to identify 3 classes of artifacts in this process, each corresponding to
some of the orders manipulated by the participants (CPO, WO and MPO). An intuitive
representation of the artifact lifecycles, capturing only the dependence of actions from
the artifact statuses, is shown in Fig. 1. We stress that this is an incomplete represen-
tation of the business process, as the interaction between actions and the artifact data
content is not represented.

prepared pending paid shipped
createCPO submitCPO pay shipCPO deleteCPO

(a) Customer Purchase Order lifecyle

preparation complete
createWO

addLineItemWO

doneWO deleteWO

(b) Work Order Lifecyle

empty preparation submitted

accepted shipped

rejected

createMPO

addLineItemMPO

addLineItemMPO

sendMPO

accept

reject

shipMPO

deleteMPO

deleteMPO

(c) Material Purchase Order lifecyle

Fig. 1. Lifecycles of the artifacts involved in the order-to-cash scenario.

Next, we provide a formal model of the process as an artifact system, where the arti-
fact data models are represented as a relational database schema, and the corresponding
lifecycles are formally characterised by an appropriate set of actions.

As to the data model, we reserve a distinguished relation for each artifact class, as
well as some auxiliary relations necessary to model the line items present in MPOs
and WOs. In addition, we introduce static relations to store customer, supplier, prod-

uct, and material information. The resulting database schema D is shown in Table 1.
R(n1, . . . , nk) defines the relation symbol R of arity k (R/k), where ni is the name
of the i-th component, or attribute, of its tuples. The relations Customers, Suppliers,
Products, and Materials, as well as CPO, WO, and MPO, are self-explanatory.
Observe the presence of the attribute status in the relations corresponding to artifacts.
As toWO LI andMPO LI , they contain the line items occurring in WOs and MPOs,
respectively. For instance, the fact that two line items containing materials with codes 5
and 6, and quantities 20 and 15, respectively, occur in the WO with id = 10, is captured
by the presence of tuples 〈10, 5, 20〉 and 〈10, 6, 15〉 in WO LI .

Table 1. Database schema D of the artifact system for the cash-to-order scenario.

Customers(id, name), Suppliers(id, name),
Products(code, descr), Materials(code, descr),
CPO(id, customer id, product code, status),

WO(id, cpo id, status), WO LI(wo id,mat code, qty),
MPO(id, wo id, supplier, status), MPO LI(mpo id,mat code, qty).

As interpretation domain, we consider the infinite set U of alphanumeric strings. In
the initial database instanceD0 the only non-empty relations areCustomers, Suppliers,
Products, and Materials, which contain background information, such as the possi-
ble customers, or a catalogue of available products.

System actions capture legal operations on the underlying database and, thus, on
artifacts. In Table 2 we report some of their specifications. Variables (from V) and con-
stants (fromU) are distinguished by fonts v and c, respectively. We adopt the convention
that an action affects only those relations whose name occurs in ψ.

Consider the action createWO, whose purpose is the creation of a WO-artifact in-
stance. Its precondition requires that cpo is the identifier of some existing CPO, and that
id in the new WO is unique with respect to those present when the action is executed.
Its postcondition states that, upon execution, the WO relation contains exactly one ad-
ditional tuple, with identifier attribute set to id, and attribute status set to preparation.

The action addLineItem adds a line item, i.e., a component, to an existing WO. It
takes in input the identifier of the WO-artifact (wo), that of the material to add (mat),
and the needed quantity (qty). The precondition requires that such parameters corre-
spond to some existing WO-artifact and material, and that the WO-artifact is in state
preparation. Moreover, it is required that the material being added is not already present
in the WO. The postcondition states that the new line item is added to WO LI .

As an example of action triggering an artifact’s status transition, consider doneWO.
It is executable only if the WO-artifact is in status preparation and its effect is to set the
status attribute to complete.

Notice that although actions are typically conceived to manipulate artifacts of a
specific class, e.g., createWO manipulates WO-artifacts, their preconditions and post-
conditions may depend on artifact instances of different classes, e.g. createWO’s pre-
condition depends on CPO-artifacts. We stress that action executability depends not

Table 2. Specification of the actions affecting the artifact WO in the order-to-cash scenario.

