
Group Synthesis for Parametric Temporal-Epistemic Logic

Andrew V. Jones
Department of Computing
Imperial College London

andrew.jones@ic.ac.uk

Michał Knapik
ICS PAS

mknapik@ipipian.waw.pl

Alessio Lomuscio
Department of Computing
Imperial College London
a.lomuscio@ic.ac.uk

Wojciech Penczek
ICS PAS and
UPH Siedlce

penczek@ipipan.waw.pl

ABSTRACT
We investigate parameter synthesis in the context of temporal-
epistemic logic. We introduce CTLPK, a parametric extension
to the branching time temporal-epistemic logic CTLK with
free variables representing groups of agents. We give algo-
rithms for automatically synthesising the groups of agents
that make a given parametric formula satisfied. We discuss
an implementation of the technique on top of the open-source
model checker mcmas and demonstrate its attractiveness by
reporting the experimental results obtained.

Categories and Subject Descriptors
D.2.4 [Software/Program Verification]: Model Checking

General Terms
Verification

Keywords
Temporal-Epistemic Logic, Model Checking

1. INTRODUCTION
Multi-agent systems (MAS) are distributed systems in

which components, or agents, interact with one another trying
to reach private or common goals. One of the recent topics of
interest in this area is the issue of verification and validation
of MAS, i.e., how to ascertain whether a given MAS satisfies
certain specifications of interest. In this context a number of
model checkers [5, 7, 9] have been developed to verify logics
for MAS, including epistemic, deontic, and strategic logics.

Of particular interest to the community is work on auto-
mated model checking tailored to temporal-epistemic spec-
ifications. In this line specifications of MAS are defined on
temporal languages augmented with modalities to reason
about the knowledge of the agents in the system. As an
example of this, most coordination protocols require common
knowledge to be obtained within the group of agents be-
fore the protocol can be executed by the MAS [4]. Common
knowledge (and other group modalities such as distributed

Appears in: Proceedings of the 11th International Con-
ference on Autonomous Agents and Multiagent Systems
(AAMAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek (eds.),
4-8 June 2012, Valencia, Spain.
Copyright c© 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

knowledge [4]) are expressed in temporal-epistemic logic by
using indices representing the groups they refer to. Model
checkers such as mcmas [9] and mck [5] already support spec-
ifications with group operators including common knowledge
and can be used to verify such properties in a given system.

There are scenarios, however, when checking knowledge for
a specific group of agents is not sufficient. For example, in a
MAS that implements distributed diagnosis we, as specifiers,
would actually like to know which groups in the system
obtain distributed knowledge of a particular fault in the
system. Moreover, even if we have an intuition as to whether
a particular group reaches common or distributed knowledge
of a particular property, it is of interest to ascertain whether
there is a maximal or minimal group that obtains this so
that, for instance, we can minimise the number of agents
involved in a coordination protocol.

If the set of agents is finite, we can solve this problem by
repeatedly querying a model checker with all the possible
instantiations of the specification for all possible valuations.
However, if this set is large, its power set will not be of a trivial
size, resulting in a large number of checks. If the specification
of interest involves several, not necessarily equal groups, the
number of instantiations grows exponentially. In symbolic
model checking the bottleneck is normally the computation
of the set of reachable states, but if the number of formulae
to be checked is sufficiently high, the verification for the
formulae can become the most time consuming operation.

The aim of this paper is to explore an alternative, poten-
tially more efficient technique to identify (or synthesise) the
groups of agents for which a given temporal-epistemic spec-
ification holds. We call this parametric model checking for
temporal-epistemic logic due to its clear correspondence to
parametric model checking for temporal specifications [8, 13],
where temporal intervals are synthesised. Concisely, in the
approach presented the groups under synthesis are treated
as variables ranging over subsets of the set of all agents. The
model checking algorithm we put forward returns only the
subsets validating a given formula.

The rest of the paper is as follows. The syntax and seman-
tics of CTLPK is introduced in the next section. Section 3
presents the synthesis algorithms for the verification of the
parametric formulae. In Section 4 we use an experimental
implementation to demonstrate results for parameter synthe-
sis for the dining cryptographers protocol and diagnosability
properties for a commonly used network protocol. Finally, in
Section 5, we conclude.

2. THE LOGIC CTLPK
In this section we introduce Parametric Computation Tree

Logic with Knowledge (CTLPK, for short), a branching time
temporal-epistemic logic that includes free variables as pa-
rameters for the group modalities. Intuitively, any CTLPK
formula φ represents the set of formulae that can be con-
structed from φ by instantiating the parameters in φ with
any non-empty set of agents in the group considered.

Definition 1 CTLPK syntax. Let PV be a set of proposi-
tions, Groups be a finite set of group variables, and Agents =
{1, . . . , n} be a finite set of agents. The grammar of CTLPK
in BNF is given below.

φ ::= p | ¬φ | φ ∨ φ | EXφ | EGφ | EφUψ |
Kiφ | EΓφ | DΓφ | CΓφ | KY φ | EY φ | DY φ

where p ∈ PV, i ∈ Agents, Γ ⊆ Agents, Γ 6= ∅ and Y ∈
Groups.

A formula containing at least one group variable is said to be
parametric while a formula with no group variable is called
ground. Notice that the set of the ground formulae defines
CTLK [11].

Recall that EX, EG, EU are temporal modalities, where E
stands for “there exists a path”, and X, G and U respectively
mean “at the next state”, “for all successor states” and “until”.
The epistemic modalities Ki, EΓ, DΓ, CΓ are interpreted
as follows: Kiφ stands for “agent i knows φ”; EΓ is read as
“everyone in group Γ knows φ”; andDΓφ (CΓφ) stands for“the
group Γ has distributed (common, respectively) knowledge

of φ”. Let AFφ
def
= ¬EG¬φ be a derived temporal modality.

