
Synthesizing Agent Protocols From LTL Specifications Against Multiple
Partially-Observable Environments

Giuseppe De Giacomo and Paolo Felli
Sapienza Università di Roma, Italy
{degiacomo,felli}@dis.uniroma1.it

Alessio Lomuscio
Imperial College London, UK

a.lomuscio@imperial.ac.uk

Abstract

We consider the problem of synthesizing an agent pro-
tocol satisfying LTL specifications for multiple, partially-
observable environments. We present a sound and complete
procedure for solving the synthesis problem in this setting and
show it is computationally optimal from a theoretical com-
plexity standpoint. While this produces perfect-recall, hence
unbounded, strategies we show how to transform these into
agent protocols with bounded number of states.

Introduction
A key component of any intelligent agent is its ability of
reasoning about the actions it performs in order to achieve
a certain goal. If we consider a single-agent interacting with
an environment, a natural question to ask is the extent to
which an agent can derive a plan to achieve a given goal.
Under the assumption of full observability of the environ-
ment, the methodology of LTL synthesis enables the auto-
matic generation, e.g., through a model checker, of a set of
rules for the agent to achieve a goal expressed as an LTL
specification. This is a well-known decidable setting but
one that is 2EXPTIME-complete (Pnueli and Rosner 1989;
Kupferman and Vardi 2000) due to the required determinisa-
tion of non-deterministic Büchi automata. Solutions that are
not complete but computationally attractive have been put
forward (Harding, Ryan, and Schobbens 2005). Alternative
approaches focus on subsets of LTL, e.g., GR(1) formulas as
in (Piterman, Pnueli, and Sa’ar 2006).

Work in AI on planning has of course also addressed this
issue albeit from a rather different perspective. The empha-
sis here is most often on sound but incomplete heuristics
that are capable of generating effective plans on average.
Differently from main-stream synthesis approaches, a well-
explored assumption here is that of partial information, i.e.,
the setting where the environment is not fully observable
by the agent. Progress here has been facilitated by the rel-
atively recent advances in the efficiency of computation of
Bayesian expected utilities and Markov decision processes.
While these approaches are attractive, differently from work
in LTL-synthesis, they essentially focus on goal reachabil-
ity (Bonet and Geffner 2009).

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

An automata-based approach to planning for full-fledged
LTL goals covering partial information was put forward
in (De Giacomo and Vardi 1999) where an approach based
on non-emptiness of Büchi-automata on infinite words was
presented. An assumption made in (De Giacomo and Vardi
1999) is that the agent is interacting with a single deter-
ministic environment which is only partially observable. It
is however natural to relax this assumption, and study the
case where an agent has the capability of interacting with
multiple, partially-observable, environments sharing a com-
mon interface. A first contribution in this direction was made
in (Hu and De Giacomo 2011) which introduced generalized
planning under multiple environments for reachability goals
and showed that its complexity is EXPSPACE-complete.
The main technical results of this paper is to give a sound
and complete procedure for solving the generalized planning
problem for LTL goals, within the same complexity bound.

A further departure from (Hu and De Giacomo 2011) is
that we here ground the work on interpreted systems (Fa-
gin et al. 1995; Parikh and Ramanujam 1985), a popu-
lar agent-based semantics. This enables us to anchor the
framework to the notion of agent protocol, i.e., a func-
tion returning the set of possible actions in a given local
state, thereby permitting implementations on top of exist-
ing model checkers (Gammie and van der Meyden 2004;
Lomuscio, Qu, and Raimondi 2009). As as already remarked
in the literature (van der Meyden 1996), interpreted systems
are particularly amenable to incorporating observations and
uncertainty in the environment. The model we pursue here
differentiates between visibility of the environment states
and observations made by the agent (given what is visible).
Similar models have been used in the past, e.g, the VSK
model discussed in (Wooldridge and Lomuscio 2001). Dif-
ferently from the VSK model, here we are not concerned in
epistemic specifications nor do we wish to reason at speci-
fication level about what is visible, or observable. The pri-
mary aim, instead, is to give sound and complete procedures
for solving the generalized planning problem for LTL goals.

With a formal notion of agent, and agent protocol at hand,
it becomes natural to distinguish several ways to address
generalized planning for LTL goals, namely:

• State-based solutions, where the agent has the ability of
choosing the “right” action toward the achievement of the
LTL goal, among those that its protocol allows, exploit-

ing the current observation, but avoiding memorizing pre-
vious observations. So the resulting plan is essentially a
state-based strategy, which can be encoded in the agent
protocol itself. While this solution is particularly simple,
is also often too restrictive.

• History-based solutions, where the agent has the ability
of remembering all observations made in the past, and use
them to decide the “right” action toward the achivement
of the LTL goal, again among those allowed by its pro-
tocol. In this case we get a perfect-recall strategy. These
are the most general solutions, though in principle such
solutions could be infinite and hence unfeasible. One of
the key result of this paper however is that if a perfect-
recall strategy exists, then there exist one which can be
represented with a finite number of states.

• Bounded solutions, where the agent decides the “right”
course of actions, by taking into account only a fragment
of the observation history. In this case the resulting strate-
gies can be encoded as a new agent protocol, still com-
patible with the original one, though allowing the internal
state space of the original agent to grow so as to incorpo-
rate the fragment of history to memorize. Since we show
that if a perfect-recall strategy exists, there exist one that
is finite state (and hence makes use only of a fragment of
the history), we essentially show that wlog we can restrict
our attention to bounded solution (for a suitable bound)
and incorporate such solutions in the agent protocol.
The rest of the paper is organized as follows. First we give

the formal framework for our investigations, and we look at
state-based solutions. Then, we move to history based solu-
tions and prove the key technical results of our paper. We
give a sound, complete, and computationally optimal (wrt
worst case complexity) procedure for synthesizing perfect-
recall strategies from LTL specification. Moreover, we ob-
serve that the resulting strategy can be represented with fi-
nite states. Then, we show how to encode such strategies
(which are in fact bounded) into agent protocol. Finally, we
briefly look at an interesting variant of the presented setting
where the same results hold.

Framework
Much of the literature on knowledge representation for
multi-agent systems employs modal temporal-epistemic lan-
guages defined on semantic structures called interpreted
systems (Fagin et al. 1995; Parikh and Ramanujam 1985).
These are refined versions of Kripke semantics in which the
notions of computational states and actions are given promi-
nence. Specifically, all the information an agent has at its
disposal (variables, facts of a knowledge base, observations
from the environment, etc.) is captured in the local state re-
lating to the agent in question. Global states are tuples of
local states, each representing an agent in the system as well
as the environment. The environment is used to represent in-
formation such as messages in transit and other components
of the system that are not amenable to an intention-based
representation.

