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Abstract
We present a formal investigation of artifact-based
systems, a relatively novel framework in service
oriented computing, aimed at laying the founda-
tions for verifying these systems through model
checking. We present an infinite-state, computa-
tionally grounded semantics for these systems that
allows us to reason about temporal-epistemic spec-
ifications. We present abstraction techniques for
the semantics that guarantee transfer of satisfaction
from the abstract system to the concrete one.

1 Introduction
Considerable research in service-oriented computing, includ-
ing in multi-agent systems approaches to it, has focused
on tackling the orchestration and choreography problems
[Alonso et al., 2004]. In a nutshell these involve offering a
methodology for the seamless interaction of autonomous and
distributed services thereby satisfying individual and overall
goals in the system. Some of the most compelling contribu-
tions to both problems have focused on the use of verifica-
tion technology. In these approaches orchestration is tackled
by means of synthesis, whereas “vanilla” model checking is
used to check choreography properties.

While approaches based on model checking are now rel-
atively commonplace in services, recent prominent work
[Cohn and Hull, 2009] has emphasised what appear to be se-
vere limitations in the mainstream modelling as considered in
the services literature. Specifically, it is of concern that cur-
rent approaches typically focus either on the process side or
on the data side, hence disregarding the interactions between
these two equally relevant facets of the system. To overcome
these limitations, the concepts of artifacts and artifact-centric
systems (ACSs) have been put forward.

Artifacts are structures that “combine data and process in
an holistic manner as the basic building block[s]” [Cohn and
Hull, 2009], and ACSs are formal descriptions of (complex)
workflow schemes based on artifacts.

As a result of treating both data and processes as “first-
class citizens”, the usual service composition questions be-
come intrinsically much harder and can no longer been solved
by current verification methodology. This is an area where so-
lutions inspired by theoretical work in Artificial Intelligence,

including knowledge representation, have, in our opinion, a
fundamental role to play, particularly when combined with
verification approaches.

This paper is intended to provide a first foundational step-
ping stone in this direction. Inspired by well-known con-
tributions in logic and knowledge representation [Fagin et
al., 1995], we put forward a formalisations of artifact sys-
tems by providing them with a computationally-grounded
[Wooldridge, 2000] semantics (Section 2) that we illustrate
on a concrete scenario (Section 3). The semantics is used
to interpret a quantified language that includes temporal and
epistemic modalities to model the temporal evolution of the
system’s properties including the information the agents hold.
In Section 4 we address the model checking problem, which,
besides being interesting per se, provides a basis for solutions
of many typical problems in this area, including orchestra-
tion and choreography. This is a difficult problem as both
the quantification domain and the state-space are infinite. We
make an initial, yet promising dent into this by giving ab-
straction results that, in some cases, permit the reduction of
the problem to model checking on finite domains.

2 Formal Model
We recall the notion of database and then introduce artifact
quantified interpreted systems (A-QIS), which we show to be
well-suited to provide a semantics to ACSs.
Definition 1 (Database Schema) A database schema is a set
D = {R1, . . . , Rn}, where each Ri is a relation schema of
the form Ri = ri(a1, . . . , aki), and all ajs are pairwise dis-
tinct. For each relation schema Ri we refer to ri as the rela-
tion name, aj as the j-th relation attribute, and ki as Ri’s (or
ri’s) arity.
Definition 2 (Database Instance) An instance (or interpre-
tation) D of a database schema D over a possibly in-
finite interpretation domain V is a set of finite relations
D = {R1, . . . ,Rn} such that Ri ⊆ V ki , for i = 1, . . . , n.
Each Ri is called instance (or interpretation) of (relation
schema) Ri.
For a schema D, write ID(V ) (or simply ID, if V is clear
from the context) for the set of all D’s interpretations over V .

We capture ACSs by using ideas from Intepreted Systems
semantics [Fagin et al., 1995] and extensions [Belardinelli
and Lomuscio, 2009].



