
A Cutoff Technique for the Verification of Parameterised Interpreted Systems
with Parameterised Environments

Panagiotis Kouvaros and Alessio Lomuscio
Department of Computing, Imperial College London, UK

{p.kouvaros, a.lomuscio}@imperial.ac.uk

We put forward a cutoff technique for determining the
number of agents that is sufficient to consider when check-
ing temporal-epistemic specifications on a system of any size.
We identify a special class of interleaved interpreted systems
for which we give a parameterised semantics and an abstrac-
tion methodology. This enables us to overcome the significant
limitations in expressivity present in the state-of-the-art. We
present an implementation and discuss experimental results.

1 Introduction
With the development and deployment of autonomous
agents and multi-agent systems (MAS) in diverse applica-
tions such as search-and-rescue [Murphy, 2000] and web-
services [Maximilien and Singh, 2004], there is a growing
need to study powerful and versatile techniques for the ver-
ification of MAS. A key technique that has emerged in the
past ten years is that of model checking [Clarke et al., 1999].
Model checking enables us to check whether a model MS

representing a system S, satisfies a formula φP encoding a
specification P . In the case of MAS a specification expressed
by the formula φP may be not just a temporal formula, as is
the case in verification of reactive systems, but a specifica-
tion given in an agent-based logic, such as BDI [Rao, 1996],
Desires-Goal-Intention [Dastani et al., 2003], or temporal-
epistemic logic [Fagin et al., 2003].

Indeed, a number of techniques have been put forward
for the efficient model checking of MAS against agent-based
specifications including binary decision diagrams [Gammie
and Meyden, 2004; Lomuscio et al., 2009], abstraction [Co-
hen et al., 2009], partial order reduction [Lomuscio et al.,
2010], bounded model checking [Lomuscio et al., 2007], par-
allel model checking [Kwiatkowska and A. Lomuscio, 2010],
etc., thereby making it possible to verify systems with large
state spaces. Yet, since the number of states is exponen-
tial in the number of agents in the system, systems of many
agents remain intractable. This is particularly problematic
when wishing to reason about open MAS. We may be able to
encode a system with a given number of agents and verify that
a specification holds. But we cannot draw any conclusion as
to whether the specification will still hold should more agents
be present. We need a technique that enables us to draw con-
clusions independently on the number of agents present in a
MAS.

Cutoffs have been studied in the analysis of parametric

systems precisely to solve this problem, often in the con-
text of networking protocols [Emerson and Namjoshi, 1995;
Hanna et al., 2009]. A cutoff is the number of components
that need to be analysed with respect to a given specifica-
tion to be able to draw conclusions on the specification in
question irrespective on the number of components a system
implements. Although the problem of parameterised verifica-
tion is, in general, undecidable [Apt and Kozen, 1986], sound
and incomplete proposals have been put forward [Clarke et
al., 2008; German and Sistla, 1992; Hanna et al., 2009;
Pnueli et al., 2002; Wolper and Lovinfosse, 1990] that im-
pose restrictions on the systems and the properties studied. In
previous work we have begun addressing this in the context of
MAS [Kouvaros and Lomuscio, 2013]. However, [Kouvaros
and Lomuscio, 2013] makes strong assumptions on the se-
mantics which effectively entail that all agents evolve in the
same way following synchronisation with the environment.
This is a severe limitation that makes the technique inappli-
cable to any scenario where agents evolve differently even if
they share a single skeleton. The aim of this paper is to over-
come these limitations and present a technique which can be
employed to verify systems with arbitrary number of agents
that do not necessarily evolve in a lock-step fashion.

After recalling the technical setup in Section 2 for inter-
leaved interpreted systems, in Section 3 we develop a se-
mantics for parameterised interpreted systems in which the
environments are equipped with parametric actions. This is
explored in Section 4 thereby showing how to derive a cut-
off for the verification of temporal-epistemic specifications.
Section 5 reports on an implementation of the technique and
discusses the experimental results obtained for the train-gate-
controller scenario with an unbounded number of trains.

2 Model Checking Parameterised Systems
We summarise the formalism of interleaved interpreted sys-
tems [Lomuscio et al., 2010] (IIS), a variant of interpreted
systems [Fagin et al., 2003] to model asynchronous multi-
agent systems, and we discuss parameterised verification in
the context of IIS.

Interleaved Interpreted Systems. Consider a MAS com-
posed of n agents A = {1, . . . , n} and a special agent E (the
environment in which the agents “live”). Let A′ = A∪ {E}.
Each agent i ∈ A′ is encoded with a nonempty set of local
states Li and a nonempty set of actionsActi containing a spe-

cial “null” action εi. For each agent i ∈ A′ assume a local
protocol Pi : Li → ℘(Acti) governing which actions can
be performed in a given state, and a local transition function
ti : Li×Acti → Li specifying the evolution of agent i’s local
states given its action. The “null” action εi is used to model
the interleaving evolution of agent i; the protocol Pi is such
that for every state li ∈ Li we have that εi ∈ Pi(li) (i.e., the
null action is enabled at every local state); and the transition
function ti is such that ti(li, εi) = li (i.e., whenever εi is per-
formed, agent i’s local state does not change). A global state
g = (l1, . . . , ln, lE) is a tuple of local states for all the agents
in the MAS and gives a description of the system at a particu-
lar instance of time. Given a global state g = (l1, . . . , ln, lE)
and a set of agents J = {j1, . . . , j|J|}, we write gJ for the
tuple of local states (lj1 , . . . , lj|J|) of the agents in J in g. We
often write gi instead of g{i}.