An interesting case is that of a single agent interact-
ing with an environment. This is not only interesting in

single-agent systems, or whenever we wish to study the
single-agent interaction, but it is also a useful abstraction
in loosely-coupled systems where all of the agents’ inter-
actions take place with the environment. Also note that the
modular reasoning approach in verification focuses on the
single agent case in which the environment encodes the rest
of the system and its potential influence to the component
under analysis. In this and other cases it is useful to model
the system as being composed by a single agent only, but
interacting with multiple environments, each possibly mod-
elled by a different finite-state machine.

With this background we here pursue a design paradigm
enabling the refinement of a generic agent program follow-
ing a planning synthesis procedure given through an LTL
specification, such that the overall design and encoding is
not affected nor invalidated. We follow the interpreted sys-
tem model and formalise an agent as being composed of
(i) a set of local states, (ii) a set of actions, (iii) a proto-
col function specifying which actions are available in each
local state, (iv) an observation function encoding what per-
ceptions are being made by the agent, and (v) a local evo-
lution function. An environment is modelled similarly to an
agent; the global transition function is defined on the local
transition functions of its components, i.e., the agent’s and
the environment’s.

l0 l1

a
b

a

Agent

e0 e1

a

b

a
Environment

obs()

perc(e0) perc(e1)

c

actions

Figure 1: Interaction between Ag and Env

We refer to Figure 1 for a pictorial description of our set-
ting in which the agent is executing actions on the environ-
ment, which, in turn, respond to these actions by changing
its state. The observations of the agent depend on what per-
ceived of the states of the environment. Notice that environ-
ments are only partially observable through what perceiv-
able of their states. So two different environments may give
rise to the same observations in the agent.

Environment. An environment is a tuple Env =
〈E,Acte, P erc, perc, δ, e0〉 such that:

• E = {e0, . . .} is a finite set of local states of the environ-
ment;

• Acte is the alphabet of the environment’s actions;
• Perc is the alphabet of perceptions;
• perc : E → Perc is the perceptions (output) function;
• δ : E ×Acte → E is a (partial) transition function;
• eo ∈ E is the initial state.

Notice that, as in classical planning, such an environment is
deterministic.

A trace is a sequence τ = e0α1e1α2 . . . αnen of en-
vironment’s states such that ei+1 = δ(ei, αi+1) for each
0 ≤ i < n. The corresponding perceivable trace is the trace
obtained by applying the perception function: perc(τ) =
perc(e0), . . . , perc(en).

Similarly, an agent is represented as a finite machine,
whose state space is obtained by considering the agent’s in-
ternal states, called configurations, together with all addi-
tional information the agent can access, i.e., the observations
it makes. We take the resulting state space as the agent’s lo-
cal states.

Agent. An agent is a tuple Ag =
〈Conf,Acta, Obs, obs, L, poss, δa, c0〉 where:

• Conf = {c0, . . .} is a finite set of the agent’s configura-
tions (internal states);

• Acta is the finite set of agent’s actions;
• Obs is the alphabet of observations the agent can make;
• obs : Perc→ Obs is the observation function;
• L = Conf ×Obs is the set of agent’s local states;
• poss : L→ ℘(Acta) is a protocol function;
• δa : L×Acta → Conf is the (partial) transition function;
• c0 ∈ Conf is the initial configuration. A local state l =
〈c, o〉 is called initial iff c = c0.

Agents defined as above are deterministic: given a local
state l and an action α, there exists a unique next configura-
tion c′ = δa(l, α). Nonetheless, observations introduce non-
determinism when computing the new local state resulting
from action execution: executing action α in a given local
state l = 〈c, o〉 results into a new local state l′ = 〈c′, o′〉
such that c′ = δa(l, α) and o′ is the new observation, which
can not be foreseen in advance.

Consider the agent and the environment depicted in Fig-
ure 1. Assume that the agent is in its initial configuration
c0 and that the current environment’s state is e0. Assume
also that obs(perc(e0)) = o, i.e., the agent receives obser-
vation o. Hence, the current local state is l0 = 〈c0, o〉. If the
agent performs action b (with b ∈ poss(l0)), the agent moves
from configuration c0 to configuration c1 = δa(〈c0, o〉, b).
At the same time, the environment changed its state from
e0 to e1, so that the new local state is l1 = 〈c1, o′〉, where
o′ = obs(perc(e1)).

Notice that the protocol function is not defined with re-
spect to the transition function, i.e., according to transitions
available to the agent. In fact, we can imagine an agent
having its own behaviours, in terms of transitions defined

over configurations, that can be constrained according to
some protocol, which can in principle be modified or sub-
stituted. Hence, we say that a protocol is compatible with
an agent iff it is compatible with its transition function, i.e.,
α ∈ poss(〈c, o〉)→ ∃c′ ∈ Conf | δa(〈c, o〉, α) = c′. More-
over, we say that a protocol poss is an action-deterministic
protocol iff it always returns a singleton set, i.e., it allows
only a single action to be executed for a given local state.
Finally, an agent is nonblocking iff it is equipped with a
compatible protocol function poss and for each sequence
of local states l0α1l1α2 . . . αnln such that li = 〈ci, oi〉
and αi+1 ∈ poss(〈ci, oi〉) for each 0 ≤ i < n, we have
poss(ln) 6= ∅. So, an agent is nonblocking iff it has a
compatible protocol function which always provides a non-
empty set of choices for each local state that is reachable
according to the transition function and the protocol itself.

Finally, given a perceivable trace of an environment Env,
the observation history of an agent Ag is defined as the
sequence obtained by applying the observation function:
obs(perc(τ)) = obs(perc(e0)), . . . , obs(perc(en)). Given
one such history h ∈ Obs∗, we denote with last(h) its latest
observation: last(h) = obs(perc(en)).

LTL Specifications against Multiple
Environments

In this paper, we consider an agent Ag and a finite set E
of environments, all sharing common actions and the same
perception alphabet. Such environments are indistinguish-
able by the agent, in the sense that the agent is not able to
identify which environment it is actually interacting with,
unless through observations. The problem we address is thus
to synthesize a (or customize the) agent protocol so as to ful-
fill a given LTL specification (or goal) in all environments. A
planning problem for an LTL goal is a triple P = 〈Ag, E ,G〉,
where Ag is an agent, E an environment set, and G an LTL
goal specification. This setting is that of generalized plan-
ning (Hu and De Giacomo 2011), extended to deal with
long-running goals, expressed as arbitrary LTL formulae.
This is also related to planning for LTL goals under partial
observability (De Giacomo and Vardi 1999).