We assume a set Ag = {1, . . . ,m} of agents, a database
schema D = {R1, . . . , Rn}, and an alphabet A contain-
ing individual constants c1, c2, . . ., n-ary predicate letters
Pn1 , P

n
2 , . . . for n ∈ N, as well as all relation schemes

R1, . . . , Rn in D. Further, for each agent i ∈ Ag we intro-
duce a set Li of local states li, l′i, . . ., a set ACTi of actions
αi, α

′
i, . . ., and a protocol function Pi : Li −→ 2Acti . We

consider local states, actions and a protocol function for the
environment e as well. The set S ⊆ L1× . . .×Lm×Le con-
tains the global states of the systems; while Act ⊆ Act1 ×
· · · × Actm × Acte and P = 〈P1, . . . , Pm, Pe〉 are the set of
joint actions and the joint protocol respectively. We can now
define artifact quantified interpreted systems (A-QIS).

Definition 3 (A-QIS) An artifact quantified interpreted sys-
tem is a tuple P = 〈D,V, s0, τ, I〉 where:
• for each i ∈ Ag, Di is a view on D and Li = IDi(V ).

Also, Le = ID(V );
• V is the interpretation domain of D;
• s0 ∈ S is the initial global state;
• τ : S −→ (Act −→ S) is the transition function, where
τ(s)(α) is defined only if α ∈ P (s).
• I is an interpretation of the alphabet A such that: (i)

for every constant c ∈ A, I(c) ∈ V ; and (ii) for every
predicate letter Pn ∈ A, I(Pn, s) ⊆ V n. In particular,
for each relation schema R, I(R, s) = R.

For s, s′ ∈ S we say that s′ is a successor of s, or s −→ s′,
if there exists α ∈ Act such that s′ = τ(s)(α). A run r is
a sequence r = s0 −→ s1 −→ . . . such that si −→ si+1.
For n ∈ N, r(n) is the n-th element in the sequence, i.e., sn.
For s, s′ ∈ S we say that s is epistemically indistinguishable
from s′ for agent i, or s ∼i s′, if si = s′i [Fagin et al., 1995].

Observe that A-QISs specialise quantified interpreted sys-
tems (QIS), as defined in [Belardinelli and Lomuscio, 2009].
In fact, a QIS can be seen as an A-QIS P = 〈V, s0, τ, I〉
with no database schema, so that the internal structure of lo-
cal states is left unspecified.

2.1 The First-Order MAS Logic FO-CTLK
Given the set Ag of agents and the alphabet A, the first-order
temporal epistemic language Lm contains all individual con-
stants, predicate letters and relation schema in A, individual
variables x1, x2, . . ., the connectives ¬ and→, the quantifier
∀, the branching time operators AX , AU and EU , the epis-
temic operator Ki for each agent i ∈ Ag, and the common
knowledge operator C [Fagin et al., 1995]. Lm contains no
functional symbols, so the only terms in the language are in-
dividual variables and constants.
Definition 4 Formulas in Lm are defined in BNF as follows:

φ ::= P k(t1, . . . , tk) | ¬φ | φ→ φ | ∀xφ | AXφ | AφUφ
EφUφ | Kiφ | Cφ

The formulas AXφ and AφUφ′ (resp. EφUφ′) are read as
“for all paths, at the next step φ” and “for all paths (resp. for
some path), φ until φ′”. Kiφ means “agent i knows φ”; while
Cφ is read as “φ is common knowledge”. The logical symbols
∧, ∨,↔ and ∃, as well as the operators AG, AF , EG, EF ,

and EX are defined as standard. Finally, Eφ is defined as∧
i∈AgKiφ, and for n ∈ N, E0φ = φ and En+1φ = EEnφ.
By φ[~y] we mean that ~y = y1, . . . , yn are all φ’s free vari-

ables; and φ[~y/~t] is the formula obtained by substituting si-
multaneously some, possibly all, free occurrences of ~y in φ
with ~t = t1, . . . , tn while renaming bound variables. As stan-
dard, a sentence is a formula with no free variables.