– createWO(id, cpo) = 〈π(id, cpo), ψ(id, cpo)〉, where:
• π(id, cpo) ≡ ∃code, cid, st CPO(cpo, code, cid, st)∧

∀id′, c, s (WO(id′, c, s)→ id 6= id′)
• ψ(id, cpo) ≡WO′(id, cpo, preparation)∧

∀id′, c, s (id 6= id′ → (WO(id′, c, s)↔WO′(id′, c, s)))
– addLineItemWO(wo,mat, qty) = 〈π(wo,mat), ψ(wo,mat, qty)〉, where:
• π(wo,mat) ≡ ∃cpo WO(wo, cpo, preparation) ∧ ∃desc Materials(mat, desc)∧

¬∃q WO LI(wo,mat, q)
• ψ(wo,mat, qty) ≡WO LI ′(wo,mat, qty)∧

∀w,m, q
(
(WO LI(w,m, q)→WO LI ′(w,m, q))∧

(WO LI ′(w,m, q)→ (WO LI(w,m, q)∨(w = wo∧m = mat∧q = qty)))
)

– doneWO(wo) = 〈π(wo), ψ(wo)〉, where:
• π(wo) ≡ ∃cpo WO(wo, cpo, preparation)

• ψ(wo) ≡ ∀w, c, s
(
(w 6= wo → (WO(w, c, s) ↔ WO′(w, c, s))) ∧

(WO(wo, c, s)→ (WO′(wo, c, complete)∧(s 6= complete→ ¬WO′(wo, c, s))))
)

only on the status attribute of an artifact, but on the data content of the whole database,
i.e., of all other artifacts. Similarly, action executions affect not only status attributes.

As actions are executed, the database content, hence the state of each artifact, changes.
Obviously, after executing an action, other actions become executable, their executions
change the database state, thus make other actions executable, and so on.

In the following, we describe some properties of S. The first one requires that a
product can be shipped to a customer only if all the required materials are already
shipped to the manufacturer:

ϕship = AG ∀c
(
shippedCPO(c)→ ∀m (related(c,m)→ shippedMPO(m))

)
,

where: shippedCPO(x) ≡ ∃c, p CPO(x, c, p, shipped) and shippedMPO(x) ≡
∃w, sp MPO(x,w, sp, shipped), respectively, capture the fact that the CPO and the
MPO with id = x are in status shipped; and related(x, y) ≡ ∃c, p, s CPO(x, c, p, s)∧
∃w, s WO(w, x, s) ∧ ∃sp, st MPO(y, w, sp, st) holds iff the MPO with id = y is re-
lated, via some WO, to the CPO with id = x.

The next property captures the existence of a run containing a state whose active
domain exceeds a given size-threshold t:

ϕt+ = EF ∃x1, . . . , xt+1

∧
i 6=j

xi 6= xj .

We can also express the fact that from some state there exists a way to achieve some
goal (although this may not necessarily happen). For instance, the next formula states
that there exists always a way to empty all non-static relations:

ϕempty = AG EF (emptyCPO ∧ emptyWO ∧ emptyMPO),

where: emptyCPO ≡ ¬∃i, c, p, s CPO(i, c, p, s), emptyWO ≡ ¬∃i, c, sWO(i, c, s)∧
¬∃w,m, q WO LI(w,m, q), and emptyMPO is similar to emptyWO.

Specifications such as those above are useful to describe properties of ASs. Typi-
cally, we are interested in checking automatically whether they are satisfied on particu-
lar systems. This amounts to checking S |= ϕ, for a system S and a specification ϕ. If
we consider the AS described previously in the order-to-cash scenario, it is not difficult
to see that ϕship, ϕt+, and ϕempty are satisfied.

Observe that while we may, and in fact can, ascertain the truth of those specifications
on this specific example, we cannot be able to do so automatically on any possible
system, as the general model checking problem is undecidable. It is therefore natural to
investigate decidable subclasses of this problem.

5 Verification of Deployed Artifact Systems

Artifact systems serve as a theoretical model for systems to be implemented and de-
ployed on actual machines [9, 14]. It is therefore of interest, and of particular relevance
in practice, to investigate the model checking problem for such concrete implementa-
tions. Observe that any running system can use only the finite, bounded memory pro-
vided by the machine it is deployed on (e.g., corresponding to all virtual and physical
memory of the server). We show in the following that in this concrete setting the model
checking problem against FO-CTL specifications is decidable. Precisely, we show that
given a size-bound on the number of values a machine can store at each state, it is de-
cidable whether the artifact system executed on a machine with that bound satisfies the
specification. This result can be used to perform a particular form of data abstraction
on artifact-systems that guarantees, in limited cases, the preservation of specifications
between abstract and concrete systems.