Formally, we call environment set a finite set of en-
vironments E = {Env1, . . . , Envk}, with Envi =
〈Ei, Actei, P erc, perci, δi, e0i〉. Environments share the
same alphabet Perc of the agent Ag. Moreover the Ag’s
actions must be executable in the various environments:
Acta ⊆

⋂
i=1,...,k Actei. This is because we are considering

an agent acting in environments with similar “interface”.
As customary in verification and synthesis (Baier and Ka-

toen 2008), we represent an LTL goal with a Büchi automa-
ton1 G = 〈Perc,G, g0, γ,Gacc〉, describing the desired be-
haviour of the system in terms of perceivable traces, where:

• Perc is the finite alphabet of perceptions, taken as input;

• G is a finite set of states;

1In fact, while any LTL formula can be translated into a
Büchi automaton, the converse is not true. Our results hold for any
goal specified as a Büchi automaton, though for ease of exposition
we give them as LTL.

• g0 is the initial state;
• γ : G× Perc→ 2G is the transition function;
• Gacc ⊆ G is the set of accepting states.
A run of G on an input word w = p0, p1, . . . ∈ Percω is
an infinite sequence of states ρ = g0, g1, . . . such that gi ∈
γ(gi−1, pi), for i > 0. Given a run ρ, let inf(ρ) ⊆ G be the
set of states occurring infinitely often, i.e., inf(ρ) = {g ∈
G | ∀i ∃j > i s.t. gj = g}. An infinite word w ∈ Percω is
accepted by G iff there exists a run ρ onw such that inf(ρ)∩
Gacc 6= ∅, i.e., at least one accepting state is visited infinitely
often during the run. Notice that, since the alphabet Perc
is shared among environments, the same goal applies to all
of them. As we will see later, we can characterize a variant
of this problem by considering the environment’s internal
states as G’s alphabet.
Example 1. Consider a simple environment Env1 consti-
tuted by a grid of 2x4 cells, each denoted by eij , a train, and
a car. A railroad crosses the grid, passing on cells e13, e23.
Initially, the car is in e11 and the train in e13. The car is
controlled by the agent, whereas the train is a moving ob-
stacle moving from e13 to e23 to e13 again and so on. The
set of actions is Acte1 = {goN, goS, goE, goW,wait}.
The train and the car cannot leave the grid, so actions
are allowed only when feasible. The state space is then
E1 = {e11, . . . , e24} × {e13, e23}, representing the posi-
tions of the car and the train. We consider a set of percep-
tions Perc = {posA,posB,danger,dead,nil}, and
a function perc1 defined as follows: perc1(〈e11, et〉) =
posA, perc1(〈e24, et〉) = posB, perc1(〈e13, e23〉) =
perc1(〈e23, e13〉) = danger and perc1(〈e13, e13〉) =
perc1(〈e23, e23〉) = dead. perc1(〈ec, et〉) = nil for any
other state.

A

B

(a) Env1

A B

(b) Env2

Figure 2: Environments Env1 and Env2

We consider a second environment Env2 similar to Env1
as depicted in Figure 2b. We skip details about its encoding,
as it is analogous to Env1.

Then, we consider a third environment Env3 which is a
variant of the Wumpus world (Russell and Norvig 2010),
though sharing the interface (in particular they all share per-
ceptions and actions) with the other two. Following the same
convention used before, the hero is initially in cell e11, the
Wumpus in e31, gold is in e34 and the pit in e23. The set
of actions is Acte3 = {goN, goS, goE, goW,wait}. Recall
that the set of perceptions Perc is instead shared with Env1
and Env2. The state space is E3 = {e11, . . . , e34}, and the
function perc3 is defined as follows: perc3(e11) = posA,
perc3(e34) = posB, perc3(e23) = perc3(e31) = dead,
perc3(e) = danger for e ∈ {e13, e21, e22, e24, e32, e33},

whereas perc3(e) = nil for any other state. This example
allows us to make some observation about our framework.
Consider first the perceptions Perc. They are intended to
represent signals coming from the environment, which is
modeled as a “black box”. If we could distinguish between
perceptions (instead of having just a danger perception),
we would be able to identify the current environment as
Env3, and solve such a problem separately. Instead, in our
setting the perceptions are not informative enough to dis-
criminate environments (or the agent is not able to observe
them); so all environments need to be considered together.
Indeed, Env3 is similar to Env1 and Env2 at the interface
level, and it is attractive to try to synthesize a single strat-
egy to solve them all. In some sense, crashing in Env1 or
Env2 corresponds to falling into the pit or being eaten by
the Wumpus; the same holds for danger states with the dif-
ference that perceiving danger in Env1 or Env2 can not
be used to prevent an accident.

A

B

Figure 3: Environment Env3

Notice that in our framework we design the environments
without taking into account the agent Ag that will interact
with them. Likewise, the same holds when designing Ag.
Indeed, agent Ag is encoded as an automaton with a single
configuration c0, and all actions being loops. In particular,
let Acta = Actei, i = 1, 2, 3. Notice also that, by suit-
ably defining the observation function obs, we can model
the agent’s sensing capabilities, i.e., its ability to observe
perceptions coming from the environment. Suppose that Ag
can sense perceptions posA,danger,dead, but it is un-
able to sense posB, i.e., its sensors can not detect such sig-
nal. To account for this, it is enough to consider the observa-
tion function obs as a “filter” (i.e. Obs ⊆ Perc), such that
Obs = {posA,danger,dead,nil} and obs(posA) =
posA, obs(danger) = danger, obs(dead) = dead,
and obs(nil) = obs(posB) = nil. Since Ag is filtering
away perception posB, the existence of a strategy does not
imply that agent Ag is actually able to recognize that it has
achieved its goal. Notice that this does not affect the solu-
tion, nor its executability, in any way. The goal is achieved
irrespective of what the agent can observe.

Moreover, Ag has a “safe” protocol function poss that
allows all moving actions to be executed in any possible lo-
cal state, but prohibits it to perform wait if the agent is re-
ceiving the observation danger: poss(〈c0, o〉) = Acta if
o 6= danger, Acta \ {wait} otherwise.

Finally, let G be the automaton corresponding to the LTL
formula φG = (23posA) ∧ (23posB) ∧ 2¬dead over
the perception alphabet, constraining perceivable traces such

that the controlled objects (the car / the hero) visit positions
A and B infinitely often. �

State-Based Solutions
To solve the synthesis problem in the context above, the first
solution that we analyze is based on customizing the agent to
achieve the LTL goal, by restricting the agent protocol while
keeping the same set of local states. We do this by consider-
ing so called state-based strategies (or plans) to achieve the
goal. We call a strategy for an agent Ag state-based if it can
be expressed as a (partial) function

σp : (Conf ×Obs)→ Acta

For it to be acceptable, a strategy also needs to be allowed
by the protocol: it can only select available actions, i.e., for
each local state l = 〈c, o〉 we have to have σp(l) ∈ poss(l).