The local protocols and the local evolution functions deter-
mine the temporal evolution of the system’s global states. Let
ACT =

⋃
i∈A′ Acti and Agent(a) = {i ∈ A′ | a ∈ Acti}

for each action a ∈ ACT . The global (interleaved) transition
relation R ⊆ G × G on a set G of global states is defined
as (g, g′) ∈ R iff there exists a= (act1, . . . , actn, actE) ∈
Act1 × . . . × Actn × ActE and a ∈ ACT such that for all
i ∈ Agent(a) we have that acti = a and ti(gi, a) = g′i;
and for all i ∈ A′ \ Agent(a), we have that acti = εi and
ti(gi, acti) = g′i = gi. We often write g a→ g′ to mean that
(g, g′) ∈ R by means of action a. Note that only one local
action is performed in the system at a given round. Further-
more, every agent potentially able to perform the said action
has to perform it at that round. Therefore, the agents commu-
nicate by means of shared actions. We assume that the joint
null action is always enabled; therefore,R is serial. A path is

an infinite sequence g1a1g2a2g3 . . . such that gi ai

→ gi+1, for
every i ≥ 1. Given a path π, we write π(i) for the i-th state in
π. The set of all paths originating from g is denoted by Π(g).
We write π[i] for the suffix giaigi+1 . . . of π and [i]π for the
prefix g1a1 . . . gi of π. A global state g is said to be reachable
from a global state g1 if there is a path g1a1g2 . . . such that
g = gi, for some i ≥ 1.

Model Checking IIS. Model checking techniques have
been developed to verify IIS against temporal-epistemic spec-
ifications [Lomuscio et al., 2010]. However, a key limita-
tion of the approach remains the state explosion problem: the
state space of the system grows exponentially in the number
of variables encoding the agents. This renders model check-
ing intractable for systems with many agents. Furthermore,
since model checking is typically defined for finite state sys-
tems, the approach becomes unfeasible for systems with un-
bounded number of agents, such as open systems.

Parameterised Systems. To overcome these limitations,
parameterised systems have been put forward [Kouvaros and
Lomuscio, 2013]. Parameterised systems are composed of
arbitrarily many agents each having identical behaviour. The
behaviour of the agents is specified by giving a generic agent
template. A parameterised system S(n), where the parameter
n is the size of the system, represents an infinite collection of
IIS each composed of n indexed copies of the template agent.
In [Kouvaros and Lomuscio, 2013] a cutoff result is estab-

lished showing that model checking a certain concrete system
(for a certain value of the parameter) suffices to establish cor-
rectness for all systems. However, the semantics insist on a
lock-step evolution of the agents, thereby confining the tech-
nique to systems with agents evolving independently of the
environment’s actions. The aim of this paper is to overcome
these limitations by giving a different semantics and devising
a novel verification technique for it.

3 Parameterised Environments
We introduce a semantics for parameterised systems in which
the environment closely synchronises with the agents’ ac-
tions. We use two parameters to describe a MAS: the number
of agents in the system and the set of actions of the envi-
ronment. A Parameterised Interpreted System with Parame-
terised Environment (or PISPE) is given as follows. Firstly
we define a template agent T = 〈L, ι, Act, P, t〉 and a tem-
plate environment E = 〈LE , ιE , ActE , PE , tE〉. T and E
are encoded as interleaved agents for which we respectively
assume an initial state ι ∈ L and ιE ∈ LE . The set
Act = S∪NS of actions of the template agent is decomposed
into disjoint sets of shared actions S and of non-shared ac-
tions NS . Shared actions are actions shared with the template
environment (encoded with these actions; i.e., ActE = S)
and they are further decomposed into a set NPS of non-
parameterised actions and a set PS of parameterised actions.
We assume that non-parameterised actions are shared by all
the agents and the environment in a concrete system, whereas
parameterised actions are shared by exactly one agent and the
environment. Therefore, in compliance with the interleaved
semantics, a global transition from a global state g can only
happen in three cases: (i) an NS action is enabled for some
agent at g; (ii) an NPS action is enabled for the environment
and all the agents at g; (iii) a PS action is enabled for the
environment and some agent at g. We assume that for each
action a ∈ S , the set {l ∈ LE | a ∈ PE(l)} is a singleton;
i.e., shared actions are enabled by the protocol at exactly one
template state in E .

Let n ≥ 1 and [n] = {1, . . . , n}. We now describe
the construction of a concrete system S(n) from the tem-
plates T and E . S(n) results from n instantiations A(n) =
{T (1), . . . , T (n)}, or simply A(n) = [n], of the template
agent and an instantiation E(n) of the template environment.
Each agent i ∈ A(n) is instantiated as follows: Li = L×{i};
Acti = NS i ∪ PS i ∪ NPS ∪ {εi}, where NS i = NS × {i},
PS i = PS×{i}; Pi : Li → ℘(Acti) is defined by a ∈ Pi(li)
iff tl(a) ∈ P (l), where tl(x), x ∈ Li∪Acti, refers to the cor-
responding template state or action; ti : Li × Acti → Li is
defined by ti(li, a) = l′i iff t(l, tl(a)) = l′. The concrete en-
vironment E(n) = 〈LE , ιE , ActE(n), PE(n), tE(n)〉 is ob-
tained by instantiating each template parameterised action for
every concrete agent: ActE(n) = NPS ∪ PS1 ∪ · · · ∪ PSn ;
PE(n) : LE → ℘(ActE(n)) is defined by a ∈ (PE(n))(l)
iff tl(a) ∈ PE(l); tE(n) : LE × ActE(n) → LE is defined
by (tE(n))(l, a) = l′ iff tE(l, tl(a)) = l′.