We start this analysis by defining formally the model of an artifact system deployed
on a concrete machine.

Definition 10 (b-bounded model of a system S). Consider a system S = 〈D, U,D0, Φ〉,
its model K = 〈Σ,D0, τ〉, and a bound b ∈ N such that b ≥ |adom(D0)|. The b-
bounded model of S is the Kripke structure Kb = 〈Σb, D0, τb〉, such that:

– Σb
.
= {D ∈ Σ such that |adom(D)| ≤ b};

– τb
.
= {〈D,D′〉 ∈ τ such that D,D′ ∈ Σb}.

Roughly speaking, Kb is a sub-model of S, obtained from K by considering only those
K-runs whose states do not exceed the size-bound b. Intuitively, bounded models cap-
ture the possible executions of S on a machine able to accommodate at most b elements.
Notice that because the artifact system may still reach infinitely many states, verifying
Kb against a specification ϕ via an exhaustive visit of its state space is not a viable
approach. Nonetheless, we next show that a finite-state, abstract model K̂b,ϕ capturing
all the features of Kb relevant to ϕ can be constructed. Specifically, we demonstrate
that verifying K̂b,ϕ against ϕ is equivalent to verifying Kb against ϕ. This will show
that the verification of deployed ASs is actually decidable. In practice, K̂b,ϕ is defined
indirectly, as the b-bounded model of an abstract system Ŝb,ϕ obtained from S, b, and
ϕ, as follows.

Definition 11 ((b, ϕ)-bounded abstract system). Given a system S = 〈D, U,D0, Φ〉,
a sentence-atomic FO-CTL sentence ϕ ∈ LS , and a bound b ≥ |adom(D0)|, the (b, ϕ)-
bounded abstract system of S is the system Ŝb,ϕ = 〈D, Û ,D0, Φ〉, where Û = CS,ϕ∪Ĉ,
and:

– CS,ϕ = const(ϕ) ∪
⋃
φ∈Φ const(φ) ∪ adom(D0);

– Ĉ is any set of symbols s.t.:
• Ĉ ∩ CS,ϕ = ∅,
• |Ĉ| = b+ v, with v = maxφ∈Φ{|vars(φ)|

}
.

As it turns out, Ŝb,ϕ is an artifact system analogous to S, except for the interpretation
domain. Specifically, Û contains all the constants mentioned in S or in ϕ, plus b + v
additional symbols. Intuitively, these symbols are used to simulate the database content
at each state, as well as the new values that actions may introduce upon execution. In
particular, at least b distinct symbols are required for the former and v for the latter.
Observe that by preserving (the identity of) all mentioned constants, the FO-formulas
occurring in S and ϕ need no syntactic transformation to preserve their semantics.

As anticipated above, since Û is finite, checking K̂b,ϕ |= ϕ is decidable. Below, we
show that Ŝb,ϕ contains enough information to check the bounded model of the original
artifact system S against the specification ϕ.

Theorem 2. Consider a system S with U infinite, a bound b ≥ |adom(D0)|, and a
sentence-atomic FO-CTL formulaϕ ∈ LS . If Ŝb,ϕ is the (b, ϕ)-bounded abstract system
of S then Kb |= ϕ⇔ K̂b,ϕ |= ϕ, where Kb is the b-bounded model of S and K̂b,ϕ is the
b-bounded model of Ŝb,ϕ.

The theorem shows that instead of checking Kb |= ϕ (where Kb is infinite), we can
check K̂b,ϕ |= ϕ. Since K̂b,ϕ is finite, this essentially corresponds to a standard model
checking problem, thus any technique for this is also effective for the verification of the
b-bounded model of S.

Next, we sketch the main steps of the proof of Theorem 2. We essentially show that
K̂b,ϕ is a sound abstraction of the bounded model of S, that is, it retains enough infor-
mation to carry out the verification task. Our approach is inspired by the decidability
proof of verification of input-bounded ASM+s presented in [11]. Interestingly, differ-
ently from that, the assumption of size-boundedness allows us to conclude that Kb and
K̂b,ϕ are bi-similar, thus enabling verification of branching-time properties. Firstly, we
define when two D-instances are isomorphic.