State-based strategies do not exploit an agent’s memory,
which, in principle, could be used to reduce its uncertainty
about the environment by remembering observations from
the past. Exploiting this memory requires having the abil-
ity of extending its configuration space, which at the mo-
ment we do not allow (see later). In return, these state-based
strategies can be synthesized by just taking into account all
allowed choices the agent has in each local state (e.g., by
exhaustive search, possibly guided by heuristics). The ad-
vantage is that to meet its goal, the agent Ag does not need
any modification to its configurations, local states and tran-
sition function, since only the protocol is affected. In fact,
we can see a strategy σp as a restriction of an agent’s pro-
tocol yielding an action-deterministic protocol poss derived
as follows:

poss(〈c, o〉) =
{{α}, iff σp(c, o) = α

∅, if σp(c, o) is undefined

Notice that poss is then a total function. Notice also
that agent Ag obtained by substituting the protocol function
maintains a protocol compatible with the agent transition
function. Indeed, the new allowed behaviours are a subset
of those permitted by original agent protocol.
Example 2. Consider again Example 1. No state-based so-
lution exists for this problem, since selecting the same action
every time the agent is in a given local state does not solve
the problem. Indeed, just by considering the local states
we can not get any information about the train’s position,
and we would be also bound to move the car (the hero) in
the same direction every time we get the same observation
(agent Ag has only one configuration c0). Nonetheless, ob-
serve that if we could keep track of past observations when
selecting actions, then a solution can be found.

History-Based Solutions
We turn to strategies that can take into account past obser-
vations. Specifically, we focus on strategies (plans) that may
depend on the entire unbounded observation history. These
are often called perfect-recall strategies.

A (perfect-recall) strategy for P is a (partial) function

σ : Obs∗ → Acta

that, given a sequence of observations (the observation his-
tory), returns an action. A strategy σ is allowed byAg’s pro-
tocol iff, given any observation history h ∈ Obs∗, σ(h) = α
implies α ∈ poss(〈c, last(h)〉), where c is the current con-
figuration of the agent. Notice that, given an observation his-
tory, the current configuration can be always reconstructed
by applying the transition function of Ag, starting from ini-
tial configuration c0. Hence, a strategy σ is a solution of
the problem P = 〈Ag, E ,G〉 iff it is allowed by Ag and
it generates, for each environment Envi, an infinite trace
τ = e0iα1e1iα2 . . . such that the corresponding perceivable
trace perc(τ) satisfies the LTL goal, i.e., it is accepted by the
corresponding Büchi automaton.

The technique we propose is based on previous automata
theoretic approaches. In particular, we extend the technique
for automata on infinite strings presented in (De Giacomo
and Vardi 1999) for partial observability, to the case of a
finite set of environments, along the lines of (Hu and De
Giacomo 2011). The crucial point is that we need both the
ability of simultaneously dealing with LTL goals and with
multiple environments. We build a generalized Büchi au-
tomaton that returns sequences of action vectors with one
component for each environment in the environment set
E . Assuming |E| = k, we arbitrarily order the k envi-
ronments, and consider sequences of action vectors of the
form ~a = 〈a1, . . . , ak〉, where each component specifies
one operation for each environment. Such sequences of ac-
tion vectors correspond to a strategy σ, which, however,
must be executable: for any pair i, j ∈ {1, . . . , k} and ob-
servation history h ∈ Obs∗ such that both σi and σj are
defined, then σi(h) = σj(h). In other words, if we re-
ceived the same observation history, the function select the
same action. In order to achieve this, we keep an equiva-
lence relation ≡⊆ {1, . . . , k} × {1, . . . , k} in the states
of our automaton. Observe that this equivalence relation
has correspondences with the epistemic relations considered
in epistemic approaches (Jamroga and van der Hoek 2004;
Lomuscio and Raimondi 2006; Pacuit and Simon 2011).

We are now ready to give the details of the au-
tomata construction. Given a set of k environments E
with Envi = 〈Ei, Actei, P erc, perci, δi, e0i〉, an agent
Ag = 〈Conf,Acta, Obs, obs, L, poss, δa, c0〉 and goal G =
〈Perc,G, g0, γ,Gacc〉, we build the generalized Büchi au-
tomaton AP = 〈Actka,W,w0, ρ,W

acc〉 as follows:

• Actka = (Acta)k is the set of k-vectors of actions;
• W = Ek × Confk ×Gk × ℘(≡);2

• w0 = 〈e10, . . . , ek0, c0, . . . , c0, g0, . . . , g0,≡0〉 where

i ≡0 j iff obs(perci(ei0)) = obs(percj(ej0));

• 〈~e′,~c′, ~g′,≡′〉 ∈ ρ(〈~e,~c,~g,≡〉, ~α) iff

– if i ≡ j then αi = αj ;
– e′i = δi(ei, αi);
– c′i = δa(li, αi) ∧ αi ∈ poss(li)

where li = 〈ci, obs(perci(ei))〉;
– g′i = γ(gi, perci(ei));

2We denote by ℘(≡) the set of all possible equivalence relations
≡⊆ {1, . . . , k} × {1, . . . , k}.

– i ≡′ j iff i ≡ j ∧ obs(perci(e′i)) = obs(percj(e′j)).

• W acc = {
Ek × Confk ×Gacc ×G× . . .×G× ≡ , . . . ,
Ek × Confk ×G× . . .×G×Gacc× ≡ }

Each automaton statew ∈W holds information about the
internal state of each environment, the corresponding current
goal state, the current configuration of the agent for each en-
vironment, and the equivalence relation. Notice that, even
with fixed agent and goal, we need to duplicate their corre-
sponding components in each state of AP in order to con-
sider all possibilities for the k environments. In the initial
state w0, the environments, the agent and the goal automa-
ton are in their respective initial state. The initial equiva-
lence relation ≡0 is computed according to the observation
provided by environments. The transition relation ρ is built
by suitably composing the transition function of each state
component, namely δa for agent, δi for the environments,
and γ for the goal. Notice that we do not build transitions in
which an action α is assigned to the agent when either it is in
a configuration from which a transition with action α is not
defined, or α is not allowed by the protocol poss for the cur-
rent local state. The equivalence relation is updated at each
step by considering the observations taken from each envi-
ronment. Finally, each member of the accepting set W acc

contains a goal accepting state, in some environment.
Once this automaton is constructed, we check it for non-

emptiness. If it is not empty, i.e., there exists a infinite se-
quence of action vectors accepted by the automaton, then
from such an infinite sequence it is possible to build a strat-
egy realizing the LTL goal. The non-emptiness check is
done by resolving polynomially transforming the general-
ized Büchi automaton into standard Büchi one and solving
fair reachability over the graph of the automaton, which (as
standard reachability) can be solved in NLOGSPACE (Vardi
1996). The non-emptiness algorithm itself can also be used
to return a strategy, if it exists.

