
Verification of GSM-based Artifact-Centric Systems
Through Finite Abstraction

Francesco Belardinelli1, Alessio Lomuscio1, and Fabio Patrizi2

1 Department of Computing, Imperial College London
{f.belardinelli,a.lomuscio}@imperial.ac.uk

2 DIIAG, Sapienza Università di Roma
patrizi@dis.uniroma1.it

Abstract. The GSM framework provides a methodology for the development
of artifact-centric systems, an increasingly popular paradigm in service-oriented
computing. In this paper we tackle the problem of verifying GSM programs in a
multi-agent system setting. We provide an embedding from GSM into a suitable
multi-agent systems semantics for reasoning about knowledge and time at the
first-order level. While we observe that GSM programs generate infinite mod-
els, we isolate a large class of “amenable” systems, which we show admit finite
abstractions and are therefore verifiable through model checking. We illustrate
the contribution with a procurement use-case taken from the relevant business
process literature.

1 Introduction

The artifact-centric paradigm [8, 9] has recently gained considerable prominence in the
business processes and services communities as a promising and novel methodology for
quick and inexpensive deployment of data-intensive web-services. In the artifact-centric
approach data feature prominently and drive the execution of the system, together with
the associated process-based description of the services. The Guard-Stage-Milestone
(GSM) language [15], together with its Barcelona production and execution suite, pro-
vides a declarative framework to deploy artifact-centric systems. In a nutshell, GSM
offers the constructs for the definition of artifacts as typed records of data, their evo-
lution (or lifecycles) through a dedicated rule-driven semantics, and the interface for
the interaction of the artifacts with the users. This interface is composed of services
that agents can invoke thereby affecting the artifacts in the system through chains of
operations.

We see two deficiencies in the GSM approach as it currently stands. Firstly, simi-
larly to database-inspired techniques, GSM programs only define the evolution of the
artifacts and provide no precise mechanism for accounting for any users or automatic
agents interacting with the system. Yet, if we wish to follow an approach of imple-
menting services through agents, these need to be present in the model. Secondly, GSM
currently lacks any support for automatic verification. Yet, validation through verifica-
tion is increasingly being regarded as an important aspect of service deployment [17].

This paper aims to make a direct contribution towards these two key problems. To
solve the first concern, we provide a semantics, based on multi-agent systems, to GSM

programs, where we give first-class citizenship to human actors and automatic agents
present in the service composition. To solve the second, we observe that GSM programs
generate infinite-state systems thereby making traditional model checking impractica-
ble. Our contribution here is to show that GSM programs admit, under some rather
general conditions, finite models, thus opening the way for their effective verification.
The rest of the paper is organised as follows. In Section 2 we introduce artifacts and
GSM programs, which are illustrated by the Requisition and Procurement Orders sce-
nario in Section 3. In Section 4 we adopt the semantics of artifact-centric multi-agent
systems (AC-MAS) to deal with the verification of GSM programs. Finally, in Section 5
we show how to embed GSM programs into AC-MAS; thus obtaining finite abstractions
for the former.

Related work. The exploration of finite abstraction in the context of artifact-centric
environments has attracted considerable attention recently [2–5, 10, 11, 14]. While these
make a noteworthy contribution and are in some cases used here as a stepping stone for
our results [2–4], the key point of departure from the literature of the present contri-
bution is that we here operate directly on GSM programs and not on logical models
derived manually from them. We see this as an essential step towards the construction
of automatic verification techniques for GSM programs.

2 GSM Programs

Artifact-centric systems are based on the notion of artifact, i.e., a record of structured
data, that are born, evolve, and die during a system run either as a consequence of chains
of internal actions of other artifacts, or through external actions performed by actors.
GSM [15] is a declarative language, interpreted by specialised toolkits, that enables the
user to implement guard-stage-milestone models for artifact systems.

For simplicity, here we work on an untyped version of GSM programs in which
we also neglect timestamps: while GSM programs are richer, the version we consider
enables us to present decidability results concisely while at the same time supporting
complex use-cases as we show in Section 3. The present section makes use of notions
and definitions from [15].

Definition 1 (Artifact Type). An artifact type is a tuple AT = 〈P, x,Att, Stg,Mst,
Lcyc〉 such that

– P is the name of the artifact type;
– x is a variable that ranges over the IDs of instances of AT ; this is the context

variable of AT , which is used in the logical formulas in Lcyc;
– Att is the set of attributes, which is partitioned into the setAttdata of data attributes

and Attstatus of status attributes;
– Stg is the set of stages;
– Mst is the set of milestone;
– Lcyc is the lifecycle model of the artifact typeAT , which is formally defined below.

Intuitively, artifact types can be seen as records of structured data. The set Attdata
includes the attribute mostRecEventType, which holds the type of the most recent

event. Milestones and stages describe the evolution of the artifact type. We associate
a Boolean milestone status attribute, denoted as m, to each milestone m ∈ Mst in
Attstatus. Analogously, for each stage S ∈ Stg, in Attstatus there is a Boolean stage
status attribute activeS .

While the data content of an artifact type is specified by its datamodel, i.e., all its
attributes excluding the lifecycle, its execution is described by its lifecycle.

Definition 2 (Lifecycle). The lifecycle of an artifact typeAT is a tupleLcyc = 〈Substg,
Task,Owns,Guards,Ach, Inv〉 such that

– Substg is a function from Stg to finite subsets of Stg, where the relation {(S, S′)|S′ ∈
Substg(S)} is a forest. The leaves of the forest are called atomic stages.

– Task is a function from the atomic stages in Stg to tasks.
– Owns is a function from Stg to finite, non-empty subsets of Mst. A stage S owns

a milestone m if m ∈ Owns(S).
– Guards is a function from Stg to finite sets of sentries, as defined in Section 2.1.