Definition 12 (C-isomorphic D-instances). Two D-instances D and D̂, respectively
over U and Û , are said C-isomorphic, for C ⊆ U, Û , written D ∼C D, iff there exists
a bijection i : adom(D) ∪ C 7→ adom(D̂) ∪ C that is the identity on C, and such that
for every j = 1, . . . , n, and for every u ∈ adom(D)ai , D |= Pj(u)⇔ D̂ |= Pj(i(u)),
where i(u) .= 〈i(u1), . . . , i(uaj)〉.

The relation ∼C can be shown to be an equivalence relation.
The following rephrases a well-known result.

Proposition 1. Given two D-instances D and D̂, respectively over U and Û , an FO-
sentence ϕ from LD,U , and a set C ⊆ U, Û such that const(ϕ) ⊆ C, if D ∼C D̂,
then

D |= ϕ⇔ D̂ |= ϕ.

This is the main ingredient that allows us to prove Theorem 2. It states that if two
D-instances are C-isomorphic, they are indistinguishable by any sentence over D con-
taining only constants from C. We can now define when two Kripke structures are
bi-similar.

Definition 13 (C-bisimilar Kripke structures). Given two Kripke structures K =
〈Σ,D0, τ〉 and K̂ = 〈Σ̂, D̂0, τ̂〉, with Σ ⊆ ID(U) and Σ̂ ⊆ ID(Û), and a finite
set of constants C ⊆ U, Û , K and K̂ are said C-bisimilar, written K ≈C K̂, iff there
exists a relation R ⊆ Σ × Σ̂, called C(-preserving) bisimulation, s.t. 〈D0, D̂0〉 ∈ R,
and if 〈D, D̂〉 ∈ R then:

– D ∼C D̂;
– for all D′ s.t. τ(D,D′) there exists D̂′ s.t. τ̂(D̂, D̂′) and 〈D′, D̂′〉 ∈ R;
– for all D̂′ s.t. τ̂(D̂, D̂′) there exists D′ s.t. τ(D,D′) and 〈D′, D̂′〉 ∈ R.

When 〈D, D̂〉 ∈ R, we say that D and D̂ are C-bisimilar (with respect to K and K̂),
written D ≈C D̂.

Since by definitionD ≈C D̂ impliesD ∼C D̂, by Proposition 1, for every FO-sentence
ϕ over D and U such that const(ϕ) ⊆ C, D |= ϕ ⇔ D̂ |= ϕ. Observe that the atoms
of a FO-CTL sentence are FO-sentences and can thus be evaluated at each state of a
Kripke structure. Therefore, we have the following result.

Lemma 1. GivenK, K̂, and C as above, for every sentence-atomic FO-CTL formula ϕ
over D and U such that const(ϕ) ⊆ C, if D ∈ Σ and D̂ ∈ Σ̂ are such that D ≈C D̂,
then

(K, D) |= ϕ⇔ (K̂, D̂) |= ϕ.

Proof (Sketch). By induction on the structure of ϕ.

In other words sentence-atomic FO-CTL formulas containing only constants from C
do not distinguish among C-bisimilar Kripke structures. As a consequence, an infinite-
state Kripke structure can be verified against a sentence-atomic FO-CTL formula by
verifying any other C-bisimilar structure, including a finite one, against the same spec-
ification.

The final step of the proof consists in showing that the b-bounded model of S, Kb,
which is infinite-state in general, is CS,ϕ-bisimilar to K̂b,ϕ, which is, instead, finite by
construction (see Def. 11).

Lemma 2. Consider a system S = 〈D, U,D0, Φ〉 and a sentence-atomic FO-CTL for-
mula ϕ ∈ LS . Fix a bound b ≥ |adom(D0)|, let Kb be the b-bounded model of S,
Ŝb,ϕ = 〈D, Û ,D0, Φ〉 the (b, ϕ)-bounded abstract system of S, and K̂b,ϕ its b-bounded
model. Then, for CS,ϕ as in Def. 11, Kb ≈CS,ϕ K̂b,ϕ.

Proof (Sketch). The proof consists in constructing a particular CS,ϕ-bisimulation be-
tween Kb and K̂b,ϕ. The result then follows.

Lemmas 1 and 2 allow us to prove Theorem 2; so we achieve decidability of the problem
in presence of a known bound.