The following result guarantees that not only the tech-
nique is sound (the perfect-recall strategies do realize the
LTL specification), but it is also complete (if a perfect-recall
strategy exists, it will be constructed by the technique).

this technique is correct, in the sense that if a perfect-
recall strategy exists then it will return one.

Theorem 1 (Soundness and Completeness). A strategy σ
that is a solution for problem P = 〈Ag, E ,G〉 exists iff
L(AP) 6= ∅.
Proof. (⇐) The proof is based on the fact that L(AP) = ∅
implies that it holds the following persistence property: for
all runs in AP of the form rω = w0 ~α1w1~α2w2 . . . ∈ Wω

there exists an index i ≥ 0 such that wj 6∈ W acc for any
j ≥ i. Conversely, if L(AP) 6= ∅, there exists an infinite
run rω = w0 ~α1w1~α2w2 . . . on AP visiting at least one state
for each accepting set in W acc infinitely often (as required
by its acceptance condition), thus satisfying the goal in each
environment. First, we notice that such an infinite run rω is
the form rω = r′(r′′)ω where both r′ and r′′ are finite se-
quences. Hence such a run can be represented with a finite
lazo shape representation: r = w0~a1w1 . . .~anwn~an+1wm

with m < n (Vardi 1996). Hence we can synthesize the
corresponding partial function σ by unpacking r (see later).
Essentially, given one such r and any observable history
h = o0, . . . , o` and denoting with αji the i-th component
of ~αj , σ is inductively defined as follows:

• if ` = 0 then σ(o0) = α1i iff o0 = obs(perci(e0i)) in w0.
• if σ(o0, . . . , o`−1) = α then σ(h) = αji iff o` =
obs(perci(eji)) in wj = 〈~ej ,~cj , ~gj ,≡j〉 and α is such
that α = α`z with i ≡j z for some z, where j = `
if ` ≤ m, otherwise j = m + ` mod(n-m). If instead
o` 6= obs(perci(eji)) for any eji then σ(h) is undefined.

Indeed, σ is a prefix-closed function of the whole history:
we need to look at the choice made at previous step to keep
track of it. In fact, we will see later how unpacking r will re-
sult into a sort of tree-structure representation. Moreover, it
is trivial to notice that any strategy σ synthesized by empti-
ness checkingAP is allowed by agent Ag. In fact, transition
relation ρ is defined according to the agent’s protocol func-
tion poss.

(⇒) Assume that a strategy σ for P does exist. We prove
that, given such σ, there exists in AP a corresponding ac-
cepting run rω as before. We prove that there exists in AP
a run rω = w0~α1w1~α2w2 . . ., with w` = 〈~e`,~c`, ~g`,≡`〉 ∈
W , such that:

1. (` = 0) σ(obs(perci(e0i))) = α1i for all 0 < i ≤ k;
2. (` > 0) if σ(obs(perci(e(`−1)i))) = α for some 0 <
i ≤ k, then α = α`i and e`i = δi(e(`−1)i, α`i) and
σ(obs(perci(e`i))) is defined;

3. rω is accepting.

In other words, there exists inAP an accepting run that is
induced by executing σ on AP itself. Point 1 holds since,
in order to be a solution for P , the function σ has to be
defined for histories constituted by the sole observation
obs(perci(e0i)) of any environment initial state. According
to the definition of the transition relation ρ, there exists in
AP a transition from each e0i for all available actions α such
that δi(e0i, α) is defined for Envi. In particular, the transi-
tion 〈w, ~α,w′〉 is not permitted in AP iff either some action
component αi is not allowed by agent’s protocol poss or it
is not available in the environment Envi, 0 < i ≤ k. Since
σ is a solution of P (and thus allowed by Ag) it cannot be
one of such cases. Point 2 holds for the same reason: there
exists a transition in ρ for all available actions of each envi-
ronment. Point 3 is just a consequence of σ being a solution
of P .

Checking wether L(AP) 6= ∅ can be done NLOGSPACE in
the size of the automaton. Our automaton is exponential in
the number of environments in E , but its construction can be
done on-the-fly while checking for non-emptiness. This give
us a PSPACE upperbound in the size of the original specifica-
tion with explicit states. If we have a compact representation
of those, then we get an EXPSPACE upperbound. Consider-
ing that even the simple case of generalized planning for

reachability goals in (Hu and De Giacomo 2011) is PSPACE-
complete (EXPSPACE-complete considering compact repre-
sentation), we obtain a worst case complexity characteriza-
tion of the problem at hand.

Theorem 2 (Complexity). Solving the problem P =
〈Ag, E ,G〉 admitting perfect-recall solutions is PSPACE-
complete (EXPSPACE-complete considering compact repre-
sentation).

We conclude this section by remarking that, since the
agent gets different observation histories from two environ-
ments Envi and Envj , then from that point on it will be
always possible to distinguish these. More formally, denot-
ing with r a run in AP and with r` = 〈~e`,~c`, ~g`,≡`〉 its `-th
state, if i ≡` j, then i ≡`′ j for every state r`′<`. Hence
it follows that the equivalence relation ≡ is indentical for
each state belonging to the same strongly connected com-
ponent of AP . Indeed, assume by contradiction that there
exists some index `′ violating the assumption above. This
implies that ≡`′⊂≡`′+1. So, there exists a tuple in ≡`′+1

that is not in ≡`′ . But this is impossible since, by definition,
we have that i ≡`′+1 j implies i ≡`′ j.

...

...

Figure 4: Decision-tree like representation of a strategy.

Figure 4 shows a decision-tree like representation of a
strategy. The diamond represents a decision point where the
agent reduces its uncertainty about the environment. Each
path ends in a loop thereby satisfying the automaton accep-
tance condition. The loop, which has no more decision point,
represents also that the agent cannot reduce its uncertainty
anymore and hence it has to act blindly as in conformant
planning. Notice that if our environment set includes only
one environment, or if we have no observations to use to re-
duce uncertainty, then the strategy reduces to the structure
in Figure 5, which reflects directly the general lazo shape of
runs satisfying LTL properties: a sequence reaching a certain
state and a second sequence consisting in a loop over that
state.

Figure 5: A resulting strategy execution.