In what follows we consider two fragments of Lm.
Definition 5 Formulas in the ∀ACTLK-fragment of Lm are
defined in BNF as follows, where the logical symbols ∨, ∧,
AU , and ∃ are taken as primitives:

φ ::= P k(~t) | ¬P k(~t) | φ ∨ φ | φ ∧ φ | ∀xφ | AXφ
AφUφ | AφUφ | Kiφ | Cφ

where AφUφ′ is read as “for all paths, φ release φ′”.
The ACTLK-fragment extends the ∀ACTLK-fragment

with the following clause:
• if φ is a formula, then ∃xφ is also a formula.
We now define the semantics of Lm formulas in terms of

A-QISs. Given an assignment σ from the set of variables
in Lm to the individuals in V , the interpretation Iσ(t) of an
individual term t is defined as σ(t) if t is a variable, or I(t)
if t is a constant. Also, σxa is the assignment that maps x to a
and coincides with σ on all other variables.
Definition 6 The satisfaction relation |= for φ ∈ Lm, s ∈ S,
and an assignment σ is inductively defined as follows:
(Pσ, s) |= P k(~t) iff 〈Iσ(t1), . . . , Iσ(tk)〉 ∈ I(P k, s)
(Pσ, s) |= ¬φ iff (Pσ, s) 6|= φ
(Pσ, s) |= φ→ φ′ iff (Pσ, s) 6|= φ or (Pσ, s) |= φ
(Pσ, s) |= ∀xφ iff for all a ∈ V , (Pσx

a , s) |= φ
(Pσ, s) |= AXφ iff for all runs r, if r(n) = s

then (Pσ, r(n+ 1)) |= φ
(Pσ, s) |= AφUφ′ iff for all runs r, if r(n) = s then

there is k ≥ n, (Pσ, r(k)) |= φ′ and
n ≤ k′ < k implies (Pσ, r(k′)) |= φ

(Pσ, s) |= EφUφ′ iff for some run r, r(n) = s and
there is k ≥ n, (Pσ, r(k)) |= φ′ and
n ≤ k′ < k implies (Pσ, r(k′)) |= φ

(Pσ, s) |= Kiφ iff for all s, s′, if s ∼i s′ then (Pσ, s′) |= φ
(Pσ, s) |= Cφ iff for all k ∈ N, (Pσ, s) |= Ekφ

A formula φ ∈ Lm is true in a state s, or (P, s) |= φ, if for
all assignment σ, (Pσ, s) |= φ; it is true in an A-QIS P , or
P |= φ, if (P, s0) |= φ.
3 The Equipment Purchasing Scenario
We now introduce a scenario, inspired by a real Business Pro-
cess use-case developed at IBM, which shows the artifact-
centric approach at work. Although we do not formally define
a general translation procedure from artifact-centric business
processes to A-QIS, this formalisation exemplifies how this
can be done and, therefore, demonstrates that A-QISs can ef-
fectively be employed to reason about real ACSs.

3.1 The Scenario
The employees of a company who need to purchase some
equipment must follow a procedure, which involves the fol-
lowing agents: a requester, who needs to purchase the equip-
ments; a buyer, who is in charge of buying the requested
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Figure 1: Lifecycles of request and procurement orders

items; and some suppliers, who supply the equipment. The
process begins when the requester fills out a requisition or-
der with some line items referring to desired products (e.g.,
a laptop). The requester then submits the order to the buyer,
who finds an appropriate supplier for each line item, and pre-
pares a procurement order containing the relevant line items.
Procurement orders are then submitted to suppliers, who can
either reject or fulfil the received orders. In the former case,
the buyer is notified; in the latter, the items are shipped.

Orders are captured by artifacts, i.e., structures containing
data fields, and associated with sets of actions enabling data
manipulation. Requisition orders contain fields: id, the req-
uisition order identifier; itm, the line item(s) occurring in the
order; p ord, the procurement order(s) associated with the
requisition order; and status (see below). Procurement or-
ders contain: id, the procurement order identifier; s id, the
identifier of the supplier selected by the buyer; itm, the line
item(s) occurring in the order; and status (see below).