We can now formally define the semantic structures we will
be using in this paper.

W

T

A

enter

exit

approach

(a) Template Agent (Train)

G

R

enter exit

(b) Template Environment
(Controller)

Figure 1: A PISPE of parameterised TGC.

Definition 3.1 (Parameterised system). Given T and E , as-
sume a template labelling function h : L → ℘(AP) for a
set AP of atomic propositions, and let n ≥ 1. A param-
eterised (interleaved) interpreted system with parameterised
environment (PISPE, or a model), composed of n concrete
agents, is a tuple S(n) = 〈G(n), ι(n),R(n), V (n)〉, where
G(n) ⊆ L1×· · ·×Ln×LE is a set of reachable global states
from ι(n) = (ι1, . . . , ιn, ιE), R(n) is a global transition re-
lation, and V (n) : G(n) → ℘(AP × A(n)) is a labelling
function such that pi ∈ (V (n))(g) iff p ∈ h(tl(gi)).

The above gives a concise description of an infinite collec-
tion of concrete systems (or system instances). Each value
of the parameter n defines a system composed of a different
number of agents and an environment suitable for synchroni-
sation with each of the agents.

Example 3.2. Figure 1 presents a parametric variant of the
untimed version of the Train-Gate-Controller (TGC) [Alur
et al., 1998] composed of a controller and arbitrarily many
trains encoded as a PISPE. Each train runs along a circular
track and all tracks pass through a narrow tunnel (template
state “T”). The tunnel has enough space for only one train
to be in it at any time. The controller operates the colour
(template states “G” (Green) and “R” (Red)) of the traffic
lights to let the trains enter and exit the tunnel (to state “A”
(Away)). Initially, the trains are in state “W” (Waiting) and
the controller is in state “G”. In the figure enter, exit ∈ PS
and approach ∈ NS ; the ε actions are omitted.

We use the temporal-epistemic logic ACTL∗K−X [Lomus-
cio et al., 2010] to expresses properties of MAS to be inter-
preted on PISPE. The logic combines epistemic modalities
with the universal fragment of CTL∗−X (the logic CTL∗ with-
out the next-time operator in which: (i) the existential state
modality does not appear in any formula; and (ii) the nega-
tion is only allowed for atomic propositions). The restriction
to a next-step free logic is typical in parameterised verifica-
tion; the next-step operator can be used to count the number
of agents in the system resulting in the verification problem
being undecidable [Emerson and Kahlon, 2003]. The restric-
tion to universal path quantification is essential in establishing
the behavioural equivalence results in Section 4.

Definition 3.3 (Syntax of ACTL∗K−X). State formulae and
path formulae of ACTL∗K−X over a set AP of propositions
and a set A of agents are defined by the following BNF ex-

pressions:

φ ::= p | ¬p | φ ∧ φ | φ ∨ φ | Kiφ (i ∈ A) | A(ψ)

ψ ::= φ | ψ ∧ ψ | ψ ∨ ψ | U(ψ,ψ) | R(ψ,ψ)

where φ and ψ are state and path formulae and p ∈ AP . As
usual [Fagin et al., 2003] the knowledge modality Ki stands
for “agent i knows that”, the path quantifier A is read “for all
paths” and the temporal operators U , R are read “until” and
“release” respectively. ACTL∗K−X formulae are interpreted
in a model S(n) as standard: the temporal modalities are in-
terpreted by means of the global transition relation; the epis-
temic modalities are interpreted over epistemic accessibility
relations defined on local equalities for the agents’ states.
Definition 3.4 (Satisfaction). Let S(n) be a PISPE, let π =
g1, a1, g2, . . . be a path of S(n), let g ∈ G(n) be a state
of S(n), and let φ be an ACTL∗K−X formula. Satisfaction
of φ at g, denoted (S(n), g) |= φ, or simply g |= φ, and
satisfaction of φ on π, denoted (S(n), π) |= φ, or π |= φ, is
inductively defined as follows:

g |= pi if pi ∈ (V (n))(g);
g |= ¬pi if not g |= pi, for p ∈ AP ;
g |= φ ∧ ψ if g |= φ and g |= ψ;
g |= φ ∨ ψ if g |= φ or g |= ψ;
g |= Kiφ if g′ |= φ for every g′ ∈ G(n) such that

g ∼i g
′, where g ∼i g

′ if gi = g′i;
g |= Aφ if π |= φ for every path π such that

π(1) = g;
π |= φ if π(1) |= φ for any state formula φ;
π |= φ ∧ ψ if π |= φ and π |= ψ;
π |= φ ∨ ψ if π |= φ or π |= ψ;
π |= U(φ, ψ) if there is an i ≥ 1 such that π[i] |= ψ

and π[j] |= φ for all 1 ≤ j < i;
π |= R(φ, ψ) if for every i, if π[j] 2 φ, for all

1 ≤ j < i, then π[i] |= ψ.