An element of Guards(S) is called a guard for S.
– Ach is a function from Mst to finite sets of achieving sentries.
– Inv is a function from Mst to finite sets of invalidating sentries.

More details are given in Section 2.1. Intuitively, every artifact goes through a num-
ber of stages, which are activated by the relevant guards. A stage is closed when the
tasks associated with it and its substages are fulfilled. When this happens, the mile-
stones associated with the stage become true and possibly trigger the guards associated
with another stage. We now introduce GSM programs.

Definition 3 (GSM program). A GSM program Γ is a set of artifact types ATi for
i ≤ n.

For convenience, we assume that all context variables are distinct. Artifact instances
are then defined as mappings from artifact types to a possibly infinite interpretation
domain U of data values.

Definition 4 (AT and GSM snapshot). A snapshot for the artifact type AT is a map-
ping σ from x,Att to the interpretation domain U . A snapshot for the GSM program Γ
is a mapping Σ from each type AT ∈ Γ to a set Σ(AT) of snapshots for type AT .

Intuitively, a snapshot for the artifact type AT is an assignment of the values in U
to the attributes of AT . A GSM snapshot is then a collection of AT snapshots. Notice
that different instances of the same artifact type are distinguished by their IDs σ(x),
hereafter denoted as ρ.

2.1 Execution of GSM Programs

Events are responsible for the evolution of a GSM system from one snapshot to the next.
Three types of incoming events are considered: 1-way messages M , 2-way service call
returns F return, and artifact instance creation requests createcallAT . A ground event e
has a payload (A1 : c1, . . . , An : cn) where Ai is a data attribute and ci is a value
in the domain U . Intuitively, incoming events are processed by the sentries associated
with guards and milestones, and the payload determines the evolution of the stage as
detailed below.

Definition 5 (Immediate effect). The immediate effect of a ground event e on a snap-
shot Σ, or ImmEffect(Σ, e), is the snapshot that results from incorporating e into Σ,
including (i) changing the values of the mostRecEventType attribute of affected (or
created) artifact instances; (ii) changing the values of data attributes of affected artifact
instances, as indicated by the payload of e.

The operational semantics for GSM programs is given through the notion of busi-
ness step, or B-step, which represents the impact of a single ground incoming event e on
a snapshot Σ. The semantics of B-steps is characterised by 3-tuples (Σ, e,Σ′) where

1. Σ is the previous snapshot;
2. e is a ground incoming event;
3. Σ′ is the next snapshot;
4. there is a sequence Σ0, Σ1, . . . , Σn of snapshots such that (i) Σ0 = Σ; (ii) Σ1 =

ImmEffect(Σ, e); (iii) Σn = Σ′; and (iv) for 1 ≤ j < n, Σj+1 is obtained from Σj
by a PAC rule (see below).

Business steps follow Prerequisite-Antecedent-Consequent (PAC) rules [15]. To in-
troduce PAC rules we first define formally event expressions and sentries. In what fol-
lows τAT is a path expression x. < path > where x is the ID variable for some artifact
type AT ∈ Γ . An example of a path expression is ρ.S.m, which refers to the milestone
m of stage S, for some AT instance ρ.

Definition 6 (Event expression). An event expression ξ(x) for an artifact type AT
with ID variable x has one of the following forms:

– Incoming event expression x.e: (i) x.M for 1-way message typeM ; (ii) x.F return

for service call return from F ; (iii) x.createcallAT for a call to create an artifact
instance of type AT .

– Internal event expression: (i) +τAT ′ .m and−τAT ′ .m, wherem is a milestone for
type AT ′; (ii) +τAT ′ .activeS and −τAT ′ .activeS , where S is a stage of type AT ′.

Intuitively, an event occurrence of type +τAT ′ .m (resp. −τAT ′ .m) arises when-
ever the milestone m of the instance identified by x. < path > changes value from
false to true (resp. true to false). Similarly, an event occurrence of type +τAT ′ .activeS
(resp. −τAT ′ .activeS) arises whenever the stage S of the instance identified by x. <
path > changes value from closed to open (resp. open to closed).

We can now define sentries for guards and milestones. These represent the condi-
tions to open and close stages.

Definition 7 (Sentry). A sentry for an artifact type AT is an expression χ(x) having
one of the following forms: on ξ(x) if ϕ(x)∧x.activeS , on ξ(x), or if ϕ(x)∧x.activeS
such that (i) ξ(x) is an event expression; and (ii) ϕ(x) is a first-order (FO) logical
formula over the artifact types occurring in Γ that has exactly one free variable.

We now discuss the interpretation of sentries, i.e., when a snapshotΣ satisfies a sen-
try χ, or Σ |= χ. Satisfaction of an FO-formula ϕ at Σ is defined as standard. Further,
the expression ρ.e for an artifact instance ρ is true at Σ if ρ.mostRecEventType = e.
Finally, the internal event expression �ρ.τ.s for polarity � ∈ {+,−}, path expression
τ , and status attribute s, is true at Σ if the value of ρ.τ.s matches the polarity.

We can now introduce PAC rules.

Definition 8 (PAC rules). A PAC rule is a tuple 〈π(x), α(x), γ(x)〉 such that

– π(x) is of the form τ.m, ¬τ.m, τ.activeS , or ¬τ.activeS;
– α(x) is of the form χ(x) ∧ ψ(x), where χ(x) is a sentry and ψ(x) is of the form
τ.m, ¬τ.m, τ.activeS , or ¬τ.activeS;

– γ(x) is an internal event expression as in Def. 6.