The evolution of an artifact status field, in response to
agent actions, is referred to as the artifact’s lifecyle, which
accounts for the stage of the process that the artifact is in.
Figures 1(a) and 1(b) depict the lifecycles for request and
procurement orders in the form of transition systems, where
nodes are labelled by the status they represent, and transitions
by pairs “ag, op”, associating each action (op) with the agent
(ag) that can execute it,R standing for requester,B for buyer,
and S for supplier. Each request order has 3 possible sta-
tuses, namely crt (created), sbb (submitted to buyer), and cld
(closed), and 5 transitions: R, create (the requester creates
a request order); R, add li ro (the requester adds a line item
to the created request order); R, sbm b (the requester submits
the order to the buyer); B, prepare (the requester prepares
a procurement order for this request order); B, close (the re-
quester closes the request order, when all items are shipped).
The lifecycle of procurement orders is similar, though not de-
scribed here for brevity.

3.2 Formalisation
For simplicity we assume each requisition order contains at
most one item; however, A-QISs are sufficiently expressive
to overcome this limitation.

Agents. The set of agents is Agt = {1, 2, . . . , nS , e},
where: 1 represents the requester; 2 the buyer; 3, . . . , nS
stand for the suppliers; and e represents the environment.

Interpretation Domain. We take V = IDA ∪ IDS ∪ LI
as the interpretation domain, where: IDA is an infinite set

of artifact identifiers, IDS = {3, . . . , nS} is the finite set of
supplier identifiers (see below), and LI is the finite set of all
line items, i.e. LI = {monitor, printer, phone}. All these
sets are assumed disjoint. Moreover, we take the symbol− ∈
V to represent a null value.

Environment Database Schema. We define the A-QIS
environment database schema De = {RO,PO}, where the
relations RO and PO are intended to record the information
about all request and procurement orders. Their schemes are
as follows: RO(id, itm, p ord, status), where: id is the req-
uisition order identifier, itm is the (single) line item occurring
in the order, p ord is the (single) procurement order associ-
ated with the requisition order, and status is the current sta-
tus of the order; PO(id, s id, itm, status), where: id is the
procurement order identifier, s id is the identifier of the sup-
plier selected by the buyer, itm is the (single) line item in the
order, and status is the current order status.

Local States. To model the requester’s (i.e., agent 1) local-
state space we take the set ID1

(V ) of interpretations of the
databaseD1 = {RO1}, whereRO1’s schema matchesRO’s.
Similarly, buyer’s (i.e., agent 2) local states are interpreta-
tions of the database D2 = {RO2, PO2} over V (ID2

(V ))
where RO2’s and PO2’s schemes match RO’s and PO’s, re-
spectively. As for agents 3, . . . , nS , the suppliers, local states
are interpretations of databases Di = {POi} over V , i.e.,
IDi(V ), for i = 3, . . . , nS , where POi’s schema is the same
as PO’s Finally, as set of environment local states we simply
take IDe

(V ).
Actions. For conciseness, without loss of generality, we

use parametric actions. A parametric action of the form
a(p1, . . . , pq), where a is the action name and p1, . . . , pq
are its parameters, represents a family of actions contain-
ing one ground action per distinct parameter assignment of
values from V . As a convention, for an action param-
eter p, we denote the generic value assigned to p as p.
Agents’ action sets are defined as follows. For agent 1, we
take Act1 = {create, add li ro(id, li), sbm b(id)}, where:
create is meant to create a new request order (with unique
identifier); add li ro(id, li) is meant to add line item li to the
request order identified by id; and sbm b(id) is meant to sub-
mit the request order identified by id to the buyer. The action
sets for the other agents are similar, but omitted here. As for
the environment, we simply have Acte = ∅.

Protocol Functions. We only report the buyer’s proto-
col function, the other agents’ are similar, while, Acte be-
ing empty, no protocol is defined for the environment. The
buyer’s protocol P2 : ID2