The formula AFφ expresses: “for all paths eventually φ holds”.
As an example, consider the formula φ = AF (DY fault),

where Y is a group variable, and Agents = {a, b}. The for-
mula φ represents the set of ground formulae {AF (D{a}fault),
AF (D{b}fault), AF (D{a,b}fault)}. The parametric formula
above states that “for all paths eventually the agents in Y
will have distributed knowledge of fault”. Since φ contains
a free variable, similar to first-order logic, an interpretation
for φ in a model is an assignment υ from the variable Y to
concrete instances in 2{a,b} \ {∅}.

Given that variables in CTLPK represent groups, a natural
question to ask is“which groups satisfy the temporal-epistemic
specification φ on a given model M?”. In the following we
provide an efficient method for calculating all interpreta-
tions υ, such that all ground formulae constructed from φ by
replacing the variable Y with Γ ∈ υ(Y) are satisfied in M .

Before we do so, we provide the semantics for CTLPK in
terms of the interpreted systems formalism [4], a standard
semantics for epistemic logic. We assume that each agent i in
Agents is defined by means of a set of local states Li, actions
Acti and a protocol Pi : Li → 2Acti . The environment is
analogously defined by Le, Acte, and Pe. The set of global
states G ⊆ L1 × · · · × Ln × Le is a subset of the Cartesian
product of the local states for the agents and the environment.
The transitions are defined locally from local states on joint
actions by considering evolution functions τi : Li ×Act1 ×
· · · ×Actn ×Acte → Li. We refer to [4] for more details.

Definition 2 Interpreted Systems. Given a set of agents
Agents, an interpreted system (or model) M is a tuple M =
(G, g0, T,∼1, . . . ,∼n) such that:

• G ⊆ L1 × · · · × Ln × Le is the set of reachable global
states for the system, where g0 ∈ G.

• The transition relation T ⊆ G×G is defined by (g, g′) ∈
T if there exists (act1, . . . , actn, acte) ∈ Acti × · · · ×
Actn ×Acte such that τi(li(g), act1, . . . , actn, acte) =
li(g
′) for all i ∈ Agents and τe(le(g), act1, . . . , actn, acte)

= le(g
′), where li(g) returns the local state of agent i

in the global state g. The actions act1, . . . , actn, acte
are all consistent with their respective protocols, i.e.,
acti ∈ Pi(li(g)) and analogously for the environment.

• For any i ∈ Agents the relation ∼i ⊆ G × G is an
epistemic accessibility relation such that g ∼i g′ iff
li(g) = li(g

′), where li(g) is as above.

• The function L : G → 2PV is an interpretation for a
set of the propositions PV.

Given a concrete group Γ of agents, we introduce three group
accessibility relations as follows:

∼EΓ =
S
i∈Γ ∼i, ∼

D
Γ =

T
i∈Γ ∼i, ∼

C
Γ =

`
∼EΓ

´+
,

where + denotes the transitive closure. These relations are
used to interpret the ground group modalities.

We now introduce the notion of a path as a sequence
π = (g0, g1, . . .) such that gi ∈ G and (gi, gi+1) ∈ T for all
i ≥ 0. We denote π(j) = gj for all j ≥ 0.

In the definition of the semantics of the CTLPK formulae,
we use a valuation of the group variables υ : Groups →
2Agents \ {∅}. The set of all the valuations of the group vari-
ables is denoted by GroupVals. Formally

GroupVals =
“

2Agents \ {∅}
”Groups

.

Now we are in the position to introduce the semantics of
CTLPK. If φ is a formula of CTLPK, then by M, g |=υ φ we
denote that φ holds in the state g of the model M given the
valuation υ. We omit the model symbol M , where this does
not lead to ambiguity.

Definition 3 CTLPK semantics. Let M be a model and
υ be a valuation of the group variables. The relation |=υ is
defined recursively as follows:

• g |=υ p iff p ∈ L(g) for p ∈ PV,

• g |=υ ¬φ iff g 6|=υ φ,

• g |=υ φ ∨ ψ iff g |=υ φ or g |=υ ψ,

• g |=υ EXφ iff there exists a path π starting at g, such
that π(1) |=υ φ,

• g |=υ EGφ iff there exists a path π starting at g, such
that π(i) |=υ φ for all i ≥ 0,

• g |=υ EψUφ iff there exists a path π starting at g, such
that π(j) |=υ φ for some j ≥ 0, and π(i) |=υ ψ for all
0 ≤ i < j,

• g |=υ Kiφ iff for all g′ ∈ G if g ∼i g′, then g′ |=υ φ,

• g |=υ ZΓφ iff for all g′ ∈ G if g ∼ZΓ g′, then g′ |=υ φ,
where Z ∈ {E,D,C},

• g |=υ KY φ iff g |=υ Kiφ, where {i} = υ(Y),

• g |=υ ZY φ iff g |=υ Zυ(Y)φ, where Z ∈ {E,D,C}.
We say that φ holds in a model M under valuation υ (denoted
M |=υ φ) if M, g0 |=υ φ.

Note that if φ is a ground formula (i.e., a CTLK formula),
then M, g |=υ φ does not depend on the choice of υ.

3. GROUP SYNTHESIS FOR CTLPK
Given the semantics of CTLPK, a question that arises

is, given a formula φ, how to determine all valuations υ for
the group variables in φ such that all and only the ground
instances of φ, obtained by substituting the group variables
with concrete group values, are satisfied on the given model.