Given a B-step Σ = Σ0, Σ1, . . . , Σj for a ground event e, the PAC rule 〈π, α, γ〉 is
applicable if Σ |= π and Σj |= α. Applying such a rule yields a new snapshot Σj+1,
which is constructed from Σj by applying the effect called for by γ.

Additional conditions can also be assumed for the application of PAC rules, which
notably ensure the absence of cycles [15].

3 The RPO Scenario

The Requisition and Procurement Orders (RPO) scenario is a business process use-
case. We analyse an implementation in which a GSM program is used to instantiate
the procurement process [15]. We illustrate the notions presented in Section 2 in the
context of a fragment of this scenario. In the RPO scenario a Requisition Order is sent
by a Customer to a Manufacturer to request some goods or services. The Requisition
Order has one or more Line Items, which are bundled into Procurement Orders and
sent to different Suppliers. A Supplier can either accept or reject a Procurement Order.
In the latter case, the rejected Line Items are bundled into new Procurement Orders.
Otherwise, the order is fulfilled by the Supplier and sent to the Manufacturer, who in
turn forwards it to the Customer.

In GSM programs it is natural to model the Requisition and Procurement Orders as
artifact types RO and PO respectively. In particular, the datamodel of the Requisition
Order, i.e., all its attributes excluding the lifecycle, can be encoded as in Fig. 1, which
is adapted from [15]. The definition of the Procurement Order datamodel is similar.
Notice that in the datamodel we have both data and status attributes; the latter contain

ID

Lin
e

Ite
m

s
Pr

oc
Or

de
rs

…

Milestone
data

Stage
data

Status AttributesData Attributes

M
os

t R
ec

en
t

Ev
en

t T
yp

e
M

os
t R

ec
en

t
Ev

en
t T

im
e

Fig. 1. The Requisition Order datamodel.

milestone and stage data as detailed in Def. 1.

Create Proc Orders

Planning Proc OrdersLaunching Line Items

Initiate
Req.

Order

Re-Order
Line Items

of Rejected
Proc

Orders

All Line
Items
ordered

Req.
Order
cancelled

Fig. 2. A stage of the Requisition Order lifecycle.

Fig. 2 illustrates part of the lifecycle for the Requisition Order [15]. Stages are rep-
resented as rounded boxes. The stage Create Proc Orders contains the child-stages
Launching Line Items and Planning Proc Orders; the former is atomic. Milestones
are shown as small circles associated with stages. For instance, the milestones All Line
Items ordered and Req. Order cancelled are associated with the stage Create Proc
Orders. The former is an achieving milestone, i.e., when All Line Items ordered be-
comes true the stage is closed; while the latter is invalidating, that is, when Req. Order
cancelled holds, the stage is reopened. The diamond nodes are guards. The stage Cre-
ate Proc Orders is triggered by guards Initiate Req. Order and Re-order Line Items
of Rejected Proc Orders. A diamond with a cross represents a “bootstrapping” guard,
which indicates the conditions to create new artifact instances. Similar representations
can be given for all other stages in the Requisition and Procurement Orders.

As mentioned in Section 2 the execution of GSM programs is governed by PAC
rules. To illustrate these we consider PAC2 as given in [15]:

Prerequisite π Antecedent α Consequent γ
PAC2 x.activeS on e(x) if ϕ(x) +x.m

where stage S has milestone m and on e(x) if ϕ(x) is an achieving sentry for
m. Suppose that Σ0, Σ1, . . . , Σj is a sequence of snapshots in a B-step. Intuitively,
if Σ |= π, then there is an artifact instance ρ s.t. ρ.activeS is true, i.e., the stage S
is active for ρ. Furthermore, if Σj |= α then ρ.mostRecEventType = e and the
achieving condition ϕ for milestone m holds. Finally, Σj+1 is obtained by applying
+ρ.m, i.e., by toggling the flag m for the milestone status of S to true.

The discussion above shows that GSM programs are expressive enough to formalise
business processes such as the Requisition and Procurement Orders scenario.

4 Artifact-Centric MAS with Parametric Actions

In Section 5 we introduce a sufficient condition for obtaining finite abstractions for a
notable class of the GSM programs. In order to define an embedding into an agent-based
semantics, as well as to state precisely the model checking problem for these structures,
we here generalise the framework of [4] to parametric actions. This is required to obtain

effective model checking procedures. The material below extends [4] and follows its
structure and some of the definitions. We start by introducing some terminology on
databases [1].

Definition 9 (Database schema and instance). A database schema is a setD = {P1/q1,
. . . , Pn/qn} of predicate symbols Pi with arity qi ∈ N.

A D-instance on a (possibly infinite) domain U is a mapping D associating each
predicate symbol Pi with a finite qi-ary relation over U , i.e., D(Pi) ⊆ Uqi .

The set D(U) denotes all D-instances on the domain U . The active domain ad(D)
ofD is the finite set of all individuals occurring in some predicate interpretationD(Pi).
The primed version of a database schema D as above is the schema D′ = {P ′1/q1, . . . ,
P ′n/qn}. Given two D-instances D and D′, D ⊕D′ is the (D ∪ D′)-instance such that
(i) D ⊕D′(Pi) = D(Pi); and (ii) D ⊕D′(P ′i) = D′(Pi). The ⊕ operator will be used
later in relation with temporal transitions in artifact systems.

We now extend the definition of AC-MAS in [4] to accommodate parametric ac-
tions, where U is the interpretation domain.

Definition 10 (Agent). An agent is a tuple i = 〈Di, Li, Acti, P ri〉 such that

– Di is the local database schema;
– Li ⊆ Di(U) is the set of local states li;
– Acti is the set of local actions αi(~x) with parameters ~x;
– Pri : Li 7→ 2Acti(U) is the local protocol function, where Acti(U) is the set of

ground actions αi(~u) for ~u ∈ U |~x|.