(V ) −→ 2Act2 is as follows (D2 =
{RO2,PO2}). prepare(id, s id) ∈ P2(D2) if there exists
a tuple 〈id, itm, p ord, sbb〉 ∈ RO2, and either p ord = −
or there exists a tuple 〈p ord, s id, itm, s〉 ∈ PO2 s.t. s ∈
{prp, rej}. This formalises that the buyer can prepare a new
procurement order for an existing request order only if the re-
quest order is in status sbb, and either no corresponding pro-
curement order has been prepared yet, or, if it has, it is either
in status prp (prepared) or rej (rejected). close(id) ∈ P2(D2)
if there exists two tuples: 〈id, itm, p ord, sbb〉 ∈ RO2 with
p ord 6= −, and 〈p ord, itm, s id, acc〉 ∈ PO2, that is, the
buyer can close only existing request orders whose associ-
ated procurement order is accepted; and sbm s(id) ∈ P2(D2)



if there exists a tuple 〈id, s id, itm, prp〉 ∈ PO2, i.e., the buyer
can submit (to a supplier) only prepared procurement orders.

Interpretation Function. The interpretation function I
is simply defined as the identity on the environment’s lo-
cal state, that is, for s = 〈D1,D2,D3, . . . ,DnS

,De〉 ∈ S,
I(s) = De.

Initial State. As for the (global) initial state, we assume
all relations are initially empty.

Global Transition Function. First, we define some de-
pendencies between the agents’ local states and the environ-
ment’s. For a global state s = 〈D1,D2,D3, . . . ,DnS

,De〉,
with D1 = {RO1}, Di = {POi}, for i = 3, . . . , nS , and
De = {RO,PO}, we have: RO1 = RO, D2 = De, and for
each i = 3, . . . , nS , 〈id, s id, itm, status〉 ∈ POi iff s id = i
and 〈id, s id, itm, status〉 ∈ PO. For simplicity, given a cur-
rent global state s and a joint action a, we define the suc-
cessor global state s′ = τ(a)(s) by defining its environment
component D′

e = {RO′,PO′}, as all other components are
derivable through the above dependencies. For brevity, we
describe only one action.

For a = 〈create,−,−, . . . ,−〉, D′
e in s′ is such that

PO′
e = POe, and RO′

e = ROe ∪ {〈id′,−,−, crt〉},
with id′ ∈ IDA such that there is no other tuple
〈id, itm, p ord, status〉 ∈ RO such that id = id′. Informally,
when the requester creates a new order, a new request order
artifact is created, with a unique identifier.
Once the system has been modelled, it is possi-
ble to verify particular specifications on it. For in-
stance, the system described above satisfies formula
ϕ1 = AG(∀idr, itm, p ROe(idr, itm, p, cld) →
∃s K2POe(p, s, itm, acc)), which states that a request
order can be in state closed only if the buyer knows that the
corresponding procurement order has been actually accepted
by some supplier (this corresponds to the precondition
of action close according to protocol P2). This property
intuitively corresponds to a specification that should indeed
be satisfied in the scenario considered. Other epistemic
specifications of interest can be similarly formalised.

4 Model checking and Abstraction
We would like to be able to verify automatically any formula
ϕ in L on a given A-QIS, i.e., to give an effective method-
ology for answering the model checking query P |= ϕ. The
(considerable) difficulty resides in the fact that P is, in gen-
eral, an infinite structure. To make inroads into this problem
we give an abstraction technique for A-QIS by extending the
results presented in [Cohen et al., 2009] to the case of in-
finite models. We present the results obtained in their fullest
generality by giving them on structures built on arbitrary sets,
rather than specific database views (Def. 3). This corresponds
to the general class of quantified interpreted systems (QIS) as
defined in [Belardinelli and Lomuscio, 2009]. Given A-QIS
are a subclass of QIS, all the results here proved also hold for
A-QIS.

4.1 Simulation
The standard notion of simulation for reactive systems states
that a system simulates another if every behaviour of the lat-

ter is a behaviour of the former [Clarke et al., 1994]. Since
ACTL operators quantify over all behaviours (runs), any
ACTL property that holds in the simulating system holds also
in the simulated system. To extend this preservation property
to ∀ACTLK, we require that any epistemic possibility in the
simulated system is matched by an epistemic possibility in the
simulating system. Similar conditions apply to individuals.

Definition 7 (Sublanguage) Let L and L′ be first-order tem-
poral epistemic languages as in Def. 4, with alphabetsA and
A′ respectively. L′ is a sub-language of L, or L′ ⊆ L, if
A′ ⊆ A.