Representing Strategies
The technique described in the previous section provides, if
a solution does exist, the run ofAP satisfying the given LTL

specification. As discussed above such a run can be repre-
sented finitely. In this section, we exploit this possibility to
generate a finite representation of the run that can be used
directly as the strategy σ for the agent Ag. The strategy σ
can be represented as a finite-state structure with nodes la-
beled with agent’s configuration and edges labeled with a
condition-action rule [o]α, where o ∈ Obs and α ∈ Acta.
The intended semantics is that a transition can be chosen to
be carried on for environment Envi only if the current ob-
servation of its internal state ei is o, i.e. o = obs(perci(ei)).
Hence, notice that a strategy σ can be expressed by means
of sequences, case-conditions and infinite iterations.

goE
goE
goE

wait
goE
wait

goE
goE
goE

goE
goW
goE

goS
goW
goS

he11, e13ihe21, e22i
e11

he12, e23ihe22, e12i
e12

he12, e13ihe23, e13i
e12

he13, e23ihe24, e14i
e13

he14, e13ihe23, e13i
e14

1⌘2
1⌘3
2⌘3 1⌘3 1⌘3 1⌘3 1⌘3

he24, e23ihe22, e12i
e24

{}

Figure 6: Accepting run r for Example 1.

[posA]goE
[danger]goE

[nil]wait

[danger]goE

[nil]goE

[nil]goE

[nil]goW

[nil]goW

[nil]goS

Figure 7: Corresponding Gr

In other words, it can be represented as a graph Gr =
〈N,E〉 where N is a set of nodes, λ : N → Conf its
labeling, and E ⊆ N × Φ × N is the transition relation.
Gr can be obtained by unpacking the run found as witness,
exploiting the equivalence relation ≡. More in details, let
r = w0~a1w1 . . .~anwn~an+1wm with m ≤ n be a finite
representation of the infinite run returned as witness. Let
r` be the `-th state in r, whereas we denote with r|` the
sub-run of r starting from state r`. A projection of r over
a setX ⊆ {1, . . . , k} is the run r(X) obtained by projecting
away from each wi all vector components and indexes not
in X . We mark state wm: loop(w`) = true if ` = m, false
otherwise.

Gr = UNPACK(r, nil);
UNPACK(r, loopnode):

1: N = E = ∅;
2: be r0 = 〈~e,~c,~g,≡〉;
3: if loop(r0) ∧ loopnode 6= nil then
4: return 〈{loopnode}, E〉;
5: end if
6: be ~a1 = 〈α1, . . . , αk〉;
7: Let X = {X1, . . . , Xb} be the partition induced by ≡;
8: node = new node;
9: if loop(r0) then

10: loopnode = node;
11: end if
12: for (j = 1; j ≤ b; j++) do
13: G′ = UNPACK(r(Xj)|1, loopnode);
14: choose i in Xj ;
15: λ(node) = ci;
16: E = E′ ∪ 〈node, [obs(perci(ei))]αi, root(G′)〉;
17: N = N ∪N ′;
18: end for
19: return 〈N ∪ {node}, E〉;

The algorithm above, presented in pseudocode, recur-
sively processes run r until it completes the loop on wm,
then it returns. For each state, it computes the partition in-
duced by relation ≡ and, for each element in it, generates
an edge inGr labeled with the corresponding action α taken
from the current action vector.

From Gr we can derive finite state strategy σf =
〈N, succ, act, n0〉. where:

• succ : N×Obs×Acta → N such that succ(n, o, a) = n′

iff 〈n, [o]α, n′〉 ∈ E;

• act : N×Conf×Obs→ Acta such that α = act(n, c, o)
iff 〈n, [o]α, n′〉 ∈ E for some n′ ∈ N and c = λ(n);

• n0 = root(Gr), i.e., the initial node of Gr.

From σf we can derive an actual perfect-recall strategy σ :
Obs∗ → Acta as follows. We extend the deterministic func-
tion succ to observation histories h ∈ Obs∗ of length ` in the
obvious manner. Then we define σ as the function: σ(h) =
act(n, c, last(h)), where n = succ(root(Gr), hn−1), h`−1

is the prefix of h of length `-1 and c = λ(n) is the current
configuration. Notice that such strategy is a partial function,
dependent on the environment set E : it is only defined for
observation histories embodied by the run r.

It can be show that the procedure above, based on the al-
gorithm UNPACK, is correct, in the sense that the executions
of the strategy it produces are the same as those of the strat-
egy generated by the automaton constructed for Theorem 1.

Example 3. Let us consider again the three environments,
the agent and goal as in Example 1. Several strategies do ex-
ist. In particular, an accepting run r for AP is depicted in
Figure 6, from which a strategy σ can be unpacked. Strat-
egy σ can be equivalently represented as in Figure 7 as a
function from observation histories to actions. For instance,
σ(c0, {posA,nil,danger,nil}) = goE. In particular,
being all environments indistinguishable in the initial state
(the agent receives the same observation posA), this strat-
egy prescribes action goE for the three of them. Resulting
states are such that both Env1 and Env3 provide perception
nil, whereas Env2 provides perception danger. Having
received different observation histories so far, strategy σ is
allowed to select different action for Env2: goE for Env2
and wait for Env1 and Env3. In fact, according to proto-
col poss, action wait is not an option for Env2, whereas
action goE is not significant for Env3, though it avoids an
accident inEnv1. In this example, by executing the strategy,
the agent eventually receives different observation histories
from each environment, but this does not necessary hold in

general: different environments could also remain indistin-
guishable forever. �

There is still no link between synthesized strategies and
agents. The main idea is that a strategy can be easily seen as
a sort of an agents’ protocol refinement where the states used
by the agents are extended to store the (part of the) relevant
history. This is done in the next section.

Embedding Strategies into Protocols
We have seen how it is possible to synthesize perfect-
recall strategies that are function of the observation history
the agent received from the environment. Computing such
strategies in general results into a function that requires an
unbounded amount of memory. Nonetheless, the technique
used to solve the problem shows that (i) if a strategy does
exist, there exists a bound on the information actually re-
quired to compute and execute it and (ii) such strategies
are finite-state. More precisely, from the run satisfying the
LTL specification, it is possible to build the finite-state strat-
egy σf = 〈N, succ, act, n0〉. We now incorporate such a
finite-state strategy into the agent protocol, by suitably ex-
panding the configuration space of the agent to store in the
configuration information needed to execute the finite state
strategy. This amounts to define a new configuration space
Conf = Conf ×N (hence a new local state space L).

Formally, given the original agent Ag =
〈Conf,Acta, Obs, L, poss, δa, c0〉 and the finite state
strategy σf = 〈N, succ, act, n0〉 , we construct a new agent
Ag = 〈Conf,Acta, Obs, L, poss, δa, c0〉 where :

• Acta and Obs are as in Ag;

• Conf = Conf ×N is the new set of configurations;

• L = Conf ×Obs is the new local state space;

• poss : L → Acta is an action-deterministic protocol de-
fined as:

poss(〈c, n〉, o) =
{{α}, iff act(n, c, o) = α

∅, if act(n, c, o) is undefined;

• δa : L×Acta → Conf is the transition function, defined
as:

δa(〈〈c, n〉, o〉, a) = 〈δa(c, o), succ(n, o, a)〉;
• c0 = 〈c0, n0〉.