Given a set Ag = {0, . . . , n} of agents, we define the global database schema of
Ag as D = D0 ∪ · · · ∪Dn, i.e., the set of all predicate symbols appearing in some local
database schema. Agent 0 is usually referred to as the environment E.

AC-MAS are models representing the evolution of a system of agents.

Definition 11 (AC-MAS). Given a set Ag of agents, an artifact-centric multi-agent
system is a tuple P = 〈S, U, s0, τ〉 such that

– S ⊆ LE × L1 × · · · × Ln is the set of reachable global states;
– U is the interpretation domain;
– s0 ∈ S is the initial global state;
– τ : S × Act(U) 7→ 2S is the transition function, where Act = ActE × Act1 ×
· · · × Actn is the set of global actions, Act(U) is the set of ground actions, and
τ(〈lE , l1, . . . , ln〉, ~α(~u)) is defined iff αi(~u) ∈ Pri(li) for every i ∈ Ag.

We can interpret a global state s = 〈lE , l1, . . . , ln〉 as theD-instanceD s.t.D(Pi) =⋃
j∈Ag lj(Pi), for Pi ∈ D. Notice that for each s ∈ S there exists a unique D-instance

D as above, however the converse is not true in general. The wayD has to be interpreted
will be clear from the context. We define the transition relation s → s′ if there exists
~α(~u) ∈ Act(U) and s′ ∈ τ(s, ~α(~u)). The notion of reachability is defined as in [4].
In what follows we assume that the relation→ is serial, and that S is the set of states
reachable from s0. Notice that by definition S is infinite in general. Hence, the AC-
MAS P is an infinite-state system. Finally, s and s′ are epistemically indistinguishable

for agent i, or s ∼i s′, if li(s) = li(s
′). This is consistent with the standard definition

of knowledge as identity of local states [12].
We are interested in temporal-epistemic specifications in a first-order setting.

Definition 12 (FO-CTLK). Given a set V ar of individual variables and a set Con ⊆
U of individual constants, the first-order CTLK formulas ϕ on the database schema D
are defined in BNF as follows:

ϕ ::= t = t′ | Pi(~t) | ¬ϕ | ϕ→ ϕ | ∀xϕ | AXϕ | AϕUϕ | EϕUϕ | Kiϕ

where Pi ∈ D, ~t is a qi-tuple of terms, and t, t′ are terms, i.e., elements in V ar ∪Con.

The language FO-CTLK is the extension to first-order of the branching-time logic
CTL enriched with an epistemic operator Ki for each agent i ∈ Ag [2]. For a formula
ϕ we denote the set of variables as var(ϕ), the set of free variables as fr(ϕ), and
the set of constants as con(ϕ). We consider also the non-modal first-order fragment of
FO-CTLK, obtained by omitting the modal operators in Def. 12.

An assignment is a function σ : V ar 7→ U . We denote by σ
(
x
u

)
the assignment

s.t. (i) σ
(
x
u

)
(x) = u; and (ii) σ

(
x
u

)
(x′) = σ(x′) for x′ 6= x. We assume that no confusion

will arise between assignments in AC-MAS and snapshots in GSM programs. Also, we
assume a Herbrand interpretation of constants.

Definition 13 (Semantics of FO-CTLK). We define whether an AC-MAS P satisfies a
formula ϕ in a state s under assignment σ as usual (see, e.g., [4]). In particular,

(P, s, σ) |= Pi(t1, . . . , tqi) iff 〈σ(t1), . . . , σ(tqi)〉 ∈ s(Pi)
(P, s, σ) |= t = t′ iff σ(t) = σ(t′)
(P, s, σ) |= ∀xϕ iff for all u ∈ ad(s), (P, s, σ

(
x
u

)
) |= ϕ

(P, s, σ) |= Kiϕ iff for all s′, s ∼i s′ implies (P, s′, σ) |= ϕ

A formula ϕ is true at s, written (P, s) |= ϕ, if (P, s, σ) |= ϕ for all assignments σ; ϕ
is true in P , written P |= ϕ, if (P, s0) |= ϕ.

Note that we adopt an active domain semantics, that is, quantified variables range over
the active domain of s.

Given an AC-MAS P and an FO-CTLK formula ϕ, the model checking problem
amounts to finding an assignment σ such that (P, s0, σ) |= ϕ. Note that the model
checking problem for this logic is undecidable in general [2].

4.1 Finite Abstractions

We now extend the techniques in [4] to define finite abstractions for AC-MAS with
parametric actions. We fix a finite set C ⊇ ad(s0) of constants. Further, whenever we
consider an FO-CTLK formula ϕ, we assume w.l.o.g. that con(ϕ) ⊆ C. Finally, the
states s and s′ are defined on the interpretation domains U and U ′ respectively, and
P = 〈S, U, s0, τ〉 and P ′ = 〈S ′, U ′, s′0, τ ′〉 are AC-MAS. To introduce the notion of
bisimulation as defined in [4], we first need to state when two states are isomorphic.

Definition 14 (Isomorphism). The states s and s′ are isomorphic, or s ' s′, iff there
exists a bijection ι : ad(s) ∪ C 7→ ad(s′) ∪ C s.t. (i) ι is the identity on C; and (ii) for
every Pi ∈ D, j ∈ Ag, and ~u ∈ Uqi , ~u ∈ lj(Pi) iff ι(~u) ∈ l′j(Pi).