Formally, given a formula φ and a model M , we define a
function fφ : G→ 2GroupVals , returning at every global state
the set of valuations for all the group variables to concrete
group values such that M, g |=υ φ iff υ ∈ fφ(g).

In the rest of this section we present the algorithm Synthφ,
a provably sound and complete procedure for constructing
fφ. The procedure is applied recursively bottom-up from
the atoms to the out-most operators and is defined induc-
tively. The correctness of the overall result follows from the
correctness of the procedure for each individual modality.

In the following examples, we only consider formulae that
contain a single group variable. We write {Y {A1, . . . , Am}}
to represent the set of valuations {υ1, . . . , υm} s.t. υi(Y) =
Ai, for all 1 ≤ i ≤ m.

Throughout this section we assume that the model M is
fixed.

3.1 Boolean Operations and Non-parametric
Modalities

We begin by defining the function fφ for CTLPK modalities
which do not contain group variables (i.e., the operators from
CTLK).

Atomic Propositions.
For an atomic proposition p ∈ PV, the function fp is

defined as follows:

fp(g) =

(
GroupVals if p ∈ L(g),

∅ otherwise.

For an atomic proposition, M, g |=υ p does not depend upon
υ; therefore for a state g such that p ∈ L(g), fp(g) is simply
the set of all possible group valuations.

Example 1 (Atomic Propositions). Consider the simple three
state, two-agent interpreted system model as illustrated in
Figure 1. In this model we have PV = {p, q} where L(w0) =
L(w1) = {p} and L(w2) = {q}. Dashed lines labelled with
an agent index represent the indistinguishability relation for
that agent; solid lines labelled with ‘t’ represent temporal
transitions.

w0start

p
w1

p

w2

q

1
2

1, 2 1, 2

1, 2

t
t

t

t

Figure 1: The interpreted system of Examples 1–5
and 7.

In this two-agent example with only one group variable
we have that GroupVals = {Y {{1} , {2} , {1, 2}}}. It is

straightforward to observe that:

fp(g) =

(
{Y {{1} , {2} , {1, 2}}} for g ∈ {w0, w1},
∅ if g = w2.

Negation.
Given fφ, to construct the function f¬φ we complement

the groups defined in fφ:

f¬φ(g) = GroupVals \ fφ(g)

As per the definition of fφ, we have that for each state
g and valuation of group variables υ ∈ GroupVals we have
M,g |=υ φ iff υ ∈ fφ(g). This is equivalent to the fact that
for each state g and valuation υ ∈ GroupVals we have that
M,g 6|=υ φ iff υ 6∈ fφ(g), which in turn is equivalent to
υ ∈ GroupVals \ fφ(g), i.e., υ ∈ f¬φ(g).

In presented algorithms we assume the existence of a sub-
routine, denoted Complement, realising the above operation,
i.e., Complement(fφ) = f¬φ.

Example 2 (Negation). Consider the model from Example 1.
After computing the complement of fp we obtain:

f¬p(g) =

(
∅ for g ∈ {w0, w1},
{Y {{1} , {2} , {1, 2}}} if g = w2.

Disjunction.
For each φ, ψ ∈ CTLPK, we have that for each g ∈ G,

fφ∨ψ(g) = fφ(g)∪fψ(g). It can easily be seen that s |=υ φ∨ψ
iff s |=υ φ or s |=υ ψ. This is equivalent to υ ∈ fφ(s) or
υ ∈ fψ(s).

Temporal Operators.
Intuitively, a temporal transition does not alter the group

assignments in fφ that hold at a given successor. Therefore,
for EXφ we take the union of all assignments for φ from
each next state:

fEXφ(g) =
[

{g′∈G|(g,g′)∈T}

fφ(g′).

We now consider the case of EGφ. Note that fEGφ(g) =
fφ(g) ∩ fEXEGφ(g), for each g ∈ G. Therefore, in a similar
way to the non-parametric case [2, 6], fEGφ can be obtained
through a fixed-point calculation.

Similarly, for EφUφ we have that fEφUψ(g) = fψ(g) ∪
(fφ(g) ∩ fEXEφUψ(g)). Again, such a calculation can be per-
formed as a fixed-point.

Example 3 (Temporal Operators). Let us consider the formula
EXEY p that is to be evaluated at the initial state w0 of
model presented in Figure 1. Let us also assume that the
function fEY p has been correctly calculated and is as follows
(we illustrate its construction in Example 4):

• fEY p(w0) = {Y {{1} , {2} , {1, 2}}}

• fEY p(w1) = {Y {{1}}}

• fEY p(w2) = ∅

From the construction of EXφ (where φ = EY p) presented
previously we have that:

• fEXEY p(w0) = fEY p(w1) = {Y {{1}}}

• fEXEY p(w1) = fEY p(w1) ∪ fEY p(w2) = {Y {{1}}}

• fEXEY p(w2) = fEY p(w0) = {Y {{1} , {2} , {1, 2}}}

Finally, we evaluate fEXEY p at the state w0 and obtain
the single satisfiable valuation of υ = {Y {{1}}}. Such
an assignment would correspond to the concrete formula
EXEΓp, where Γ = {1}. This formula can easily be seen to
hold at w0.

Epistemic Operators.
The set of assignments that make Kiφ hold at g is equal to

the intersection of all sets of assignments that make φ hold
at any state i-distinguishable from g. Therefore, given the
formula Kiφ ∈ CTLPK and a global state g ∈ G we have:

fKiφ(g) =
\

{g′∈G|g∼ig′}

fφ(g′).