We say that a formula φ is true in a system S(n), denoted
S(n) |= φ, if (S(n), ι(n)) |= φ. We assume the customary
abbreviations for Fφ (“Eventually φ”) and Gφ (“Always φ”)
from until and release.

We would like to establish whether or not a certain
ACTL∗K−X specification is satisfied by a MAS irrespective
of how many agents are present. To do this we consider for-
mulae with atomic propositions and epistemic modalities in-
dexed with variables taking pairwise distinct values in A(n).
We write φ(J) to indicate that each variable j ∈ J ap-
pears in the formula φ. We verify the PISPE encoding the
MAS against properties of the form

∧
J ϕ(J). In other words∧

J φ(J) is a shortcut for the ACTL∗K−X formula express-
ing the conjunction of all φ(J) under any assignment for J .
Note that formulae of this form are implicitly parametric;
i.e., the domain A(n) of J depends on the concrete system
S(n) at which the formula is evaluated. For example con-
sider the property “whenever a train is in the tunnel, it knows
that no other train is in the tunnel at the same time” for the
TGC. We express this property with the formula φTGC =∧
{i,j}AG(Ti → Ki¬Tj) which, when evaluated at S(2),

is a shortcut for AG(T1 → K1¬T2) ∧ AG(T2 → K2¬T1).

Similar properties, but specified in CTL∗, are considered in
some approaches to parameterised verification [Clarke et al.,
1989].

Definition 3.5 (Parameterised model checking problem).
Given a PISPE S(n) and an ACTL∗K−X formula φ(J), the
parameterised model checking problem (PMCP) concerns es-
tablishing whether or not the following holds:

∀n ≥ |J | : S(n) |=
∧
J

φ(J)

The above amounts to checking an unbounded number of
systems. This is a task that in principle involves an un-
bounded state space which is clearly unfeasible for traditional
model checking techniques.

4 MAS Cutoffs
In this section we put forward a cutoff-based abstraction
methodology for the PMCP. Cutoffs have been studied to
circumvent the aforementioned difficulties in parameterised
verification by reducing the number of systems to con-
sider [Emerson and Namjoshi, 1995; Emerson and Kahlon,
2000; Hanna et al., 2009; Siirtola, 2010; Kaiser et al., 2010;
Kouvaros and Lomuscio, 2013]. A cutoff for a system is
the number of components that is sufficient to consider when
evaluating a given specification.

Definition 4.1 (MAS Cutoff). Consider a PISPE S(n) and
let Γ(I) = {

∧
J φ(J) | φ(J) ∈ ACTL∗K−X and J ⊆ I} be

a set of specifications for S(n). A natural number c is a MAS
cutoff for S(n) with respect to Γ(I) if for any φ ∈ Γ(I) we
have that S(c) |= φ⇔ ∀n ≥ c : S(n) |= φ.

By definition, if a cutoff exists, then the PMCP can be re-
duced to model checking all system instances up to the cutoff
instance S(c). Note that by definition a cutoff c is always
greater than the number of agents that any φ ∈ Γ(I) can refer
to via local propositions and epistemic modalities. Note, also,
that Γ(I) contains all ACTL∗K−X formulae with at most |I|
index variables; this is in line with the standard treatment of
cutoffs in the literature where a cutoff is defined with respect
to the logic under analysis.

Theorem 4.2. There are PISPE S(n) and specifications
Γ(I) ∈ ACTL∗K−X that admit no cutoff.

Proof. (Sketch) Let S(n) be the PISPE specified in Figure 2,
where a, b ∈ PS and d ∈ NS . Suppose that there is a c such
that S(c) |= φ⇔ ∀n ≥ c : S(n) |= φ, for any φ ∈ Γ({i, j}).
Inductively define a formula δc as follows: δc = si if c = 1;
δc = si ∧ F (ui ∧ Fδc−1) if c > 1. Let φ =

∧
{i,j}A(δc →

G¬uj) expressing that for each path, if an agent does at least
c− 1 loops through the cycle (s, u, s), then every other agent
never reaches the state u in the path. It is easy to see that
whenever an agent moves to state u, a different agent had
moved to state t in a preceding step. Therefore S(c) |= ψ and
S(c+ 1) 2 ψ. The latter contradicts that c is cutoff.

While the result above is negative, we now proceed to iden-
tify a sufficient condition for the existence of cutoffs.

st ua

b

d

(a) Template Agent

v w

a

b

(b) Template
Environment

Figure 2: A PISPE with no cutoff.

4.1 Environment Loops
We introduce the notion of shared-simulation between the
agent and environment templates. Informally, there is a
shared-simulation between T and E if E can simulate T only
by means of the template states in which an S action is en-
abled. In the following, let l →X l′, where l, l′ are template
states, denote that there exists an action a ∈ X such that
t(l, a) = l′. Analogously, let g →X g′, where g, g′ are global
states, denote that there exists an action a ∈ X such that
g

a→ g′. Finally, let→X∗ denote the reflexive and transitive
closure of→X .
Definition 4.3 (Shared -simulation). A relation ∼P⊆ L ×
LE is a shared-simulation between T and E if ι ∼P ιE and
whenever l ∼P lE the following condition holds: if there is
l′, l′′ ∈ L such that l →NS∗ l

′ →{a} l′′ for some a ∈ S , then
a ∈ PE(lE) and l′′ ∼P tE(lE , a).