Obviously, not all specifications satisfied by K̂b,ϕ are preserved in the original (un-
bounded execution of) S. For instance, consider the specification ϕt−

.
= ¬ϕt+, with

ϕt+ as in Section 4, which expresses the fact that all states of every run contain at most
t distinct elements. This is clearly satisfied by K̂t,ϕt− , but not by S. On the other hand,
preservation is guaranteed for existential specifications. Precisely, let LES ⊆ LS be the
sublanguage of sentence-atomic FO-ECTL formulas ϕ, inductively defined as:

ϕ ::= φ | (ϕ) | ϕ ∨ ϕ | ϕ ∧ ϕ | EXϕ | EϕUϕ,

where φ is a FO-sentence. Then, we have the following result:

Theorem 3. Given a system S, a bound b ≥ |adom(D0)|, and a sentence-atomic FO-
ECTL formula ϕ ∈ LES , if K̂b,ϕ |= ϕ then S |= ϕ.

Thus, a sound (though incomplete) technique to check whether S |= ϕ for ϕ ∈ LES
consists in iteratively increasing b and checking whether K̂b,ϕ |= ϕ. If at some point the
check is successful, then S |= ϕ. For instance, to check whether the AS S of Section 4
contains a run with some state exceeding a size-threshold T , one can iteratively check
whether K̂b,ϕT+

|= ϕT+ by increasing b at each iteration, starting with b = T + 1. In
this particular case, it is easy to see that for any T the check is successful for b = T +1,
as the system is unbounded. A similar approach can be adopted to find counterexamples
of universal specifications (i.e., negations of existential ones) such as ϕship. There are
obvious correspondences with the technique of Bounded Model Checking [5]. Here,
however, the bound is on the size of the states, rather than the length of runs.

If S is size-bounded itself (and the bound is known), all specifications are preserved
from the abstract to the concrete model and viceversa. If this is not the case, however,
nothing can be said with respect to specifications that are neither universal nor existen-
tial. For instance, by checking that K̂b,ϕempty

|= ϕempty we cannot conclude anything
in general about S |= ϕempty . That is, our technique fails in proving that S |= ϕempty
(although we know that this holds). However, by changing the bound b, we can check
whether the property holds on any deployed instance of S.

We now analyse the time-complexity of our technique, by considering the cost of
reducing the problem of checking whether Kb |= ϕ to standard CTL model checking.
Given S, b, and ϕ, this essentially requires: building K̂b,ϕ (from Ŝb,ϕ); transforming ϕ
into a propositional CTL formula ϕp, by recursively replacing each formula of the form
∀xϕ(x) with

∧
û∈Û ϕ(û); and then applying an algorithm for CTL model checking, to

check whether K̂b,ϕ |= ϕp. This gives the following result.

Theorem 4. Given an artifact system S = 〈D, U,D0, Φ〉, a sentence-atomic FO-CTL
formula ϕ ∈ LS , and a bound b ≥ |adom(D0)|, checking whether Kb |= ϕ can be

done in time O(22|Û |
a

|ϕ||Û |
|ϕ|

), where a =
∑
i=1,...,n ai, with ai the arity of Pi ∈ D,

and Û defined as in Def. 11.

Proof (sketch). K̂b,ϕ |= ϕp can be checked in timeO((s+ t) · |ϕp|), where s and t are,
respectively, the number of states and transitions of K̂b,ϕ [8]. We have s ≤ |ID(Û)| ≤
2|Û |

a

, t ≤ s2, and s+ t ≤ 2s2 ≤ 22|Û |
a
+1. For ϕp, each quantifier elimination makes

the current expansion grow by a factor |Û |, thus |ϕp| ≤ |ϕ| · |Û |
|ϕ|

.

Theorem 4 gives a doubly exponential bound, which comes from the arity of the re-
lations in D. Observe that the bound is singly exponential in |Û |, which is typically
greater than a. Moreover, if one needs to check the correctness of S against ϕ for dif-
ferent bounds b, then a can be considered constant, and the cost of increasing b becomes
only singly exponential. While certainly a high complexity, we observe that comparable
bounds are obtained in [1] and [11]. In particular, the latter led to the implementation of
a system performing surprisingly well in cases of practical interest. This may suggest
that worst-case instances are not frequent in practice, and that a similar behavior might
be observed also in implementations of our technique.