For the operators EΓ, DΓ and CΓ we follow the same
construction, but use the relations ∼EΓ , ∼DΓ , ∼CΓ respectively.

3.2 Group Synthesis for Parametric Epistemic
Operators

We now present a methodology for synthesising group
assignments for the parametric epistemic modalities. As is
common in techniques for calculating the satisfaction of
epistemic formulae (see [12]), the following algorithms rely
on the use of the dual for the associated modality being
evaluated.

We begin by presenting the synthesis technique for the
parametric“everybody knows”modality (EY φ). As individual
knowledge is a special case of everybody knows (i.e., where
the set Γ for EΓ consists of a single agent i), we delay this
presentation until after EY φ.

Synthesis for Everybody Knows.
To calculate the parametric assignments for EY φ, we need

to define the existential group pre-image between two global
states g and g′. We denote this as Link∃Y (g, g′) and it consists
of all group valuations υ such that there exists an i ∈ υ(Y)
and g ∼i g′. Formally:

Link∃Y (g, g′) = {υ ∈ GroupVals | g ∼i g′ for some i ∈ υ(Y)}.

It is important to note that ∼i is an equivalence rela-
tion, thus from its reflexivity we have that Link∃Y (g, g) =
GroupVals and from its symmetry Link∃Y (g, g′) = Link∃Y (g′, g)
follows.

Algorithm 1 SynthE (fφ, Y)

Input: fφ ∈
`
2GroupVals

´G
Output: fEY φ ∈

`
2GroupVals

´G
1: f := Complement (fφ)
2: h := ∅
3: for all g ∈ G do
4: h(g) :=

S
g′∈G

`
Link∃Y (g, g′) ∩ f (g′)

´
5: end for
6: return Complement (h)

Lemma 4 (Correctness of SynthE).
Let M = (G, g0, T,∼1, . . . ,∼n) be an interpreted system,
g ∈ G, and φ ∈ CTLPK. Then, M,g |=υ EY φ iff υ ∈
SynthE(fφ, Y)(g).

Proof. Using the definition of Link∃Y and the inductive
assumption on fφ, we prove correctness of SynthE (fφ, Y). At
the end of the loop between Lines 3 and 5 in Algorithm 1,
for each global state g ∈ G, the set h(g) consists of all the
assignments υ such that there exists i ∈ υ(Y) and there
exists g′ ∈ G where g ∼i g′ and M, g′ |=υ ¬φ.

As such, υ ∈ h(g) iff M, g |=υ EY ¬φ, where EY φ is defined
as ¬EY ¬φ. By taking the complement of h, we obtain the
set of all assignments υ, which map each global state g to a
set of valuations of group variables, such that:

M, g 6|=υ EY ¬φ (def. of complement)
⇔ M, g |=υ ¬EY ¬φ (def. of 6|=)
⇔ M, g |=υ EY φ (def. of EY). ut

Example 4 (Everybody Knows). We now show that fEY p from
Example 3 is correctly synthesised. At the first line of Algo-
rithm 1, we take the complement of fp (i.e., f¬p) and store
it in the variable f . As such, the function held in the vari-
able f contains the assignments f(w0) = f(w1) = ∅ and
f(w2) = {Y {{1} , {2} , {1, 2}}} (see Example 2).

We now show the construction of Link∃Y (g, g′) for all pairs
of states. These are shown below (we omit the symmetric
cases):

Link∃Y (wi, wi) = {Y {{1} , {2} , {1, 2}}}, for i ∈ {0, 1, 2}
Link∃Y (w0, w1) = {Y {{1} , {1, 2}}}
Link∃Y (w1, w2) = {Y {{2} , {1, 2}}}
Link∃Y (w0, w2) = ∅

At Line 4, we use Link∃Y (g, g′) and f(g′) to construct h(g).
Therefore we need to compute Link∃Y (g, g′)∩f(g′) for all pairs
of states g, g′ ∈ {w0, w1, w2}. Notice that if g′ ∈ {w0, w1}
then f(g′) = ∅. Similarly, if g = w0 and g′ = w2 then
Link∃Y (g, g′) = ∅. This leaves only two remaining, non-empty
cases:

Link∃Y (w1, w2) ∩ f(w2) = {Y {{2} , {1, 2}}}
Link∃Y (w2, w2) ∩ f(w2) = {Y {{1} , {2} , {1, 2}}}

Next, at Line 4, we calculate the function h by assigning
to each h(g) the union of Link∃Y (g, g′) ∩ f(g′) for all g′ ∈
{w0, w1, w2}. The function h is therefore as follows:

• h(w0) = ∅

• h(w1) = {Y {{2} , {1, 2}}}

• h(w2) = {Y {{1} , {2} , {1, 2}}}

Finally, we take the complement of h to calculate the
function fEY p. The result can be seen below:

• fEY p(w0) = {Y {{1} , {2} , {1, 2}}}

• fEY p(w1) = {Y {{1}}}

• fEY p(w2) = ∅

These assignments mean that EY p can be satisfied at the
state w0 with any assignment to the variable Y and at the
state w1 with the assignment Y = {1}. However, there is no
substitution that makes EY p hold at w2.

Synthesis of Individual Knowledge.
As previously stated, individual knowledge is a special case

of everybody knows, where each group assignment consists
of only a single agent. We adapt the set Link∃Y as below:

Link indv.
Y (g, g′)=

˘
υ∈GroupVals | υ(Y) = {i} and g ∼i g′

¯
.

The set Link indv.
Y contains only those group valuations that

assign to Y a single agent. To compute fKY φ, we use Algo-
rithm SynthK ; this algorithm can be simply constructed by
substituting Link∃Y with Link indv.