On this new agent the original strategy can be phrased as
a state-base strategy:

σ : Conf ×Obs→ Acta

simply defined as: σ(〈c, n〉, o) = poss(〈c, n〉, o).
It remains to understand in what sense we can think the

agent Ag as a refinement or customization of the agent Ag.
To do so we need to show that the executions allowed by
the new protocol are also allowed by the original protocol,
in spite of the fact that the configuration spaces of the two
agents are different. We show this by relaying on the theoret-
ical notion of simulation, which formally captures the ability

of one agent (Ag) to simulate, i.e., copy move by move, an-
other agent (Ag).

Given the two agents Ag1 and Ag2, a simulation relation
is a relation S ⊆ L1×L2 such that 〈l1, l2〉 ∈ S implies that:

if l2
α−→ l′2 and α ∈ poss2(l2) then there exists l′1 such

that l1
α−→ l′1 and α ∈ poss1(l1) and 〈l′1, l′2〉 ∈ S .

where li
α−→ l′i iff c′i is the agent configuration in l′i and

c′i = δa(li, α). We say that agent Ag1 simulates agent Ag2
iff there exists a simulation relation S such that 〈l01, l20〉 ∈ S
for each couple of initial local states 〈l01, l02〉 with the same
initial observation.
Theorem 3. Agent Ag simulates Ag.

Proof. First, we notice that poss(〈c, n〉, o) ⊆ poss(〈c, o〉)
for any c ∈ Conf, o ∈ Obs. In fact, since we are only
considering allowed strategies, the resulting protocol poss
is compatible with agent Ag. The result follows from the
fact that original configurations are kept as fragment of both
L and L. Second, being both the agent and environments
deterministic, the result of applying the same action α from
states 〈〈c, n〉, o〉 ∈ L and 〈c, o〉 ∈ L are states 〈〈c′, n′〉, o′〉
and 〈c′, o′〉, respectively.

Finally, assume towards contradiction that Ag is not sim-
ulated by Ag. This implies that there exists a sequence of
length n ≥ 0 of local states l0

α1−→ l1
α2−→ . . .

αk−→ lk of
Ag, where l0 is some initial local state, and a corresponding
sequence l0

α1−→ l1
α2−→ . . .

αk−→ lk ofAg, starting from a lo-
cal state l0 sharing the same observation of l0, such that α ∈
poss(lk) but α 6∈ poss(lk) for some α. For what observed
before, lk and lk share the same agent’s configuration; in
particular, they are of the form lk = 〈〈ck, nk〉, ok〉 and
lk = 〈ck, ok〉. Hence poss(〈〈ck, nk〉, ok〉) ⊆ poss(〈ck, ok〉)
and we get a contradiction.

Theorem 4. Ag is nonblocking.
It follows from the fact that a strategy σ that is a solution

for problem P is a prefix-closed function and it is allowed
by Ag. Hence, for any l ∈ L reachable from any initial local
state by applying σ, we have poss(l) 6= ∅.

From Theorem 1 and results in previous sections we have:
Theorem 5. Any execution of agent Ag over each environ-
ment Envi satisfies the original agent specification Ag and
the goal specification.

A Notable Variant
Finally, we consider a variant of our problem where we
specify LTL goals directly in terms of states of each envi-
ronment in the environment set. In other words, instead of
having a single goal specified over the percepts of the en-
vironments we have one LTL goal for each environment.
More precisely, as before, we assume that a single strategy
has to work on the whole set of deterministic environments.
As previously, we require that Acta ⊆

⋂
i=1,...,k Actei and

that all environment share the same alphabet of perceptions
Perc. Differently from before, we associate a distinct goal
to each environment. We take as input alphabet of each

goal specification Gi the set of environment’s state Ei, i.e.,
Gi = 〈Ei, Gi, gi0, γi, Gacci 〉. All goals are thus intimately
different, as they are strictly related to the specific environ-
ment. Intuitively, we require that a strategy for agentAg sat-
isfies, in all environments Envi, its corresponding goal Gi.
In other words, σ is a solution of the generalized planning
problem P = 〈Ag, E ,G〉 iff it is allowed by Ag and it gen-
erates, for each environment Envi, an infinite trace τi that is
accepted by Gi.

Devising perfect-recall strategies now requires only min-
imal changes to our original automata-based technique to
take into account that we have now k distinct goals one for
each environment. Given Ag and E as defined before, and k
goals Gi = 〈Ei, Gi, gi0, γi, Gacci 〉, we build the generalized
Büchi automaton AP = 〈Actka,W,w0, ρ,W

acc〉 as follows.
Notice that each automaton Gi has Ei as input alphabet.

• Actka = (Acta)k is the set of k-vectors of actions;
• W = Ek × Lk ×G1 × . . .×Gk × ℘(≡);
• w0 = 〈ei0, . . . , ek0, ci0, . . . ck0, gi0, . . . , gk0,≡0〉 where

i ≡0 j iff obs(perci(ei0)) = obs(percj(ej0));

• 〈~e′,~c′, ~g′,≡′〉 ∈ ρ(〈~e,~c,~g,≡〉, ~α) iff

– if i ≡ j then αi = αj ;
– e′i = δi(ei, αi);
– c′i = δa(li, αi) ∧ αi ∈ poss(li)

with li = 〈ci, obs(perci(ei))〉;
– g′i = γi(gi, ei);
– i ≡′ j iff i ≡ j ∧ obs(perci(e′i)) = obs(percj(e′j)).

• W acc = {
Ek ×Confk ×Gacc1 ×G2 × . . .×Gk× ≡ , . . . ,
Ek × Confk ×G1 × . . .×Gk−1 ×Gacck × ≡}

The resulting automaton is similar to the previous one,
and the same synthesis procedures apply, including the em-
bedding of the strategy into an agent protocol. We also get
the analogous soundness and completeness result and com-
plexity characterization as before.

Example 4. Consider again Example 1 but now we re-
quire, instead of having a single goal φG , three distinct goals
over the three environments. In particular for the car-train
environments Env1 and Env2, we adopt the same kind
of goal as before, but avoiding certain cells for environ-
ments, e.g., φG1 = (23e11) ∧ (23e24) ∧ 2¬(〈c13, c13〉 ∨
〈c23, c23〉)∧2¬〈e22, et〉 and φG2 = (23e21)∧ (23e24)∧
2¬(〈c23, c23〉 ∨ . . . ∨ 〈c14, c14〉) ∧ 2¬〈e11, e14〉, whereas
in the Wumpus world we only require to reach the gold
after visiting initial position: φG3 = 2(e11 → 3e34) ∧
2¬(c23∨c31). It can be shown that a (perfect-recall) strategy
for achieving such goals exists. In fact, there exists at least
one strategy (e.g., one extending the prefix depicted in Fig-
ure 7 avoiding in Env1 and Env2 states mentioned above)
that satisfies goal φG over all environments as well as these
three new goals (in particular, if a strategy satisfies φG then
it satisfies φG3 too). Such a strategy can be transformed into
an agent protocol, by enlarging the configuration space of
the agent, as discussed in the previous section.