6 Conclusions and Future Work

In this paper we have considered the problem of checking a deployed artifact system
against a temporal specification expressed in a FO extension of CTL. A notable feature
of deployed systems is the existence of an upper bound on the number of elements
they can store at each state at execution time. This allows us to reduce the problem to
standard model checking by executing the system using only a finite number of abstract
symbols instead of an infinite number of concrete ones.

Roughly speaking, our technique can be seen as an inspection of a fragment, con-
taining only bounded states, of the original, concrete system. While this does not allow
us to draw conclusions in the general case, it may provide some answers in particular
cases. In this respect, we have shown that FO-ECTL properties satisfied by the ab-
stract system are also satisfied by the concrete system, and that if the concrete system
is bounded itself, our technique is complete.

We are interested in pursuing this work further. Firstly, we have shown that the
bounded model of the abstract system is bi-similar to the bounded model of the concrete
system. This suggests that all the obtained results, here presented in the context of FO-
CTL, also hold for a FO extension of the µ-calculus analogous to [1]. If confirmed, this
would imply that our work can be generalised to this setting.

Secondly, an interesting extension concerns the possibility of quantifying over vari-
ables across the scopes of modal operators, thus enabling us to capture temporal re-
lationships among elements at different states. This introduces a major difficulty as it
apparently requires to record elements from potentially infinitely many states. We are
interested in pursuing abstraction techniques to avoid this problem.

Finally, the framework considered here may be extended to a Multi-Agent frame-
work similarly to [2], thus accounting for the agents that execute the actions and their
knowledge about the system.

References

1. B. Bagheri Hariri, D. Calvanese, G. De Giacomo, R. De Masellis, and P. Felli. Foundations
of Relational Artifacts Verification. In Proc. of BPM, 2011. To appear.

2. F. Belardinelli, A. Lomuscio, and F. Patrizi. A Computationally-Grounded Semantics for
Artifact-Centric Systems and Abstraction Results. In Proc. of IJCAI, 2011. To appear.

3. D. Berardi, D. Calvanese, G. De Giacomo, R. Hull, and M. Mecella. Automatic Composition
of Transition-based Semantic Web Services with Messaging. In Proc. of VLDB, 2005.

4. K. Bhattacharya, C. E. Gerede, R. Hull, R. Liu, and J. Su. Towards Formal Analysis of
Artifact-Centric Business Process Models. In Proc. of BPM, 2007.

5. A. Biere, A. Cimatti, E. M. Clarke, O. Strichman, and Y. Zhu. Bounded Model Checking.
Advances in Computers, 58:118–149, 2003.

6. A. Bouajjani, P. Habermehl, and T. Vojnar. Abstract Regular Model Checking. In Proc. of
CAV, 2004.

7. D. Caucal. On Infinite Transition Graphs having a Decidable Monadic Theory. Theoretical
Computer Science, 290(1):79–115, 2003.

8. E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. The MIT Press, 2000.
9. D. Cohn and R. Hull. Business Artifacts: A Data-Centric Approach to Modeling Business

Operations and Processes. IEEE Data Eng. Bull., 32(3):3–9, 2009.
10. A. Deutsch, R. Hull, F. Patrizi, and V. Vianu. Automatic Verification of Data-centric Business

Processes. In Proc. of ICDT, 2009.
11. A. Deutsch, L. Sui, and V. Vianu. Specification and Verification of Data-Driven Web Appli-

cations. J. Comput. Syst. Sci., 73(3):442–474, 2007.
12. D. Gabbay, A. Kurucz, F. Wolter, and M. Zakharyaschev. Many-Dimensional Modal Logics:

Theory and Applications, volume 148 of Studies in Logic. Elsevier, 2003.
13. R. Hull, E. Damaggio, R. De Masellis, F. Fournier, M. Gupta, F. T. Heath III, S. Hobson,

M. H. Linehan, S. Maradugu, A. Nigam, P. Sukaviriya, and R. Vaculı́n. Business Artifacts
with Guard-Stage-Milestone Lifecycles: Managing Artifact Interactions with Conditions and
Events. In Proc. of DEBS, 2011. To appear.

14. R. Hull, N. C. Narendra, and A. Nigam. Facilitating Workflow Interoperation Using Artifact-
Centric Hubs. In Proc. of ICSOC-ServiceWave, 2009.

15. I. Walukiewicz. Model Checking CTL Properties of Pushdown Systems. In Proc. of FSTTCS,
2000.