Y on Line 4 of Algorithm 1.

Corollary 5 (Correctness of SynthK).
Let M = (G, g0, T,∼1, . . . ,∼n) be an interpreted system,
g ∈ G, and φ ∈ CTLPK. Then, M,g |=υ KY φ iff υ ∈
SynthK(fφ, Y)(g).

The proof is straightforward and can easily be obtained
by replacing EY with KY in the proof of Lemma 4.

Example 5 (Individual Knowledge). We demonstrate how to
construct fKY p for the model in Example 3. The only differ-
ence between SynthK and Algorithm 1 is that we substitute
Link∃Y (g, g′) for Linkindv.

Y (g, g′). The latter consists of all
group valuations υ ∈ Link∃Y (g, g′) such that υ(Y) is a single-
element group.

Using the values for Link∃Y (g, g′) from Example 4, and
selecting only those group assignments consisting of a single
agent, we obtain:

Link indv.
Y (w1, w2) ∩ f(w2) = {Y {{2}}}

Link indv.
Y (w2, w2) ∩ f(w2) = {Y {{1} , {2}}}

where Link indv.
Y (g, g′) = ∅ for the remaining cases.

Taking the union of Linkindv.
Y (g, g′)∩f(g′) for all g, g′ ∈ G,

and then complementing, we obtain the function fKY p as:

• fKY p(w0) = {Y {{1} , {2}}}

• fKY p(w1) = {Y {{1}}}

• fKY p(w2) = ∅
It can easily be seen that for all states g ∈ G the set

fKY p(g) consists of exactly those valuations from fEY p(g)
that assign to Y groups consisting of one agent only.

Synthesis of Distributed Knowledge.
Given two global states g, g′ ∈ G and a group Y ∈ Groups,

we define:

Link∀Y (g, g′) = {υ ∈ GroupVals | g ∼i g′ for all i ∈ υ(Y)}.

In contrast to Link∃Y (g, g′), the set Link∀Y (g, g′) consists of
all assignments υ, such that for all agents i ∈ υ(Y), i considers
g and g′ as indistinguishable (i.e., the group Y considers g
and g′ indistinguishable).

Algorithm 2 SynthD (fφ, Y)

Input: fφ ∈
`
2GroupVals

´G
Output: fDY φ ∈

`
2GroupVals

´G
1: f := Complement (fφ)
2: h := ∅
3: for all g ∈ G do
4: h(g) :=

S
g′∈G

`
Link∀Y (g, g′) ∩ f (g′)

´
5: end for
6: return Complement (h)

Lemma 6 (Correctness of SynthD).
Let M = (G, g0, T,∼1, . . . ,∼n) be an interpreted system,
g ∈ G, and φ ∈ CTLPK. Then, M,g |=υ DY φ iff υ ∈
SynthD(fφ, Y)(g).

Proof. We define the modality DY φ as ¬DY ¬φ; a global
state g satisfies DY φ under group valuation υ if there exists

a state g′ such that g ∼υ(Y)
D g′ and M, g |=υ φ.

At the end of Line 5 of Algorithm 2 we have that, for each
global state g ∈ G, the set h(g) consists of all assignments υ
such that there exists a global state g′ ∈ G, where for all i ∈
υ(Y), g ∼i g′ and M, g′ |=υ ¬φ. So we have M, g |=υ DY ¬φ.

By taking the complement of h at the end of Algorithm 2,
we obtain the set of all assignments υ, which map each global
state g to a set of valuations of group variables, such that:

M, g 6|=υ DY ¬φ (def. of complement)
⇔ M, g |=υ ¬DY ¬φ (def. of 6|=)
⇔ M, g |=υ DY φ (def. of DY).

Therefore, we have that for all g ∈ G, for all valuations
υ ∈ fDY φ(g) iff M, g |=υ DY φ.

ut

Example 6 (Distributed Knowledge). We now adapt the in-
terpreted system from Figure 1 by making all the states
indistinguishable for Agent 2 (see Figure 2). As before, we
have PV = {p, q} and the states are labelled such that
L(w0) = L(w1) = {p} and L(w2) = {q}.

w0start

p
w1

p

w2

q

1, 2
2

2

1, 2 1, 2

1, 2

t
t

t

t

Figure 2: The interpreted system of Example 6.

The introduction of new epistemic links in the model does
not change the values of either fp or f¬p. Therefore, the
variable f (i.e., f¬p) at Line 1 of Algorithm 2 is such that
f(w0) = f(w1) = ∅ and f(w2) = {Y {{1} , {2} , {1, 2}}}.

Recall that Link∀Y (g, g′) consists of all group valuations
assigning to variable Y groups consisting solely of agents
that cannot distinguish between g and g′. We now build
Link∀Y (g, g′) for all the pairs of states. Again we omit the
symmetric cases:

Link∀Y (wi, wi) = {Y {{1} , {2} , {1, 2}}} for all i∈{0, 1, 2}
Link∀Y (w0, w1) = {Y {{1} , {2} , {1, 2}}}
Link∀Y (w1, w2) = Link∀Y (w0, w2) = {Y {{2}}}

In Line 4 of Algorithm 2 for each state g we compute h(g) as
the union of sets Link∀Y (g, g′)∩f(g′) over all g′ ∈ {w0, w1, w2}.
Again, notice that if g′ ∈ {w0, w1} then Link∀Y (g, g′)∩f(g′) =
∅, thus we need to consider only the following cases:

Link∀Y (w0, w2) ∩ f(w2) = {Y {{2}}}
Link∀Y (w1, w2) ∩ f(w2) = {Y {{2}}}
Link∀Y (w2, w2) ∩ f(w2) = {Y {{1} , {2} , {1, 2}}}

The function evaluated in the loop between Lines 3–5 and
held in variable h is equal to fDY ¬p; thus after complementing
in the return statement we obtain:

• fDY p(w0) = {Y {{1} , {1, 2}}}

• fDY p(w1) = {Y {{1} , {1, 2}}}

• fDY p(w2) = ∅

Synthesis of Common Knowledge.
Recall from [4] that CΓφ ⇔ EΓ(φ ∧ CΓφ), for any Γ ⊆

Agents. We can use this equivalence to compute the set
of states satisfying CΓφ by reasoning through existential
pre-images of the epistemic relations for EΓ. We use the fol-
lowing algorithm, an extension of the non-parametric version
presented in [12].

The synthesis of parametric common knowledge employs
a similar observation, i.e., that CY is the fixed-point of EY .

Algorithm 3 SynthC (fφ, Y)

Input: fφ ∈
`
2GroupVals

´G
Output: fCY φ ∈

`
2GroupVals

´G
1: f := ∅
2: h := Complement (fφ)
3: while f 6= h do
4: f := h
5: for all g ∈ G do
6: h(g) :=

S
g′∈G

`
Link∃Y (g, g′) ∩ f (g′)

´
7: end for
8: end while
9: return Complement (h)

Lemma 7 (Correctness of SynthC).
Let M = (G, g0, T,∼1, . . . ,∼n) be an interpreted system,
g ∈ G, and φ ∈ CTLPK. Then, M,g |=υ CY φ iff υ ∈
SynthC(fφ, Y)(g).

Proof. As usual, let E
0
Y φ = φ, E

i+1
Y φ = EY (E

i
Y φ) for

all i ≥ 0 and CY φ = ¬CY ¬φ. Since CY φ⇔ EY (φ ∧ CY φ),
we have that for each state g and each group valuation υ ∈
GroupVals:

M, g |=υ CY φ iff M, g |=υ

j_
i=0

E
i
Y φ for some j ≥ 0. (?)

Observe now that in Algorithm 3, prior to the execution of
the loop between Lines 3–8, the function h is equivalent to
f¬φ. Given Lemma 4 (i.e., the correctness of SynthE), after
the first iteration of this inner loop h evaluates to f¬φ∨EY ¬φ.
After the j-th iteration of the main body (Lines 3–8), the
function h evaluates to

h = f jW
i=0

E
i
Y ¬φ

.

Given that we work on finite models, h eventually reaches
a fixed-point. At that point h = f kW

j=0
E

j
Y ¬φ

, where k is the

smallest value of j in ?. Therefore we have that h = fC¬φ.
After taking the complement we have:

M, g 6|=υ CY ¬φ (def. of complement)
⇔ M, g |=υ ¬CY ¬φ (def. of 6|=)
⇔ M, g |=υ CY φ (def. of CY).

This concludes the proof for CY φ.
ut

Example 7 (Common Knowledge). We now present how to
synthesise fCY p for the model presented in Figure 1. As
before, let PV = {p, q} and the states be labelled such that
L(w0) = L(w1) = {p} and L(w2) = {q}.

Note that in the first run of the 3–8 loop of Algorithm 3 the
result of the evaluation of the function held in h variable is
equal to the result of the evaluation in 3–5 loop of Algorithm 1.
We can therefore reuse the values for h and Link∃Y (g, g′) from
Example 4 to compute:

Link∃Y (w0, w1) ∩ f(w1) = {Y {{1, 2}}}
Link∃Y (w0, w2) ∩ f(w2) = ∅
Link∃Y (w1, w1) ∩ f(w1) = Link∃Y (w1, w2) ∩ f(w2)
= Link∃Y (w2, w1) ∩ f(w1) = {Y {{2} , {1, 2}}}
Link∃Y (w2, w2) ∩ f(w2) = {Y {{1} , {2} , {1, 2}}}

Note that f is equal to h due to the substitution in Line 4
and the remaining cases are equal to Link∃Y (g, w0) ∩ f(w0),
which yields the empty set.

In the second run of the while loop we again calculate h(g)
for each state g by computing the union of all Link∃Y (g, g′)∩
f(g′) for each g′ ∈ {w0, w1, w2} (Line 6). The result is as
follows:

• h(w0) = {Y {{1, 2}}}

• h(w1) = {Y {{2} , {1, 2}}}

• h(w2) = {Y {{1} , {2} , {1, 2}}}

It can be easily seen that the next run of the loop does
not change the value of h, so the fixed-point is reached and
we exit the while loop. The function held in variable h is
equal to fCY ¬p, therefore after the complement in the return
statement we obtain:

• fCY p(w0) = {Y {{1} , {2}}}

• fCY p(w1) = {Y {{1}}}

• fCY p(w2) = ∅

which concludes our example.

The following algorithm is presented to provide the entry
point for calculating the function fφ for given φ ∈ CTLPK
by recursively calling previously introduced subroutines.

Algorithm 4 SynthCTLPK (φ)

Input: φ ∈ CTLPK

Output: fφ ∈
`
2GroupVals

´G
1: if φ = ZY ψ then
2: return SynthZ(SynthCTLPK(ψ), Y)
3: else /* non-parametric mod. omitted for simplicity */
4: return fφ
5: end if

Theorem 8 (Group Synthesis for CTLPK).
For each model M , for all global states g ∈ G and for all
formulae φ in CTLPK, we have that M, g |=υ φ iff υ ∈ fφ(g).