We now define the notion of simulation for QIS.

Definition 8 (Simulation) Let P = 〈V, s0, τ, I〉 be a QIS
on the set Ag of agents and the language L, and let P ′ =
〈V ′, s′0, τ

′, I ′〉 be a QIS on the same set Ag of agents and a
sub-language L′ ⊆ L. A simulation between P and P ′ is a
pair of relations ' ⊆ S × S ′ and ≈ ⊆ V × V ′ such that:

(a) s0 ' s′0;

(b) if a ∈ V then there exists a′ ∈ V ′ such that a ≈ a′;
and if s ' s′ then:

(c) if s −→ u then s′ −→′ u′ for some u′ such that u ' u′;
(d) if s ∼i u then s′ ∼′

i u
′ for some u′ such that u ' u′;

(e) for all Pn ∈ L′, if ~a ≈ ~a′ then ~a ∈ I(Pn, s) iff ~a′ ∈
I ′(Pn, s′);

(f) for all c ∈ L′, I(c) ≈ I ′(c);
where −→ and −→′ are the transition relations in P and P ′

respectively. If there is a simulation pair between P and P ′,
we say that P ′ simulates P , or P � P ′.

According to (a) the initial state in P has to be matched by
the initial state in P ′. Similarly for (b) and individuals. Ac-
cording to (c) and (d) every temporal and epistemic transition
in P has to be matched by a transition in P ′. According to (e)
and (f) related states must agree on the sub-language L′.

Any ∀ACTLK property is preserved from the simulating
QIS P ′ to the QIS P being simulated:

Lemma 1 Assume that P ′ simulates P . For any ∀ACTLK-
formula φ ∈ L′, if P ′ |= φ then P |= φ.

Lemma 1 follows directly from the following remark:

if (P ′σ′
, s′) |= φ, s ' s′ and σ(x) ≈ σ′(x) then (Pσ, s) |= φ

(1)
The proof, omitted here, is by induction on the length of φ.

Differently from the propositional level, we can define a
strengthening of the notion of simulation, so that also exis-
tential formulas are also preserved.

Definition 9 (Simulation+) A simulation+ between P and
P ′ is a pair of relations ' ⊆ S × S ′ and ≈ ⊆ V × V ′ such
that:

(a) ' and ≈ are a simulation pair between P and P ′;

(b) if a′ ∈ V ′ then there exists a ∈ V such that a ≈ a′.
If there is a simulation+ pair between P and P ′, we say that
P ′ simulates+ P , or P �+ P ′.



We can now prove the following strengthening of Lemma 1.
Lemma 2 Assume that P ′ simulates+ P . For any ACTLK-
formula φ ∈ L′, if P ′ |= φ then P |= φ.

The result follows from (1), where the inductive case for
the existential quantifier makes use of clause (b) in Def. 9.
We omit the complete proof for reasons of space.

In the rest of the paper we focus on simulation+ and the
ACTLK-fragment.

4.2 Existential Abstraction of QIS
In systems with large state spaces, it is infeasible to verify de-
sign requirements by considering all reachable states, even if
represented symbolically [Burch et al., 1992]. In existential
abstraction [Clarke et al., 1994], one reduces a large, possi-
bly infinite reactive system - referred to as the concrete sys-
tem - into a possibly smaller reactive system - referred to as
the abstract system - by partitioning the system states into
equivalence classes. Each equivalence class, called an ab-
stract state, forms a state in the abstract system.

Here, we extend existential abstraction to quantified inter-
preted systems by abstracting each agent i and the quantifi-
cation domain V separately. Formally, the abstract QIS is
defined as a quotient construction as follows. Assume a quan-
tified interpreted system P over the set Ag of agents and the
language L. For each i ∈ Ag assume the equivalence rela-
tions≡i ⊆ Li×Li and≡i ⊆ ACTi×ACTi. Further, assume
an equivalence relation ≡ ⊆ V × V . For l ∈ Li, write [l] for
the equivalence class of l w.r.t.≡i, and [α] for the equivalence
class of α ∈ ACTi w.r.t. ≡i. Similarly, [a] is the equivalence
class of a ∈ V w.r.t. ≡. Write [s] for 〈[s1], . . . , [sn]〉 and
write [~α] for 〈[α1], . . . , [αn]〉. Finally, let L′ ⊆ L be a sub-
language of L that does not distinguish between equivalent
local states and individuals, i.e.,
(*) for all Pn ∈ L′, if s ≡ s′ and ~a ≡ ~a′ then ~a ∈ I(Pn, s)