Any function ι as above is a witness for s ' s′. Notice that isomorphic instances
preserve first-order (non-modal) formulas:

Proposition 1. Let ϕ be an FO-formula, assume that s ' s′, and let σ : V ar 7→ U and
σ′ : V ar 7→ U ′ be assignments s.t. (i) there is a bijection γ : ad(s)∪C ∪ σ(fr(ϕ)) 7→
ad(s′) ∪ C ∪ σ′(fr(ϕ)); (ii) γ is a witness for s ' s′; and (iii) σ′ = γ ◦ σ. Then
(P, s, σ) |= ϕ iff (P ′, s′, σ′) |= ϕ.

Prop. 1 states that isomorphic instances cannot distinguish FO-formulas. We now
generalise this result to the language FO-CTLK.

Definition 15 (Similarity). An AC-MAS P ′ simulates P , or P � P ′, iff there exists a
simulation relation on S × S ′, i.e., a relation � s.t. (i) s0 � s′0; and (ii) if s � s′ then

1. s ' s′;
2. for every t, if s→ t then there is t′ s.t. s′ → t′, s⊕ t ' s′ ⊕ t′ and t � t′;
3. for every t, if s ∼i t then there is t′ s.t. s′ ∼i t′, s⊕ t ' s′ ⊕ t′ and t � t′.

Moreover, we say that P and P ′ are bisimilar, or P ≈ P ′, iff there exists a bisimu-
lation relation on S × S ′, i.e., a relation ≈ s.t. both ≈ and ≈−1= {〈s′, s〉 | s ≈ s′} are
simulation relations.

We can now introduce the class of AC-MAS of interest here.

Definition 16 (Uniformity). An AC-MAS P is uniform iff for every s, t, s′ ∈ S , t′ ∈
D(U), if t ∈ τ(s, α(~u)) and s⊕ t ' s′ ⊕ t′ for some witness ι, then for every bijection
ι′ extending ι, t′ ∈ τ(s′, α(ι′(~u))).

Intuitively, uniformity requires that the definition of transitions does not depend on
the data content of each state, apart from constants in C. This definition of uniformity
extends [4] as parametric actions are considered explicitly, thus allowing for effective
abstraction.

We now show that uniformity, together with bisimilarity and boundedness, is suffi-
cient to preserve FO-CTLK formulas, where an AC-MAS P is b-bounded, for b ∈ N, if
for all s ∈ S, |ad(s)| ≤ b [3]. Observe that boundedness imposes no restriction on the
domain U of P . Thus, if U is infinite, so is the state space of P in general.

The next results show that, although infinite-state, a uniform and b-bounded AC-
MASP can be verified by model checking its finite abstraction. In what followsNAg =
maxα(~x)∈Act{|~x|}.

Definition 17. Let Ag be a set of agents and let U ′ be a set. For each agent i =
〈D, L,Act, Pr〉 in Ag we define an agent i′ = 〈D′, L′, Act′, P r′〉 s.t. (i) D′ = D;
(ii) L′ = D′(U ′); (iii) Act = Act; (iv) α(~u) ∈ Pr′(l′) iff there is l ∈ L s.t. l′ ' l for
some witness ι, and α(ι′(~u)) ∈ Pr(l) for some bijection ι′ extending ι. Let Ag′ be the
set of all i′ thus defined.

Notice that the definition of i′ depends on the set U ′. However, we omit U ′ when it
is clear from the context.

Definition 18 (Abstraction). Let P be an AC-MAS over Ag, the abstraction P ′ over
Ag′ is defined as follows:

– s′0 = s0;
– t′ ∈ τ ′(s′, α(~u)) iff there are s, t, and ~u′ s.t. t ∈ τ(s, α(~u′)), s ⊕ t ' s′ ⊕ t′ for

some witness ι, and ~u = ι′(~u′) for some bijection ι′ extending ι;
– S ′ is the set of reachable states.

Notice that P ′ is an AC-MAS. In particular, P ′ satisfies the conditions on protocols
and transitions, and it is finite whenever U ′ is.

We can now prove the main result of this section, which extends Theorem 4.7 in [4]
to AC-MAS with parametric actions.

Theorem 1. Given an infinite, b-bounded and uniform AC-MAS P , an FO-CTLK for-
mula ϕ, and a finite set U ′ ⊇ C s.t. |U ′| ≥ 2b + |C| + max{var(ϕ), NAg}, the
abstraction P ′ is finite, uniform and bisimilar to P . In particular,

P |= ϕ iff P ′ |= ϕ

This result states that by using a sufficient number of elements in P ′, we can reduce
the verification of an infinite AC-MAS to verifying a finite one. Also notice that U ′

can be taken to be any finite subset of U satisfying the condition on cardinality. By
doing so, the finite abstraction P ′ can be defined simply as the restriction of P to U ′.
Thus, every infinite, b-bounded and uniform AC-MAS is bisimilar to a proper finite
subsystem, which can be effectively generated.

5 AC-MAS associated to GSM Programs

In this section we associate GSM programs to AC-MAS. By doing so we achieve two
results. Firstly, we provide a formal semantics to GSM programs via AC-MAS that can
be used to interpret FO-CTLK specifications. Secondly, this enables us to apply the
finite abstraction methodology in Section 4 to GSM programs.

To begin with, for each artifact type AT = 〈P, x,Att, Stg,Mst, Lcyc〉 we in-
troduce a predicate symbol P with attributes x, Att. Hence, the arity of P is qP =
1 + |Att|.

Definition 19. Given a GSM program Γ = {ATj}j≤n we define a database schema
DΓ = {Pj}j≤n such that each Pj is the predicate symbol corresponding to the artifact
type ATj .

We now introduce agents in GSM programs.