Conclusions
In this paper we investigated the synthesis of an agent’s pro-
tocol to satisfy LTL specifications while dealing with mul-
tiple, partially-observable environments. In addition to the
computationally optimal procedure here introduced, we ex-
plored an automata-based protocol refinement for a perfect-
recall strategy that requires only finite states.

There are several lines we wish to pursue in the future.
Firstly, we would like to implement the procedure here de-
scribed and benchmark the results obtained in explicit and
symbolic settings against planning problems from the lit-
erature. We note that current model checkers such as MC-
MAS (Lomuscio, Qu, and Raimondi 2009) and MCK (Gam-
mie and van der Meyden 2004) support interpreted systems,
the semantics here employed.

It is also of interest to explore whether the procedures here
discussed can be adapted to other agent-inspired logics, such
as epistemic logic (Ronald Fagin and Vardi 1995). Epistemic
planning (van der Hoek and Wooldridge 2002), i.e., planning
for epistemic goals, has been previously discussed in the
agents-literature before, but synthesis methodologies have
not, to our knowledge, been used in this context.

When dealing with LTL goals we need to consider that the
agent cannot really monitor the achievement of the specifica-
tion. Indeed every linear temporal specification can be split
into a “liveness” part which can be checked only consider-
ing the entire run and a “safety” part that can be checked
on finite prefixes of such runs (Baier and Katoen 2008). Ob-
viously the agent can look only at the finite history of ob-
servations it got so far, so being aware of achievement of
LTL properties is quite problematic in general. This issue is
related to runtime verification and monitoring (Eisner et al.
2003; Bauer, Leucker, and Schallhart 2011), and in the con-
text of AI, it makes particularly attractive to include in the
specification of the dynamic property aspects related to the
knowledge that the agent acquires, as allowed by interpreted
systems.

Acknowledgments. We thank the anonymous reviewers for
their comments. We acknowledge the support of EU Project
FP7-ICT ACSI (257593).

References
Baier, C., and Katoen, J.-P. 2008. Principles of Model
Checking (Representation and Mind Series). The MIT Press.
Bauer, A.; Leucker, M.; and Schallhart, C. 2011. Runtime
verification for LTL and TLTL. ACM Transactions on Soft-
ware Engineering and Methodology 20(4):14.
Bonet, B., and Geffner, H. 2009. Solving pomdps: Rtdp-bel
vs. point-based algorithms. In IJCAI, 1641–1646.
De Giacomo, G., and Vardi, M. Y. 1999. Automata-theoretic
approach to planning for temporally extended goals. In ECP,
226–238.
Eisner, C.; Fisman, D.; Havlicek, J.; Lustig, Y.; Mcisaac, A.;
and Van Campenhout, D. 2003. Reasoning with temporal
logic on truncated paths. 27–39.
Fagin, R.; Halpern, J. Y.; Moses, Y.; and Vardi, M. Y. 1995.
Reasoning about Knowledge. Cambridge: MIT Press.

Gammie, P., and van der Meyden, R. 2004. MCK: Model
checking the logic of knowledge. In Proceedings of 16th
International Conference on Computer Aided Verification
(CAV’04), volume 3114 of LNCS, 479–483. Springer-
Verlag.
Harding, A.; Ryan, M.; and Schobbens, P.-Y. 2005. A new
algorithm for strategy synthesis in ltl games. In Halbwachs,
N., and Zuck, L. D., eds., TACAS, volume 3440 of Lecture
Notes in Computer Science, 477–492. Springer.
Hu, Y., and De Giacomo, G. 2011. Generalized planning:
Synthesizing plans that work for multiple environments. In
IJCAI, 918–923.
Jamroga, W., and van der Hoek, W. 2004. Agents that know
how to play. Fundam. Inform. 63(2-3):185–219.
Kupferman, O., and Vardi, M. Y. 2000. Synthesis with in-
complete informatio. In In Advances in Temporal Logic,
109–127. Kluwer Academic Publishers.
Lomuscio, A., and Raimondi, F. 2006. Model checking
knowledge, strategies, and games in multi-agent systems. In
AAMAS, 161–168.
Lomuscio, A.; Qu, H.; and Raimondi, F. 2009. Mcmas: A
model checker for the verification of multi-agent systems.
In Bouajjani, A., and Maler, O., eds., CAV, volume 5643 of
Lecture Notes in Computer Science, 682–688. Springer.
Pacuit, E., and Simon, S. 2011. Reasoning with proto-
cols under imperfect information. Review of Symbolic Logic
4(3):412–444.
Parikh, R., and Ramanujam, R. 1985. Distributed processes
and the logic of knowledge. In Logic of Programs, 256–268.
Piterman, N.; Pnueli, A.; and Sa’ar, Y. 2006. Synthesis of
reactive(1) designs. In Emerson, E. A., and Namjoshi, K. S.,
eds., VMCAI, volume 3855 of Lecture Notes in Computer
Science, 364–380. Springer.
Pnueli, A., and Rosner, R. 1989. On the Synthesis of a
Reactive Module. In Proc. of POPL’89, 179–190.
Ronald Fagin, Joseph Y. Halpern, Y. M., and Vardi, M. Y.
1995. Reasoning about Knowledge. Cambridge, MA: MIT
Press.
Russell, S. J., and Norvig, P. 2010. Artificial Intelligence -
A Modern Approach (3. internat. ed.). Pearson Education.
van der Hoek, W., and Wooldridge, M. 2002. Tractable
multiagent planning for epistemic goals. In AAMAS, 1167–
1174.
van der Meyden, R. 1996. Finite state implementations of
knowledge-based programs. In Chandru, V., and Vinay, V.,
eds., FSTTCS, volume 1180 of Lecture Notes in Computer
Science, 262–273. Springer.
Vardi, M. 1996. An automata-theoretic approach to lin-
ear temporal logic. In Moller, F., and Birtwistle, G., eds.,
Logics for Concurrency, volume 1043 of Lecture Notes in
Computer Science. Springer Berlin / Heidelberg. 238–266.
Wooldridge, M., and Lomuscio, A. 2001. A computation-
ally grounded logic of visibility, perception, and knowledge.
Logic Journal of the IGPL 9(2):273–288.