We write T ≤P E to denote that there is a shared-
simulation between T and E . If T ≤P E , then a looping
behaviour is induced on the concrete environment whenever
it synchronises between two different agents.
Definition 4.4. A subsequence giai . . . gj , j > i, of a path
g1a1 . . . in S(n) is an environment loop if giE = gjE .

As we clarify below, following synchronisation between
the environment and an agent through a PS action, the en-
vironment can only synchronise with the same agent unless
an environment loop occurs. Therefore, an environment loop
occurs whenever the system moves to a state g in which the
environment is able to synchronise with more than one agent.
Definition 4.5. A global state π(i) in a path π in S(n) has
the environment loop condition, denoted ELC(π(i), r, q), if
there exist r 6= q ∈ A(n) and π(j), π(j′), j < j′ ≤ i, such
that π(j) →PSr π(j′) →NSr∗ π(i), and ∃g, g′ ∈ G(n) :
π(i)→NSq∗ g →Sq g

′.
In other words, a global state π(i) has the environment loop

condition if (i) the environment lastly synchronises with an
agent r through a PS action earlier in π; and (ii) a different
agent q can asynchronously move from its local state in π(i)
to a state in which it can synchronise with the environment
through a shared action.

Example 4.6. Consider the path π = (W1W2G)
enter1−→

(T1W2R)
exit1−→ (A1W2G)

enter2−→ (A1T2R) of the concrete
TGC composed of two trains. The global state (A1,W2, G)
in π has the environment loop condition whereas the global
state (T1W2R) does not.

We call an NP -free section of a path π a subsequence
giai . . . gj of π such that tl(ai−1) ∈ NPS (when i > 1),

tl(ak) /∈ NPS for i ≤ k ≤ j − 1 and tl(aj) ∈ NPS . In
other words the agents either perform asynchronous actions,
or they synchronise with the environment only. The following
lemma shows that the environment loop condition is a suffi-
cient (but not necessary) condition for the occurrence of an
environment loop in an NP -free section. Specifically, when-
ever ELC(g, r, q) holds, the environment’s local state in g is
equal to its local state at the initial global state of the NP -free
section in which g occurs.

Lemma 4.7. Suppose that T ≤P E and let ρ = g1a1, . . . , gj

be an NP -free section of a path in S(n), n ≥ 2. If
ELC(gk, r, q), 1 < k ≤ j, then [k]ρ is an environment loop.

Proof. (Sketch) By induction on k. Base step: [k]ρ =
g1a1g2. Suppose that ELC(g2, r, q). We have that a1 /∈ Sq
and ∃g, g′ : g2 →NSq∗ g →Sq

g′. Obviously, g2E = gE and
there is an aq ∈ Sq such that tl(aq) ∈ PE(gE). T ≤P E
gives that tl(g1q) ∼P g1E . Therefore, as tl(g1q)→NSq∗ tl(gq),
T ≤P E gives that tl(aq) ∈ PE(g1E). It follows that g1E = gE
(recall that the set {l ∈ LE | tl(aq) ∈ PE(l)} is a singleton)
which gives that g1E = g2E . Assume for the inductive step
that the claim is true for 2 ≤ k ≤ m − 1 and suppose that
ELC(gm, r, q). Let l = maxy∈[m−1](a

y ∈ PS q). If such a
maximum does not exist, then the claim follows as in the base
step; if it exists, then it is easy to see that ELC(gl+1, q, z)
for some z ∈ A(n). The inductive hypothesis gives that
g1E = gl+1

E ; T ≤P E gives that tl(gl+1
q) ∼P gl+1

E . The
latter can be used in a similar argument to the base step and
conclude gl+1

E = gmE . Hence, g1E = gmE .

4.2 Cutoff Theorem
We now show that if there is a shared-simulation between the
agent and environment templates, then the cutoff c for a set
of specifications Γ(I) being considered is c = max(2,m),
where m = |I|. We achieve this result by means of three
observations. Firstly, we show that by symmetry considera-
tions [Emerson and Sistla, 1996] a formula

∧
J φ(J) ∈ Γ(I)

can be evaluated simply by considering the ground instantia-
tion φ([|J |]) obtained by assigning the variables in J to any
set of distinct values in A(n); for clarity we take the set of
values simply to be {1, . . . , |J |}.
Lemma 4.8. ∀n ≥ |J | : S(n) |=

∧
J φ(J) iff S(n) |=

φ([|J |]).

Proof. (Sketch) This follows by suitably extending the result
in [Emerson and Sistla, 1996].

For example, the formula φTGC can be evaluated simply
by considering its single conjunct AG(T1 → K1¬T2).

Secondly, we show that the cutoff instance S(c) admits the
behaviour of any larger system S(n), n ≥ c. This requires
a notion of equivalence between system instances. Recall
that ACTL∗K−X formulae are preserved under stuttering-
simulation [Lomuscio et al., 2010]; i.e., if a model M′
stuttering-simulates a model M, denoted M ≤ss M′, then
M′ |= φ([m]) implies that M |= φ([m]). We say that
M ≤ss M′ if there is a relation ∼ss⊆ G × G′ such that
ι ∼ss ι

′ and whenever g ∼ss g
′ then: (i) if g ∼i g

1 (i ∈ [m]),

then g′ ∼i g′1 for some g′1 such that g1 ∼ss g′1; (ii)
V (g)∩{pi | p ∈ AP∧i ∈ [m]} = V ′(g′)∩{pi | p ∈ AP∧i ∈
[m]} and for every π ∈ Π(g), there is a π′ ∈ Π(g′), a parti-
tion B1, B2 . . . of the states in π, and a partition B′1, B

′
2, . . .

of the states in π′ such that for each j ≥ 1, Bj and B′j are
nonempty and finite, and every state in Bj is related by ∼ss

to every state in B′j .