Definition 20. Given a GSM program Γ and an interpretation domain U , an agent is
a tuple i = 〈Di, Li, Acti, P ri〉 s.t.

– Di ⊆ DΓ is the local database schema, and DE = DΓ ;
– Li = Di(U) is the set of local states, and LE = DΓ (U);

– Acti is the set of actions αe(~y) for each event type e with payload ~y. Further, we
introduce a skip action skipi for each agent i. ActE is defined similarly.

– For every ground action αi(~u), for every local state li, αi(~u) ∈ Pri(li), i.e., a
ground action αi(~u) is always enabled.

We observe that the original formulation of GSM programs in [15] does not account
for agents. In fact, artifacts are bundled together in the Artifact Service Center (ASC),
which interacts with the external environment through incoming and generated events.
According to Def. 20 the Artifact Service Center of GSM programs is mapped into the
environment of AC-MAS; while the environment of GSM programs is mapped to the
agents in an AC-MAS. So, the notion of environment corresponds to different entities
in GSM programs and AC-MAS. We keep the original terminology, as the distinction is
clear. Furthermore, each agent, including the environment, perform actions correspond-
ing to sending an event to the ASC. As illustrated in Section 2.1, these include 1-way
messages M , 2-way service call returns F return, and artifact instance creation requests
createcallAT . We assume that actions are always enabled as no protocol is explicitly given
for GSM programs.

Given a set of agents defined as above, the AC-MAS PΓ associated to the GSM
program Γ is defined according to Def. 11.

Definition 21. Given a set Ag of agents over the GSM program Γ and a snapshot Σ0,
the AC-MAS associated with Γ is a tuple PΓ = 〈S, U, sΣ0 , τ〉 s.t.

– S ⊆ Le × L1 × · · · × Ln is the set of reachable global states;
– U is the interpretation domain;
– sΣ0 ∈ S is the initial global state corresponding to Σ0;
– τ : S × Act(U) 7→ 2S is the global transition function s.t. t ∈ τ(s, α(~u)) iff (i) if
α = 〈αe, α1, . . . , αn〉 then at most one αi is different from skipi; (ii) if αi = αe
then (Σs, e, Σt) holds in Γ , where ~u is the payload of event e.

Notice that, given a set Ag of agents, there is a one-to-one correspondence between
snapshots in Γ and states in the AC-MAS PΓ . Given a snapshot Σ we denote the
corresponding state as sΣ . Similarly, Σs is the snapshot corresponding to the global
state s. Also, GSM programs do not specify initial states; therefore the definition of
PΓ is parametric in Σ0, the snapshot chosen as the initial state of Γ . Most importantly,
the transition function τ mirrors the B-step semantics of GSM programs. Since each
B-step consumes a single event, we require that at most one agent performs an event
action at each given time, while all other agents remain idle. This has correspondences
with other approaches in multi-agent systems literature, such as interleaved interpreted
systems [16].

5.1 Finite Abstractions of GSM Programs

In this section we show that GSM programs admit finite abstractions. Specifically, by
suitably restricting the language of sentries we can prove that the AC-MASPΓ obtained
from a GSM program Γ is uniform. So, by applying Theorem 1 we obtain that if PΓ is
also bounded, then it admits a finite abstraction, hence its model checking problem is

decidable. Hereafter, LDΓ is the first-order (non-modal) language of formulas built on
the predicate symbols in the database schema DΓ in Def. 19.

Definition 22 (Amenable GSM programs). A sentry χ(x) is amenable iff the FO-
formula ϕ(x) in χ(x) belongs to the language LDΓ . A GSM program is amenable iff
all sentries occurring in any guard or milestone are amenable.

It is known that, given a database schema D, the language LD built on it is suffi-
ciently expressive to define a wide range of systems [4, 14]. As an example, the scenario
in Section 3 adheres to this property. Therefore we see amenable GSM programs as a
rather general class of GSM programs with potentially wide applicability.

The next results show that the AC-MAS PΓ is uniform whenever Γ is amenable.

Lemma 1. For every states s, t ∈ PΓ , if s ' t for some witness ι, then Σt = ι(Σs).

Proof. Notice that if ι is a witness for s ' t, then in particular the attributes x and Att
in Σs are mapped to the corresponding attributes in Σt. Further, the attributes in Stg,
Mst and Lcyc remain the same.

The next result is of essence in the proof of uniformity for PΓ .

Lemma 2. For every s, t , s′ ∈ S, t′ ∈ DΓ (U), if s ⊕ t ' s′ ⊕ t′ for some witness ι,
then (Σs, e, Σt) implies (Σs′ , ι′(e), Σt′) where ι′ is any bijection extending ι

Proof. Assume that (Σs, e, Σt) and ι is a witness for s ⊕ t ' s′ ⊕ t′. We show
that (Σs′ , ι′(e), Σt′) where ι′ is a bijection extending ι. If (Σs, e, Σt) then there is
a sequence Σ0, . . . , Σk of snapshots s.t. Σ0 = Σs, Σ1 = ImmEffect(Σs, e), and
Σk = Σt. Also, for 1 ≤ j < k, Σj+1 is obtained from Σj by the application
of a PAC rule. We show that we can define a sequence Σ′0, . . . , Σ