Proof. The validity of the theorem follows immediately
from the previous treatment of propositions, Boolean and
temporal operators, Lemmas 4, 6 and 7 and Corollary 5.

ut

4. EVALUATION
We have implemented the presented parametric approach

as an experimental extension to the open-source model checker
mcmas [9]. A GNU GPL licenced release is available from
http://vas.doc.ic.ac.uk/tools/mcmas_parametric/. As
mcmas is a symbolic model checker, the satisfiable group
valuations are also stored symbolically. We compare this
to a näıve approach that iteratively checks each possible
group assignment for satisfiability. Observe that for n agents
and m group variables, there are (2n − 1)m unique group
assignments.

We carry out this comparison using two benchmarks.

4.1 Dining Cryptographers
We first consider Chaum’s Dining Cryptographers proto-

col [1]; this problem has been widely studied with respect to
multi-agent systems and temporal-epistemic logic [10].

We consider the following two parametric specifications
(we write paid i to represent the proposition “diner i paid”):

• ϕDC1 = AG (paid1 → (CY (paid1)))

• ϕDC2 = AG (paid1 → (CY (paid1 ∧ ¬DZ (¬paid2))))

The first specification ϕDC1 expresses “if diner one paid,
then the group Y has common knowledge that diner one
paid”. This specification is satisfied only for the valuation
Y = {Diner 1}. The formula ϕDC2 extends the first formula
by additionally stating that “the group Y also has common
knowledge that the group Z does not have distributed knowl-
edge that diner two did not pay”. Considering only the case
in which diner one paid, this specification is satisfied when
Z = GroupVals \{Diner 1,Diner 2} (Y is as for ϕDC1). The
group Z cannot include Diner 2, because if diner one paid,
then diner two knows (individually) that he did not.

The experimental results for parameter synthesis for these
formulae over models of varying size can be seen in Table 1.
The values were collected over three runs, with a timeout of
one hour per run. The machine employed for these bench-
marks was an Intel Core 2 Duo processor 3.00 GHz, with a
6144 KiB cache, and ran 32-bit Fedora 14, kernel 2.6.35.14.
These results show that the parametric approach can, memory
permitting, perform synthesis faster than the näıve approach.
This is exemplified for 18 diners and the formula ϕDC2, where
parametric verification completed in under 11 minutes but
näıve did not finish within the hour.

For a model containing 14 diners, the construction of the
reachable state space, regardless of implementation or for-
mula, exhibited an unusually high run-time. This is reflected
in the timeout and memout results for this sized model.
We believe that this was caused by BDD reordering within
the CUDD library utilised by mcmas.

4.2 IEEE Token Ring Network
We now compare the parametric and näıve approaches

using the industry standard IEEE token ring bus network. In
the comparison that follows, we automated the injection of
faults into the model, following the approach of [3]; this allows
for the automatic analysis of fault-diagnosability properties.

We briefly summarise the scenario below; for a complete
description we refer the reader to [3].

The IEEE token ring protocol connects n nodes in a ring
topology; data moves between nodes on the network in a
clockwise fashion. Access is granted to nodes on the network
in the form of a token; this is passed from node to node.
Tokens are issued onto the network from an “active moni-
tor”. To detect faults, tokens contain a “time to live” field,
initialised to the maximum time that a token would take
to circulate the whole network and counting down to zero.
Should a token fail to circulate back to the active monitor
within the given time-frame, it is deduced that a fault has
occurred on the network.

We consider instantiations of the network where the first
node wishes to transmit a data token to the final node. Conse-
quently, data needs to pass through every single intermediate
node on the system.

Using a modified version of the fault injector from [3], we
inserted two types of non-deterministic faults: even nodes
stop sending tokens and odd nodes stop receiving tokens.
The properties verified are shown in Table 2. To exemplify:
ϕTR2 states that “there exists a future state where the group
Y has common knowledge that the group Z does not possess
common knowledge that faults have not been injected”.

Table 3 shows the comparison between the parametric and
näıve approach. These results demonstrate the benefits of
parametric verification.

5. CONCLUSIONS
We have introduced a novel parametric temporal-epistemic

logic, as well as presenting a sound and complete approach
for parameter synthesis. Using two non-trivial examples, we
have shown that a symbolic implementation of the parametric
technique can be more efficient than a brute force approach.

The results corroborate the expected: the parametric tech-
nique sacrifices memory efficiency for tractability. The current
experimental results seem favourable to the parametric ap-
proach. However, the results also demonstrate that there exist
models where the näıve technique can complete synthesis,
while the parametric approach runs out of memory.

We are interested in applying the parametric technique
to a wider range of industrial scenarios, for example, those
where the synthesised groups can be used to define cliques
of agents during the design and implementation phase.

Acknowledgements.
The authors acknowledge support from: the EPSRC (grants

EP/E02727X/1 and EP/I00520X/1); the Polish National Sci-
ence Centre (grant No. 2011/01/B/ST6/01477); and the SRI
PAS sponsored International Ph.D. Projects in Intelligent
Computing.

6. REFERENCES
[1] D. Chaum. The Dining Cryptographers Problem. J.

Cryptol., 1:65–75, 1988.

[2] E. M. Clarke, Jr., O. Grumberg, and D. A. Peled. Model
Checking. MIT Press, Cambridge, MA, USA, 1999.

[3] J. Ezekiel and A. Lomuscio. A Methodology for
Automatic Diagnosability Analysis. In Proc. of
ICFEM’10, pages 549–564, 2010.