Lemma 4.9. If T ≤P E and S(c) |= φ([m]), then S(n) |=
φ([m]), for all n ≥ c ≥ m.

Proof. (Sketch) Define a relation ∼ss= {(g, g′) ∈ G(n) ×
G(c) | g[c] = g′}. We show that S(n) ≤ss S(c). Simu-
lation requirement (i): let g1 ∼ss g

′1. Suppose that g1 ∼i

g2 for some i ∈ [m] and let g′2 = g2[c]. We get that
g′1 ∼i g

′2 and g2 ∼ss g
′2. Simulation requirement (ii): let

π = g1a1g2 . . . ∈ Π(g1) and let ρ = g1[c]a
′1g2[c] . . ., where

a′j = aj if aj ∈
⋃

i∈[c]Acti and a′j = ε otherwise. Note
that for every subsequence giaigi+1 . . . gjajgj+1 of an NP -
free section in π such that ai, aj ∈ PS q , for some q ∈ [c],
and az /∈ PS q , i < z < j, we have that gi+1

E = gjE
by Lemma 4.7. Therefore the environment allows for the
transitions in ρ, hence ρ ∈ Π(g′1). Let B1, B2, . . . and
B′1, B

′
2, . . . be a partition of π and ρ respectively into sin-

gleton blocks. We have that Bj ∼ss B
′
j , j ≥ 1; therefore,

S(n) ≤ss S(c).

Finally, we show that any system S(n + 1), n ≥ c, ad-
mits the behaviour of the system S(n) obtained by removing
one component. Repeated application of the following lemma
gives that any system S(n), n ≥ c, simulates the cutoff in-
stance S(c).

Lemma 4.10. If T ≤P E and S(n + 1) |= φ([m]), then
S(n) |= φ([m]), for all n ≥ c ≥ m.

Proof. (Sketch) The idea is to allow the extra agent n + 1 in
S(n+1) to mimic agent 1. Define a relationR1 = {(g, g′) ∈
G(n) × G(n + 1) | g = g′[n] and tl(g′n+1) →(NS∪PS)∗
tl(g′1)}; if R1(g, g′), then agent n + 1 in S(n + 1) is able
to reach the state of agent 1 via PS and NS transitions. We
ensure that the environment allows this. Define a relation
R2 = {(g, g′) ∈ G(n)×G(n+1) | if ∃g1 : g →NPS g

1, then
tl(g′n+1) ∼P g′E , else g′E = gE}; so, if R2(g, g′) and there
is an NPS action enabled at g, then tl(g′n+1) ∼P g′E thereby
allowing agent n+ 1 to reach the state of agent 1 in g′. Now
define a relation ∼ss= R1 ∩ R2. We show that S(n) ≤ss

S(n + 1). Let g1 ∼ss g
′1. Simulation requirement (i): fol-

lows by a similar argument used in the proof of Lemma 4.9.
Simulation requirement (ii): let π = g1a1g2 · · · ∈ Π(g1).
We inductively construct a path ρ = g′1a′1g′2 · · · ∈ Π(g′1)
as required by stuttering-simulation. Assume that we have
already constructed a prefix [j]ρ, a prefix [i]π such that
ρ(j) ∼ss π(i), and a partition of the states in [j]ρ and [i]π
into corresponding blocks. We now define the next blocks
B and B′. There are two cases depending on the next ac-
tion ai in π. Case 1: tl(ai) /∈ NPS . Then B = gi+1 and

B′ = g′j+1, where g′j ai

→ g′j+1. Case 2: tl(ai) ∈ NPS .
Then B = gi+1 and B′ = g′j+1g′j+2 . . . g′j+d, where

g′j →NSn+1∪PSn+1
g′j+1 · · · →NSn+1∪PSn+1

g′d−1
ai

→ g′d.
For each case it can be shown that B ∼ss B′; therefore,
S(n) ≤ss S(n+ 1).

Corollary 4.11. If T ≤P E then ∀n ≥ c : S(n) |= φ iff
S(c) |= φ, for any φ ∈ Γ(I).

Proof. By Lemma 4.8 it suffices to prove the claim for
φ([m]). (⇒) Repeated application of Lemma 4.10. (⇐)
Lemma 4.9.

Following Corollary 4.11 we can reduce the PMCP (Def-
inition 3.5) to the simple check of the cutoff instance S(c)
against φ([m]).

5 Implementation and Experimental Results
We implemented the cut-off based abstraction methodologies
presented earlier in an experimental toolkit that we built from
the open-source model checker MCMAS [Lomuscio et al.,
2009]. We extended ISPL, MCMAS’s input language, to al-
low for the definition of the semantic structures and the para-
metric specifications considered here. A PISPE is described
by giving declarations for the template agent and the tem-
plate environment. These extend ISPL’s semantics by con-
sidering, among other concepts, the different kind of actions
that PISPE are defined on. We refer to [MCMAS-P, 2013] for
more details.