′
k s.t. Σ′0 = Σs′ ,

Σ′1 = ImmEffect(Σs′ , ι′(e)), Σ′k = Σt′ , and for 1 ≤ j < k, Σ′j+1 is obtained from Σ′j
by the application of a PAC rule. This is sufficient to show that (Σs′ , ι′(e), Σt′). First,
for 0 ≤ j ≤ k define Σ′j = ι′(Σj). By Lemma 1 we have that Σ′0 = ι′(Σs) = Σs′

and Σ′k = ι′(Σt) = Σt′ . Also, it is clear that if Σ1 = ImmEffect(Σs, e), then we
have that Σ′1 = ι′(Σ1) = ι′(ImmEffect(Σs, e)) is equal to ImmEffect(ι′(Σs), ι′(e)) =
ImmEffect(Σs′ , ι′(e)). Finally, we show that ifΣj+1 is obtained fromΣj by an applica-
tion of a PAC rule, then also Σ′j+1 is obtained from Σ′j by the same PAC rule. Consider
the PAC rule 〈π(x), α(x), γ(x)〉. We have that if Σs |= π(ρ) for some artifact ID ρ in
Σs, then clearly Σs′ |= π(ι′(ρ)). Further, let Σj |= α(ρ) ≡ χ(ρ) ∧ ψ(ρ), where χ(x)
is an amenable sentry and ψ(x) is of the form τ.m, ¬τ.m, τ.activeS , or ¬τ.activeS .
Clearly, ifΣj |= ψ(ρ) thenΣ′j |= ψ(ι′(ρ)). Further, since χ(x) is of the form on ξ(x) if
ϕ(x) and ϕ(x) is an FO-formula in LDΓ , then by Prop. 1 we have that Σ′j |= χ(ι′(ρ)).
Hence, Σ′j |= α(ι′(ρ)). Finally, if Σj+1 is constructed from Σj by applying the effect
called for by γ(ρ), then Σ′j+1 is constructed from Σ′j by applying the effect called for
by γ(ι′(ρ)). Thus, we have the desired result.

Lemma 2 enables us to state the first of our two key results.

Theorem 2. If the GSM program Γ is amenable, then the AC-MAS PΓ is uniform.

Proof. Let us assume that t ∈ τ(s, α(~u)) for some ground action α(~u) ∈ Act(U), and
s ⊕ t ' s′ ⊕ t′ for some witness ι. We prove that t′ ∈ τ(s′, α(ι′(~u)), where ι′ is a
bijection extending ι. By the definition of τ in PΓ , t ∈ τ(s, α(~u)) if (Σs, e, Σt), where
e is a ground event with payload ~u, and αi = αe for exactly one of the components in
α. By Lemma 2 we have that (Σs′ , ι′(e), Σt′), and again by definition of τ we obtain
that t′ ∈ τ(s′, α(ι′(~u))). As a result, PΓ is uniform.

By combining Theorems 1 and 2 we obtain a decidable model checking procedure
for amenable GSM programs. Specifically, a GSM program Γ is b-bounded if the car-
dinality of all snapshots is bounded, i.e., there is a b ∈ N s.t. |Σ| ≤ b for all snapshots
Σ ∈ Γ . Hence, we have the following result.

Corollary 1. Assume a b-bounded and amenable GSM program Γ on an infinite do-
main U , an FO-CTLK formula ϕ, and a finite set U ′ ⊇ C such that |U ′| ≥ 2b+ |C|+
max{var(ϕ), NAg}. Then, the abstraction P ′ of PΓ is uniform and bisimilar to PΓ . In
particular, PΓ |= ϕ iff P ′ |= ϕ.

Thus, to verify a GSM program we can model check the finite abstraction of the
corresponding AC-MAS. Notice that by the remarks at the end of Section 4.1 the latter
procedure can be computed effectively.

To conclude, in [4] it was proved that the model checking problem for finite AC-
MAS is PSPACE-complete in the size of the state space S and the specification ϕ. So,
we obtain the following:

Proposition 2. Model checking bounded and amenable GSM programs is in PSPACE
in the number of states of its corresponding finite abstraction and the length of the
specification.

Notice that amenability is a sufficient condition for decidability, but may not be
necessary. Indeed, a larger class of GSM programs may admit finite abstraction. This
point demands further investigations.

5.2 The RPO Scenario as an AC-MAS

We briefly show how the GSM program RPO for the Requisition and Procurement
Orders scenario of Section 3 translates into its corresponding AC-MAS PRPO. Firstly,
we associate theRPO program with the database schemaDRPO containing a predicate
symbol PRO for the Requisition Order artifact type, as well as a predicate symbol PPO
for the Procurement Order artifact type. In particular, the predicate symbol PRO has
data and status attributes as specified in the datamodel in Fig. 1. The definition of PPO
is similar.

A number of agents appears in the RPO scenario: a Customer C, a Manufacturer
M, and one or more Suppliers S. According to Def. 20 each agent has a partial view
of the database schema DRPO = {PRO, PPO}. We can assume that the Customer
can only access the Requisition Order (i.e., DC = {PRO}), and the Supplier only the
Procurement Order (i.e., DS = {PPO}), while the Manufacturer can access both (i.e.,
DM = {PRO, PPO} = DRPO). Finally, the AC-MAS PRPO = 〈S, U, s0, τ〉 defined

according to Def. 21, is designed to mimic the behaviour of the RPO program. In
particular, S is the set of reachable states; U is the interpretation domain containing
relevant items and data; s0 is an initial state (e.g., the one where all relations are empty);
τ is the transition function as in Def. 21. We define a temporal transition s → s′ in
PRPO iff there is some ground event e s.t. 〈Σs, e, Σs′〉 holds in RPO.