iff ~a′ ∈ I(Pn, s′).
Definition 10 (Quotient QIS) The quotient of P is the QIS
P ′ on the set Ag of agents and the sub-language L′ ⊆ L
such that:

1. V ′ = {[a] | a ∈ V };
2. L′

i = {[l] | l ∈ Li};
3. ACT ′

i = {[α] | α ∈ ACTi};
4. P ′

i = {〈[l], [α]〉 | 〈l, α〉 ∈ Pi};
5. τ ′ = {〈[s], [~α], [s′]〉 | 〈s, ~α, s′〉 ∈ τ};
6. s′0 = [s0];

7. for all Pn ∈ L′, [~a] ∈ I ′(Pn, [s]) iff ~a ∈ I(Pn, s);
8. for all c ∈ L′, I ′(c) = [I(c)].

Note that the interpretation I is well defined by condition
(*) on the sub-language L′. Observe that Def. 10 does not
specify how the equivalence relations are chosen. This issue
is addressed in Section 4.3 below. The important property of
quotient systems, however, is that specifications are preserved
from abstract systems to concrete ones. This is because the
abstract system simulates+ the original system.
Lemma 3 If P ′ is a quotient of P , then P ′ simulates+ P .

Proof sketch. We show that the relations ' = {〈s, [s]〉 |
s ∈ V } and ≈ = {〈a, [a]〉 | a ∈ V } are a simulation+ pair
for P and P ′. Simulation requirements (a) and (b) follow
from 6 and 1 in Def. 10 respectively. Requirement (c) follows
from 4 and 5; while requirement (d) follows by the definition
of equivalence classes. Simulation requirements (e) and (f)
follow from 7 and 8 respectively. Finally, the simulation+

requirements (b) in Def. 9 trivially hold.

Since the abstract system simulates+ the concrete system,
design requirements expressed in ACTLK are preserved.
Theorem 4 (Preservation) Let P ′ be a quotient of the QIS
P . For any ACTLK-formula φ in L′ ⊆ L, if P ′ |= φ then
P |= φ.
Proof. From Lemma 2 and Lemma 3.

When applying the theorem, the challenge is to choose
suitable equivalence relations ≡i on local states and actions.
We provide a partial answer in the following section.

4.3 Constructive Abstraction
In this section we introduce a methodology for defining the
equivalence relations defined in the previous section. In what
follows we fix a sub-language L′ of the first-order temporal
epistemic language Lm, and a QIS P . We first define equiva-
lences on the set V n of n-tuples of individuals.
Definition 11 (Equivalence on tuples) Let s ∈ S and let ~a,
~b be n-tuples in V n. We say that ~a and ~b are equivalent in s,
or ~a ∼s ~b, if for all Pn ∈ L′, ~a ∈ I(Pn, s) iff~b ∈ I(Pn, s).

We can easily check that the relation∼s is indeed an equiv-
alence relation for every s ∈ S.
Definition 12 (Equivalence on individuals) Let s ∈ S and
let a, b be individuals in V . We say that a and b are equivalent
in s, or a ≡s b, if for all ~a, ~a′ ∈ V n, if ~a′ is obtained from ~a
by uniformly substituting a with b, then ~a ∼s ~a′.

From the fact that ∼s is an equivalence relation we can
derive that also ≡s is an equivalence relation for s ∈ S.

We now define the equivalence relation on states.
Definition 13 (Equivalence on states) Two states s, s′ ∈ S
are equivalent , or s ≡ s′, if for all Pn ∈ L′, for all ~a ∈ V n,
~a ∈ I(Pn, s) iff ~a ∈ I(Pn, s′).