Given the input descriptions for T and E , the model
checker MCMAS-P first attempts to establish whether T ≤P

E . To do this, the tool constructs the concrete system S(1).
The states in S(1) are assigned atomic propositions by the
valuation function V (1) : G(1) → ℘(AP), where AP =
{aT , aE | a ∈ S}, defined as aT ∈ (V (1))(g) iff a ∈
P (tl(g1)) and aE ∈ (V (1))(g) iff a ∈ PE(gE). In other
words a state g is labelled with aT (respectively, aE) if the
shared action a is enabled for the agent (respectively, the en-
vironment) at g. Following this, MCMAS is called to check
S(1) against the formulae in ∆ = {AG(aT → aE) | a ∈ S}.
It is easy to see that T ≤P E iff ∀δ ∈ ∆ : S(1) |= δ; so if
the formulae are satisfied we can conclude that T ≤P E . Fol-
lowing a successful simulation test MCMAS-P employs Corol-
lary 4.11 by means of five steps: (i) the cutoff c is computed
from the cardinality of the set of indices used in the specifica-
tions Λ ⊂ Γ(I) to check; (ii) the reachable state-space of the
cutoff system S(c) is computed and encoded symbolically;
(iii) given an (input) valuation of the template states, atomic
propositions are assigned to global states as in Definition 3.1;
(iv) the specification formulae are reduced to their ground in-
stantiations Λ([c]) as in Lemma 4.8; (v) finally, MCMAS is
called to verify S(c) against Λ([c]). Following these calcula-
tions the user can conclude whether or not the specifications
hold for any number of agents in the system.

We tested the cutoff technique on the TGC against the
specification φTGC , a commonly used benchmark [Lomus-
cio et al., 2010; Hoek and Wooldridge, 2002]. Note that the
state-space grows exponentially with the number of agents in
the system. To the best of our knowledge all current tech-
niques would have to consider an unbounded number of sys-
tems each with different number of trains. This is unfeasi-

#Trains #States Time (s) Memory (KiB)

2 (Cutoff) 8 0 8774
20 1.15× 1027 3 10005
40 2.30× 1013 128 47792
60 3.57× 1019 1317 60998
80 TIMEOUT TIMEOUT TIMEOUT

Table 1: Verification results for the TGC.

ble as illustrated by Table 1: time and space requirements
grow exponentially in the number of trains to consider, hence
model checking quickly becomes intractable. In our case the
base model checker we used could not verify a system com-
posed of 80 trains within the timeout of one hour. In com-
parison MCMAS-P established the simulation as above and
verified the cutoff instance S(2) in under 0.1 seconds. The
MAS cutoff MCMAS-P found corresponds to a MAS with
2 agents; the formula checked, and found to be true, was
AG(T1 → K1¬T2). This establishes the correctness of the
TGC for systems with any number of agents.

6 Conclusions and Further Work
As discussed in the Introduction, irrespective of recent
progress in the area of verification for MAS, a number of open
problems remain, including verification of open systems with
an unbounded number of components. Given MAS are often
open systems, it seems of particular importance to develop
techniques for these setups.

In this paper we put forward a cutoff technique for MAS
which enabled us to reason about interleaved interpreted sys-
tems in which the agents may synchronise more effectively
with the environment. The results we obtained on the shared-
simulation relation here defined enabled us to identify a suf-
ficient condition for the cutoff generation. This enabled us
to implement a toolkit for the technique which pointed to
very significant advantages over conventional model check-
ing. While the results here obtained share the specification
language and the general notion of parameterised interpreted
system used in [Kouvaros and Lomuscio, 2013], the seman-
tics and the abstraction notion here put forward is different.
Most importantly, and differently from [Kouvaros and Lo-
muscio, 2013], we can here deal with systems in which ex-
actly one concrete agent may synchronise with the environ-
ment at a tick of the clock. This enables us to check rich sce-
narios such as the TGC which are not supported in [Kouvaros
and Lomuscio, 2013].

Much work remains to be done in this line. While we can
now verify unbounded systems, we can only operate on one
abstract template agent. Our future work includes supporting
more than one template agent so that we may be able to verify
unbounded systems with agents of any kind. This at present
remains a considerable challenge due to the complexity of the
setup required.

Acknowledgments. The research described in this paper
was supported by the EPSRC Research Project “Trusted Au-
tonomous Systems” (grant No. EP/I00520X/1).

References
[Alur et al., 1998] R. Alur, TA. Henzinger, FYC. Mang,

S. Qadeer, SK.—Rajamani, and S. Tasiran. MOCHA: User
Manual. In cMocha (Version 1.0. 1) Documentation, 1998.

[Apt and Kozen, 1986] K.R. Apt and D.C. Kozen. Limits for
automatic verification of finite-state concurrent systems.
Information Processing Letters, 22(6):307–309, 1986.

[Clarke et al., 1989] E.M. Clarke, O. Grumberg, and M.C.
Browne. Reasoning about networks with many identi-
cal finite state processes. Information and Computation,
81(1):13–31, 1989.

[Clarke et al., 1999] E.M. Clarke, O. Grumberg, and D.A.
Peled. Model Checking. The MIT Press, 1999.