By means of the AC-MAS PRPO we can model check the RPO program against
first-order temporal epistemic specifications. For instance, the following FO-CTLK for-
mula specifies that the manufacturer M knows that each Procurement Order has to match
a corresponding Requisition Order:

φ = AG ∀ro id, ~x (PO(id, ro id, ~x)→ KM ∃~y RO(ro id, ~y))

We remark that the RPO program can be defined so that any clause ϕ(x) in any
sentry χ(x) belongs to the FO-languageLDRPO . Hence, theRPO program is amenable
and by Theorem 2 the AC-MAS PRPO is uniform. Finally, if we also assume that
the RPO program is bounded, then according to Def. 18 we can introduce a finite
abstraction P ′ of PRPO. This can be effectively constructed as the subsystem P ′ of
PRPO defined on a finite subset of the interpretation domain satisfying the cardinality
condition, that is, P ′ is defined as PRPO but for the domain of interpretation U ′, which
can be taken as the finite U ′ ⊇ C s.t. |U | = 2b + |C| + max{var(φ), NAg}. By
Corollary 1 we can check whether the RPO program satisfies φ by model checking the
finite abstraction P ′.

This leaves open the problem of checking whether the RPO program is actually
bounded. A partial answer to this is provided in [14], which isolates a sufficient condi-
tion that guarantees boundedness of processes operating on artifacts.

6 Conclusions

GSM environments currently lack support for full verification. While abstraction method-
ologies for various artifact-inspired systems and multi-agent systems have been put for-
ward [14, 4, 10, 6, 7], they all lack support for program verification and operate on logi-
cal models, thereby making automatic model checking impracticable. Our objective in
this paper was to overcome this limitation and provide GSM with an agent-based se-
mantics, so that information-theoretic properties such as knowledge of the participants
could be verified. We achieved this by extending minimally the semantics of AC-MAS
[4] to account for parametric actions, while at the same time maintaining the key re-
sults concerning finite abstractions. We then proceeded to map GSM constructs into
the corresponding notions in AC-MAS, and identified what we called “amenable GSM
programs” that we showed to admit finite abstractions. We remarked that amenability is
not a significant limitation in applications and demonstrated the approach on a fraction
of a use-case from [15]. In further work we intend to use the results here presented to
improve GSMC, an experimental model checker for artifact-centric systems [13].

Acknowledgements. This research was supported by the EC STREP Project “ACSI”
(grant no. 257593) and by the UK EPSRC Leadership Fellowship “Trusted Autonomous
Systems” (grant no. EP/I00520X/1).

References

1. Serge Abiteboul, Rick Hull, and Victor Vianu. Foundations of Databases. Addison-Wesley,
1995.

2. Francesco Belardinelli, Alessio Lomuscio, and Fabio Patrizi. A computationally-grounded
semantics for artifact-centric systems and abstraction results. In Proc. of IJCAI, 2011.

3. Francesco Belardinelli, Alessio Lomuscio, and Fabio Patrizi. Verification of deployed artifact
systems via data abstraction. In Proc. of ICSOC, 2011.

4. Francesco Belardinelli, Alessio Lomuscio, and Fabio Patrizi. An abstraction technique for
the verification of artifact-centric systems. In Proc. of KR, 2012.

5. Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Riccardo Rosati. View-
based query answering in description logics: Semantics and complexity. J. Comput. Syst.
Sci., 78(1):26–46, 2012.

6. Mika Cohen, Mads Dam, Alessio Lomuscio, and Freancesco Russo. Abstraction in model
checking multi-agent systems. In Proc. of AAMAS (2), 2009.

7. Mika Cohen, Mads Dam, Alesso Lomuscio, and Hongyang Qu. A data symmetry reduction
technique for temporal-epistemic logic. In Proc. of ATVA, 2009.

8. David Cohn and Rick Hull. Business Artifacts: A Data-Centric Approach to Modeling Busi-
ness Operations and Processes. IEEE Data Eng. Bull., 32(3):3–9, 2009.

9. Elio Damaggio, Rick Hull, and Roman Vaculı́n. On the equivalence of incremental and
fixpoint semantics for business artifacts with guard-stage-milestone lifecycles. In Proc. of
BPM, 2011.

10. Alin Deutsch, Rick Hull, Fabio Patrizi, and Victor Vianu. Automatic verification of data-
centric business processes. In Proc. of ICDT, 2009.

11. Alin Deutsch, Liying Sui, and Victor Vianu. Specification and Verification of Data-Driven
Web Applications. J. Comput. Syst. Sci., 73(3):442–474, 2007.

12. Ronald Fagin, Joseph Y. Halpern, Yoram Moses, and Moshe Y. Vardi. Reasoning About
Knowledge. The MIT Press, 1995.

13. P. Gonzalez, A. Griesmayer, and A. Lomuscio. Verifying GSM-based business artifacts. In
Proc. of ICWS, 2012.

14. Babak Bagheri Hariri, Diego Calvanese, Giseppe De Giacomo, Riccardo De Masellis, and
Paolo Felli. Foundations of relational artifacts verification. In Proc. of BPM, 2011.

15. Rick Hull, Elio Damaggio, Riccardo De Masellis, Fabiana Fournier, Manmohan Gupta,
Fenno Terry Heath, Stacy Hobson, Mark H. Linehan, Sridhar Maradugu, Anil Nigam,
Piyawadee Noi Sukaviriya, and Roman Vaculı́n. Business artifacts with guard-stage-
milestone lifecycles: managing artifact interactions with conditions and events. In Proc. of
DEBS, 2011.

16. Alessio Lomuscio, Wojciech Penczek, and Hongyang Qu. Partial Order Reductions for
Model Checking Temporal-epistemic Logics over Interleaved Multi-agent Systems. Fun-
damenta Informaticae, 101(1-2):71–90, 2010.

17. Alessio Lomuscio, Hongyang Qu, and Monika Solanki. Towards verifying contract regulated
service composition. Journal of Autonomous Agents and Multi-Agent Systems, 24(3):345–
373, 2012.