We can now introduce the abstract model obtained from
the QIS P .
Definition 14 (Abstract model) Given the QIS
P = 〈V, s0, τ, I〉 we define an abstract model
M′ = 〈V ′, [s0], τ

′, I ′〉 such that:
• S ′ = {[s] | s ∈ S};
• for each [s] ∈ S ′, V ′([s]) = {[a]s | a ∈ V };
• for any [s], [s′] ∈ S, [s] −→ [s′] if s −→ s′;

• for Pn ∈ L′, ~[a]s ∈ I ′(Pn, [s]) iff ~a ∈ I(Pn, s).
By definition of the individuals in each V ′([s]) we can

prove that the interpretation I ′ is well-defined and indepen-
dent from the particular choice of representatives for the
equivalence classes in V ′([s]).

Hereafter we introduce the satisfaction relation for the ab-
stract model.



Definition 15 The satisfaction relation |= for φ ∈ L′, [s] ∈
M′, and an assignment σ is defined as in Def. 6, but for the
following clauses:
(M′σ, [s]) |= P k(~t) iff 〈[I ′σ(t1)]s, . . . , [I ′σ(tk)]s〉 ∈ I ′(P k, [s])

(M′σ, [s]) |= ∀xψ iff for all a ∈ V ([s]), (M′σx
a , [s]) |= ψ

Now, we can prove the following result onM′.

Lemma 5 The abstract modelM′ simulates+ P
Proof sketch. The proof consists in showing that the rela-

tions ' = {〈s, [s]〉 | s ∈ S} and ≈ = {〈a, [a]s〉 | a ∈ V, s ∈
S} are a simulation+ pair for P andM′, and it is similar to
Lemma 3.

The next result is immediate from Lemmas 2 and 5.

Lemma 6 For every ACTLK-formula φ in L′, if M′ |= φ
then P |= φ.

Thus, we have obtained an effective way of constructing
the quotient system M′ starting from P and L′. More in
detail, given a ∀ACTLK-formula φ to be model checked on
P , L′ can be thought of as the sub-language of L consisting
of all predicate letters and constants in φ.

Finally, we observe that if a QIS P has infinitely many
states and individuals, then also the abstract model M′ will
in general be infinite both in states and individuals. However,
the construction above does in some cases generate finite ap-
proximations.

Lemma 7 Given a QIS P , its abstract modelM′ has the fol-
lowing cardinality:

P M′

S V S ′ V ′

infinite infinite infinite infinite
finite infinite finite infinite

infinite finite finite finite
finite finite finite finite

The proof is immediate by definition ofM′ from P .
We have therefore identified a non-trivial case (infinite S

and finite V ) in which the technique presented above gener-
ates a feasible model checking problem. Additionally, ob-
serve that in the case of finite S and infinite V if all state
interpretations are finite (e.g., I maps states into database in-
stances) we also obtain, as result of the abstraction process, a
finite V ′ in M ′.

5 Conclusions
In this paper we have put forward a computationally-
grounded semantics for artifact systems and illustrated its use
in the context of a temporal epistemic specification language.
This is intended to provide a basis for model checking these
systems in combination with suitable abstraction techniques.
We have provided a first set of results in this context and
shown that, at least in certain cases of interest, finite abstrac-
tions of artifact-systems can be obtained. A limitation of the
results presented is that not in all cases finite abstractions are
generated. In verification this is known to be a very severe
challenge and is therefore to be expected to appear here as
well. To surmount these difficulties, our future work includes

the development of techniques such as data independence
[Wolper, 1986] in the context of A-QIS, and the investiga-
tion on abstraction schemes similar to [Deutsch et al., 2009]
by relaxing the completeness requirement.

In service-oriented computing, to the best of our knowl-
edge, very few attempts exist to reduce data-aware infi-
nite state systems to finite ones. Noteworthy examples are
[Deutsch et al., 2009], [Berardi et al., 2005], and [Cangialosi
et al., 2010], where different restrictions on input models and
less expressive specifications are used. Furthermore, these
works focus on finding decidable fragments from the synthe-
sis and verification point of view, whereas the approach here
presented offers a first foundational basis for data abstraction
in ACSs for practical model checking.
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