[Clarke et al., 2008] E.M. Clarke, M. Talupur, and H. Veith.
Proving ptolemy right: The environment abstraction
framework for model checking concurrent systems. In
Proceedings of TACAS’08, pages 33–47. Springer, 2008.

[Cohen et al., 2009] M. Cohen, M. Dam, A. Lomuscio, and
F. Russo. Abstraction in model checking multi-agent
systems. In Proceedings of AAMAS’09, pages 945–952.
IFAAMAS Press, 2009.

[Dastani et al., 2003] M. Dastani, M. van Riemsdijk,
F. Dignum, and J. .J.Meyer. A programming language for
cognitive agents goal directed 3APL. In Proceedings of
ProMAS’03, pages 111–130. Springer, 2003.

[Emerson and Kahlon, 2000] E. Emerson and V. Kahlon.
Reducing model checking of the many to the few. In Pro-
ceedings of CADE’00, pages 236–254. Springer, 2000.

[Emerson and Kahlon, 2003] E.A. Emerson and V. Kahlon.
Model checking guarded protocols. In Proceedings of
LICS’03, pages 361–370. IEEE, 2003.

[Emerson and Namjoshi, 1995] E.A. Emerson and K.S.
Namjoshi. Reasoning about rings. In Proceedings
POPL’95, pages 85–94. Pearson Education, 1995.

[Emerson and Sistla, 1996] E.A. Emerson and A.P. Sistla.
Symmetry and model checking. Formal methods in sys-
tem design, 9(1):105–131, 1996.

[Fagin et al., 2003] R. Fagin, Y. Moses, J. Y. Halpern, and
M. Y. Vardi. Reasoning about knowledge. The MIT Press,
2003.

[Gammie and Meyden, 2004] P. Gammie and R. Van Der
Meyden. Mck: Model checking the logic of knowledge. In
Proceedings of CAV’04, pages 256–259. Springer, 2004.

[German and Sistla, 1992] S. M. German and A. P. Sistla.
Reasoning about systems with many processes. Journal
of the ACM (JACM), 39(3):675–735, 1992.

[Hanna et al., 2009] Y. Hanna, S. Basu, and H. Rajan. Be-
havioral automata composition for automatic topology in-
dependent verification of parameterized systems. In Pro-
ceedings of ESEC/FSE’09, pages 325–334. ACM, 2009.

[Hoek and Wooldridge, 2002] W. Van Der Hoek and
M. Wooldridge. Tractable multi-agent planning for
epistemic goals. In Proceedings of AAMAS’02, pages
1167–1174. IFAAMAS, 2002.

[Kaiser et al., 2010] A. Kaiser, D. Kroening, and T. Wahl.
Dynamic cutoff detection in parameterized concurrent
programs. In Proceedings of CAV’10, pages 645–659.
Springer, 2010.

[Kouvaros and Lomuscio, 2013] P. Kouvaros and A. Lomus-
cio. Automatic verification of parameterised interleaved
multi-agent systems. In Proceedings of AAMAS’13. IFAA-
MAS, 2013. To Appear.

[Kwiatkowska and A. Lomuscio, 2010] M. Kwiatkowska
and H. Qu A. Lomuscio. Parallel model checking for
temporal epistemic logic. In Proceedings of ECAI’10,
pages 543–548. IOS Press, 2010.

[Lomuscio et al., 2007] A. Lomuscio, W. Penczek, and
B. Woźna. Bounded model checking knowledge and real
time. Artificial Intelligence, 171(16-17):1011–1038, 2007.

[Lomuscio et al., 2009] A. Lomuscio, H. Qu, and F. Rai-
mondi. MCMAS: A model checker for the verification
of multi-agent systems. In Proceedings of CAV’09, pages
682–688. Springer, 2009.

[Lomuscio et al., 2010] A. Lomuscio, W. Penczek, and
H. Qu. Partial order reductions for model checking
temporal-epistemic logics over interleaved multi-agent
systems. Fundamenta Informaticae, 101(1):71–90, 2010.

[Maximilien and Singh, 2004] E. M. Maximilien and M. P.
Singh. A framework and ontology for dynamic web ser-
vices selection. Internet Computing, 8(5):84–93, 2004.

[MCMAS-P, 2013] MCMAS-P. Model Checking Parame-
terised Multi-Agent Systems. http://vas.doc.ic.
ac.uk/software/tools, 2013.

[Murphy, 2000] R. R. Murphy. Marsupial and shape-shifting
robots for urban search and rescue. Intelligent Systems and
their Applications, 15(2):14–19, 2000.

[Pnueli et al., 2002] A. Pnueli, J. Xu, and L. Zuck. Liveness
with (0, 1,infinity)-counter abstraction. In Proceedings of
CAV’02, pages 93–111. Springer, 2002.

[Rao, 1996] A. Rao. Agentspeak (L): BDI agents speak out
in a logical computable language. In Proceedings of MAA-
MAW’96, pages 42–55. Springer, 1996.

[Siirtola, 2010] A. Siirtola. Automated multiparameterised
verification by cut-offs. Formal Methods and Software En-
gineering, 6447:321–337, 2010.

[Wolper and Lovinfosse, 1990] P. Wolper and V. Lovinfosse.
Verifying properties of large sets of processes with net-
work invariants. In Proceedings of AVMFSS’89, pages 68–
80. Springer, 1990.