[4] R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi.
Reasoning About Knowledge. MIT Press, 1995.

http://vas.doc.ic.ac.uk/tools/mcmas_parametric/

Table 1: Comparison for the Dining Cryptographers
Model

Formula
Group Valuations Time (s) Memory (KiB)

Diners States Possible # SAT parametric näıve parametric näıve

6 1,344
ϕDC1 63 1 0.084 0.064 11,500 10,504
ϕDC2 3,969 15 0.155 0.777 13,184 10,504

10 33,792
ϕDC1 1,023 1 1.054 3.380 30,372 46,164
ϕDC2 1,046,529 255 1.959 1,286.33 53,296 45,800

14 737,280
ϕDC1 16,383 1 timeout 317.093 timeout 138,951
ϕDC2

∗ 268,402,689 –∗ memout timeout memout timeout

18 1.5 · 107 ϕDC1 262,143 1 324.034 731.034 2.096 · 10 6 1.747 · 10 6

ϕDC2 68,718,952,449 65535 651.206 timeout 2.606 · 10 6 timeout

∗ mcmas-parametric used over 3 GiB of RAM and mcmas-näıve failed to finish within the one-hour timeout.

Table 2: Diagnosability Properties for the Token Ring Protocol

Formula Specification

ϕTR1 EF CY ¬ (
W

fault∈Faults fault injected)

ϕTR2 EF CY ¬ CZ ¬ (
W

fault∈Faults fault injected)

ϕTR3
E[(CY ¬(

W
fault∈Faults fault injected)) U

(EF EZ DV ¬(
W

fault∈Faults(fault injected ∨ fault stopped)))]

Table 3: Comparison for the Token Ring Network
Model

Formula
Group Valuations Time (s) Memory (KiB)

Nodes States Possible # SAT parametric näıve parametric näıve

4 1,116
ϕT R1 15 5 0.594 0.544 14,016 12,072
ϕT R2 225 171 0.752 0.761 25,388 12,300
ϕT R3 3,375 3,255 0.776 3.117 15,888 12,160

6 21,578
ϕT R1 63 7 1.434 1.209 23,684 23,680
ϕT R2 3,969 3,571 2.321 7.285 55,588 23,680
ϕT R3 250,047 232,407 11.368 408.478 40,752 23,680

8 336,632
ϕT R1 255 9 3.369 3.107 58,708 39,960
ϕT R2 65,025 62,803 7.497 193.948 63,496 48,200

ϕT R3 16,581,375 15,253.335 1,127.170 timeout† 62,316 timeout†

10 7.769 · 106
ϕT R1 1,023 11 6.236 17.052 58,444 53,756

ϕT R2 1,046,529 1,035,387 65.875 timeout‡ 61,788 timeout‡

ϕT R3
∗ 1,070,599,167 –∗ timeout∗

12 1.157 · 108
ϕT R1 4,095 13 15.556 204.853 66,224 109,280•

ϕT R2 16,769,025 16,715,947 1,423.12 timeout? 71,160 timeout?

ϕT R3
∗ 68,669,157,375 –∗ timeout∗

† Calculated 8.35% of all the satisfiable groups within the timeout period.
‡ Calculated 73.92% of all the satisfiable groups within the timeout period.
• Represents an anomalous result with mcmas-näıve/CUDD. The memory usage of mcmas-näıve should, under a correctly

functioning system, always be lower than that of mcmas-parametric.
? Calculated 1.82% of all the satisfiable groups within the timeout period.
∗ Both mcmas-parametric and mcmas-näıve failed to halt-and-succeed within the one-hour time limit.

[5] P. Gammie and R. van der Meyden. MCK: Model
Checking the Logic of Knowledge. In Proc. of CAV’04,
pages 479–483, 2004.

[6] M. Huth and M. Ryan. Logic in Computer Science:
Modelling and Reasoning About Systems (Second
Edition). Cambridge University Press, 2004.

[7] M. Kacprzak, W. Nabialek, A. Niewiadomski,
W. Penczek, A. Pólrola, M. Szreter, B. Wozna, and
A. Zbrzezny. VerICS 2007 - a Model Checker for
Knowledge and Real-Time. Fundam. Inform.,
85(1-4):313–328, 2008.

[8] M. Knapik, W. Penczek, M. Szreter, and A. Pólrola.
Bounded Parametric Verification for Distributed Time
Petri Nets with Discrete-Time Semantics. Fundam.
Inform., 101(1–2):9–27, 2010.

[9] A. Lomuscio, H. Qu, and F. Raimondi. MCMAS: A
Model Checker for the Verification of Multi-Agent
Systems. In Proc. of CAV’09, pages 682–688, 2009.

[10] R. v. d. Meyden and K. Su. Symbolic Model Checking
the Knowledge of the Dining Cryptographers. In Proc.
of CSFW’04, pages 280–291, 2004.

[11] W. Penczek and A. Lomuscio. Verifying Epistemic
Properties of Multi-Agent Systems via Bounded Model
Checking. Fundam. Inform., 55(2):167–185, 2003.

[12] F. Raimondi and A. Lomuscio. Automatic Verification
of Multi-Agent Systems by Model Checking via
Ordered Binary Decision Diagrams. J. Applied Logic,
5(2):235–251, 2007.

[13] F. Wang. Timing Behavior Analysis for Real-Time
Systems. In Proc. of LICS’95, pages 112–122, 1995.

	Introduction
	The Logic CTLPK
	Group Synthesis for CTLPK
	Boolean Operations and Non-parametricModalities
	Group Synthesis for Parametric Epistemic Operators

	Evaluation
	Dining Cryptographers
	IEEE Token Ring Network

	Conclusions
	References

